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Abstract

Current deep neural networks can achieve remarkable performance on a single
task. However, when the deep neural network is continually trained on a sequence
of tasks, it seems to gradually forget the previous learned knowledge. This phe-
nomenon is referred to as catastrophic forgetting and motivates the field called
lifelong learning. Recently, episodic memory based approaches such as GEM [1]
and A-GEM [2] have shown remarkable performance. In this paper, we provide
the first unified view of episodic memory based approaches from an optimization’s
perspective. This view leads to two improved schemes for episodic memory based
lifelong learning, called MEGA-I and MEGA-II. MEGA-I and MEGA-II modulate
the balance between old tasks and the new task by integrating the current gradient
with the gradient computed on the episodic memory. Notably, we show that GEM
and A-GEM are degenerate cases of MEGA-I and MEGA-II which consistently
put the same emphasis on the current task, regardless of how the loss changes
over time. Our proposed schemes address this issue by using novel loss-balancing
updating rules, which drastically improve the performance over GEM and A-GEM.
Extensive experimental results show that the proposed schemes significantly ad-
vance the state-of-the-art on four commonly used lifelong learning benchmarks,
reducing the error by up to 18%.

1 Introduction
A significant step towards artificial general intelligence (AGI) is to enable the learning agent to
acquire the ability of remembering past experiences while being trained on a continuum of tasks
[3, 4, 5]. Current deep neural networks are capable of achieving remarkable performance on a
single task [6]. However, when the network is retrained on a new task, its performance drops
drastically on previously trained tasks, a phenomenon which is referred to as catastrophic forgetting
[7, 8, 9, 10, 11, 12, 13, 14]. In stark contrast, the human cognitive system is capable of acquiring new
knowledge without damaging previously learned experiences.

The problem of catastrophic forgetting motivates the field called lifelong learning [4, 11, 14, 15,
16, 17, 18, 19]. A central dilemma in lifelong learning is how to achieve a balance between the
performance on old tasks and the new task [4, 7, 18, 20]. During the process of learning the new task,
the originally learned knowledge will typically be disrupted, which leads to catastrophic forgetting.
On the other hand, a learning algorithm biasing towards old tasks will interfere with the learning
of the new task. Several lines of methods are proposed recently to address this issue. Examples
include regularization based methods [4, 21, 22], knowledge transfer based methods [23] and episodic
memory based methods [1, 2, 24]. Especially, episodic memory based methods such as Gradient
Episodic Memory (GEM) [1] and Averaged Gradient Episodic Memory (A-GEM) [2] have shown
remarkable performance. In episodic memory based methods, a small episodic memory is used for
storing examples from old tasks to guide the optimization of the current task.
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In this paper, we present the first unified view of episodic memory based lifelong learning methods,
including GEM [1] and A-GEM [2], from an optimization’s perspective. Specifically, we cast the
problem of avoiding catastrophic forgetting as an optimization problem with composite objective.
We approximately solve the optimization problem using one-step stochastic gradient descent with
the standard gradient replaced by the proposed Mixed Stochastic Gradient (MEGA). We propose
two different schemes, called MEGA-I and MEGA-II, which can be used in different scenarios. We
show that both GEM [1] and A-GEM [2] are degenerate cases of MEGA-I and MEGA-II which
consistently put the same emphasis on the current task, regardless of how the loss changes over time.
In contrast, based on our derivation, the direction of the proposed MEGA-I and MEGA-II balance
old tasks and the new task in an adaptive manner by considering the performance of the model in the
learning process.

Our contributions are as follows. (1) We present the first unified view of current episodic memory
based lifelong learning methods including GEM [1] and A-GEM [2]. (2) From the presented unified
view, we propose two different schemes, called MEGA-I and MEGA-II, for lifelong learning problems.
(3) We extensively evaluate the proposed schemes on several lifelong learning benchmarks, and
the results show that the proposed MEGA-I and MEGA-II significantly advance the state-of-the-art
performance. We show that the proposed MEGA-I and MEGA-II achieve comparable performance
in the existing setting for lifelong learning [2]. In particular, MEGA-II achieves an average accuracy
of 91.21±0.10% on Permuted MNIST, which is 2% better than the previous state-of-the-art model.
On Split CIFAR, our proposed MEGA-II achieves an average accuracy of 66.12±1.93%, which is
about 5% better than the state-of-the-art method. (4) Finally, we show that the proposed MEGA-II
outperforms MEGA-I when the number of examples per task is limited. We also analyze the reason
for the effectiveness of MEGA-II over MEGA-I in this case.

2 Related Work

Several lifelong learning methods [25, 26] and evaluation protocols [27, 28] are proposed recently.
We categorize the methods into different types based on the methodology,

Regularization based approaches: EWC [4] adopted Fisher information matrix to prevent important
weights for old tasks from changing drastically. In PI [21], the authors introduced intelligent synapses
and endowed each individual synapse with a local measure of “importance” to avoid old memories
from being overwritten. RWALK [22] utilized a KL-divergence based regularization for preserving
knowledge of old tasks. While in MAS [29] the importance measure for each parameter of the
network was computed based on how sensitive the predicted output function is to a change in this
parameter. [30] extended MAS for task-free continual learning. In [31], an approximation of the
Hessian was employed to approximate the posterior after every task. Uncertainties measures were also
used to avoid catastrophic forgetting [32]. [33] proposed methods based on approximate Bayesian
which recursively approximate the posterior of the given data.

Knowledge transfer based methods: In PROG-NN [23], a new “column” with lateral connections
to previous hidden layers was added for each new task. In [34], the authors proposed a method to
leverage unlabeled data in the wild to avoid catastrophic forgetting using knowledge distillation. [35]
proposed orthogonal weights modification (OWM) to enable networks to continually learn different
mapping rules in a context-dependent way.

Episodic memory based approaches: In episodic memory based lifelong learning methods, a small
reference memory is used for storing information from old tasks. GEM [1] and A-GEM [2] rotated
the current gradient when the angle between the current gradient and the gradient computed on the
reference memory is obtuse. MER [24] is a recently proposed lifelong learning algorithm which
employed a meta-learning training strategy. In [36], a line of methods are proposed to select important
samples to store in the memory in order to reduce memory size. Instead of storing samples, in [11]
the authors proposed Orthogonal Gradient Descent (OGD) which projects the gradients on the new
task onto a subspace in which the projected gradient will not affect the model’s output on old tasks.
[37] proposed conceptor aided backprop which is a variant of the back-propagation algorithm for
avoiding catastrophic forgetting.

Our proposed schemes aim to improve episodic memory based approaches and are most related to [2].
Different from [2], the proposed schemes explicitly consider the performance of the model on old
tasks and the new task in the process of rotating the current gradient. Our proposed schemes are also
related to several multi-task learning methods [38, 39, 40]. In [38, 39], the authors aimed at achieving
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a good balance between different tasks by learning to weigh the loss on each task . In contrast,
our schemes directly leverage loss information in the context of lifelong learning for overcoming
catastrophic forgetting. Compared with [40], instead of using the gradient norm information, our
schemes and [1, 2] focus on rotating the direction of the current gradient.

3 Lifelong Learning
Lifelong learning (LLL) [1, 2, 4, 23] considers the problem of learning a new task without degrading
performance on old tasks, i.e., to avoid catastrophic forgetting [3, 4]. Suppose there are T tasks
which are characterized by T datasets: {D1, D2, .., DT }. Each dataset Dt consists of a list of triplets
(xi, yi, t), where yi is the label of i-th example xi, and t is a task descriptor that indicates which task
the example coming from. Similar to supervised learning, each dataset Dt is split into a training set
Dtr
t and a test set Dte

t .

In the learning protocol introduced in [2], the tasks are separated into DCV = {D1, D2, ..., DTCV }
and DEV = {DTCV +1, DTCV +2, ..., DT }. DCV is used for cross-validation to search for hyperpa-
rameters. DEV is used for actual training and evaluation. While searching for the hyperparameters,
we can have multiple passes over the examples in DCV , the training is performed on DEV with only
a single pass over the examples [1, 2].

In lifelong learning, a given model f(x;w) is trained sequentially on a series of tasks {DTCV +1,
DTCV +2, ..., DT }. When the model f(x;w) is trained on task Dt, the goal is to predict the labels
of the examples in Dte

t by minimizing the empirical loss `t(w) on Dtr
t in an online fashion without

suffering accuracy drop on {Dte
TCV +1, Dte

TCV +2, ..., Dte
t }.

4 A Unified View of Episodic Memory Based Lifelong Learning
In this section, we provide a unified view for better understanding several episodic memory lifelong
learning approach, including GEM [1] and A-GEM [2]. Due to space constraints, for the details of
GEM and A-GEM, please refer to Appendix A.1.

GEM [1] and A-GEM [2] address the lifelong learning problem by utilizing a small episodic memory
Mk for storing a subset of the examples from task k. The episodic memory is populated by choosing
examples uniformly at random for each task. While training on task t, the loss on the episodic
memory Mk can be computed as `ref(wt;Mk) = 1

|Mk|
∑

(xi,yi)∈Mk
`(f(xi;wt), yi), where wt is the

weight of model during the training on task t.

In GEM and A-GEM, the lifelong learning model is trained via mini-batch stochastic gradient descent.
We use wtk to denote the weight when the model is being trained on the k-th mini-batch of task t.
To establish the tradeoff between the performance on old tasks and the t-th task, we consider the
following optimization problem with composite objective in each update step:

min
w
α1(w

t
k)`t(w) + α2(w

t
k)`ref(w) := Eξ,ζ

[
α1(w

t
k)`t(w; ξ) + α2(w

t
k)`ref(w; ζ)

]
, (1)

where w ∈ Rd is the parameter of the model, ξ, ζ are random variables with finite support, `t(w) is
the expected training loss of the t-th task, `ref(w) is the expected loss calculated on the data stored in
the episodic memory, α1(w), α2(w) : Rd 7→ R+ are real-valued mappings which control the relative
importance of `t(w) and `ref(w) in each mini-batch.

Mathematically, we consider using the following update:

wtk+1 = argmin
w
α1(w

t
k) · `t(w; ξ) + α2(w

t
k) · `ref(w; ζ). (2)

The idea of GEM and A-GEM is to employ first-order methods (e.g., stochastic gradient descent)
to approximately solve the optimization problem (2), where one-step stochastic gradient descent is
performed with the initial point to be wtk:

wtk+1 ← wtk − η
(
α1(w

t
k)∇`t(wtk; ξtk) + α2(w

t
k)∇`ref(w

t
k; ζ

t
k)
)
, (3)

where η is the learning rate, ξtk and ζtk are random variables with finite support, ∇`t(wtk; ξtk)
and ∇`ref(w

t
k; ζ

t
k) are unbiased estimators of ∇`t(wtk) and ∇`ref(w

t
k) respectively. The quantity

α1(w
t
k)∇`t(wtk; ξtk) + α2(w

t
k)∇`ref(w

t
k; ζ

t
k) is referred to as the mixed stochastic gradient.
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Algorithm 1 The proposed improved schemes for episodic memory based lifelong learning.

1: M ← {}
2: for t← 1 to T do
3: for k ← 1 to |Dtr

t | do
4: if M 6= {} then
5: ζtk ← SAMPLE(M)
6: MEGA-I: choose α1 and α2 based on Equation 6.
7: MEGA-II: choose α1 and α2 as in Appendix A.3.
8: else
9: Set α1(w) = 1 and α2(w) = 0.

10: end if
11: Update wtk using Eq. 3.
12: M ←M

⋃
(ξtk, y

t
k)

13: Discard the samples added initially if M is full.
14: end for
15: end for

In A-GEM, ∇`ref(w
t
k; ξ

t
k) is the reference gradient computed based on a random subset from the

episodic memory M of all past tasks, where M = ∪k<tMk. And α1(w
t
k) and α2(w

t
k) can be written

as,

α1(w
t
k) = 1, α2(w

t
k) = I〈∇`ref(w

t
k
;ζt

k
),∇`t(wt

k
;ξt

k
)〉≤0 ×

(
− ∇`t(w

t
k; ξ

t
k)
>∇`ref(w

t
k; ζ

t
k)

∇`ref(w
t
k; ζ

t
k)
>∇`ref(w

t
k; ζ

t
k)

)
, (4)

where Iu is the indicator function, which is 1 if u holds and otherwise 0.

In GEM, there are t−1 reference gradients based on the previous t−1 tasks respectively. In this case,
∇`ref(w

t
k; ζ

t
k) = [g1, . . . , gt−1] ∈ Rd×(t−1) and α2(w

t
k) ∈ Rt−1, where g1, . . . , gt−1 are reference

gradients based on M1, . . . ,Mt−1 respectively. In GEM,

α1(w
t
k) = 1, α2(w

t
k) = v∗, (5)

where v∗ is the optimal solution for the quadratic programming problem (11) in Appendix A.1.

As we can see from the formulation (4) and (5), both A-GEM and GEM set α1(w) = 1 in the whole
training process. It means that both A-GEM and GEM always put the same emphasis on the current
task, regardless of how the loss changes over time. During the lifelong learning process, the current
loss and the reference loss are changing dynamically in each mini-batchs, and consistently choosing
α1(w) = 1 may not capture a good balance between current loss and the reference loss.

5 Mixed Stochastic Gradient
In this section, we introduce Mixed Stochastic Gradient (MEGA) to address the limitations of
GEM and A-GEM. We adopt the way of A-GEM for computing the reference loss due to the better
performance of A-GEM over GEM. Instead of consistently putting the same emphasis on the current
task, the proposed schemes allow adaptive balancing between current task and old tasks. Specifically,
MEGA-I and MEGA-II utilize the loss information during training which is ignored by GEM and
A-GEM. In Section 5.1, we propose MEGA-I which utilizes loss information to balance the reference
gradient and the current gradient. In Section 5.2, we propose MEGA-II which considers the cosine
similarities between the update direction with the current gradient and the reference gradient.

5.1 MEGA-I
We introduce MEGA-I which is an adaptive loss-based approach to balance the current task and old
tasks by only leveraging loss information. We introduce a pre-defined sensitivity parameter ε similar
to [41]. In the update of (3), we set{

α1(w) = 1, α2(w) = `ref(w; ζ)/`t(w; ξ) if `t(w; ξ) > ε

α1(w) = 0, α2(w) = 1 if `t(w; ξ) ≤ ε,
(6)

Intuitively, if `t(w; ξ) is small, then the model performs well on the current task and MEGA-I focuses
on improving performance on the data stored in the episodic memory. To this end, MEGA-I chooses
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α1(w) = 0, α2(w) = 1. Otherwise, when the current loss is larger than ε, MEGA-I keeps the balance
of the two terms of mixed stochastic gradient according to `t(w; ξ) and `ref(w; ζ). Intuitively, if
`t(w; ξ) is relatively larger than `ref(w; ζ), then MEGA-I put less emphasis on the reference gradient
and vice versa.

Compared with GEM and A-GEM update rule in (5) and (4), MEGA-I makes an improvement to
handle the case of overfitting on the current task (i.e., `t(w; ξ) ≤ ε), and to dynamically change the
relative importance of the current and reference gradient according to the losses on the current task
and previous tasks.

5.2 MEGA-II
The magnitude of MEGA-I’s mixed stochastic gradient depends on the magnitude of the current
gradient and the reference gradient, as well as the losses on the current task and the episodic memory.
Inspired by A-GEM, MEGA-II’s mixed gradient is obtained from a rotation of the current gradient
whose magnitude only depends on the current gradient.

The key idea of the MEGA-II is to first appropriately rotate the stochastic gradient calculated on the
current task (i.e.,∇`t(wtk; ξtk)) by an angle θtk, and then use the rotated vector as the mixed stochastic
gradient to conduct the update (3) in each mini-batch. For simplicity, we omit the subscript k and
superscript t later on unless specified.

We use gmix to denote the desired mixed stochastic gradient which has the same magnitude as
∇`t(w; ξ). Specifically, we look for the mixed stochastic gradient gmix which direction aligns well
with both ∇`t(w; ξ) and ∇`ref(w; ζ). Similar to MEGA-I, we use the loss-balancing scheme and
desire to maximize

`t(w; ξ) ·
〈gmix,∇`t(w; ξ)〉

‖gmix‖2 · ‖∇`t(w; ξ)‖2
+ `ref(w; ζ) ·

〈gmix,∇`ref(w; ζ)〉
‖gmix‖2 · ‖∇`ref(w; ζ)‖2

, (7)

which is equivalent to find an angle θ such that

θ = arg max
β∈[0,π]

`t(w; ξ) cos(β) + `ref(w; ζ) cos(θ̃ − β). (8)

where θ̃ ∈ [0, π] is the angle between ∇`t(w; ξ) and ∇`ref(w; ζ), and β ∈ [0, π] is the angle
between gmix and ∇`t(w; ξ). The closed form of θ is θ = π

2 − α, where α = arctan
(
k+cos θ̃
sin θ̃

)
and

k = `t(w; ξ)/`ref(w; ζ) if `ref(w; ζ) 6= 0 otherwise k = +∞. The detailed derivation of the closed
form of θ can be found in Appendix A.2. Here we give some discussions of several special cases of
Eq. (8).

• When `ref(w; ζ) = 0, then θ = 0, and in this case α1(w) = 1, α2(w) = 0 in (3), the mixed
stochastic gradient reduces to ∇`t(w; ξ). In the lifelong learning setting, `ref(w; ζ) = 0
implies that there is almost no catastrophic forgetting, and hence we can update the model
parameters exclusively for the current task by moving in the direction of∇`t(w; ξ).

• When `t(w; ξ) = 0, then θ = θ̃, and in this case α1(w) = 0, α2(w) =
‖∇`t(w; ξ)‖2/‖∇`ref(w; ζ)‖2, provided that ‖∇`ref(w; ζ)‖2 6= 0 (define 0/0=0). In this
case, the direction of the mixed stochastic gradient is the same as the stochastic gradient
calculated on the data in the episodic memory (i.e., `ref(w; ζ)). In the lifelong learning
setting, this update can help improve the performance on old tasks, i.e., avoid catastrophic
forgetting.

After we find the desired angle θ, we can calculate α1(w) and α2(w) in Eq. (3), as shown in
Appendix A.3. It is worth noting that different from GEM and A-GEM which always set α1(w) = 1,
the proposed MEGA-I and MEGA-II adaptively adjust α1 and α2 based on performance of the
model on the current task and the episodic memory. Please see Algorithm 1 for the summary of the
algorithm.

6 Experiments
6.1 Experimental Settings and Evaluation Protocol

We conduct experiments on commonly used lifelong learning bencnmarks: Permutated MNIST [4],
Split CIFAR [21], Split CUB [2], Split AWA [2]. The details of the datasets can be found in
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Figure 1: Performance of lifelong learning models across different measures on Permuted MNIST,
Split CIFAR, Split CUB and Split AWA.

Appendix A.4. We compare MEGA-I and MEGA-II with several baselines, including VAN [2],
MULTI-TASK [2], EWC [4], PI [21], MAS [29], RWALK [22], ICARL [42], PROG-NN [23], MER
[24], GEM [1] and A-GEM [2]. In particular, in VAN [2], a single network is trained continuously on
a sequence of tasks in a standard supervised learning manner. In MULTI-TASK [2], a single network
is trained on the shuffled data from all the tasks with a single pass.

To be consistent with the previous works [1, 2], for Permuted MNIST we adopt a standard fully-
connected network with two hidden layers. Each layer has 256 units with ReLU activation. For Split
CIFAR we use a reduced ResNet18. For Split CUB and Split AWA, we use a standard ResNet18
[43]. We use Average Accuracy (AT ), Forgetting Measure (FT ) and Learning Curve Area (LCA)
[1, 2] for evaluating the performance of lifelong learning algorithms. AT is the average test accuracy
and FT is the degree of accuracy drop on old tasks after the model is trained on all the T tasks. LCA
is used to assess the learning speed of different lifelong learning algorithms. Please see Appendix
A.5 for the definitions of different metrics.

To be consistent with [2], for episodic memory based approaches, the episodic memory size for
each task is 250, 65, 50, and 100, and the batch size for computing the gradients on the episodic
memory (if needed) is 256, 1300, 128 and 128 for MNIST, CIFAR, CUB and AWA, respectively. To
fill the episodic memory, the examples are chosen uniformly at random for each task as in [2]. For
each dataset, 17 tasks are used for training and 3 tasks are used for hyperparameter search. For the
baselines, we use the best hyperparameters found by [2]. For the detailed hyperparameters, please see
Appendix G of [2]. For MER [24], we reuse the best hyperparameters found in [24]. In MEGA-I, the
ε is chosen from {10−5:1:−1} via the 3 validation tasks. For MEGA-II, we reuse the hyperparameters
from A-GEM [2]. All the experiments are done on 8 NVIDIA TITAN RTX GPUs. The code can be
found in the supplementary material.

6.2 Results

6.2.1 MEGA VS Baselines

In Fig. 1 we show the results across different measures on all the benchmark datasets. We have the
following observations. First, MEGA-I and MEGA-II outperform all baselines across the benchmarks,
except that PROG-NN achieves a slightly higher accuracy on Permuted MNIST. As we can see
from the memory comparison, PROG-NN is very memory inefficient since it allocates a new network
for each task, thus the number of parameters grows super-linearly with the number of tasks. This
becomes problematic when large networks are being used. For example, PROG-NN runs out of
memory on Split CUB and Split AWA which prevents it from scaling up to real-life problems. On
other datasets, MEGA-I and MEGA-II consistently perform better than all the baselines. From
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Figure 2: Evolution of average accuracy during the lifelong learning process.

(a) Permuted MNIST (b) Split CIFAR (c) Split CUB (d) Split AWA

Figure 3: LCA of first ten mini-batches on different datasets.

Fig. 2 we can see that on Split CUB, MEGA-I and MEGA-II even surpass the multi-task baseline
which is previously believed as an upper bound performance of lifelong learning algorithms [2].
Second, MEGA-I and MEGA-II achieve the lowest Forgetting Measure across all the datasets which
indicates their ability to overcome catastrophic forgetting. Third, MEGA-I and MEGA-II also obtain
a high LCA across all the datasets which shows that MEGA-I and MEGA-II also learn quickly. The
evolution of LCA in the first ten mini-batches across all the datasets is shown in Fig. 3. Last, we
can observe that MEGA-I and MEGA-II achieve similar results in Fig. 1. For detailed results, please
refer to Table 2 and Table 3 in Appendix A.6.

In Fig. 2 we show the evolution of average accuracy during the lifelong learning process. As more
tasks are added, while the average accuracy of the baselines generally drops due to catastrophic
forgetting, MEGA-I and MEGA-II can maintain and even improve its performance. In the next
section, we will show that MEGA-II outperforms MEGA-I when the number of examples is limited
per task.

6.2.2 MEGA-II Outperforms Other Baselines and MEGA-I When the Number of Examples
is Limited

Inspired by few-shot learning [44, 45, 46, 47], in this section we consider a more challenging setting
for lifelong learning where each task only has a limited number of examples.

We construct 20 tasks with X number of examples per task, where X = 200, 400 and 600. The way
to generate the tasks is the same as in Permuted MNIST, that is, a fixed random permutation of
input pixels is applied to all the examples for a particular task. The running time is measured on one
NVIDIA TITAN RTX GPU. The results of average accuracy are shown in Fig. 4(a). We can see that
MEGA-II outperforms all the baseline and MEGA-I when the number of examples is limited. In
Fig. 4(b), we show the execution time for each method, the proposed MEGA-I and MEGA-II are
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(a) (b)

Figure 4: The average accuracy and execution time when the number of examples is limited.

computational efficient compared with other methods. Compared with MER [24] which achieves
similar results to MEGA-I and MEGA-II, MEGA-I and MEGA-II is much more time efficient since
it does not rely on the meta-learning procedure.

We analyze the reason why MEGA-II outperforms MEGA-I when the number of examples is small.
In this case, it is difficult to learn well on the current task, so the magnitude of the current loss and
the current gradient’s norm are both large. MEGA-I directly balances the reference gradient and the
current gradient, and the mixed stochastic gradient is dominated by the current gradient and it suffers
from catastrophic forgetting. In contrast, MEGA-II balances the cosine similarity between gradients.
Even if the norm of the current gradient is large, MEGA-II still allows adequate rotation of the
direction of the current gradient to be closer to that of the reference gradient to alleviate catastrophic
forgetting. We validate our claims by detailed analysis, which can be found in Appendix A.7.
6.2.3 Ablation Studies
In this section, we include detailed ablation studies to analyze the reason why the proposed schemes
can improve current episodic memory based lifelong learning methods. For MEGA-I, we consider
the setting that both α1(w) = 1 and α2(w) = 1 during the training process. This ablation study
is to show the effectiveness of the adaptive loss balancing scheme. For MEGA-II, we consider the
setting that `t = `ref in Eq. 7 to verify the effectiveness of the proposed gradient rotation scheme over
A-GEM. The experimental settings are the same as Section 6.1. The results are shown in Table 1.

Table 1: Comparison of MEGA-I, MEGA-I (α1(w) = 1, α2(w) = 1), MEGA-II, MEGA-II (`t =
`ref) and A-GEM.

Method Permuted MNIST Split CIFAR Split CUB Split AWA
AT (%) AT (%) AT (%) AT (%)

MEGA-I 91.10 ± 0.08 66.10 ± 1.67 79.67 ± 2.15 54.82 ± 4.97
MEGA-I (α1(w) = 1, α2(w) = 1) 90.66 ± 0.09 64.65 ± 1.98 79.44 ± 2.98 53.60 ± 5.21

MEGA-II 91.21 ± 0.10 66.12 ± 1.93 80.58 ± 1.94 54.28 ± 4.84
MEGA-II (`t = `ref) 91.15 ± 0.12 58.04 ± 1.89 68.60 ± 1.98 47.95 ± 4.54

A-GEM 89.32 ± 0.46 61.28 ± 1.88 61.82 ± 3.72 44.95 ± 2.97

In Table 1, we observe that MEGA-I achieves higher average accuracy than MEGA-I (α1(w) =
1, α2(w) = 1) by considering an adaptive loss balancing scheme. We also see that except on Split
CIFAR, MEGA-II (`t = `ref) outperforms A-GEM on all the datasets. This demonstrates the benefits
of the proposed approach for rotating the current gradient. By considering the loss information as
in MEGA-II, we further improve the results on all the datasets. This shows that both of the two
components (the rotation of the current gradient and loss balancing) contribute to the improvements
of the proposed schemes.

7 Conclusion
In this paper, we cast the lifelong learning problem as an optimization problem with composite
objective, which provides a unified view to cover current episodic memory based lifelong learning
algorithms. Based on the unified view, we propose two improved schemes called MEGA-I and
MEGA-II. Extensive experimental results show that the proposed MEGA-I and MEGA-II achieve
superior performance, significantly advancing the state-of-the-art on several standard benchmarks.
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Broader Impact

In this paper, researchers introduce a unified view on current episodic memory based lifelong learning
methods and propose two improved schemes: MEGA-I and MEGA-II. The proposed schemes
demonstrate superior performance and advance the state-of-the-art on several lifelong learning
benchmarks.

The unified view embodies existing episodic memory based lifelong learning methods in the same
general framework. The proposed MEGA-I and MEGA-II significantly improve existing episodic
memory based lifelong learning such as GEM [1] and A-GEM [2]. The proposed schemes enable
machine learning models to acquire the ability to learn tasks sequentially without catastrophic
forgetting. Machine learning models with continual learning capability can be applied in image
classification [1] and natural language processing [48].

The proposed lifelong learning algorithms can be applied in several real-world applications such
as on-line advertisement, fraud detection, climate change monitoring, recommendation systems,
industrial manufacturing and so on. In all these applications, the data are arriving sequentially and
the data distribution may change over time. For example, in recommendation systems, the users’
preferences may vary due to their aging, personal financial status or health condition. The machine
learning models without continual learning capability may not capture such dynamics. The proposed
lifelong learning schemes are able to address this issue.

The related applications have a broad range of societal implications: the use of lifelong recommenda-
tion systems can bring several benefits such as reducing the cost of model retraining and providing
better user experience. However, such systems may have the concerns of data privacy. Lifelong
recommendation systems can increase customer satisfaction. In the mean time, this system needs to
store part of user data which may compromise user’s privacy.

Our proposed lifelong learning schemes also are closely related to other machine learning research
areas, including multi-task learning, transfer learning, federated learning, few-shot learning and so
on. In transfer learning, when the source domain and the target domain are different, it is crucial to
develop techniques that can reduce the negative transfer between the domains during the fine-tuning
process. We expect that our proposed approaches can be leveraged to resolve the issue of negative
transfer.

We encourage researchers to further investigate the merits and shortcomings of our proposed methods.
In particular, we recommend researchers and policymakers to look into lifelong learning systems
without storing examples from past tasks. Such systems do not jeopardize users’ privacy and can be
deployed in critical scenarios such as financial applications.
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A Appendix

A.1 Gradient Episodic Memory (GEM) and Averaged Gradient Episodic Memory
(A-GEM)

GEM ensures that each update on the t-th task will not increase the loss on the episodic memory, that
is,

minimizew`(w;Dtr
t ) s.t. `(w;Mk) ≤ `(wt−1;Mk) ∀k < t (9)

To inspect the increase of loss on the episodic memory, GEM computes the gradient g on the current
task and the reference gradient gk on the episodic memory Mk. When the angle between g and gk is
obtuse, GEM projects the current gradient g to have a right or acute angle with gk,

minimizegtrue

1

2
‖g − gtrue‖22 s.t. g>truegk ≥ 0 ∀k < t (10)

GEM solves above optimization problem via quadratic programming in the dual space with v ∈
R(t−1)×1:

minimizevv>G>Gv + g>Gv s.t. v ≥ 0 (11)

where G = −(g1, ..., gt−1) ∈ Rd×(t−1), g ∈ Rd×1, and d is the number of parameters in the neural
network. After obtaining the solution v∗, the gradient used for updating the model can be computed
as gtrue = Gv∗ + g.

A-GEM [2] improves the efficiency of GEM by preventing the average episodic memory loss from
increasing. In A-GEM, G is replaced by −gref which is the gradient computed on a random subset
of the examples from all old tasks. And v∗ is replaced with a single scalar which can be computed in
closed form as g>gref

g>refgref
.

A.2 Closed-Form Solution of θ

Define k = `t/`ref, then we have

θ = argmax
β

[
k cos(β) + cos(θ̃ − β)

]
= argmax

β

[
k cosβ + cos θ̃ cosβ + sin θ̃ sin(β)

]
= argmax

β

[
cosβ

(
k + cos θ̃

)
+ sin θ̃ sin(β)

]
= argmax

β

[(
k + cos θ̃

sin θ̃
cosβ + sinβ

)
· sin θ̃

]

= argmax
β

[
sin θ̃

cosα
(sinα cosβ + cosα sinβ)

]

= argmax
β

[
sin θ̃

cosα
sin (α+ β)

]
=
π

2
− α

(12)

, where α = arctan
(
k+cos θ̃
sin θ̃

)
.

13



A.3 Some Derivations

For notation simplicity, we use g, ĝ, a, b to replace ∇`t(w; ξ), ∇`ref(w; ζ), α1(w), α2(w) respec-
tively. If g = ĝ, then a = 1, b = 0. Otherwise, the goal is to solve

ag>g + bg>ĝ = ‖g‖22 cos θ
ag>ĝ + b‖ĝ‖22 = ‖g‖‖ĝ‖ cos(θ̃ − θ)

(13)

The solution of (13) is

a =
1

‖g‖22‖ĝ‖22 − g>ĝ

[
‖ĝ‖22‖g‖22 cos θ − (g>ĝ)‖g‖2‖ĝ‖2 cos(θ̃ − θ)

]
b =

1

‖g‖22‖ĝ‖22 − g>ĝ

[
−(g>ĝ)‖g‖22 cos θ + ‖g‖32‖ĝ‖2 cos(θ̃ − θ)

] (14)

A.4 Datasets

In the experiments, we consider the following four conventional lifelong learning benchmarks,

• Permuted MNIST [4]: this is a variant of standard MNIST dataset [49] of handwritten
digits with 20 tasks. Each task has a fixed random permutation of the input pixels which is
applied to all the images of that task.

• Split CIFAR [21]: this dataset consists of 20 disjoint subsets of CIFAR-100 dataset [50],
where each subset is formed by randomly sampling 5 classes without replacement from the
original 100 classes.

• Split CUB [2]: the CUB dataset [51] is split into 20 disjoint subsets by randomly sampling
10 classes without replacement from the original 200 classes.
• Split AWA [2]: this dataset consists of 20 subsets of the AWA dataset [52]. Each subset is

constructed by sampling 5 classes with replacement from a total of 50 classes. Note that the
same class can appear in different subsets. As in [2], in order to guarantee that each training
example only appears once in the learning process, based on the occurrences in different
subsets the training data of each class is split into disjoint sets. In the learning process, the
weights of the classifier of each class are randomly initialized within each head without any
transfer from the previous occurrence of the class in past tasks.

A.5 Evaluation Metrics

Average Accuracy and Forgetting Measure [22] are common used metrics for evaluating performance
of lifelong learning algorithms. In [2], the authors introduce another metric, called Learning Curve
Area (LCA), to assess the learning speed of different lifelong learning algorithms.

Suppose there are Nk mini-batches in the training set of task Dk. Similar to [2], we define ak,i,j
as the accuracy on the test set of task Dj after the model is trained on the i-th mini-batch of task
Dk. Generally, suppose the model f(x;w) is trained on a sequence of T tasks {D1, D2, ..., DT }.
Average Accuracy and Forgetting Measure after the model is trained on the task Dk are defined as

Ak =
1

k

k∑
j=1

ak,Mk,j Fk =
1

k − 1

k−1∑
j=1

fkj , (15)

where fkj = maxl∈{1,2,..,k−1} al,Ml,j − ak,Mk,j . Clearly, AT is the average test accuracy and FT
assesses the degree of accuracy drop on old tasks after the model is trained on all the T tasks. Learning
Curve Area (LCA) [2] at β is defined as,

LCAβ =
1

β + 1

β∑
b=0

Zb, (16)

where Zb = 1
T

∑T
k=1 ak,b,k. Intuitively, LCA measures the learning speed of different lifelong

learning algorithms. A higher value of LCA indicates that the model learns quickly. We refer the
readers to [2] for more details about LCA.
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A.6 RESULT TABLES

In Table 2 and Table 3 we show the detailed results of all the methods on different benchmarks.

Table 2: The results of Average Accuracy (AT ), Forgetting Measure (FT ) and LCA of different
methods on Permuted MNIST and Split CIFAR. The results are averaged across 5 runs with
different random seeds.

Methods Permuted MNIST Split CIFAR
AT (%) FT LCA10 AT (%) FT LCA10

VAN 47.55±2.37 0.52±0.026 0.259±0.005 40.44±1.02 0.27±0.006 0.309±0.011
EWC 68.68±0.98 0.28±0.010 0.276±0.002 42.67±4.24 0.26±0.039 0.336±0.010
MAS 70.30±1.67 0.26±0.018 0.298±0.006 42.35±3.52 0.26±0.030 0.332±0.010

RWALK 85.60±0.71 0.08±0.007 0.319±0.003 42.11±3.69 0.27±0.032 0.334±0.012
MER - - - 37.27±1.68 0.03±0.030 0.051±0.101

PROG-NN 93.55±0.06 0.0±0.000 0.198±0.006 59.79±1.23 0.0±0.000 0.208±0.002
GEM 89.50±0.48 0.06±0.004 0.230±0.005 61.20±0.78 0.06±0.007 0.360±0.007

A-GEM 89.32±0.46 0.07±0.004 0.277±0.008 61.28±1.88 0.09±0.018 0.350±0.013
MEGA-I 91.10±0.08 0.05±0.001 0.281± 0.005 66.10±1.67 0.05±0.014 0.366±0.009
MEGA-II 91.21±0.10 0.05±0.001 0.283±0.004 66.12±1.94 0.06±0.015 0.375±0.012

Table 3: The results of Average Accuracy (AT ), Forgetting Measure (FT ) and LCA of different
methods on Split CUB and Split AWA. The results are averaged across 10 runs with different random
seeds.

Methods Split CUB Split AWA
AT (%) FT LCA10 AT (%) FT LCA10

VAN 53.89±2.00 0.13±0.020 0.292±0.008 30.35±2.81 0.04±0.013 0.214±0.008
EWC 53.56±1.67 0.14±0.024 0.292±0.009 33.43±3.07 0.08±0.021 0.257±0.011
MAS 54.12±1.72 0.13±0.013 0.293±0.008 33.83±2.99 0.08±0.022 0.257±0.011

RWALK 54.11±1.71 0.13±0.013 0.293±0.009 33.63±2.64 0.08±0.023 0.258±0.011
PI 55.04±3.05 0.12±0.026 0.292±0.010 33.86±2.77 0.08±0.022 0.259±0.011

A-GEM 61.82±3.72 0.08±0.021 0.302±0.011 44.95±2.97 0.05±0.014 0.287±0.012
MEGA-I 79.67±2.15 0.01±0.019 0.315±0.011 54.82±4.97 0.04±0.034 0.307±0.014
MEGA-II 80.58±1.94 0.01±0.017 0.311±0.010 54.28±4.84 0.05±0.040 0.305±0.015

A.7 Detailed Analysis of MEGA-I and MEGA-II

In this section, we present a detailed analysis on the reason that why the MEGA-II outperforms
MEGA-I significantly when the number of examples is limited. Define k1 = `t

`ref
, k2 = ‖∇`t(w;ξ)‖

‖∇`ref(w;ζ)‖ .
We denote the angles between the mixed gradient gmix and the current gradient ∇`t(w; ξ) calculated
by MEGA-I and MEGA-II by θ1 and θ2 respectively. In Appendix A.2, we know that

cos θ2 =
k1 + cos θ̃√

k21 + 2k1 cos θ̃ + 1
. (17)

Now we derive the closed form of cos θ1. For simplicity, we only consider the case where `t(w; ξ) ≥ ε.
By formula (6), we know that gmix = ∇`t(w; ξ) + `ref

`t
∇`ref(w; ζ). Define gt = `t(w; ξ), gref =

∇`ref(w; ζ). By some algebra, we can show that

gmix =
`t
`ref
‖gref‖

(
k1k2

gt
‖gt‖

+
gref

‖gref‖

)
.

Hence, we have

cos θ1 =
g>mixgt
‖gmix‖‖gt‖

=
k1k2 + cos θ̃√

k21k
2
2 + 2k1k2 cos θ̃ + 1

. (18)

Comparing (18) and (17), and noting that the function f(k) = k+cos θ̃√
k2+2k cos θ̃+1

is a monotonically

increasing function with respect to k for k ≥ 0, we know that if k1k2 ≥ k1, i.e., k2 ≥ 1, then
cos θ1 ≥ cos θ2, which means θ1 ≤ θ2.
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(a) 200 Examples (b) 600 Examples (c) 55000 Examples

Figure 5: Count versus log(k2), where k2 = ‖gt‖
‖gref‖ . k2 ≥ 1 holds for a larger proportion of all cases

when the number of examples is smaller.

Figure 6: The average accuracy and execution time when the number of tasks is large.

When the number of training examples is small, we empirically show that it is more common that
k2 > 1. This explains why MEGA-I’s update direction is dominated by the current gradient’s
direction while MEGA-II still allows adequate rotation. This property helps MEGA-II obtain better
performance than MEGA-I when the number of examples is small.

We construct 20 tasks with X number of examples per task, where X = 200, 600 and 55000. The
way to generate the tasks is the same as in Permuted MNIST, that is, a fixed random permutation of
input pixels is applied to all the examples for a particular task. During the learning process, we record
the norm of the gradient on the current task and the norm of the gradient on the episodic memory in
each mini-batch.

In Figure 5, we use histogram to show the distribution of log(k2) of MEGA-I. As we can see, when
the number of examples per task is smaller, k2 tends to be greater than 1 for a larger proportion. In
particular, when the number of examples per task is 55000, 3.61% of all k2 are less than 1 and when
the number of examples per task is 600, 3.15% of all k2 are less than 1. Notably, when the number of
examples per task is 200, only 1.05% of all k2 are less than 1. As explained in the last paragraph,
if k2 > 1, then θ1 ≤ θ2, which means MEGA-II allows a more significant rotation of the current
gradient. So MEGA-II can offer better performance than MEGA-I, especially when the number of
examples is small.

A.7.1 MEGA-2 Outperforms Other Baseline and MEGA-1 When the Number of Tasks is
Large

In this section, we increase the number of tasks 30, 50 and 70. Each task have 200 examples and
is constructed in a similar way to the Permuted MNIST. In Fig. 6, we show the average accuracy
and execution time for all the methods and all the cases. We can see that the proposed MEGA-II
outperforms all the baselines, except in the cases of 30 tasks. From the execution time comparison in
Fig. 6(b), we can see that MEGA-II is much more efficient than MER [24]. Note that MEGA-II also
significantly outperforms MEGA-I in this case.
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