
UNIVERSITY OF CALIFORNIA, SAN DIEGO

Adaptive Architectures for Peak Power Management

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science (Computer Engineering)

by

Vasileios Kontorinis

Committee in charge:

Professor Dean Tullsen, Chair
Professor Tajana Rosing, Co-Chair
Professor Andrew B. Kahng
Professor Timothy Sherwood
Professor Steven Swanson

2013

Copyright

Vasileios Kontorinis, 2013

All rights reserved.

The dissertation of Vasileios Kontorinis is approved, and

it is acceptable in quality and form for publication on

microfilm and electronically:

Co-Chair

Chair

University of California, San Diego

2013

iii

DEDICATION

To my dear wife Banu – my life’s companion and critic.

iv

EPIGRAPH

“Logic will get you from A to Z; imagination will get you everywhere.”

– Albert Einstein

“Don’t cry because it’s over, smile because it happened.”

– Dr. Seuss

v

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Epigraph . v

Table of Contents . vi

List of Figures . viii

List of Tables . ix

Acknowledgements . x

Vita and Publications . xii

Abstract of the Dissertation . xiii

Chapter 1 Introduction . 1
1.1 Why enforce power limits 2
1.2 Managing peak power with adaptation 4

1.2.1 Power capping at the core level 4
1.2.2 Removing over-provisioning in 3D stacked chips . 5
1.2.3 Power capping in the data center 5

Chapter 2 Core peak power management 7
2.1 Related work . 9
2.2 The power of adaptation 10
2.3 Adaptive architecture to limit peak power 15

2.3.1 Filling the config ROM 17
2.3.2 Configuration mechanisms 19
2.3.3 Implementation overhead 22

2.4 Methodology . 24
2.4.1 Power modeling 24
2.4.2 Benchmarks . 26

2.5 Results . 26
2.5.1 Dynamic adaptation vs static tuning 27
2.5.2 Realistic adaptive techniques 32
2.5.3 Reducing ROM configurations 37
2.5.4 Delay sensitivity analysis 38
2.5.5 Quantifying the benefits of peak power reduction 39

2.6 Conclusion . 40

vi

Chapter 3 Removing over-provisioning in 3D stacked chips 42
3.1 Baseline architecture . 45

3.1.1 Processor model 45
3.1.2 3D floorplans . 46

3.2 Resource pooling in the third dimension 47
3.3 Stackable structures for resource pooling 50

3.3.1 Reorder buffer and register file 50
3.3.2 Instruction queue and ld/st queue 52

3.4 Adaptive mechanism for resource pooling 55
3.5 Methodology . 56

3.5.1 Modeling interconnect for resource pooling 57
3.5.2 Benchmarks and metrics 60

3.6 Results . 61
3.6.1 Fine vs. coarse partitioning 64
3.6.2 Power, temperature, and energy 65

3.7 Related work . 66
3.8 Conclusion . 68

Chapter 4 Managing peak power for data centers 70
4.1 Background . 73
4.2 Total cost of ownership analysis 74
4.3 The benefits of power oversubscription 78
4.4 Characterizing distributed UPS batteries 80
4.5 Policies . 88
4.6 Methodology . 92
4.7 Results . 95
4.8 Related work . 102
4.9 Conclusions . 104

Chapter 5 Summary . 106
5.1 Core peak power management 106
5.2 Resource pooling for power efficiency 108
5.3 Managing peak power for data centers 109
5.4 Concluding remarks . 111

Bibliography . 112

vii

LIST OF FIGURES

Figure 1.1: Power density throughout the history of electronics 2
Figure 1.2: Organization of thesis body in chapters. 6

Figure 2.1: Performance when core bottlenecks gradually removed 15
Figure 2.2: The adaptive core architecture 16
Figure 2.3: Peak and average power breakdown 26
Figure 2.4: Performance when core peak power constraint at 70% 28
Figure 2.5: Performance when core peak power constraint at 75% 29
Figure 2.6: Performance when core peak power constraint at 80% 31
Figure 2.7: Average over peak power ratio 34
Figure 2.8: Performance of adaptive policies 36
Figure 2.9: Performance for different peak power constraints 37
Figure 2.10: Sensitivity analysis to adaptation delay 39
Figure 2.11: Distributed power distribution network model. 40

Figure 3.1: Baseline and resource pooled CMP configuration 46
Figure 3.2: Motivation graph for back-end resource pooling 48
Figure 3.3: Partitioned reorder buffer and register file design 51
Figure 3.4: Partitioned instruction queue design 53
Figure 3.5: Weighted speedup and fairness with varying number of threads 62
Figure 3.6: 3D sharing performance for medium-end and high-end cores . . 63
Figure 3.7: Weighed speedup for different partition sizes 64
Figure 3.8: Power consumption per core with and without sharing 65
Figure 3.9: Max core temperature with and without sharing 66
Figure 3.10: Energy efficiency in MIPS2 per Watt 67

Figure 4.1: UPS topologies in data centers 73
Figure 4.2: Data center Total Cost of Ownership breakdown 77
Figure 4.3: Oversubscription benefits at different levels of power hierarchy . 79
Figure 4.4: Sensitivity of TCO savings to server cost and server peak power 81
Figure 4.5: Comparison of battery technologies 82
Figure 4.6: Battery capacity and TCO savings for varying load values . . . 86
Figure 4.7: TCO savings with future battery cost 88
Figure 4.8: The relation between targeted depth of discharge and the re-

duction in TCO. 88
Figure 4.9: Algorithms for localized and coordinated policies 90
Figure 4.10: Data center yearly variation in energy required 94
Figure 4.11: Server, grid and battery power over three days of operation . . 96
Figure 4.12: Load partitioning into separate clusters 97
Figure 4.13: Sensitivity of power capping to battery failures 101

viii

LIST OF TABLES

Table 2.1: Important core parameters for Media, Olden, NAS applications . 13
Table 2.2: Important core parameters for spec2000 applications 14
Table 2.3: Design Space . 18
Table 2.4: Distribution of configurations over peak power groups 19
Table 2.5: Assumed delays to powergate components 21
Table 2.6: Delays to disable components holding state 22
Table 2.7: Absolute Power Values for the modeled processor 25
Table 2.8: Architectural Specification . 25
Table 2.9: Example of configuration score estimation 35
Table 2.10: Distribution of reduced set configurations over peak power groups 38
Table 2.11: Peak power impact on voltage variation and on-chip decoupling

capacitor area . 38

Table 3.1: Architectural specification. 58
Table 3.2: Tier to tier delay via TSV path. 58
Table 3.3: TSV area utilization. 59
Table 3.4: Temperature estimation related parameters. 60
Table 3.5: Workload Mix . 61

Table 4.1: TCO model assumptions . 78
Table 4.2: Input values for battery cost estimation. 83
Table 4.3: Recharge cycles as a function of depth of discharge (DoD) 83
Table 4.4: Workloads . 93
Table 4.5: Relative workload weights . 93

ix

ACKNOWLEDGEMENTS

I want to thank my advisor, Dean Tullsen, for his guidance and support. He

has been an inspirational example of personal and professional integrity. Always

setting the bar high, he urged me to improve and dream big, radical ideas. He

demonstrated confidence in my abilities to solve tough problems and supported

me every time I would hit dead-end in my research. Dean, this work would never

be possible without you.

I thank my co-advisor, Tajana Rosing, and the other members of my thesis

committee – Steven Swanson, Andrew B. Kahng, Tim Sherwood – for taking the

time to review my work, and oversee the completion of this dissertation. Spe-

cial thanks to professor Rosing for broadening my area of expertise by allowing

me to work beyond microarchitecture, at the systems level, for teaching me the

importance of exciting people with my work and for encouraging me to form col-

laborations and mentor junior students.

I want to express my appreciation to my family. My parents, Litsa and

Palaiologos for motivating me to reach the highest level of studies, instilling high

morals, patience and perseverance in my personality and teaching me how to treat

everyday life with humor. My oldest brother, Nick, for being my role model, the

guy I have always looked up to. My middle brother, George, for reminding me

that life is about moments and I should never forget to live it. I love you guys.

Life at UCSD would be dull without all the great people I met during

this phase of my life. I first want to thank, my seniors, Jeff Brown, Leo Porter,

Matt Devuyst for our discussions and all the knowledge and experience I obtained

through them. My juniors Michael Wei and Alex Eisner, for making the lab a

fun and creative place to be by transforming it into the Amazon and following a

Nerf-gun war zone. My collaborators, Houman Homayoun, Jack Sampson, Amirali

Shayan and Nikos Strikos. A big thanks to you guys, your input was invaluable.

At last, I want to thank the most important person in my life, my wife

Banu, for being my companion and my critic. The person who shared with me

every good and bad moment, whose unconditional love was a constant source of

inspiration and energy. Banu, thank you for being always there for me.

x

Chapter 2 contains material from “Reducing peak power with a table-driven

adaptive processor core”, by Vasileios Kontorinis, Amirali Shayan, Rakesh Kumar,

and Dean Tullsen, which appears in Proceedings of the 42nd annual International

Symposium on Microarchitecture (MICRO). The dissertation author was the pri-

mary investigator and author of this paper. The material in this chapter is copy-

right c©2009 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

Chapter 3 contains material from “Dynamically heterogeneous cores through

3D resource pooling”, by Houman Homayoun, Vasileios Kontorinis, Amirali Shayan,

Ta-Wei Lin, and Dean Tullsen, which appears in Proceedings of the The 18th Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author contributed equally with the main author of the work, Houman

Homayoun. The material in this chapter is copyright c©2012 IEEE. Personal use of

this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works must be obtained from the IEEE.

Chapter 4 contains material from “Managing Distributed UPS Energy for

Effective Power Capping in Data Centers”, by Vasileios Kontorinis, Liuyi Zhang,

Baris Aksanli, Jack Sampson, Houman Homayoun, Eddie Pettis, Dean Tullsen and

Tajana Rosing, which appears in Proceedings of the 39th International Sympo-

sium on Computer Architecture (ISCA). The dissertation author was the primary

investigator and author of this paper. The material in this chapter is copyright

c©2012 IEEE. Personal use of this material is permitted. However, permission to

reprint/republish this material for advertising or promotional purposes or for cre-

ating new collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained from the

IEEE.

xi

VITA AND PUBLICATIONS

2006 B. S. in Electrical Engineering and Computer Science
University of Patras, Greece.

2007 Internship
Conexant Inc.
San Diego

2008 Internship
Syn Microsystems Inc.
Menlo Park

2008 M. S. in Computer Science & Engineering.
University of California, San Diego

2013 Ph. D. in Computer Science (Computer Engineering)
University of California, San Diego

PUBLICATIONS

Vasileios Kontorinis, Amirali Shayan, Rakesh Kumar, Dean Tullsen, “Reducing
peak power with a table-driven adaptive processor core”, International Symposium
on Microarchitecture (MICRO), December, 2009.

Gaurav Dhiman, Vasileios Kontorinis, Dean Tullsen, Tajana Rosing, Eric Saxe,
Jonathan Chew, “Dynamic workload characterization for power efficient scheduling
on CMP systems”, International Symposium in Low-Power Electronics and Design
(ISLPED), Aug 2010.

Houman Homayoun, Vasileios Kontorinis, Amirali Shayan, Ta-Wei Lin, Dean Tul-
lsen, “Dynamically heterogeneous cores through 3D resource pooling”, Interna-
tional Symposium on High Performance Computer Architecture (HPCA), February
2012.

Houman Homayoun, Mehryar Rahmatian, Vasileios Kontorinis, Shahin Golshan,
Dean Tullsen, “Hot Peripheral Thermal Management to Mitigate Cache Temper-
ature Variation”, Proceeding of International Symposium on Quality of Electronic
Design, (ISQED), Mar 2012.

Vasileios Kontorinis, Liuyi Zhang, Baris Aksanli, Jack Sampson, Houman Homay-
oun, Eddie Pettis, Dean Tullsen, Tajana Rosing, “Managing Distributed UPS En-
ergy for Effective Power Capping in Data Centers”, 39th Annual International
Symposium on Computer Architecture (ISCA), June 2012.

xii

ABSTRACT OF THE DISSERTATION

Adaptive Architectures for Peak Power Management

by

Vasileios Kontorinis

Doctor of Philosophy in Computer Science (Computer Engineering)

University of California, San Diego, 2013

Professor Dean Tullsen, Chair
Professor Tajana Rosing, Co-Chair

Power budgeting – allocating power among computing components to max-

imize performance – is a necessity for both modern CPUs and systems in general.

Our industry expects every new chip generation to double performance. However,

non-ideal transistor scaling makes it hard to provide the expected performance

at the same power envelope. The available power budget dictates microprocessor

performance and functionality. At the system level, power provisioning affects in-

frastructure and energy costs. Power associated costs like wall-power cost, cooling,

and power delivery have already surpassed the server costs in state-of-the-art data

centers. Every component of the computing stack is associated with a power bud-

get, and its respective marginal increase in performance must justify the respective

power increase.

Power budgeting is a difficult issue to address. Different workloads stress

different computing resources and even a single application may stress different

resources at different points of time. Thus, a single universal solution is hard to

achieve. Currently, most systems fix the decision of what resources consume more

xiii

power at design time. Instead, in this thesis we propose to dynamically customize

resources to boost performance while respecting power budgets.

This thesis presents techniques that manage power in three domains: the

processor core, 3D-die stacked chips, and the data center. First, we describe a mi-

croarchitectural solution that always keeps a portion of the core powered-off, but

what gets powered off can change for each application. By intelligently providing

the most critical resources, we achieve a particular peak power goal while mini-

mizing performance impact. Second, we dynamically reconfigure the resources of

3D-stacked cores. Adaptation in this context allocates unused back-end resources

of one core to an adjacent core in the z-axis that needs them. Hence, we can

use lower-power cores and boost their performance. Finally, we present a solution

to reduce data center costs by using the energy stored in UPSs (Uninterruptible

Power Supply). By discharging UPS batteries during high utilization and recharg-

ing them during low utilization, we adapt available power capacity. This approach

permits more functionality under the provisioned power and can translate to cost

savings of millions of dollars.

xiv

Chapter 1

Introduction

In the past 5 years, we have witnessed an abrupt slowdown of the rate at

which we reduce chip nominal voltage and as a result we can no longer double chip

performance at the same power envelope. With increasing power dissipation and

fixed power budgets, allocating power to maximize performance becomes critical.

Classical CMOS scaling, as described by Dennard in [DGR+74], dictates

that nominal voltage and threshold voltage should be reduced across technology

nodes so that power density remains the same. However, lower threshold voltage

results in exponential increase of leakage power. Because of this increase we can

no longer reduce voltage at the same pace; otherwise, leakage will dominate power

dissipation. As the degree of integration in the computing stack increases and

available power budgets do not change significantly, the power budget per com-

ponent becomes tighter. Even in the high performance domain, we can no longer

afford to think of performance in isolation. We need to allocate the available power

budget in such a way that maximizes performance returns.

The first step towards achieving this goal is to remove system overprovi-

sioning. Systems are commonly provisioned for the worst case. We want to either

disable unused system capacity or re-purpose it to actively contribute to perfor-

mance. This thesis investigates how to manage peak power by removing over-

provisioning and identifies the associated benefits across three different domains:

the microprocessor core, the chip and the data center.

1

2

���������	
�

���	��
������ ���	�� ���	�		

���	�
�
����	
�

�������������

���	���

�����������
�

 !!

���	���"

���������#����

���$"����

#�%�������&�'%��#

(��)���

���%�����
*+

���*#

���+,�

���+,�
#�%������

#�(���

���+,�

���+,�

-.��/�
�����0

#�%�������1�"�#2

�.'(��

��3"

���� �������� �������� ��
� ���� ���� ����

�

�

�

�

�

��

��

��

,����')�-%%'�%����%�

�
'
0
�
(�
�4
�
�
��
�
(�
5
�!
��
%
0
�1
6
�
��
�
�7
��
�

�
� 2

Figure 1.1: Technological shifts such as the transition from NMOS to CMOS and

the introduction of multicore allowed significant improvements in power density.

However, today most of the magic bullets have been spent and the slowdown of

nominal voltage reduction due to leakage results in ever tighter power budgets.

Reproduced from [Shm05]

1.1 Why enforce power limits

Before we discuss power budgeting – how to manage power of a given budget

to maximize performance, we should discuss why to constrain the power budget

in the first place. Power capping – limiting peak power – is necessary because it

reduces the cost of the system, in some cases even makes the system financially

worthwhile.

How limiting power affects cost is a function of the type of power we limit.

“Average” power is the aggregate energy spent over a time period. “Peak sus-

tained” power is the max power that the system can effectively cool over long time

periods. “Theoretical peak” is the highest possible power, estimated as the sum

of the power of all system components once each component is stressed with max-

imum load. Note than the theoretical peak power of a system may not be always

achievable, because it is not always possible to stress all system components with

3

maximum load at the same time. Reducing the “average” power assuming we do

not hurt performance, translates to reduced wall power costs, that is lower elec-

tricity bills. It also improves component reliability because indirectly reduces tem-

perature and hence component failure rate. Limiting the “peak sustained” power

translates to cheaper cooling costs and limiting the “theoretical peak” power lowers

power delivery costs, reduces package cost, and removes constraints on processor

design. In this thesis, we are more concerned with reducing the peak power of the

chip, sustained and theoretical.

Peak sustained power defines the cost of the cooling mechanism. Chip

packaging, the heat sink and fan is designed with the sustained power in mind,

often called Thermal Design Power (TDP). Exotic cooling solutions, other than air-

cooling, increase manufacturing costs and are not financially feasible. Thus, chip

manufacturers either select under-performing components that require less power

at design time to ensure air cooling can effectively remove heat, and/or introduce

mechanisms to dynamically cap power at runtime. If CPU power exceeds the TDP

for a given time period – milliseconds to tens of milliseconds – the microprocessor

throttles performance to avoid permanent failure because of overheating [RNA+12].

Similarly, in modern data centers, ambient temperature conditions are strictly

controlled and power capping mechanisms are enforced to ensure the data center

remains within the provisioned cooling capabilities.

We design power delivery based on the theoretical peak power of the system

because at design time it is hard to anticipate system configuration and load. The

delivery network must be able to provide the worst case current. Exceeding the

max current for power delivery will result in immediate operation halt. We de-

sign every component of the computing stack for a specific current rating. Higher

current rating components such as voltage regulators, package pins, power sup-

plies, and wires are bulkier and cost more. By limiting the theoretical peak power

we can save on the cost on those components. Furthermore, significant difference

between the theoretical peak power and the average power of the chip indicates

large potential current swings which can lead to voltage drops and erroneous be-

havior (di/dt issues). To deal with di/dt issues processor manufacturers introduce

4

large timing guard-bands which leads to lower operating frequencies, and also in-

corporate an hierarchy of decoupling capacitors. The former negatively affects

market value while the latter directly increases costs. In data centers, theoretical

power directly translates to costly power distribution units, diesel generators, un-

interruptible power supplies and other supporting machinery, necessary to ensure

uninterrupted operation of computing infrastructure.

In order to decrease system cost, we want to design for a power value that

is much lower than the theoretical peak, and in fact closer to the average power.

However, we desire mechanisms that enforce power budgets without negatively

affecting performance.

1.2 Managing peak power with adaptation

Power capping is important today and will become even more important as

the degree of integration increases while available power budgets remain the same.

Therefore, power budgeting is of paramount importance. Towards this goal we

employ adaptation. Adaptation is the dynamic tailoring of resources so that we

can decrease over-provisioning. We achieve that by powering off or reallocating to

different domains unused and underutilized resources. We can also eliminate over-

provisioning by adapting the capability to provide power over time. By charging

and discharging batteries we can flatten the system power profile and provision

power infrastructure for a point that is much lower than the theoretical peak.

1.2.1 Power capping at the core level

In chapter 2 we use adaptation to reduce over-provisioning by disabling core

components. By guaranteeing that some portion of resources are always disabled,

we can significantly reduce the peak power of the core. We find that in modern out-

of-order cores all resources are not equally important for all applications. In fact,

by intelligently providing the right components we can keep significant portion of

the core powered off and give up little performance. The components we consider

in this context are first level caches, integer and floating point units, register files,

5

instruction queues and the reorder buffer. We devise a low-overhead methodology

that coordinates the adaptation of core components and ensure by construction

that we do not violate arbitrarily-set power budgets. We describe algorithms to

reduce the power-constraint design space and efficiently navigate it at run-time.

We show that core level power capping can decrease voltage variation and improve

the efficiency of on-chip power delivery.

1.2.2 Removing over-provisioning in 3D stacked chips

In chapter 2 we remove over-provisioning by dynamically tailoring resources

to provide good performance on a tighter budget, while in chapter 3 we design the

system with fewer resources to begin with and dynamically pool them to improve

performance.

In modern multicores significant over-provisioning exists due to resource

fragmentation. Resources needed by an application executing in one core maybe

idle on a neighboring core. The resources may be idle because no application

is scheduled in the neighboring core or because the application scheduled on the

specific core simply does not use them. In chapter 3 we identify this type of

fragmentation for the core back-end resources and use adaptation to remedy it. We

rely on the proximity of vertically stacked cores in the z-axis to pool resources. 3D

integration dramatically reduces wire delays and permits the access of resources on

neighboring cores within a single cycle. The proposed architecture introduces a new

alternative in 3D micro-architecture, which addresses many of the shortcomings of

fusing resources in the 2D plane, and reduces over-provisioning.

1.2.3 Power capping in the data center

In chapter 4 we focus on the data center and present a technique to lower the

overall provisioned power and the associated costs without affecting overall server

performance. We use the energy stored in data center Uninterruptible Power Sup-

plies (UPS) batteries to provide higher levels of power during high utilization hours

throughout the day and recharge the batteries at night when server utilization is

6

low. With this adaptive technique we reshape the power profile of the data center

and we perform the same work with significantly less power over-provisioning. We

argue that investing in UPS batteries enables more aggressive power capping. As a

result, we can over-subscribe power related infrastructure by adding more servers,

and decrease the overall cost per server.

chapter 2: Core level chapter 3: Chip level chapter 4: Data center level

Figure 1.2: Organization of thesis body in chapters.

Figure 1.2 illustrates the organization of the body of this thesis. In chapter 2

we discuss power capping for a single core. Chapter 3 presents a technique to reduce

over-provisioning one level higher, at the chip level. Finally, chapter 4 elaborates

on power capping several levels higher, at the data center level.

Chapter 2

Core peak power management

The power dissipation of processors has become a first-class concern for both

mobile devices as well as high-performance processors. This issue only becomes

more challenging as we continue to pack more cores and other devices onto the

processor die. Recent research has presented a number of techniques that enable

a reduction in the average power of a processor or processor core and reduce the

adverse effects of high power on cost and reliability [IBC+06, YDT+05, ZHC02,

BKAB03]. Much less attention has been devoted to peak power; however, the

peak power dissipation of a processor is also a first-class concern because it drives

the design of the processor, thermal budgeting for the processor and system, the

packaging and cooling costs, and the power supply costs and efficiency.

Designing robust power delivery for high performance processors requires

expensive power supply and packaging solutions, including additional layers and

decoupling capacitors embedded in the packaging [MES+07]. Placing on-chip de-

coupling capacitors on heavily congested silicon areas to prevent power overshoots

is not always possible [Uni04]. Due to the random and unpredictable nature of

the operational power demand, power distribution networks are over-designed for a

worst case scenario which rarely occurs in normal operation. Peak power reduction

will reduce on chip voltage variation along with the associated timing uncertainty

and potential signal failures, or it will allow designers to achieve the same voltage

variation with less silicon real estate for decoupling capacitance.

Also, power supply efficiency is proportional to the peak load current de-

7

8

mand of the processor. A power supply that is designed for the peak power require-

ment will be less efficient when supplying loads that are substantially under the

peak power [ZWX+00]. That is, reducing peak power will result in both cheaper

power supply solutions, but also power supplies that consume less power (even if

the delivered average power has not changed) due to the increase in power supply

efficiency.

This chapter presents a peak power management technique for current and

future processors that attempts to guarantee that the peak power consumption of

a processor is far lower than the sum of all core blocks. We do this via a highly

adaptive processor and a table-driven approach to configuring the processor. In

prior approaches [Alb99, BAS+01, MBB01, DBB+02], adaptive elements such as

caches, queues, functional units, etc. make local decisions to decrease size based

on local activity. This reduces average power, but does nothing for peak power.

The same worst-case scenario which could theoretically incur a power drain close

to peak power would also cause all of those elements to be maximally configured

at once.

In our table-driven approach, we configure resources centrally. This central

control allows us to guarantee that we do not give to all resources their maximum

value at the same time. We can choose an arbitrary peak power design point, and

only allow those configurations that do not exceed that point. Performance loss is

minimal because we still allow any single resource to get its maximum value, just

not all at once. We show that typical applications get close to full performance as

long as their primary bottleneck resources are fully configured. We find that it is

important to be able to adapt dynamically, because not all applications have the

same bottleneck resources.

Thus, the discussed table-driven adaptive architecture requires configurable

components, a table of possible configurations, and a mechanism for selecting the

configuration to run in the next epoch. This research explores all of these design

issues. We find that we are able to reduce peak power by 25% with only a 5% loss

in performance.

This chapter is organized as follows. Section 2.1 discusses related work.

9

Motivation and mechanisms for reducing peak power dissipation are discussed in

section 2.2. In section 2.3, the adaptive architecture for reducing peak power is

presented. The methodology is provided in section 2.4. Results are shown in

section 2.5 and section 2.6 concludes.

2.1 Related work

Albonesi, et al.[ABD+03] present a comprehensive study on how to tune

processor resources in order to achieve better energy efficiency with several hard-

ware and software techniques. We tune similar resources and in some cases even

use the same hardware mechanisms for hardware adaptation. However, the policies

for triggering and evaluating the potential configurations are completely different

when targeting average power.

Most related work in adaptive micro-architectures considers a small number

of configurable parameters. However, Lee et al. [LB08] explore the trends and limits

of adaptivity in micro-processor design. They conduct a thorough study of a 240

billion point design space employing statistical inference techniques and genetic

algorithms and provide intuition regarding the benefits of dynamically adapting

processor resources in terms of performance, power, and efficiency. However, they

do not provide run time heuristics that could be employed in order to dynamically

adapt the processor and they target average power.

Dynamic Thermal Management [BM01, Int00] is a reactive technique that

does not control peak power but does ensure that the power dissipation does not

cause the temperature to exceed a threshold. It does this by reacting to ther-

mal sensors and decreasing processor activity when temperature thresholds are

exceeded. These techniques can reduce packaging costs related to heat dissipation

and reduce temperature-related failures.

The research of Isci, et al.[IBC+06] and Meng, et al.[MJDS08] address the

problem of meeting a global power budget while minimizing performance loss. The

former employs dynamic voltage and frequency scaling (DVFS) and uses a trial-

and-error method for system performance optimization. The latter uses DVFS and

10

cache adaptation in combination with analytic models for performance and power

prediction. However, both works treat peak power budget as a soft limitation that

can temporarily be exceeded and rely on power sensor measurements for reactively

tuning the power consumption. Our architecture is designed to provide peak power

guarantees and in that context does not rely on power sensor measurements.

Sartori and Kumar [SK09a, SK09b] target peak power on multicores. They

employ DVFS to limit the peak power consumption of each core in a pro-active way

that prevents global power overshoots. Our work is orthogonal and complementary

to Sartori’s work. Assuming different levels of peak power per core, decentralized

peak power management can be used on top of our core design. This chapter

focuses on reducing the peak power of each core, providing a building block for

global multi-core power budgeting solutions.

In this chapter, we exploit a number of previously proposed, local adaptive

techniques originally designed to reduce average power in particular components.

These references are given in section 2.3.2. The key contribution of this work is

the table-driven mechanism that coordinates the local adaptive techniques to limit

power. In contrast to prior research focusing on energy reduction, thermals, or

reliability, this work focuses on power delivery. The state-of-the-art practice to

address signal integrity issues in modern chips is to introduce timing guard-bands

and add an hierarchy of decoupling capacitors. In section 2.5, we show that our

approach can reduce voltage variation for a given on-chip decap or require less

on-chip decap to achieve a specific voltage variation goal.

2.2 The power of adaptation

Bounding peak power has several key advantages. It can reduce packaging

and cooling costs. It will reduce the cost and increase the efficiency of the power

supply. It may eliminate the need for thermal sensors in cost-sensitive designs. It

allows more aggressive design in other parts of the processor or system. It reduces

the need for large decoupling capacitors on chip. Power delivery circuitry does not

have to be over-designed.

11

Reactive dynamic thermal management techniques only provide some of

these advantages. It should also be noted that these techniques are not mutually

exclusive, but actually complementary. Our adaptive processor with peak power

guarantees can be a highly effective part of the response to thermal emergencies,

because it allows us to change the peak power reactively. Also, while the reactive

mechanisms do nothing for average power in the absence of thermal events, our

architecture also reduces average power, because it always has part of the core

turned off.

A good general-purpose processor will typically be configured such that any

program that runs on the processor will find it’s most critical resources sufficiently

supplied to enable high throughput — this is what makes it a good general-purpose

processor. However, it is rare that a single application needs all of those resources.

We find that most applications have only a few bottlenecks, and as long as those

resources are sufficiently supplied, the program can get nearly full performance.

Figure 2.1 motivates this research. It shows the result of experiments that

provide a fully configured processor (similar to the MAX CONF design point de-

scribed later in this chapter), a minimally configured processor where most re-

sources are dramatically reduced (cut in half), and a series of intermediate pro-

cessors where a subset of the resources are at full capacity. The resources that

change include instruction cache, data cache, integer and floating point instruc-

tion queues, reorder-buffer, load-store execution units, integer and floating point

execution units, and renaming registers.

The stacked bar chart in the specific graph depicts (1) the average speedup

over the minimally configured core when one resource is maximized for each bench-

mark (2) the average speedup when two resources are maximized, (3) the average

speedup when three resources are maximized, and (4) the fully configured result.

When results are shown for a subset of resources at maximum, we select those

resources that give the highest performance for that particular benchmark. Two

observations jump out of this graph. The first is that the total difference between

the fully configured performance and the minimally configured (the baseline for

the graph) is quite significant, since the former is approximately 50% faster than

12

the latter.

Even more significantly, we see that we can cover 65% of the gap between the

two by only providing two out of ten resources at full capacity, as long as we choose

those two resources carefully. This number rises to more than 85% when we provide

three resources at full capacity. This is a powerful result — we can heavily under-

configure 70% of the processor’s components (very roughly speaking) and give

up little performance. The bottleneck resources vary between applications, so we

cannot achieve this same result with a single static configuration. This is confirmed

in Tables 2.1 and 2.2, where the most important resources per application are

presented. Lee and Brooks [LB08] note similar variance in bottlenecks, although

the actual resources are different. These results indicate that we should be able

to achieve close to full performance for any single application with a configuration

whose cost (in peak power, in particular) is closer to the minimally configured core

than it is to the maximally configured core.

There are two issues that might limit our ability to provide power guar-

antees, static leakage and process variation. Static leakage varies significantly

with temperature. So, coupled with thermal sensors and a mechanism for deal-

ing with thermal events (again, possibly using this architecture to deal with those

events), our design can still provide a cap for both static and dynamic power. Pro-

cess variation [TRfS03] is expected to result in cores that vary from the expected

power behavior, even across a single chip. Again, this is an opportunity for this

architecture, rather than a problem. Assuming we can detect this variation in

testing/verification, we can either provide the same list of configurations to each

core and thus provide a different guaranteed peak power for each core, or provide a

different list of configurations to each core and thus provide the same peak power

for each core. In each case, we still provide reduced peak power at the level of the

processor.

13

Table 2.1: Important parameters for selected Media, Olden and Nas benchmarks.

The resource that gives the best performance when maximized is marked with 1,

the resource that gives the best performance when maximized in combination with

the first one is marked with 2 and the resource that gives the best results with the

first two is marked with 3.

Media iq fq ialu falu ldst ic dc ipr fpr rob

g721d 2 1 3
mesa-texgen 2 1 3

epic 3 1 2
jpege 1 3 2

Olden iq fq ialu falu ldst ic dc ipr fpr rob

perim big 3 1 2
mst 3 1 2

treeadd 1 2 3
health 3 1 2

bisort med 3 2 1
em3d med 1 2 3

Nas iq fq ialu falu ldst ic dc ipr fpr rob

mg.big 3 1 2
ft.big 2 3 1
sp.big 2 1 3
cg.big 3 1 2
bt.big 1 2 3
ep.big 1 3 2

iq: integer instruction queue fq: floating point instruction queue
ialu: integer arithm. logic unit falu: floating point arithm. logic unit
ldst: load/store unit rob: reorder buffer
ic: instruction L1 cache dc: data L1 cache
ipr: integer physical registers fpr: floating point physical registers

14

Table 2.2: Important parameters for the spec2000 suite. The resource that gives

the best performance when maximized is marked with 1, the resource that gives

the best performance when maximized in combination with the first one is marked

with 2 and the resource that gives the best results with the first two is marked

with 3.

Spec-int iq fq ialu falu ldst ic dc ipr fpr rob

gzip-source 2 3 1
vpr-route 1 2 3
gcc-scilab 3 1 2

mcf 1 2 3
crafty 3 1 2
parser 3 1 2

eon-cook 3 1 2
perlbmk-makerand 3 1 2

gap 2 1 3
vortex-3 3 1 2

bzip2-graphic 3 2 1
twolf 3 1 2

Spec-fp iq fq ialu falu ldst ic dc ipr fpr rob

wupwise 1 3 2
swim 1 2 3
mgrid 1 2 3
applu 1 2 3
mesa 3 1 2
galgel 1 3 2
art-110 3 1 2
equake 1 3 2
facerec 2 1 3
ammp 3 2 1
lucas 2 1 3
fma3d 3 1 2

sixtrack 2 1 3
apsi 3 1 2

iq: integer instruction queue fq: floating point instruction queue
ialu: integer arithm. logic unit falu: floating point arithm. logic unit
ldst: load/store unit rob: reorder buffer
ic: instruction L1 cache dc: data L1 cache
ipr: integer physical registers fpr: floating point physical registers

15

24.1%

6.2%

24.8%

17.2%

8.9%

17.3%

30.2%

8.0%

19.1%

11.6%

7.4%

14.4%

9.2%

4.2%

11.5%

9.7%

8.5%

9.2%

10.2%

4.2%

1.6%

11.5%

5.7%

6.7%

0%

10%

20%

30%

40%

50%

60%

70%

80%

Media Olden Spec-int Spec-fp nas Average

N
or

m
al

iz
ed

 S
pe

ed
up

All_param_max
3_param_max
2_param_max
1_param_max

Figure 2.1: Shows the results of several experiments, where potential bottlenecks,

or performance constraints, are selectively removed per experiment, for a variety

of benchmarks. The stacked bar shows the performance gain when the most im-

portant constraint is removed, when two most important constraints are removed,

when three most important constraints are removed and when all constraints are

removed. Performance gain is relative to a minimally configured processor core.

2.3 Adaptive architecture to limit peak power

Current high-performance processors rely on knowledge of expected, or av-

erage, application behavior to design packaging and thermal sensors to detect when

behavior exceeds thermal bounds. For example, Intel’s current power strategy can

be seen in [Int00]. For each processor, a set of typical applications are run on the

processor, and a power point is identified that is higher than the average power

dissipation of most applications. This is the Thermal Design Power (TDP). System

designers are expected to create systems that can thermally handle this level of

power. When power exceeds this threshold for more than 30 secs, thermal control

circuitry is activated. The Intel Pentium 4 processor datasheet [Int00] shows in

16

Figure 2.2: The adaptive core architecture. The shaded parts are dynamically

configured for power savings and max performance while peak power limits are

guaranteed.

figure 13 the performance loss as observed by the user once the thermal control

circuit is activated. Such a design does not provide any peak power guarantees

(only peak temperature), hence it is still susceptible to a power virus [NKH+07] –

an application that maximizes processor power dissipation. Moreover, we cannot

use TDP for the power supply design, because unlike temperature, power demand

can go to its maximum value in any given cycle. Further, the processor itself,

including clock distribution, power delivery circuitry, decoupling capacitors, and

other wiring, must be designed for the true peak power, not the TDP.

In contrast to reactive approaches, the architecture described here guaran-

tees that power will never exceed certain thresholds, by ensuring that in any given

cycle a certain portion of the processor core is not active. It is impossible for the

processor to get into a state where too many resources are being used or in a high

power state, even in the presence of a power virus. The same could be achieved

by just designing a smaller core; however, some applications will always degrade

because of the resources excluded. With an adaptive architecture, we give up little

17

performance relative to the fully configured core, while achieving the peak power

of a much smaller core.

Figure 2.2 shows our architecture. Most of the architecture is configurable.

Control of all configurable pieces is managed centrally. Reconfigurations happen

at very coarse intervals, so there is no latency issue related to central control. The

Config ROM contains a set of configurations that are known not to exceed our peak

power threshold. The Adaptation Manager collects performance counter informa-

tion over an epoch, and based on that data possibly selects a new configuration

from the Config ROM for the next epoch.

We assume our CPU is a core of a CMP in 65nm technology. We focus on

a single core (including L1 caches) in this study, assuming each core limits peak

power individually, resulting in a cumulative reduction in total processor power.

The L2 cache could easily be incorporated, as well. For private L2 caches, it would

be part of the core power management, and would only increase the gains shown in

this chapter. For a shared cache, it would need to be part of a global peak power

solution.

Table 2.3 shows the explored architectural design space, including all com-

ponents we consider configurable. The total number of configurations grows ex-

ponentially with the number of adaptable components, making prohibitive any

hardware implementation that would need to evaluate a significant fraction of

them dynamically.

2.3.1 Filling the config ROM

We assume that the Config ROM should contain all the reasonable resource

configurations that the core can be in. The first challenge we encounter is what

configurations to put in the ROM. This section describes our process.

We determine the peak power for every possible configuration in the design

space of Table 2.3. The total number of configurations sums up to 6144, which

corresponds to the strict product of the number of all resource configurations.

After determining the peak power threshold, we then eliminate all configurations

that exceed that threshold. In most cases (depending on the threshold), we are

18

Table 2.3: Design Space

INT instruction queue 16,32 entries
INT registers 64,128
FP instruction queue 16,32 entries
FP registers 64,128
INT alus 2,4
D cache 1,2,4,8 ways of 4k each
FP alus 1,2,3
I cache 1,2,4,8 ways of 4k each
Load/Store Units 1,2
Reorder Buffer 128,256 entries

still left with a large number of configurations; however, many are redundant and

unnecessary. We therefore also eliminate all redundant configurations – those

that are a strict subset of another in our list. For example, if configuration B is

identical to A, except that A has 8 cache ways and B has 4, B is eliminated. This

step provides us with a reasonable set of configurations for all threshold levels.

The remaining configurations then go in the Config ROM.

This heuristic makes the implicit assumption that a larger configuration

always outperforms a smaller one. We found this to be almost always true. The

most notable exception was crafty which runs up to 11% faster with configurations

that are not the largest. With more resources, crafty executes further down the

wrong path and as a result, wrong path loads and stores generate useless data traffic

that occupy elements of the memory hierarchy once the program returns to the

correct path. An architecture that wanted to also exploit this phenomenon (able

to find an optimal architecture even when it is a strict subset of other available

configurations) would need to have more configurations and likely a more complex

algorithm for selecting the next configuration — and the additional gains would

be small.

We consider several possible power thresholds in this research, although we

assume the processor core is configured for a single threshold (section 5 discusses

other assumptions). Specifically we consider thresholds corresponding to 70%,

19

Table 2.4: Distribution of configurations over peak power groups

Relative power threshold Number of configurations

0-70 % 132
0-75 % 279
0-80 % 360
0-85 % 285
0-inf % 1

75%, 80%, 85% of the core’s original peak power, as well as no limit which corre-

sponds to the maximally configured core. It is difficult to go much lower than 70%,

because much of the core power goes to things that we don’t consider configurable.

And even the configurable components are never disabled completely.

Table 2.4 shows how many configurations would appear in the table for each

power threshold. The storage cost of the table is quite low – we require 13 bits

per configuration (2 bits for FP ALUs, Icache and Dcache, 1 bit for the others),

so the 75% list would require 454 bytes.

2.3.2 Configuration mechanisms

Each epoch, a new configuration is potentially chosen. Section 2.5.2 de-

scribes the actual decision mechanisms used to select the next configuration. This

section is concerned with the mechanics of switching configurations and adapting

individual components once that selection is made.

Reconfiguration is done carefully to ensure no resources are ever added until

other resources are reduced. For example, if in the next epoch the Adaptation

Manager chooses a configuration with a larger Icache and a smaller integer queue,

we must first wait until the instruction queue drains out sufficiently and we have

successfully power gated it, and then we can power up the new Icache ways.

We attempt to model these delays accurately and conservatively, and in-

clude an additional power-gating delay in order to ensure that powering down and

especially powering up is done in a phased way, so that induction noise, ground

20

bounce, and rush current [GAT03, PPWT00, CGB97] will not be an issue. The

adaptable components of the processor can be placed in two categories. Compo-

nents such as integer and load store units maintain no state and can be partially

power-gated immediately after they are signaled by the centralized adaptation

mechanism. On the other hand, instruction queues, register files, and data caches

must drain state before partial power-gating is allowed.

The literature contains several approaches for L1 cache power reduction.

Way-prediction [PAV+01] will reduce dynamic power dissipation on successful pre-

dicts, while Drowsy caches [FKM+02] will reduce leakage power by periodically

setting the bitcells in a drowsy, low-power mode and cache decay [KHM01] will

reduce leakage by selectively power-gating cache lines. Unfortunately, none of the

above provide an upper bound on power. We adopt a method similar to the se-

lective cache-ways work [Alb99] with the important difference that the contents

of a way are flushed and invalidated before the way is deactivated. Albonesi, et

al. keep the contents of the memory cells valid and use or invalidate those on

demand; we flush the dirty entries to the higher cache level and then invalidate

the whole way. Consequently we can always cap the power activity of the specific

cache since deactivated parts of the cache array can not dissipate any leakage or

dynamic power. Our approach negatively impacts performance in the short term

by increasing the stress on the memory subsystem. However, when the interval

between adaptations is sufficiently large, the performance drop is insignificant.

For instruction queue partitioning, we assume a circuit mechanism similar

to [BAS+01]. Integer and floating point instruction queues are both clustered in

two 16-entry parts. Before disabling a cluster we ensure that all the instructions

have issued by using a simple NOR of all active bits of the entries in the cluster.

No compaction is assumed. Once the adaptation mechanism decides to shut down

an instruction queue cluster, register renaming is throttled. Once the cluster issues

all remaining instructions in that partition, we can begin power gating and resume

renaming.

The register files and the reorder buffer of our architecture follows the re-

sizing principles described in [DBB+02]. We segment the bitlines of the RAM

21

Table 2.5: Assumed delays to powergate components

Component Power-up Delay (cyc) Power-down Delay (cyc)

Dcache 651 163
Icache 335 84
Int inst queue 127 32
FP inst queue 127 32
Int Alus 198 50
FP Alus 375 94
Int reg file 277 69
FP reg file 277 69
rob 42 11

components of the various buffers but at a much coarser granularity. Therefore we

have a lower and upper cluster of the register file, and a lower and upper cluster of

the reorder buffer. When we partially deactivate the structure we always disable

the higher part and only after ensuring that the specific entries are not active.

For that we again throttle register renaming during the adaptation period until

the desired partition becomes idle. Unlike the queues, which always empty out

eventually, register file parts may never empty without some intervention – in this

case, by injecting some additional instructions to be renamed [DBB+02].

In [HBS+04] the authors provide details on ALU power gating together with

several techniques to minimize performance loss once power saving techniques are

applied. We assume similar mechanisms but instead use our centralized control.

During the adaptation process handshake signals are exchanged between

the Adaptation Manager that decides the next configuration of the processor from

those stored in the Config ROM, and different adaptable components. Initially the

Adaptation Manager will notify one or more components with a request for power

down. The component will then take any necessary action (e.g., flush cache lines,

etc.) to ensure safe partial deactivation as described above. After that completes,

the unit signals the Adaptation Manager. At that point, the manager can initiate

the power gating of the component, which will take some known number of cycles.

Only at the end of that period can the Adaptation Manager initiate the power-up

22

Table 2.6: Delays to disable components holding state

Component Min(cyc) Average(cyc) Max(cyc)

Dcache 163 384 1085
Int inst. queue 32 93 1725
FP inst queue 32 65 1741
Int reg file 69 101 3557
FP reg file 69 106 1108
ROB 11 114 2254

of those resources that will grow. Communication costs are minimal and happen

very infrequently.

In Table 2.5 the delays to turn on and off each component are shown.

According to [RMD+05], 200 ns suffice to power-up 1.2 million gates in 90nm

technology. Ignoring the speed increase that should come with 65nm technology,

and assuming linear scaling based on gate counts, our largest adaptive structure

should be able to power up in a conservative 350 ns. Hence, powering-up the

Dcache ways in the modeled core takes 350ns, and the delay for other components

is faster, depending on each component’s area. A 4:1 ratio was assumed between

the delay to power up and power down a component, since powering down causes

practically no inductive noise effect and should be much faster.

Table 2.6 summarizes the minimum, average, and maximum delays observed

for powering down structures that hold state. This delay includes the assumed

powergating delay and the time to free all occupied entries, but does not include

communication costs with the Adaptation Manager.

While we have modeled all of these delays carefully, we show in section 2.5.4

that performance is highly insensitive to these delays.

2.3.3 Implementation overhead

The configuration selection mechanisms we describe in section 2.5.2 vary

in their complexity – the computation is not complex, but in some cases the set

of alternative configurations considered is large. Fortunately, the config ROM

23

and the adaptation manager – the main additions of our technique – are accessed

infrequently and are not part of the critical path.

Leveraging this fact, we can evaluate each configuration in the Config ROM

consecutively, minimizing the hardware resources required for the Adaptation Man-

ager. Assuming the most complex heuristic proposed in the results section (see

section 2.5), we need to estimate the “closeness vector” and the “weight vector”.

For the former we need to perform 10 2-bit subtractions (as many as the param-

eters we consider in each configuration) and for the latter we need to perform 10

23-bit comparisons between measured and threshold values (23 is log of the max

interval used between adaptations – 8M cycles). Assuming that these subtrac-

tions and comparisons can be done consecutively as well, all we need is a small

ALU capable of doing narrow width subtractions, a few additional state bits, and

muxes. Our circuit analysis with stardard cells in 65nm technology for this addi-

tional computational hardware indicates that it should add well under 1% to the

total peak power and less than 0.5% of area. The Config ROM was conservatively

modeled as RAM, using CACTI, and introduced less than 0.1% peak power over-

head and 0.75% area overhead. In terms of average power the mechanism cost can

be ignored since this small specialized engine is activated infrequently.

Given the tolerance of delays associated with this computation, and the

frequency at which we adapt, we could even relegate the decision of selecting the

best configuration to software. Even if the decision is made in software, we would

propose still hardwiring the configurations in the hardware table to ensure that

malicious software could never force an illegal configuration.

Design verification and testing will increase for the considered adaptive

core compared to a core with fixed-size resources. However, since we only permit

a subset of all the possible core configurations testing will be simplified compared

to an adaptive processor where configuration decisions are decoupled – such as the

proposed architectures for average power reduction.

24

2.4 Methodology

In order to evaluate different adaptation policies that optimize performance

for given power budgets, we added support for dynamic adaptation to the SMTSIM

simulator [Tul96], integrated with the Wattch power models[BTM00]. Wattch was

modified so that the underlying CACTI [TMAP08] models have more updated

circuit parameters and a reorder buffer is added to the power modeling.

2.4.1 Power modeling

Wattch was developed for relative, activity-factor based power measure-

ments and was originally validated against processors built in early 2000. Hence,

it does not capture absolute power consumption for modern architectures but ap-

proximates well the relative power trends when the on-chip resources dynamically

change. Wattch lacks a leakage power model and does not consider different circuit

design styles or power reduction techniques. Our methodology is similar to the one

in [KFJ+03] and addresses the above issues. In that work, they apply linear scaling

to the output of Wattch for a particular technology, so that it matches published

values for a real processor at two points – peak power and average power. If we

assume Wattch results reflect relative power changes accurately, this methodology

should produce accurate absolute power results for the calibrated processor. Be-

low we present the data used for the scaling. For this methodology, we need real

processor peak power and average power, and the peak and average power from

Wattch.

We get the Wattch peak power by maximizing all activity factors. We get

Wattch typical power simply by running a number of benchmarks through it. For

the target processor, we obtained the TDP value from the datasheets of Intel Core

Solo at 65nm and assumed the latter as 75% of the peak power [Int00]. We also

get the average power from [Int00] – in fact, this paper gives us a range of power

values over a workload set which overlaps heavily with ours, allowing us to validate

our model even more strongly.

This is only for dynamic power. We also need to add leakage power esti-

25

Table 2.7: Absolute Power Values for the modeled processor

Processor Core

Peak Power Value(W) 36 28.57
Average Value(W) 20.87 15.90

Table 2.8: Architectural Specification

Cores 1 I cache 32k, 8 way
Fetch width 4 I cache miss penalty 8 cyc
INT instruction queue 32 entries D cache 32k, 8 way
FP instruction queue 32 entries D cache miss penalty 8 cyc
Reorder Buffer entries 256 shared L2 cache 2 MB, 4 way
FP registers 128 L2 miss penalty 40 cyc
INT registers 128 L3 4 MB, 4 way
Cache line size 64 bytes L3 miss penalty 315 cyc
Frequency 1.83GHz Vdd 1.2V

mates. Specifically, we assume leakage power to account for 40% of overall typical

power and approximately 28% of the peak power [AG] for our 65 nm design. Since

leakage scales with area, we break down the assumed value according to area ratios

given by [KTJ06]. The L2 area is estimated as 70% of the core area from an Intel

Core Solo die photo. The leakage values are additionally scaled linearly when a

component is reconfigured dynamically, assuming that we always powergate de-

configured resources.

Table 2.7 gives the absolute peak and average power for the modeled proces-

sor as well as the corresponding core (processor excluding L2). Figure 2.3 presents

the breakdown of peak and average power to different components. For the esti-

mation of the average power we averaged the power consumption across our set of

benchmarks when running on the maximally configured processor. We find that

50% of the total peak power and more than 40% of the average power is being used

by our configurable resources, and the remaining power is used by non-configurable

components. Because none of our resources are configurable to a size of zero, of

course, only a portion of that power can be eliminated.

Table 2.8 gives the characteristics of our baseline architecture.

26

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Peak Average

Itlb

Br Pred

Ld/st queue

Dtlb

Rename Log

Result Bus

Rob

Inst Queues

Icache

Reg file

Int ALU

Dcache

FP ALU

Ambient

Clock

Figure 2.3: The breakdown to core components for the peak and average power.

The power reported is comprised of dynamic and leakage power.

2.4.2 Benchmarks

In order to explore the benefits of adaptability we use the whole SPEC2000

benchmark suite and a selection (picked randomly) of Media, NAS and Olden

benchmarks. Adaptive processors inherently are more effective in matching the

varying needs of different programs. Hence, we use 42 benchmarks in total to ex-

pose all sorts of different execution behaviors. We use the Simpoint tool [SPHC02]

to estimate the proper fast forward distance for up to 4 representative simpoints

per benchmark and then we simulate 50M instructions at each simpoint. Multi-

simpoint simulations were used to better capture intra-thread phase changes.

2.5 Results

In this section, we first explore the potential for exploiting adaptivity for

peak power reduction by modeling ideal static and dynamic configuration selection.

We then examine real heuristics for navigating the configuration space dynamically.

27

2.5.1 Dynamic adaptation vs static tuning

This section explores the potential of adaptivity to reduce peak power,

while still limiting the performance hit introduced from the resource restrictions.

Figures 2.4 through 2.6 present results for several oracle configuration policies (at

each peak power threshold).

The policies simulated include the static worst per simpoint

(WORST PER SIMPOINT), the static best per benchmark

(BEST PER BENCH), and the static best per simpoint

(BEST PER SIMPOINT). For those, the best (or worst) static configuration is

identified for each application individually over the entire simulation interval (recall

that our configuration trimming algorithm significantly restricts how bad “worst”

can be). The fourth column (BEST STATIC) corresponds to the best core config-

uration in the specific peak power chunk across all benchmarks. The fifth column

(IDEAL ADAPT) demonstrates the performance of a core than changes configu-

rations dynamically and always chooses the best configuration for each interval of

1M instructions. Thus, the fourth bar represents potential performance from just

designing the best possible non-configurable core within the peak power constraint.

The second bar represents the potential from adaptivity to exploit inter-application

diversity. The difference between the second and fourth bars represents the po-

tential due to intra-application diversity. All the results were normalized to the

BEST STATIC, because this represents the best possible non-adaptive processor

you could build within this peak power constraint, and constitutes our baseline.

The last column (MAX CONF) represents the fully configured core, which does

not share the same peak power constraint as the rest of the core options in this

graph.

Several conclusions come out of these figures. As expected the more limited

the peak power budget the bigger the gains from adaptivity. For the lowest peak

power budget an ideal adaptive core would perform on average 16% better than

a core with fixed-size resources and tuned for best results (BEST STATIC), while

for the highest peak power budget the benefits are much smaller.

We also see that even with a tight peak power budget, we are able to get

28

F
ig

u
re

2.
4:

T
h
e

p
er

fo
rm

an
ce

of
si

x
co

n
fi
gu

ra
ti

on
p
ol

ic
ie

s
w

it
h

a
p
ea

k
p
ow

er
co

n
st

ra
in

t
of

70
%

of
th

e
m

ax
im

u
m

co
n
fi
gu

-

ra
ti

on
.

T
h
e

b
es

t
st

at
ic

co
n
fi
gu

ra
ti

on
is

:
iq

s:
32

fq
s:

32
ia

lu
:2

fa
lu

:1
ld

st
:1

ic
s:

16
d
cs

:1
6

ip
r:

64
fp

r:
64

ro
b
:2

56

29

F
ig

u
re

2.
5:

T
h
e

p
er

fo
rm

an
ce

of
si

x
co

n
fi
gu

ra
ti

on
p
ol

ic
ie

s
w

it
h

a
p
ea

k
p
ow

er
co

n
st

ra
in

t
of

75
%

of
th

e
m

ax
im

u
m

co
n
fi
gu

-

ra
ti

on
.

T
h
e

b
es

t
st

at
ic

co
n
fi
gu

ra
ti

on
is

:
iq

s:
32

fq
s:

32
ia

lu
:4

fa
lu

:1
ld

st
:1

ic
s:

16
d
cs

:1
6

ip
r:

64
fp

r:
64

ro
b
:1

28

30

very close to the same performance as the full core. This confirms that most

applications require just a few key resources. Examples include the g721 Media

benchmark which demands high number of integer ALUs, galgel which needs a high

number of integer and floating pointing physical registers, equake which needs a

high number of floating point queue entries, and mg which requires floating point

registers and reorder buffer entries.

But the bottleneck resources vary, and the best static core cannot give

each of these applications what it needs most, while the adaptive core can. The

configuration of the best static core will depend on the selection of benchmarks,

of course, and how they might be prioritized. But this is another advantage of

the adaptive architecture. Whereas the static architecture (the way we’ve always

designed processors) will always be sensitive to the particular benchmarks used to

optimize the design, the adaptive architecture is not.

Also, a larger selection of benchmarks, such as are used in real processor

design, would almost certainly result in a larger gap between the compromise (best

static) architecture and the adaptive architecture.

As we relax the peak power budget (for example, at 75%), we see a some-

what smaller gain from adaptivity over the static configuration, but we are able to

nearly replicate the performance of the full core. At 80% of peak power the differ-

ences are smaller, but still noticeable. For an 85% threshold (results not shown),

the best static core is pretty competitive with our adaptive core.

The use of multiple simpoints and the between-simpoint adaptation makes

a significant difference in only gcc and bzip2. This indicates that overall we gain

much more from inter-thread diversity than from intra-thread diversity.

Also notice in these results that we see the aforementioned behavior for

crafty, and to a lesser extent for vpr — that they achieve higher results with a

configuration smaller than the largest. Again, this is a result of being able to more

aggressively pursue wrong branch paths with more resources, and is in general an

anomalous result. Interestingly, this effect enables, at the higher peak thresholds

(80% and 85%), the ideal adaptive technique to actually outperform the maximally

configured core (by a small amount).

31

F
ig

u
re

2.
6:

T
h
e

p
er

fo
rm

an
ce

of
si

x
co

n
fi
gu

ra
ti

on
p
ol

ic
ie

s
w

it
h

a
p
ea

k
p
ow

er
co

n
st

ra
in

t
of

80
%

of
th

e
m

ax
im

u
m

co
n
fi
gu

-

ra
ti

on
.

T
h
e

b
es

t
st

at
ic

co
n
fi
gu

ra
ti

on
is

:
iq

s:
32

fq
s:

32
ia

lu
:4

fa
lu

:1
ld

st
:1

ic
s:

16
d
cs

:1
6

ip
r:

12
8

fp
r:

64
ro

b
:2

56

32

One measure of core design “goodness” is the ratio of average power to peak

power. A low ratio implies an architecture that requires the system (including

the processor design, the cooling, packaging, the power supply, etc.) be ever-

provisioned for the delivered performance. A high ratio, then, implies a more

efficient design. Figure 2.7 presents the average power and peak power for the

IDEAL ADAPT architecture.

This architecture, then, shows two very positive trends, it reduces both

average power and the ratio of peak to average power at the same time. It should

be noted, in fact, that we have moved the ratio of peak to average power to a point

that is more typical of an in-order processor core than the out-of-order core we are

simulating [KTJR05]. Again, this enables the use of a more efficient power supply

(better targeted at the average power), saving wall power.

2.5.2 Realistic adaptive techniques

In order for the adaptation manager to approach the potential we have seen

for our adaptive processor, it needs to constantly navigate the list of potential con-

figurations in the config ROM, hopefully staying close to the optimal configuration

at all times.

Specifically, the configuration manager has to address three issues: When

should we should trigger a reconfiguration? We should be attempting to recon-

figure at least often enough to capture major program phase changes, as well as

transitions between applications (context switches). Which configuration from the

ROM is the most appropriate to run next? The ROM stores more than 100 config-

urations for each power chunk. Being able to distinguish the configurations that

are more likely to perform better becomes critical. Finally, how do we evaluate the

configuration chosen? For the latter we need a notion of whether performance has

improved or declined as a result of a reconfiguration decision.

We examine several policies for effectively navigating the configuration

space. Each is described as a 3-tuple, corresponding to the questions in the previ-

ous paragraph. Thus, the naming convention is < adaptation triggering mechanism

> < configuration selection method > < evaluation method >. We show results

33

for the following policies:

INTV RANDOM NONE: After a predetermined interval of cycles a differ-

ent configuration is chosen randomly. There is no feedback mechanism or evalua-

tion of the configurations. This is a simple policy and it is not expected to perform

well. But it is a useful result in that it essentially gives us the “expected” behavior

of the set of all the potentially good static architectures.

INTV SCORE NONE: After a predetermined interval of cycles, a different

configuration is chosen according to a score-based technique. We keep statistics

for conflict events of each resource that is dynamically configured. A conflict oc-

curs when there is contention for a resource. Specifically, we maintain instruction

queue conflicts (an instruction cannot enter the instruction queue because it is

full), floating point queue conflicts, integer register conflicts (an instruction can-

not be renamed because there are no available renaming registers), floating point

register conflicts, integer ALU conflicts, floating point ALU conflicts, reorder buffer

conflicts, Icache misses, and Dcache misses. To have a notion of which resource

is most required we maintain the ratio of conflicts per cycle (we also tried con-

flicts per instruction, with no significant performance difference observed). We

form a vector indicating the components that exceeded thresholds we set based on

experimentation (weight vector). Then, we form another vector which describes

how closely a configuration under consideration relates to the current configuration

(closeness vector) – this vector can have both positive and negative values. The

closeness vector is simply the result of subtracting the two entries (the configu-

ration under consideration from the current configuration) from the config ROM.

For example if we consider 1,2,4,8 ways caches and the current configuration has 2

way-enabled cache while the configuration under consideration has 4, the element

of the closeness vector for that cache would be 1. If instead of 4 there were 8 ways

the closeness element would be 2. For a configuration with a 1-way cache, the

closeness element would be -1. The total score for each configuration is found by

multiplying the two vectors and summing the elements, as illustrated in Table 2.9.

Once all the scores are estimated, the configuration with the highest score

is selected. There are frequent ties, and so the selection is then made randomly.

34

��� ��� ��� ��� ����
�

�

��

��

��

��

��

Average Peak

	
�
�

�
��

� ������
��� ���

���

Figure 2.7: The average and peak power of our idealized adaptive core. Above the

bars is shown the ratio of peak to average power.

This policy makes a more educated configuration selection by favoring configura-

tions that increase the resources with conflicts. However, it still lacks a feedback

mechanism to evaluate the configuration selected.

INTV SCORE SAMPLE: This is the same policy as the previous one with

the addition of sampling as a feedback mechanism. Every interval of cycles a series

of potential configurations are chosen based on the scoring system and the weights

given by the execution of the previous configuration. The top n are chosen for

sampling, again with random selection breaking ties. Experimentally, we found

n=5 to work well. After all configurations are run for a sampling interval, the

best IPC wins (the previous configuration’s execution IPC is also considered) and

that configuration runs until the next reconfiguration interval. The reconfiguration

interval is set to keep a 1:10 ratio between the sampling time and the execution

time. To prevent any transitional or cold start effects there is a warm up period

before data is collected during a sampling interval.

EVDRIV SCORE SAMPLE: This policy does not consider adaptation pe-

riodically. Instead adaptations are considered only when there is evidence of a

35

Table 2.9: Example of configuration score estimation

iq fq
ialus falus

ldst
iregs fregs

IC DC
rob

size size units ways ways

Current config 32 16 2 1 2 128 128 4 1 128
Considered config 16 16 4 3 1 64 128 1 2 128
Closeness vector -1 0 1 2 -1 -1 0 -2 1 0
Weight vector 1 0 0 1 0 1 0 0 1 1

Results -1 0 0 2 0 -1 0 0 1 0
Total score 1

change in application behavior (event-driven). In particular, if we detect that over

the previous interval, the measured IPC, or the cache behavior (misses per cycle),

changed by a relative margin of 30%, then we initiate a reconfiguration evaluation.

The frequency of adaptations is limited by an upper (8M cycles) and lower bound

(2M cycles).

INTVAD SCORE SAMPLE: With this policy we adapt the interval be-

tween reconfiguration sampling based on how useful reconfiguration is. When we

sample and find a better configuration than the previous, we cut the time to the

next reconfiguration in half. When we fail to find a better configuration, we double

the interval (adaptive interval). In this way, we search quickly when we are far

from optimal, and minimize sampling overhead when we are near it. Again there is

a minimum bound (2M cycles) and a maximum bound (8M cycles) for the interval.

In figure 2.8 we present the speedup over the best static configuration

achieved with the different adaptive policies applied to the lowest peak power

bound. We experimented with interval values ranging from 0.5M to 10M. The

policies with fixed interval produced the best results with an interval of 2M cy-

cles, while the policies with variable interval perform best with lower bound 2M

and upper 8M cycles. We observe that randomly selecting a configuration from

the ROM performs significantly worse than the best static configuration. This

is the difference between the average static configuration and the optimal static

configuration. With the addition of score to make more educated selections the

performance is on average equivalent to the best static configuration. The eval-

uation that comes with sampling gives a major boost to performance since bad

36

Figure 2.8: The performance of different adaptive policies with respect to the best

static configuration

configurations are avoided. Finally, the dynamic interval techniques provide some

additional gains – the adaptive interval doing better than the event-driven (phase

detection) mechanism. The event-driven mechanism will periodically monitor in-

struction throughput and level one cache miss rates and will trigger an adaptation

when a relative change of more than 30% is observed. The problem with the phase

detection heuristic is that in its current form, when it encounters an abrupt phase

change, it gets just one chance to find a good configuration before it settles in for

a long interval, and adapts very slowly after that.

We see that with our best dynamic technique, we cover almost 10% out of

the potential 15% speedup of the oracle adaptive technique over the best static.

Overall with the best realistic adaptive approach we perform 10% worse than the

maximally configured processor. Thus we have shown that we can reduce the peak

power of a processor core by 30%, only sacrificing 10% in performance. The best

static configuration with the same peak power would have a 20% performance hit.

At 75% peak power, the performance loss is less than 5%.

37

Figure 2.9: Comparison of full and reduced ROM for different peak power con-

straints

2.5.3 Reducing ROM configurations

There are two costs to having a large number of configurations in the con-

fig ROM. One is storage, although that cost is relatively low. The second cost is

the difficulty in finding the optimal configuration. We can further pare down the

configurations experimentally, separating those often found to be worthwhile from

those rarely selected. For this experiment, we do this using the oracle adaptive

experiments presented in section 2.5.1. We eliminate from the config ROM only

those configurations never selected as the best configuration for even a single in-

terval for any benchmark. This is a fairly conservative filter. Even still, we cut

the number of configurations by more than half (see Table 2.10). Note that there

is some danger to this optimization, if the actual workload is not well represented

by the benchmark set used to pare down the configurations.

Figure 2.9 presents the best adaptive policy (INTVAD SCORE SAMPLE)

with the full ROM and the reduced ROM for different peak power thresholds. As

expected, reducing the number of configurations improves our performance, inching

us even closer to the ideal result. At 75% with the inclusive set of configurations we

38

Table 2.10: Distribution of reduced set configurations over peak power groups

Relative power threshold Number of configurations

0-70 % 71
0-75 % 97
0-80 % 119
0-85 % 116
0-inf % 1

Table 2.11: Peak power impact on voltage variation and on-chip decoupling ca-

pacitor area

Experiment 1 Experiment 2
Power threshold On-chip decap (% Core Area) Max. Volt. Variation (% VDD)

0-70 % 9% 4.48%
0-75 % 9.7% 4.80%
0-80 % 10.5% 5.12%
0-85 % 11.5% 5.44%
0-inf % 15% 6.48%

perform 6.4% worse than the maximally configured core, while with the reduced

set we do 4.8% worse. At 80%, our realistic adaptation policy with the reduced set

of configurations is only 2.5% worse than MAX CONF. In many scenarios, trading

5% performance for a 25% reduction in peak power, or 2.5% for a 20% reduction,

and the cost and real power savings that go with it, represents a huge win.

It is worth noting that DVFS, proposed for peak power budgeting, sees

more than double the performance hit when achieving similar peak power savings

(Table 1 in [MJDS08]).

2.5.4 Delay sensitivity analysis

This section examines the impact of the assumed reconfiguration latency on

our results. The adaptive policy used was INTVAD SCORE SAMPLE. To change

the duration of adaptation we multiplied all the parameters of Table 2.5 with

different factors as demonstrated in figure 2.10. The “No delay” bar corresponds

to the unrealistic scenario where component powergating happens instantly – note

39

Figure 2.10: Sensitivity analysis of INTVAD SCORE SAMPLE to the delay of

adaptation

that adaptation still is not instant since we wait for instruction queues to drain

or dirty L1 entries to be flushed to the L2. For any reasonable assumption about

these delays, the impact on performance is negligible. Undoubtedly, the adaptive

interval optimization contributes to this, since on average the interval lengths were

larger than the rest of the techniques.

2.5.5 Quantifying the benefits of peak power reduction

In this section, we analyze the impact of the peak power reduction on silicon

area required for on-chip decoupling capacitors and the voltage variation. The

voltage variation in sub-65nm technologies should be kept below 5% of the nominal

supply voltage VDD [AP07]. We model a distributed power distribution network

with power and ground network RLCG parasitics based on [SHP+09, PR08] for

the total processor die area of 26.25mm2 as shown in figure 2.11. The core current

demand is modeled based on the peak current demand – peak power divided by

the supply voltage – and the clock frequency and is distributed as time-variant

current sources over the power and ground mesh. The distributed current sources

are modeled as triangular waveforms with the clock frequency period (1
fclk=1.83GHz)

and the rise and fall time of 10 × fclk [Uni04, YCH07].

To calculate the amount of necessary decoupling capacitances required to

40

Figure 2.11: Distributed power distribution network model.

maintain a voltage fluctuation within 5%, we use the following first order approx-

imation: P = CT · VDD
2 · f · p0−1 where P is the total chip peak power consump-

tion, VDD denotes the supply voltage, f is the clock frequency, CT is the on-chip

decoupling capacitance, and p0−1 is the probability that a 0 − 1 transition oc-

curs [SHP+09]. CT includes the intrinsic decoupling capacitance which is usually

small and the intentional decoupling capacitance which we add and for which we

report area numbers [PMF08].

We find that peak power reduction saves significant die area for the inten-

tional on-chip decoupling capacitors and minimizes the voltage drop at the same

time. We perform the transient analysis based on [SHP+09] to find the minimum

on-chip decoupling capacitors which are required based on 65-nm thin oxide tech-

nology from the initial estimation. Table 2.11 illustrates the experimental data for

the on-chip decoupling capacitor estimation. We ran two different analyses. Ex-

periment 1 illustrates that to maintain voltage variation below 5% of the nominal

VDD, the reduction of peak power to 75% of the original value reduces the amount

of required on-chip decoupling capacitor area by 5.3% (of total core area). Ex-

periment 2 demonstrates that if we instead maintain the same amount of on-chip

decoupling capacitors (in this test case 150nF) the voltage variation is suppressed

significantly when we reduce the peak power. For the 75% threshold, the variation

is reduced by 26%.

2.6 Conclusion

This chapter describes an adaptive processor that uses table-driven recon-

figuration to place a cap on peak core power dissipation. By only allowing config-

41

urations specified in this table, the core is ensured to always operate below a given

power threshold. While it is impossible to configure all resources at full capacity,

each application can find a configuration that provides the resources it most needs

at full capacity. In this way, we minimize the performance loss while providing sig-

nificant peak power savings. This technique is shown to enable a 25% reduction in

peak power with less than a 5% performance cost. Additionally, it can outperform

the best static design at the same peak power threshold by 9%. The Peak power

reduction translates to 5.3% less total silicon for decoupling capacitance or a 26%

reduction in voltage variation for the same decoupling capacitance. Furthermore,

the design of the chip voltage supply becomes cheaper and more efficient.

Acknowledgments

Chapter 2 contains material from Reducing peak power with a table-driven

adaptive processor core, by Vasileios Kontorinis, Amirali Shayan, Rakesh Kumar,

and Dean Tullsen, which appears in Proceedings of the 42nd annual International

Symposium on Microarchitecture (MICRO). The dissertation author was the pri-

mary investigator and author of this paper. The material in this chapter is copy-

right c©2009 IEEE. Personal use of this material is permitted. However, permission

to reprint/republish this material for advertising or promotional purposes or for

creating new collective works for resale or redistribution to servers or lists, or to

reuse any copyrighted component of this work in other works must be obtained

from the IEEE.

Chapter 3

Removing over-provisioning in 3D

stacked chips

In the previous chapter we have discussed a core architecture that dynam-

ically tailors core resources to reduce over-provisioning. This core design can

be used in the context of multi-cores. An alternative approach to reduce over-

provisioning is to design a system with fewer resource to begin with. Then share

those resources to boost performance. In this chapter we will discuss how chip

integration using 3D technology can help towards reducing over-provisioning.

Prior research [KFJ+03, KTR+04] has shown that heterogeneous multicore

architectures provide significant advantages in enabling energy-efficient or area-

efficient computing. It allows each thread to run on a core that matches its resource

needs more closely than a single one-size-fits-all core. However, that approach still

constrains the ability to optimally map executing threads to cores because it relies

on static heterogeneity, fixed at design time.

Other research attempts to provide dynamic heterogeneity, but each face a

fundamental problem. Either the pipeline is tightly constructed and the resources

we might want to share are too far away to be effectively shared, or the shared

resources are clustered and the pipeline is inefficient. As a result, most provide re-

source sharing or aggregation at a very coarse granularity – Core Fusion [IKKM07]

and TFlex [KSG+07] allow architects to double or quadruple the size of cores, for

example, but do not allow a core to borrow renaming registers from another core

42

43

if that is all that is needed to accelerate execution. Thus, the heterogeneity is

constrained to narrow cores or wide cores, and does not allow customization to

the specific needs of the running thread. The WiDGET architecture [WDW10]

can only share execution units, and thus enables only modest pipeline inflation.

The conjoined core architecture [KJT04] shares resources between adjacent cores,

but sharing is limited by the topology of the core design to only those structures

around the periphery of the pipeline.

This work demonstrates that 3D stacked processor architectures eliminate

the fundamental barrier to dynamic heterogeneity. Because of the extra design

dimension, we can design a tight, optimized pipeline, yet still cluster, or pool,

resources we might like to share between multiple cores.

3D die stacking makes it possible to create chip multiprocessors using mul-

tiple layers of active silicon bonded with low-latency, high-bandwidth, and very

dense vertical interconnects. 3D die stacking technology provides very fast com-

munication, as low as a few picoseconds [LXB07], between processing elements

residing on different layers of the chip. Tightly integrating dies in the third di-

mension has already been shown to have several advantages. First, it enables

the integration of heterogeneous components such as logic and DRAM mem-

ory [LXB07], or analog and digital circuits [LXB07], fabricated in different tech-

nologies (for instance integration of a 65nm and a 130nm design). Second, it

increases the routability [SAT+08]. Third, it substantially reduces wire length,

which translates to lowered communication latency and reduced power consump-

tion [SAT+08, MZM+09, LXB07].

The dynamically heterogeneous 3D processors we propose in this chapter

provide several key benefits.

First, they enable software to run on hardware optimized for the execu-

tion characteristics of the running code, even for software the original processor

designers did not envision. Second, they enable us to design the processor with

compact, lightweight cores without significantly sacrificing general-purpose perfor-

mance. Modern cores are typically highly over-provisioned [KJT04] to guarantee

good general-purpose performance – if we have the ability to borrow the specific

44

resources a thread needs, the basic core need not be over-provisioned in any di-

mension. Third, the processor provides true general-purpose performance, not

only adapting to the needs of a variety of applications, but also to both high

thread-level parallelism (enabling many area-efficient cores) and low thread-level

parallelism (enabling one or a few heavyweight cores).

With a 3D architecture, we can dynamically pool resources that are po-

tential performance bottlenecks for possible sharing with neighboring cores. The

StageNet architecture [GFA+08] attempts to pool pipeline stage resources for re-

liability advantages. In that case, the limits of 2D layout mean that by pooling

resources, the pipeline must be laid out inefficiently, resulting in very large in-

creases in pipeline depth. Even Core Fusion experiences significant increases in

pipeline depth due to communication delays in the front of the pipeline. With

3D integration, we can design the pipeline traditionally in the 2D plane, yet have

poolable resources (registers, instruction queue, reorder buffer, cache space, load

and store queues, etc.) connected along the third dimension on other layers. In

this way, one core can borrow resources from another core or cores, possibly also

giving up non-bottleneck resources the other cores need. This work focuses on the

sharing of instruction window resources.

This architecture raises a number of performance, energy, thermal, design,

and resource allocation issues. This chapter represents a first attempt to begin to

understand the various options and trade-offs.

This chapter is organized as follows. Section 3.1 describes our 3D archi-

tecture assumptions, both for the baseline multicore and our dynamically het-

erogeneous architecture. Section 3.2 shows that both medium-end and high-end

cores have applications that benefit from increased resources, motivating the ar-

chitecture. Section 3.3 details the specific circuits that enable resource pooling.

Section 3.4 describes our runtime hardware reallocation policies. Section 3.5 de-

scribes our experimental methodology, including our 3D models. Section 3.6 gives

our performance, fairness, temperature, and energy results. Section 3.7 describes

related work.

45

3.1 Baseline architecture

In this section, we discuss the baseline chip multiprocessor architecture and

derive a reasonable floorplan for the 3D CMP. This floorplan is the basis for our

power/temperature/area and performance modeling of various on-chip structures

and the processor as a whole.

3D technology, and its implications on processor architecture, is still in the

early stages of development. A number of design approaches are possible and

many have been proposed, from alternating cores and memory/cache [LNR+06,

MZM+09], to folding a single pipeline across layers [PL06].

In this research, we provide a new alternative to the 3D design space. A

principal advantage of the dynamically heterogeneous 3D architecture is that it

does not change the fundamental pipeline design of 2D architectures, yet still

exploits the 3D technology to provide greater energy proportionality and core

customization. In fact, the same single design could be used in 1-, 2-, and 4-layer

configurations, for example, providing different total core counts and different levels

of customization and resource pooling. For comparison purposes, we will compare

against a commonly proposed approach which preserves the 2D pipeline design,

but where core layers enable more extensive cache and memory.

3.1.1 Processor model

We study the impact of resource pooling in a quad-core CMP architecture.

This does not reflect the limit of cores we expect on future multicore architectures,

but a reasonable limit on 3D integration. For example, a design with eight cores

per layer and four layers of cores would provide 32 cores, but only clusters of

four cores would be tightly integrated vertically. Our focus is only on the tightly

integrated vertical cores.

For the choice of core we study two types of architecture, a high-end ar-

chitecture which is an aggressive superscalar core with issue width of 4, and a

medium-end architecture which is an out-of-order core with issue width of 2. For

the high-end architecture we model a core similar to the Alpha 21264 (similar in

46

Figure 3.1: CMP configurations: (a) baseline and (b) resource pooling.

functionality to the Intel Nehalem Core, but we have more data available for vali-

dation on the 21264). For the medium-end architecture we configure core resources

similar to the IBM PowerPC-750 FX processor [IBM03].

3.1.2 3D floorplans

The high-level floorplan of our 3D quad-core CMP is shown in figure 3.1.

For our high-end processor we assume the same floorplan and same area as the

Alpha 21264 [KMW98] but scaled down to 45nm technology. For the medium-

end architecture we scale down the Alpha 21264 floorplan (in 45nm) based on

smaller components in many dimensions, with area scaling models similar to those

described by Burns and Gaudiot [BG01].

Moving from 2D to 3D increases power density due to the proximity of

the active layers. As a result, temperature is always a concern for 3D designs.

Temperature-aware floorplanning has been an active topic of research in the liter-

ature. There have been a number of 3D CMP temperature-aware floorplans pro-

posed [HVE+07, PL07, CAH+10]. Early work in 3D architectures assumed that the

best designs sought to alternate hot active logic layers with cooler cache/memory

layers. More recent work contradicts that assumption – it is more important to put

the active logic layers as close as possible to the heat sink [ZXD+08]. Therefore,

an architecture that clusters active processor core layers tightly is consistent with

47

this approach. Other research has also exploited this principle. Loh, et al. [LXB07]

and Intel [BNWS04] have shown how stacking logic on logic in a 3D integration

could improve the area footprint of the chip, while minimizing the clock network

delay and eliminating many pipeline stages.

For the rest of this work we focus on the two types of floorplan shown in

figure 3.1(a) and figure 3.1(b). Both preserve the traditional 2D pipeline, but each

provides a different performance, flexibility, and temperature tradeoff.

The thermal-aware architecture in figure 3.1(a) keeps the pipeline logic

closest to the heat-sink and does not stack pipeline logic on top of pipeline logic.

Conversely, the 3D dynamically heterogeneous configuration in figure 3.1(b) stacks

pipeline logic on top of pipeline logic, as in other performance-aware designs, gain-

ing increased processor flexibility through resource pooling. Notice that this com-

parison puts our architecture in the worst possible light – for example, a many-

core architecture that already had multiple layers of cores would have very similar

thermal characteristics to our architecture without the benefits of pooling. By

comparing with a single layer of cores, the baseline has the dual advantages of not

having logic on top of logic, but also putting all cores next to the heat sink.

3.2 Resource pooling in the third dimension

Dynamically scheduled processors provide various buffering structures that

allow instructions to bypass older instructions stalled due to operand dependences.

These include the instruction queue, reorder buffer, load-store queue, and renaming

registers. Collectively, these resources define the instruction scheduling window.

Larger windows allow the processor to more aggressively search for instruction

level parallelism.

The focus of this work, then, is on resource adaptation in four major delay

and performance-critical units – the reorder buffer, register file, load/store queue,

and instruction queue. By pooling just these resources, we create an architecture

where an application’s scheduling window can grow to meet its runtime demands,

potentially benefiting from other applications that do not need large windows.

48

(a
)

(b
)

F
ig

u
re

3.
2:

S
p
ee

d
u
p

fr
om

in
cr

ea
si

n
g

re
so

u
rc

e
si

ze
in

th
e

3D
st

ac
ke

d
C

M
P

w
it

h
(a

)
m

ed
iu

m
-e

n
d

an
d

(b
)

h
ig

h
-e

n
d

co
re

s.

49

While there are a variety of resources that could be pooled and traded between

cores (including execution units, cache banks, etc.), we focus in this first study

of dynamically heterogeneous 3D architectures on specific circuit techniques that

enable us to pool these structures, and dynamically grow and shrink the allocation

to specific cores.

In this section, we study the impact on performance of increasing the size

of selected resources in a 3D design. We assume 4 cores are stacked on top of

each other. The maximum gains will be achieved when one, two, or three cores

in our 4-core CMP are idle, freeing all of their poolable resources for possible use

by running cores. The one-thread case represents a limit study for how much can

be gained by pooling, but also represents a very important scenario – the ability

to automatically configure a more powerful core when thread level parallelism is

low. This does not represent an unrealistic case for this architecture – in a 2D

architecture, the cost of quadrupling, say, the register file is high, lengthening

wires significantly and moving other key function blocks further away from each

other. In this architecture, we are exploiting resources that are already there,

the additional wire lengths are much smaller than in the 2D case, and we do not

perturb the 2D pipeline layout.

We examine two baseline architectures (details given in section 3.5) — a

4-issue high-end core and a 2-issue medium-end core. In figure 3.2 we report the

speedup for each of these core types when selected resources are doubled, tripled,

and quadrupled (when 1, 2, and 3 cores are idle). Across most of the benchmarks a

noticeable performance gain is observed with pooling. Omnetpp shows the largest

performance benefit in medium-end cores. The largest performance is observed in

swim and libquantum for high-end cores.

Performance gains are seen with increased resources, but the marginal gains

do drop off with larger structures. Further experiments (not shown) indicate that

pooling beyond four cores provides little gain. The more scheduling resources we

provide, the more likely it is that some other resource (e.g., the functional units,

issue rate, cache) that we are not increasing becomes the bottleneck. In fact,

this is true for some benchmarks right away, such as mcf and perlbench, where

50

no significant gains are achieved, implying some other bottleneck (e.g., memory

latency) restricts throughput. On average, 13 to 26% performance improvement

can be achieved for the medium-end processor, and 21 to 45% for the high end,

by increasing selected window resources. Most importantly, the effect of increased

window size varies dramatically by application. This motivates resource pooling,

where we can hope to achieve high overall speedup by allocating window resources

where they are most beneficial.

3.3 Stackable structures for resource pooling

This section describes the circuit and architectural modifications required to

allow resources on vertically adjacent cores to participate in pooling. Specifically,

we describe the changes required in each of the pipeline components.

3.3.1 Reorder buffer and register file

The reorder buffer (ROB) and the physical register file (RF) are multi-

ported structures typically designed as SRAM, with the number of ports scaling

with the issue width of the core. Our goal is to share them across multiple cores

with minimal impact on access latency, the number of ports, and the overall de-

sign. We take advantage of a modular ROB (and register file) design proposed

in [PKG06] which is shown to be effective in reducing the power and complex-

ity of a multi-ported 2D SRAM structure. Our baseline multi-ported ROB/RF

is implemented as a number of independent partitions. Each partition is a self-

standing and independently usable unit, with a precharge unit, sense amps, and

input/output drivers. Partitions are combined together to implement a larger

ROB/RF, as shown in figure 3.3(a). The connections running across the entries

within a partition (such as the bit-lines) are connected to a common through line

using bypass switches.

To add a partition to the ROB/RF, the bypass switch for a partition is

turned on. Similarly, the partition can be deallocated by turning off the corre-

sponding bypass switch. The modular baseline architecture of our register file

51

sense-amps

input/output drivers

bypass switch array

memory cell array

sense-amps

input/output drivers

bypass switch array

memory cell array

bitline

Throughline

Bypass
switch

(a) (b)

Figure 3.3: (a) Partitioned ROB and RF design, (b) logical view of two stacked

RF(ROB) partitions.

allows individual partitions to participate in resource pooling. To avoid increasing

the number of read and write ports of individual partitions of the ROB/RF, we

simply assume that an entire partition is always exclusively owned by one core —

either the core (layer) it belongs to (host core) or another core (guest core). This

significantly simplifies the design, but restricts the granularity of sharing.

Note that before a partition participates in resource pooling (or before it

is re-assigned) we need to make sure that all of its entries are empty. This can

be facilitated by using an additional bit in each row (entry) of the partition to

indicate whether it is full or empty – in most cases, that bit will already exist.

Figure 3.3(b) shows a logical view of two stacked register files, participating

in resource pooling (only one partition of the RF from each layer is shown in this

figure). The additional multiplexers and decoder shown in figure 3.3(b) are used

to route the address and data from/to a partition in one layer from/to another

partition in a different layer. The decoder shown in the figure enables stacking

of the ROB/RF. To be able to pool up to 4 ROB/RF partitions on four different

layers together, we need to use a 4-1 decoder and a 4-1 multiplexer. The register

operand tag is also extended with 2 additional bits. The overall delay added to

the ROB or RF due to additional multiplexing and decoding is fairly small. For

the case of stacking four cores where a 4 input decoder/multiplexer is needed, the

52

additional delay is found to be below 20 ps (using SPICE simulation and assuming a

standard cell 4 input multiplexer). In this design, the access latency of the original

register file is only 280ps (using CACTI for an 8 read-port, 4 write-port, 64 entry

register file). The additional 20 ps delay due to an additional decoder/multiplexer

and the TSVs (5ps at most) still keep the overall delay below one processor cycle.

Thus, the frequency is not impacted. For the ROB, the baseline delay is 230 ps

and the additional delay can still be tolerated, given our baseline architectural

assumptions.

Due to the circular FIFO nature of the ROB, an additional design con-

sideration to implement resource sharing is required, which is not needed for the

register file. The ROB can be logically viewed as a circular FIFO with head and

tail pointers. The tail pointer points to the beginning of the free entry of the ROB

where new dispatch instructions can be allocated. The instructions are committed

from the head pointer. Resource sharing requires dynamically adjusting the size

of the reorder buffer. To implement such dynamic resizing we use the technique

proposed in [PKG06], where two additional pointers are added to the ROB to

dynamically adjust its size.

3.3.2 Instruction queue and ld/st queue

Both the Instruction Queue (IQ) and the Load/Store Queue (LSQ) are

CAM+SRAM structures which hold instructions until they can be issued. The

main complexity of the IQ and LSQ stems from the associative search during the

wakeup process [PJS97]. Due to large power dissipation and large operation delay,

the size of these units does not scale well in a 2D design. The number of instruction

queue and LSQ entries has not changed significantly in recent generations of 2D

processors.

Figure 3.4(a) shows a conventional implementation of the instruction queue.

The taglines run across the queue and every cycle the matchline compares the

tagline value broadcast by the functional units with the instruction queue entry

(source operand). We assume our baseline IQ utilizes the well-studied divided

tagline (bitline) technique [Kar98]. As shown in figure 3.4(b), two or more IQ

53

L
a

y
e

r
0

L
a

y
e

r
1

(f

li
p

p
e
d

)

B
a
s
e
li
n

e

X
O

R

L
a

y
e

r
1

(f

li
p

p
e
d

)

 t
a
g
lin

e

S
u

b
-

ta
g

lin
e

ta
g

lin
e

L

a
ye

r
1 ta

g
lin

e

L
a

ye
r

2

L
o

ca
l

ta
g

lin
e

g
lo

b
a

l
ta

g
lin

e

 t
a
g
lin

e

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

X
O

R

M
U

X

M
U

X

M
U

X

(a
)

(b
)

(c
)

(d
)

F
ig

u
re

3.
4:

(a
)

C
on

ve
nt

io
n
al

im
p
le

m
en

ta
ti

on
of

th
e

IQ
,
(b

)
p
ar

ti
ti

on
ed

IQ
u
si

n
g

d
iv

id
ed

ta
gl

in
e,

(c
)

im
p
le

m
en

ta
ti

on
of

th
e

st
ac

ke
d

IQ
,
(d

)
lo

gi
ca

l
vi

ew
of

th
e

st
ac

ke
d

in
st

ru
ct

io
n

qu
eu

e.

54

entries are combined together to form a partition and to divide the global tag line

into several sub-tag lines. This way the IQ is divided into multiple partitions.

In the non-divided tag line structure the tag line capacitance is N * diffusion

capacitance of pass transistors + wire capacitance (usually 10 to 20% of total

diffusion capacitance) where N is the total number of rows. In the divided tag line

scheme the equivalent tagline capacitance is greatly reduced and is approximated as

M * diffusion capacitance + 2 * wire capacitance, where M is the number of tagline

segments. As tagline dynamic power dissipation is proportional to CV 2, reducing

the effective capacitance will linearly reduce tagline dynamic power. The overhead

of this technique is adding a set of pass transistors per sub-tagline. As a side effect,

the large number of segments increases the area and power overhead [Kar98].

To be able to share two or more partitions of the instruction queue, we

include one multiplexer per tagline and per IQ partition to select between the

local tagline and the global taglines (shown in figure 3.4(c)). Similarly to the RF,

to avoid increasing the number of taglines we simply assume that each partition

is always allocated exclusively to a single core. This way the number of taglines

remains the same and multiplexing, as shown in figure 3.4(c), will route the data

on the tagline to the right partition. For the SRAM payload of the instruction

queue we simply follow the same modification proposed for our SRAM register

file. Bitline segmentation helps to reduce the number of die-to-die vias required

for communication between two layers.

We also need to modify the instruction selection logic. Increasing the

maximum size of the instruction queue increases the complexity of the selection

logic [PJS97]. In a typical superscalar processor each instruction queue entry has

a set of bid and grant ports to communicate with the selection logic. Increasing

the size of the IQ increases the number of input ports of the selection logic which

can negatively impact the clock frequency. To avoid increasing the complexity of

the selection logic, we simply allow all partitions participating in resource pooling

to share the same selection logic port along with the partition that belongs to the

guest core (layer). In this case, we OR the bid signals (from the shared partition

and the guest core partition) to the selection logic. The priority is given to the

55

older entry (age-based priority decoding).

The overall delay overhead in the selection logic is decided by the ORing

operation and the age-based priority decoding. Note that the ORing of the bid

signals only slightly increases the selection logic delay, by less than 20 ps (using

SPICE simulation). This delay does not increase the selection logic access delay

beyond a single clock period. For the age-based priority decoding we propose the

following to hide its delay: we perform the age-priority computation in parallel

with the selection logic (to overlap their delays). When the grant signal comes

back, we use the now pre-computed age information to decide where to route the

grant.

Under the given assumptions, this analysis indicates we can add the pooling

logic without impacting cycle time; however, it is possible that under different

assumptions, on different designs, these overheads could be exposed. We will

examine the potential impact in the results section.

3.4 Adaptive mechanism for resource pooling

In addition to the circuit modifications that are necessary to allow resource

aggregation across dies, we also need mechanisms and policies to control the pooling

or sharing of resources.

In devising policies to manage the many new shared resources in this ar-

chitecture, we would like to maximize flexibility; however, design considerations

limit the granularity (both in time and space) at which we can partition core re-

sources. Time is actually the easier issue. Because the aggregated structures are

quite compact (in total 3D distance), we can reallocate partitions between cores

very quickly, within a cycle or cycles. To reduce circuit complexity, we expect to

physically repartition on a more coarse-grain boundary (e.g., four or eight entries

rather than single entries).

In the results section, we experiment with a variety of size granularities for

reallocation of pooled resources. Large partitions both restrict the flexibility of

pooling and also tend to lengthen the latency to free resources. We also vary how

56

aggressively the system is allowed to reallocate resources; specifically, we explore

various static settings for the minimum (MIN) and the maximum (MAX) value for

the size of a partition, which determine the floor and the ceiling for core resource

allocation.

Our baseline allocation strategy exploits two principles. First, we need to

be able to allocate resources quickly. Thus, we cannot reassign active partitions,

which could take hundreds of cycles or more to clear active state. Instead we

actively harvest empty partitions into a free list, from which they can later be

assigned quickly. Second, because we can allocate resources quickly, we need not

wait to harvest empty partitions — we grab them immediately. This works because

even if the same core needs the resource again right away, it can typically get it

back in a few cycles.

We assume a central arbitration point for the (free) pooled resources. A

thread will request additional partitions when a resource is full. If available (on

the list of free partitions), and the thread is not yet at its MAX value, those

resources can be allocated upon request. As soon as a partition has been found

to be empty it is returned to the free list (unless the size of the resource is at

MIN). The architecture could adjust MIN and MAX at intervals depending on the

behavior of a thread, but this will be the focus of future work – for now we find

static values of MIN and MAX to perform well. If two cores request resources in

the same cycle, we use a simple round-robin priority scheme to arbitrate.

3.5 Methodology

In order to evaluate different resource adaptation policies, we add support

for dynamic adaptation to the SMTSIM simulator [Tul96], configured for multicore

simulation. Our power models use a methodology similar to [BTM00]. We capture

the energy per access and leakage power dissipation for individual SRAM units

using CACTI-5.1 [TMAP08] targeting 45nm technology. The energy and power

consumption for each unit is computed by multiplying access counts by the per-

access SRAM energy. For temperature calculation we use Hotspot 5.0 [SSH+03].

57

Table 3.1 gives the characteristics of our baseline core architectures. Note

that for each of the register files, 32 registers are assumed to be unavailable for

pooling, as they are needed for the storage of architectural registers.

3.5.1 Modeling interconnect for resource pooling

We model connections across dies, Tier-to-Tier (T2T), with Through Silicon

Vias (TSV). TSVs enable low-latency, high-bandwidth, and very dense vertical

interconnect among the pooled blocks across multiple layers of active silicon. We

assume four dies are stacked on top of each other. Each tier has an Alpha processor

(high-end core case) with die size of 6.4mm× 6.4mm with 12 layers of metal from

M1 to M12 and the redistribution layer (RDL). The 3D stacked chip model is

flip chip technology and the tiers are connected face-to-back. In the face-to-back

connection, the RDL of Tier 1 (T1) is connected to the package via flip chip bumps,

and the RDL of Tier 2 (T2) is connected to the M1 of T1 via TSV and forms the

T2T connection.

Each core is placed in a single tier of the stack. TSVs connect the Register

File (RF), Instruction Queue (IQ), Reorder Buffer (ROB), and Load and Store

Queue (LSQ) of each layer vertically. The connection from bottom tier M1 to M12

and RDL layer of the top tier is via TSV, and from M12 and RDL is with resistive

via and local routing to the M1 of the sink in RF, IQ, ROB and LSQ.

The resistive through metal via connects metal layers of the tiers, e.g., M1

to M2 in each tier. The vertical and horizontal parasitics of the metals, via, and

TSV connections have been extracted to build the interconnect model. A T2T

connection includes a through silicon via and a µbump. The parasitics of the

µbumps are small compared with the TSV [HDC10]. Hence, we only model the

parasitics of the TSVs for T2T connections. The length, diameter, and dielectric

linear thickness of the TSV which is used for the T2T connection in our model are,

respectively, 50µm, 5µm, and 0.12µm. A TSV is modeled as an RLC element with

RL in series and C connected to the substrate, i.e., global ground in our model.

The parasitic resistance, capacitance, and inductance of the T2T connections are

modeled by RTSV =47mΩ, LTSV =34pH, and CTSV =88fF [HDC10].

58

Table 3.1: Architectural specification.

Medium-End Core High-End Core

Cores 4 4
Issue,Commit width 2 4
INT instruction queue 16 entries 32 entries
FP instruction queue 16 entries 32 entries
Reorder Buffer entries 32 entries 64 entries
INT registers 48 64
FP registers 48 64
Functional units 2 int/ldst 1 fp 4 int/ldst 2 fp
L1 cache 16KB, 4-way, 2 cyc 32KB, 4-way, 2 cyc
L2 cache (priv) 256KB, 4-way, 10 cyc 512KB, 4-way, 15 cyc
L3 cache (shared) 4MB, 4-way, 20 cyc 8MB, 8-way, 30 cyc
L3 miss penalty 250 cyc 250 cyc
Frequency 2GHz 2GHz
Vdd 1.0V 1.0V

Table 3.2: Tier to tier delay via TSV path.

Tier to Tier Path Delay (ps)

T1 to T2 1.26
T1 to T3 2.11
T1 to T4 2.53
T2 to T3 1.31
T2 to T4 2.19
T3 to T4 1.35

The power and signal TSVs connect the power/ground mesh from the pack-

age flip chip bumps to each layer. The TSV pitch for the tier to tier connection

is assumed to be uniformly distributed with a density of 80/mm2 [HDC10]. We

assume the TSV structures are via-last where the TSV is on top of the back end

of the line (BEOL), i.e., RDL layer and the M1.

In our circuit model we extract the delay path from each SRAM pin (SRAM

pin is a signal bump on top of the RDL layer) to the multiplexer of the next SRAM

pin. The delay timing for each tier is around 1-2.5 ps as illustrated in Table 3.2

for tier 1 to 4.

The TSV lands on the µbump and landing pad. Surrounding the TSV and

59

Table 3.3: TSV area utilization.

Blocks pins TSV area (mm2) TSV block out
area (mm2)

2 Layer Stack medium-end high-end medium-end high-end medium-end high-end
Register File 876 1752 0.0688 0.1375 0.0876 0.1752
Ld/St Queue 792 1600 0.0622 0.1256 0.0792 0.1600
Inst. Queue 224 464 0.0176 0.0364 0.0224 0.0464

Reorder Buff. 128 256 0.0100 0.0201 0.0128 0.0256
Total 2020 4072 0.1586 0.3197 0.2020 0.4072

3 Layer Stack medium-end high-end medium-end high-end medium-end high-end
Register File 1314 2628 0.1031 0.2063 0.1314 0.2628
Ld/St Queue 1188 2400 0.0933 0.1884 0.1188 0.2400
Inst. Queue 336 696 0.0264 0.0546 0.0336 0.0696

Reorder Buff. 196 384 0.0154 0.0301 0.0196 0.0384
Total 3034 6108 0.2382 0.4795 0.3034 0.6108

4 Layer Stack medium-end high-end medium-end high-end medium-end high-end
Register File 1752 3504 0.1375 0.2751 0.1752 0.3504
Ld/St Queue 1584 3200 0.1243 0.2512 0.1584 0.3200
Inst. Queue 448 928 0.0352 0.0728 0.0448 0.0928

Reorder Buff. 265 512 0.0208 0.0402 0.0265 0.0512
Total 4049 8144 0.3178 0.6393 0.4049 0.8144

landing pad there is a keep-out area where no block, i.e., standard cell is allowed to

place and route. We estimate the total TSVs required for connecting memory pins

of the RF, IQ, ROB, and LSQ vertically for different stack up numbers in both

medium-end and high-end cores. The total area for the TSV landing pad and the

block out area is calculated and summarized in Table 3.3. The RF has the largest

number of TSVs and the ROB has the fewest.

Power density in the stacked layers increases the thermal profile of the 3D

configuration, compared to 2D. In a typical 3D design, TSVs can help with vertical

heat transfer among the layers and reduce the thermal hotspots. Hence, additional

TSVs which are required for the T2T communication in our architecture will help

balance the temperature.

In Table 3.4 we show our Hotspot configuration. In our thermal model

we assume a different packaging for medium-end and high-end architecture. For

60

Table 3.4: Temperature estimation related parameters.

High-End Core Medium-End Core

Die thickness (um) 150 150
Ambient temperature 40oC 40oC
Convection capacitance 140 J/K 140 J/K
Convection resistance 0.1 K/W 1.5 K/W
Heat sink side 0.076 m 0.076 m
Heat spreader side 0.035 m 0.035 m
Interlayer Material 0.02mm 0.02mm

Thickness (3D)
Interlayer Material 0.25 mK/W 0.25 mK/W

Resistivity (w/o TSVs)

high-end we assume a modern heat sink that is designed for 160W chips (4-cores).

For the medium-end architecture we assume a convection resistance of 1.5 which

represents a moderate packaging for 30W chips [MD05].

Note that the vertical delays we report in Table 3.2 (less than 3 ps) com-

pare to the communication cost that would be incurred if resources are shared

across 2D cores (which would be about 3 nanoseconds, or 6 cycles) – more than 3

orders of magnitude higher. We do not provide a detailed comparison of our pro-

posed scheme with a 2D dynamically heterogeneous architecture. However, even

assuming a generous two-cycle communication latency between all cores in 2D, our

results show that just the pipeline changes required to accommodate an equivalent

level of sharing would cost each core more than 13% performance.

3.5.2 Benchmarks and metrics

We compose multi-program workloads with 2 and 4 threads. The applica-

tions are selected from among the SPEC2000 and SPEC2006 benchmark suites,

selecting representative sets of memory-intensive and compute-intensive bench-

marks. The two- and four-thread groupings are selected alphabetically to avoid

bias. Table 3.5 summarizes our workload mixes. For each application in the mix

we fast-forward to skip the initialization phase and then simulate until each thread

executes 200 million instructions.

61

Table 3.5: Workload Mix. Spec2006 benchmarks are denoted with “ 06”

Two thread workloads

2T0 applu - apsi 2T7 libquantum 06 - lucas
2T1 art - bwaves 06 2T8 mcf 06 - mesa
2T2 bzip2 - cactusADM 06 2T9 mgrid - milc 06
2T3 facerec - galgel 2T10 omnetpp 06 - perl 06
2T4 gcc 06 - gromacs 06 2T11 povray 06 - sixtrack
2T5 h264 06 - hmmer 06 2T12 soplex 06 - swim
2T6 lbm 06 - leslie 06 2T13 vortex - vpr

Four thread workloads

4T0 applu - apsi - art - bwaves
4T1 bzip - cactusADM 06 - facerec - galgel
4T2 gcc 06 - gromacs 06 - h264 06 - hmmer 06
4T3 lbm 06 - leslie 06 -libquantum 06 - lucas
4T4 mcf 06 - mesa - mgrid - milc 06
4T5 omnetpp 06 - perl 06 - povray 06 - sixtrack
4T6 soplex 06 - swim 06 - vortex - vpr

We are interested in studying both the performance and fairness effect of

our techniques. We report weighted speedup and fairness results. Fairness is

defined in [EE08]. Fairness close to 1 indicates a completely fair system where all

threads have uniform performance degradation or gain (relative to single-thread

performance on a baseline core). Fairness close to 0 indicates that at least one

thread starves. We also present weighted speedup [ST00], using the non-pooling

core as the baseline.

3.6 Results

This section demonstrates the performance and energy advantages of re-

source pooling. We examine the granularity of resource partitioning, setting of

limits on resource usage, and the impact on temperature, power, and energy.

Figure 3.5 shows the weighted speedup and fairness for several configura-

tions of our dynamically heterogeneous processor architecture. All configurations

pool resources among four cores, whether the workload is four threads or two. All

62

Medium-end 2Thr High-end 2Thr Medium-end 4Thr High-end 4Thr
0.90

1.00

1.10

1.20

1.30

1.40

W
ei

gh
te

d
S

pe
ed

u
p

MIN=0.0,MAX=1.0
MIN=0.0625,MAX=1.0
MIN=0.125,MAX=1.0
MIN=0.25,MAX=1.0
2X
3X

(a)

Medium-end 2Thr High-end 2Thr Medium-end 4Thr High-end 4Thr
0.00

0.20

0.40

0.60

0.80

1.00

F
ai

rn
es

s

MIN=0.0,MAX=1.0
MIN=0.0625,MAX=1.0
MIN=0.125,MAX=1.0
MIN=0.25,MAX=1.0

(b)

Figure 3.5: (a) Weighted speedup and (b) fairness for dynamically heterogeneous

cores, relative to cores with no sharing, for two-thread and four-thread workloads.

These results vary MIN and MAX, which determine the floor and the ceiling for

core resource allocation.

63

1 thread 2 thread 4 thread
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
or

m
al

iz
ed

 W
ei

gh
te

d
 S

p
ee

d
up

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 3.6: Comparison between the medium-end and the high-end core with and

without 3D sharing.

allocate resources greedily, within the constraints of the MIN and MAX settings.

The different results in this graph represent different values for MIN and MAX,

assuming MIN and MAX are constant over time and the same for all cores. For

comparison, we also show the performance we get from doubling or tripling all

resources.

From this graph we see that while we can get significant performance gains

(8-9%) with full utilization (four threads), gains are dramatic when some cores are

idle. With two threads we get 26-28% performance for the best policy. In fact,

with two threads, performance far exceeds statically doubling the resources, and

is equivalent to tripling each core’s resources.

Not surprisingly, setting a MIN value to zero, in which case a core can

actually give up all resources (for example if it is stalled for an Icache miss) appears

to be a bad idea. The best result comes when we reserve one eighth of the total

resources (half of a single core’s resources) for the core. We see (results not shown)

no performance advantage in setting MAX below 1.0. This means that there is

no apparent need to restrict one core’s ability to grab all available resources if it

needs it.

In figure 3.5, the medium-end and high-end performance results are nor-

malized to different baselines, so we cannot directly compare those results. There-

fore, we show the results for the two architectures (no sharing and sharing with

64

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T
Avg

0.8

1

1.2

1.4

1.6

1.8

W
ei

gh
te

d
S

pe
ed

up

(v
s

no
 s

ha
ri

n
g)

Fine Grain 8 partitions 4 partitions 2 partitions

Figure 3.7: Weighted speedup for dynamic heterogeneity, as the granularity of

reallocation is changed, for 2-thread and 4-thread workloads (medium-end cores).

MIN=0.125 and MAX=1.0) all normalized to the high-end, no sharing result in fig-

ure 3.6. From this graph we can see that resource pooling makes the medium core

significantly more competitive with the high-end. Without sharing, the medium

core operates at 67% of the performance of the high end. With pooling and four

active threads it operates at 71%, with two active threads, it operates at 86%, and

with one active thread, it operates at 97% of the performance of the high-end core.

Finally, we performed a sensitivity analysis to study the impact of clock

frequency scaling on the performance benefit of resource pooling. If the worst-

case logic overhead of 25 ps were fully exposed (given our assumptions, it should

not be exposed at all), increasing the cycle time by that same amount (5%), this

architecture still gains 4% running 4 threads, 20% running 2 threads, and 33%

running one thread, relative to an architecture with no sharing for the medium-

end core. For the high-end core, the respective gains are 6.5% running 4 threads,

25% running 2 threads, and 42% running one thread.

3.6.1 Fine vs. coarse partitioning

We also study the performance across different partitioning granularities for

the best allocation technique. Larger (coarser) granularity of reallocation simplifies

the circuits and the reallocation manager. In figure 3.7 we report weighted speedup

for dynamic heterogeneity, as the granularity of reallocation is changed (fine grain

is one entry per allocation).

65

0

20

40

60

80

100

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T
Avg

po
w

er
 (

W
at

t)

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 3.8: Power consumption per core for MIN=0.125, MAX=1.0 as well as the

baseline (no sharing) for 2-thread workloads and 4-thread workloads.

We observe that performance is very tolerant of large partition sizes – we

apparently gain little from increased flexibility. The reason is that most of the

resource allocations and deallocations occur in bursts. Once a thread misses in the

data cache, it will keep requesting resources until it either consumes the whole pool

or reaches its MAX limit. Once this happens, the thread will retain the resources

for the duration of the miss. Large partitions actually make it easier to meet a

thread’s sudden demand quickly. We use 4 partitions (per core) for the remaining

experiments described in this chapter.

3.6.2 Power, temperature, and energy

Figure 3.8 shows the power consumption of the various architectures. The

pooling processor architectures pay a small price in power, in large part because

of the enhanced throughput.

The small additional power overhead is in contrast in some cases to the

large performance benefit (in terms of weighted speed up). This is due in part

to a subtlety of our experiments. Weighted speedup weights application speedups

equally (rather than over-weighting high-IPC threads, which throughput measures

do). Because we get some large speedups on low-IPC threads, we see high average

speedup, but smaller increase in total instruction throughput and thus smaller

increase in power.

66

0

20

40

60

80

100

120

140

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T 4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T

te
m

p
er

at
ur

e
(C

el
si

us
)

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 3.9: Max temperature for MIN=0.125,MAX=1.0 and baseline for 2-thread

workloads and 4-thread workloads.

Because of the layout advantages (remember, the baseline processor places

all cores right next to the heat sink), the cost in maximum temperature is more sig-

nificant (figure 3.9). Interestingly, the temperature of the medium resource-pooling

core is comparable to the high-end core. This is in part because we assume the

medium core is laid out tightly, resulting in a slightly higher max temperature for

four-thread workloads. For two-thread workloads, the medium resource-pooling

core has slightly lower temperature than the high-end core (average 2 degree lower).

If the medium core covered the same area as the high-end core, for example, the

max temperature would be significantly lower. Even still, at equal temperature,

the more modest cores have a significant advantage in energy efficiency measured

in MIPS2/W (MIPS2/W is the inverse of energy-delay product), as seen in fig-

ure 3.10. This is a critical result. By outperforming the non-pooling medium core,

and approaching the performance in some cases of the large core (due to its just-in-

time provisioning of resources), the dynamically heterogeneous medium-end core

provides the highest energy efficiency.

3.7 Related work

Prior research has attempted to provide dynamically heterogeneous com-

puting in the 2D domain. Core Fusion [IKKM07] and TFlex [KSG+07] aggregate

resources at the granularity of an entire core, creating large cores out of smaller

67

2T0 2T1 2T2 2T3 2T4 2T5 2T6 2T7 2T8 2T9 2T10 2T11 2T12 2T13 2T
Avg

4T0 4T1 4T2 4T3 4T4 4T5 4T6 4T
Avg

0

1

2

3

4

N
or

m
al

iz
ed

 M
IP

S
2

/
W

Medium-end base Medium-end sharing High-end base High-end sharing

Figure 3.10: MIPS2 per Watt for the 2-thread and the 4-thread workloads normal-

ized to the high-end configuration without sharing.

cores when ILP is high and/or thread level parallelism is low. The dynamically het-

erogeneous architecture described in this chapter shares resources at a much finer

granularity. Other research provides the ability to share execution resources be-

tween cores. The Conjoined Core architecture [KJT04] shares over-provisioned re-

sources between cores, but is limited in what resources it can share and has limited

ability to adapt to changing resource needs. The StageNet architecture [GFA+08]

can access stages from other core pipelines, allowing it to reconfigure around faults.

There is also a large body of prior work in 3D stacked architectures, in-

cluding several others that exploit logic-on-logic designs. Some previous research

focuses on partitioning the pipelined architecture and split the function unit blocks

across different layers [VHW+07, PL07]. Other researchers maintain the functional

blocks in each layer and take advantage of floorplan and physical design to gain

performance benefits from stacking [HVE+07]. A re-partitioned design of the Intel

3D Pentium 4 was designed by Black, et al. [BNWS04] with 15% performance im-

provement but 15% increased power. They demonstrate that by re-designing and

splitting the IA32 processor, thermal hotspots can be reduced without sacrificing

timing.

Both design and process technology are evolving to address the 3D thermal

and reliability challenges. For example, Coskun, et al. [CAR+10] examine new

inter layer cooling schemes. Commercial products and some recent test chips al-

ready leverage 3D technology in several domains, such as image sensors [YKT+09]

68

and stacked memories [Tez, HAG+10], including some examples that map logic on

logic [WSLL10, Tho10]. Likely the first steps in 3D stacked chips will involve het-

erogeneous technologies, as these designs pose significantly smaller challenges in

terms of thermals and require minimal modifications to existing designs. To the

best of the author’s knowledge, this work is the first to propose stacking homoge-

neous chips in order to dynamically share back-end core resources with minimal

pipeline changes and boost single-thread performance.

3.8 Conclusion

This chapter describes a dynamically heterogeneous 3D stacked architec-

ture which enables very fine-grain reallocation of resources between cores on a

stacked chip multiprocessor architecture. This architecture enables fine-grain re-

source sharing not possible in a conventional 2D architecture. It can do so because

we can leverage our current expertise in creating tight 2D pipelines on one layer,

while accessing pooled resources of the same type on other layers.

This research examines the sharing of instruction scheduling window re-

sources, in particular, describing circuit-level techniques to enable fast reallocation

of resources between cores. We find that a processor with poolable resources shared

among four cores can outperform a conventional multiprocessor by 41% when one

thread is running, 23% when two threads are running, and 9% when four threads

are running.

By eliminating the need to over-provision each core, modest cores become

more competitive with high-performance cores, enabling an architecture that gives

up little in performance, yet provides strong gains in energy-delay product over a

conventional high-performance CMP architecture.

Acknowledgments

Chapter 3 contains material from Dynamically heterogeneous cores through

3D resource pooling, by Houman Homayoun, Vasileios Kontorinis, Amirali Shayan,

69

Ta-Wei Lin, and Dean Tullsen, which appears in Proceedings of the The 18th Inter-

national Symposium on High Performance Computer Architecture (HPCA). The

dissertation author contributed equally with the main author of the work, Houman

Homayoun. The material in this chapter is copyright c©2012 IEEE. Personal use of

this material is permitted. However, permission to reprint/republish this material

for advertising or promotional purposes or for creating new collective works for

resale or redistribution to servers or lists, or to reuse any copyrighted component

of this work in other works must be obtained from the IEEE.

Chapter 4

Managing peak power for data

centers

We have previously discussed how to remove over-provisioning and the asso-

ciated costs at the core level by disabling underutilized resources, at the chip level

by using modest cores in 3D stacked dies and pooling their resources to boost per-

formance. In this chapter, we will discuss again how to remove over-provisioning

and lower costs at an even higher level, the data center.

The costs of building and running a data center, and the capacity to which

we can populate it, are driven in large part by the peak power available to that data

center. This work demonstrates techniques to significantly reduce the observed

peak power demand for data centers with distributed UPS batteries, enabling

significant increases in data center capacity and reductions in cost.

Modern data center investments consist of one-time infrastructure costs that

are amortized over the lifetime of the data center (capital expenses, or capex) and

monthly recurring operating expenses (opex) [HB09]. Capex costs are proportional

to the provisioned IT power per facility, estimated at $10-20 per Watt [Dup07, pr07,

TB09], as each Watt of computing power requires associated support equipment

(cooling, backup, monitoring, etc.). Utilities typically charge a power premium

that is tied to the peak power. This can become a significant portion of the

monthly bill, up to 40% [GSU11]. This chapter examines the use of distributed

batteries in the data center to reduce both capex and opex costs.

70

71

Power infrastructure is commonly over-provisioned in data centers to ac-

commodate peaks and to allow for future expansion. However, to improve common

case utilization, we can intentionally over-subscribe (under-provision) the power

infrastructure [FWB07, HB09, KZL+10, LKL11, PMZ+10]. Over-subscribing pro-

visions power infrastructure to support a lower demand than the largest potential

peak and employs techniques to prevent power budget violations. In the worst case,

such violations could trip circuit-breakers and disable whole sections of the data

center, causing costly down time. To avoid this, data centers can employ power

capping approaches such as CPU capping, virtual CPU management, and dynamic

voltage and frequency scaling (DVFS) [LKL11, NS07, RRT+08]. CPU capping lim-

its the time an application is scheduled on the CPU. Virtual CPU management

limits virtual machine power by changing the number of virtual CPUs. DVFS

attacks the peak power problem by reducing chip voltage and frequency. However,

all of these techniques result in performance degradation. This is a problem for

any workload that has performance constraints or service-level agreements because

power management policies apply these performance-reducing mechanisms at the

exact time that performance is critical – at peak load.

Govindan, et al. [GSU11] introduce a new approach that has no performance

overhead in the common case. They leverage the energy stored in a centralized

data center UPS to provide energy during peak demand, effectively hiding the

extra power from the power grid. This technique is shown to work well with brief

(1-2 hours), high-magnitude power spikes that can be completely “shaved” with

the energy stored in batteries; however, it is less effective for long (8-10 hour)

spikes. For longer spikes, they suggest a hybrid battery-DVFS approach.

However, many large data centers do not employ centralized batteries. Dis-

tributed, per-server batteries represent a more economical solution for battery

backup. They scale naturally with the data center size and eliminate a potential

single point of failure. Google employs this topology in their state-of-the-art data

centers [Goo09].

When leveraging a distributed UPS architecture to shave peak power, chal-

lenges arise due to the lack of heavy over-provisioning and the distributed nature

72

of the batteries. The absence of over-provisioned UPSs means we need to justify

the use of larger batteries based purely on cost savings from power capping. We

need policies to determine how many batteries to enable, which batteries to enable,

and when. However, there are also opportunities compared to prior solutions. In

a centralized UPS architecture, all power typically comes from either the battery

or the utility. Thus, when batteries are enabled, they supply all datacenter power

and drain quickly – if we only supply the over-threshold power, the batteries can

sustain longer peaks. This is easily done in the distributed architecture by simply

enabling enough batteries to hide the desired peak.

In this work, we discuss the applicability of battery-enabled power capping

to distributed UPS topologies. We present details on the sizing and the tech-

nology alternatives of per-server batteries and consider several approaches that

orchestrate battery charging and discharging while addressing reliability and avail-

ability concerns. This research goes beyond prior work by modeling realistic data

center workload patterns over a multi-day period and by arguing that battery over-

provisioning is financially beneficial. Enabling the placement of additional servers

under a given power budget permits reductions of the data center total cost of

ownership per server on the order of 6%. This is equivalent to more than $15M

for a datacenter with 28,000 servers.

The work in this chapter makes the following unique contributions. (1)

It is the first work to describe a solution for peak power capping which aggres-

sively utilizes distributed UPS batteries. (2) It provides a full financial analysis of

the benefits of battery-based power capping, including optimal battery technology

and battery size. (3) It is the first work on battery-based power capping which

models realistic workloads and demonstrates implementable policies for battery

management.

This chapter is organized as follows. Section 4.1 presents common UPS

topologies and the associated trade-offs. Section 4.2 describes our total cost of

ownership analysis. In section 4.4 we contrast alternative battery technologies for

frequent battery charge/discharge in the data center context and elaborate on their

properties. In section 4.5, we present our policies. In section 4.6, we discuss our

73

(a) Centralized (b) Distributed (Facebook) (c) Distributed (Google)

Figure 4.1: Power hierarchy topologies with (a) centralized UPS and (b,c) dis-

tributed UPS solutions.

experimental methodology and give experimental results in section 4.7. Section 4.8

reviews related work in power capping techniques, and section 4.9 concludes.

4.1 Background

Primary power delivery in data centers is through a utility line. Data

centers are also equipped with a diesel generator unit which acts as a secondary

source of power during a utility failure. To facilitate switching power between

the utility and the diesel generator, an automatic transfer switch (ATS) selects the

source of power, which takes 10-20 seconds [GSU11]. During this short and critical

interval, the UPS units supply the power to the data center. In the centralized

topology shown in figure 4.1(a), the power from a single UPS is fed to several

Power Distribution Units (PDUs) to route the power to racks and servers. To

eliminate the transfer time of the power line to the UPS, data centers commonly

use double conversion UPSs. With double conversion UPSs, power is transformed

from AC-to-DC to be stored in batteries and then from DC-to-AC to be used by

the racks and servers. Although this organization has zero transfer time to the

UPS (the UPS is always in the power path), the availability of the whole data

center is dependent on the UPS. Additionally, double conversion introduces 4-10%

power losses during normal operation [Goo09].

The centralized UPS topology in figure 4.1(a) does not scale well for large

74

data centers. This topology either requires double conversion, so that the power

network distributes AC power, to be converted again to DC, or it distributes DC

over the large network, resulting in higher cable losses. The inefficiency of AC-

DC-AC conversions becomes more costly at scale. The UPS is also a single point

of failure and must be overprovisioned.

Figure 4.1(b) shows the distributed design adopted by Facebook. A cabinet

of batteries for every 6 racks, or a total of 180 servers, replaces the centralized

UPS [Fac11]. This design avoids double conversion by customizing the server

power supply unit to support both AC power (from the grid) and DC power (from

the battery cabinet). DC power is distributed from the UPS to the servers, but

in this case that is a much shorter distance. Google goes even further, attaching

a battery on every server after the Power Supply Unit (PSU) [Goo09], as depicted

in figure 4.1(c). This design also avoids the AC-DC-AC double conversion, saving

energy under normal operation, and brings the AC distribution even closer to the

IT load, before it is converted.

Availability in data centers is a function of how often failures happen, the

size of the failure domain, and the recovery time after each failure. UPS placement

topology impacts the availability of the data center, particularly the associated

failure domain. The more distributed the UPS solution, the smaller the failure

domain. Thus, the centralized design requires full redundancy, while the Google

approach provides none (loss of a single node is insignificant), further reducing

cost.

4.2 Total cost of ownership analysis

Modern data centers are typically power limited [TB09]. This means that

the overall capacity (number of servers) is limited by the initial provisioning of the

power supporting equipment, such as utility substations, diesel generators, PDUs,

and cooling. If we reduce the peak computing power, we can add additional servers

while remaining within the same power budget, effectively amortizing the initial

investment costs over a larger number of servers. Moreover, extra work done per

75

TCO/server = (dataCenterDepreciation + dataCenterOpex+

serverDepreciation + serverOpex) / Nservers

= ((FacilitySpaceDepr+

UPSDepr+

PowerInfrastructureDepr+

CoolingDepreciation+

RestDepr) + dataCenterOpex+

serverDepr+

(ServerRepairOpex+

(ServerEnergyOpex + ServerPowerOpex) ∗ PUE))/Nservers

(4.1)

data center should result in fewer data centers, greatly reducing infrastructure

capital expenses.

Distributed UPSs are currently designed to support the whole computing

load long enough to ensure safe transition from the main grid to the diesel gen-

erator. This time window (less than one minute) translates to batteries with

insufficient stored energy for meaningful peak power shaving. Therefore, to enable

peak power capping using UPS stored energy in the distributed context, we need to

over-provision per server battery capacity. This section discusses the TCO model

we use to examine the battery over-provisioning that makes financial sense and

maximizes total profits.

The profitability of an investment is defined as the generated revenue minus

the associated total cost of ownership (TCO). The data center revenue equals

the number of servers times the income per server. We assume constant income

per server. Therefore, maximizing the profitability per server is equivalent to

minimizing the TCO per server. We now explain how placing more servers within

the same power budget reduces TCO per server. Our TCO analysis is inspired

76

by the data center cost chapter in Barroso and Hölzle [HB09]. For simplicity, we

assume sufficient initial capital, hence there are no monthly loan payments, and

full capacity for the data center (limited by the provisioned power) from the first

day. The TCO/server is given by equation 4.1.

In this equation, data center depreciation is the monthly depreciated cost

of building a data center (we assume 10 year straight-line depreciation [HB09])

The assets required for a data center are land, UPS and power infrastructure

(diesel generators, PDUs, back-room switchgear, electrical substation), cooling

infrastructure (CRAC, economizers), as well as several other components such

as engineering, installation labor, racks, and system monitors that we include in

RestDepreciation. The data center opex is the monthly cost for running the data

center (infrastructure service, lighting). We collect the depreciation and opex cost

information for a data center with 10MW provisioned computing power (critical

power) from APC’s commercial TCO calculator [APC08].

Servers typically have shorter lifetimes and are depreciated over 4 years.

Server opex consists of server repairs and the electricity bill. Utility charges have a

power component and an energy component. The power component is based on the

peak sustained power for a 15 minute window over the period of a month [Duk09]

while the energy is based on the total data center energy used (different charg-

ing models provide similar results). To account for the electricity consumed by

infrastructure, excluding servers, we scale the total server peak power and energy

by the power usage effectiveness (PUE), assumed at 1.15 [Goo09]. We assume a

customized commodity server similar to Sun Fire X4270, with 8 cores (Intel Xeon

5570) at 2.40 GHz, 8 GB of memory, and costing $1500. The inputs to our TCO

model are summarized in table 4.1.

We show the breakdown of TCO/month/server in the table and the pie

chart of Figure 4.2. The major TCO component is server depreciation (40.6%).

Infrastructure related components (facility space, power, cooling, and data center

opex) account for more than 35%. In the same table, we also present how the ratio

of each TCO component per server changes when we are able to add additional

servers within the same power budget. Server depreciation, server opex, and UPS

77

TCO component
TCO/month TCO/server trend

(TCO/month/srv)with extra servers

Facility Space depreciation 96,875$ (3.46$) Decreasing
UPS depreciation 3,733$ (0.13$) Constant
Power Infrastructure depreciation 169,250$ (6.04$) Decreasing
Cooling infrastructure depreciation 70,000$ (2.50$) Decreasing
Rest depreciation (racks, 255,594$ (9.13$) Decreasing
monitoring,engineering,installation)
Data center opex (maintenance, lighting) 213,514$ (7.63$) Decreasing
Server depreciation 875,000$(31.25$) Constant
Server opex (Service/repairs) 43,750$ (1.56$) Constant
PUE overhead 55,467$ (1.98$) Constant
Utility monthly energy cost 252,179$ (9.01$) Constant
Utility monthly power cost 117,600$ (4.20$) Decreasing

Total 2,152,961$(76.89$) Decreasing
&ĂĐŝůŝƚǇ�^ƉĂĐĞ�

ϰ͘ϱй� hW^�>��
Ϭ͘Ϯй�

WŽǁĞƌ�
/ŶĨƌĂƐƚƌƵĐƚƵƌĞ�

ϳ͘ϵй�

�ŽŽůŝŶŐ�
/ŶĨƌĂƐƚƌƵĐƚƵƌĞ

ϯ͘ϯй�

ZĞƐƚ�
ϭϭ͘ϵй�

���ŽƉĞǆ�
ϵ͘ϵй�

^ĞƌǀĞƌ�
�ĞƉƌĞĐŝĂƚŝŽŶ�

ϰϬ͘ϲй�

^ĞƌǀĞƌ�KƉĞǆ�
Ϯ͘Ϭй�

Wh��ŽǀĞƌŚĞĂĚ�
Ϯ͘ϲй�

hƚŝůŝƚǇ��ŶĞƌŐǇ�
ϭϭ͘ϳй�

hƚŝůŝƚǇ�WĞĂŬ�
ϱ͘ϱй�

Figure 4.2: Total Cost of Ownership (TCO) [APC08]. TCO/server decreases as

we increase servers under same power budget

78

Table 4.1: TCO model assumptions

Data center Critical Power 10 MW
Server Idle Power: 175W, Peak Power: 350W (measured)
Number of servers 28000 (critical power / server peak)
Average Server Utilization 50% [HB09]

Utility Prices
Energy: 4.7c/KWh,

Power: 12$/KW [Duk09, GSU11]
Server cost $1500
PUE 1.15 [Goo09]
Amortization Time Infrastructure: 10 years, Servers: 4 years [HB09]

TCO scale with the number of servers and are constant. The energy component

of the utility bill also scales with the number of servers, but the power component

stays the same and is amortized over more servers. Infrastructure costs are also

amortized over a larger number of servers. The UPS cost (estimated as the total

cost of the server-attached batteries) represents a very small portion of the TCO;

it is marginally visible in the pie chart. Our proposal over-provisions batteries and

increases the cost of the distributed UPS. In return, we amortize the cost of several

large components over a larger set of servers. The full TCO model described here

can be found in [Kon12].

4.3 The benefits of power oversubscription

In this section we evaluate the benefit of power oversubscription ignoring the

cost of the power management solution that prevents power budget violations. This

extra cost can be expressed in performance loss and hence income reduction for

example when DVFS or consolidation is applied. Or additional cost for hardware

modifications that ensure zero performance degradation, such as battery enabled

power capping.

The three pie charts in figure 4.3 show the benefits of oversubscribing the

supporting equipment at different levels of the power hierarchy. Power oversub-

scription at higher levels incurs extra costs. Oversubscription at the rack level,

79

&ĂĐŝůŝƚǇ�^ƉĂĐĞ
ϯ͘ϲй

hW^
Ϭ͘Ϯй

WŽǁĞƌ�
/ŶĨƌĂƐƚƌƵĐƚƵƌĞ

ϲ͘ϯй �ŽŽůŝŶŐ�
/ŶĨƌĂƐƚƌƵĐƚƵƌĞ

Ϯ͘ϲй

ZĞƐƚ
ϵ͘ϲй

���ŽƉĞǆ
ϴ͘Ϭй

^ĞƌǀĞƌ�
�ĞƉƌĞĐŝĂƚŝŽŶ

ϰϬ͘ϲй

^ĞƌǀĞƌ�KƉĞǆ
Ϯ͘Ϭй

Wh��ŽǀĞƌŚĞĂĚ
Ϯ͘ϲй

hƚŝůŝƚǇ��ŶĞƌŐǇ
ϭϭ͘ϳй

hƚŝůŝƚǇ�WĞĂŬ
ϰ͘ϰй

^ĂǀŝŶŐƐ
ϴ͘ϯй

(a) Rack level
&ĂĐŝůŝƚǇ�^ƉĂĐĞ

ϰ͘ϱй
hW^
Ϭ͘Ϯй

WŽǁĞƌ�
/ŶĨƌĂƐƚƌƵĐƚƵƌĞ

ϲ͘ϱй
�ŽŽůŝŶŐ�

/ŶĨƌĂƐƚƌƵĐƚƵƌĞ
Ϯ͘ϲй

ZĞƐƚ
ϭϬ͘ϱй

���ŽƉĞǆ
ϴ͘ϭй

^ĞƌǀĞƌ�
�ĞƉƌĞĐŝĂƚŝŽŶ

ϰϬ͘ϲй

^ĞƌǀĞƌ�KƉĞǆ
Ϯ͘Ϭй

Wh��ŽǀĞƌŚĞĂĚ
Ϯ͘ϲй

hƚŝůŝƚǇ��ŶĞƌŐǇ
ϭϭ͘ϳй

hƚŝůŝƚǇ�WĞĂŬ
ϰ͘ϰй

^ĂǀŝŶŐƐ
ϲ͘ϯй

&ĂĐŝůŝƚǇ�^ƉĂĐĞ
ϰ͘ϱй

hW^
Ϭ͘Ϯй

WŽǁĞƌ�
/ŶĨƌĂƐƚƌƵĐƚƵƌĞ

ϲ͘ϲй
�ŽŽůŝŶŐ�

/ŶĨƌĂƐƚƌƵĐƚƵƌĞ
Ϯ͘ϲй

ZĞƐƚ
ϭϬ͘ϳй

���ŽƉĞǆ
ϴ͘ϭй

^ĞƌǀĞƌ�
�ĞƉƌĞĐŝĂƚŝŽŶ

ϰϬ͘ϲй

^ĞƌǀĞƌ�KƉĞǆ
Ϯ͘Ϭй

Wh��ŽǀĞƌŚĞĂĚ
Ϯ͘ϲй

hƚŝůŝƚǇ��ŶĞƌŐǇ
ϭϭ͘ϳй

hƚŝůŝƚǇ�WĞĂŬ
ϰ͘ϰй

^ĂǀŝŶŐƐ
ϱ͘ϵй

(b) PDU level (c) Cluster level

Figure 4.3: The power oversubscription benefits at different levels of the power

hierarchy. Oversubscribing at lower levels results in more savings.

80

assuming there is sufficient rack space, comes effectively for free. At the PDU

level we account for the extra rack cost as well as the additional facility space

that the extra racks occupy. Finally at the cluster level on top of the rack and

facility cost we need to account for the additional PDU cost to accommodate the

newly added racks. As a result, the benefits in terms of TCO per server decrease

as we oversubscribe higher in the power hierarchy. Note here that oversubscribing

at lower levels is more beneficial, however at higher levels of the power hierarchy

averaging effects of server power result in larger margins for power reduction and

oversubscription, at no performance cost.

At this point we should stress that these benefits will vary significantly

according to the underlying assumptions for power oversubscription as well as the

component costs. To highlight this effect we perform a sensitivity analysis on the

cost and the peak power of the server in figure 4.4. Power oversubscription becomes

more effective with high power, low cost servers and less effective with low power,

high cost servers. With smaller peak power servers we can pack more servers under

the same supporting equipment and amortize capital expenses better. This means

that the supporting equipment constitutes a smaller portion of the TCO per server

to begin with and therefore power oversubscription is less helpful. Similarly, higher

server cost for server with same peak power, translates to higher cost for the same

number of server. This is equivalent to smaller portion of the TCO part for the

supporting equipment and less effective power oversubscription. The best scenario

in terms of power oversubscription savings is low cost, high power servers. For this

scenario, we reduce the total cost of ownership per server by almost 10%. This

reduction is achieved with 24% more servers powered by the same infrastructure.

Such degree of oversubscription is possible with the UPS batteries that we describe

in the next section.

4.4 Characterizing distributed UPS batteries

Current UPS designs rely on lead-acid batteries because of their ability to

provide large currents for high power applications at low cost. In this section,

81

ϭϱϬ

ϮϬϬ

ϮϱϬ

ϯϬϬ

ϯϱϬ

ϭϬϬϬ ϭϱϬϬ ϮϬϬϬ ϮϱϬϬ ϯϬϬϬ

^Ğ
ƌǀ
Ğƌ
�W
ĞĂ

Ŭ�
WŽ

ǁ
Ğƌ
;t

Ϳ

^ĞƌǀĞƌ��ŽƐƚ�;ΨͿ

ϴйͲϭϬй

ϲйͲϴй

ϰйͲϲй

ϮйͲϰй

ϬйͲϮй

Figure 4.4: TCO per server reduction due of oversubscribing power infrastructure

by 24%, as the peak power of the server and the cost of the server change.

we discuss alternative battery technologies for distributed UPSs, model battery

behavior when employed for peak power capping, and elaborate on the selection

of parameters (capacity, cost, depth of discharge) to minimize TCO/server.

The spider graph in figure 4.5 compares the major competing battery tech-

nologies for high power applications, typical for servers, at the range of 12V and

15-30A: lead-acid (LA), Lithium Cobalt Oxide (LCO), and Lithium Iron Phos-

phate (LFP). Other technologies like NiCd, NiMH, or other lithium derivatives

are excluded because they are dominated by one of the discussed technologies

across all metrics. LA never performs best along any dimension except at low

temperatures. While LA is cheapest per Wh, LFP offers an order of magnitude

more recharge cycles, hence provides better $/Wh/cycle than LA. LCO is the

most expensive technology and provides comparable recharge cycles to LA. The

advantage of LCO technology is its high volumetric density (Wh/l) and gravimet-

ric density (Wh/Kg). Lithium batteries have longer service life than LA and also

recharge faster. LFP has higher margins for over-charging and is safer than LA

(may release toxic gases when over-charged) and LCO (may catch fire).

Properly selecting the technology and battery size depends on its use. UPS

batteries in modern data centers are discharged only during a power outage. Ac-

82

Figure 4.5: Comparison of battery technologies [AA 12, Uni03]

cording to [Pon10], the number of utility outages that affect data centers ranges

from 1.5 to 4.4 per year. Therefore, cost, service life, and size are the most impor-

tant parameters. The selection criteria become quite different when we re-purpose

the batteries to be aggressively charged and discharged. Recharging cycles become

crucial because continuous battery use may drastically shorten battery lifetime,

resulting in frequent replacement costs that negatively affect TCO/server. Hence

$/Wh/cycle is a better metric than $/Wh alone. Since LCO does poorly on both

cost and cycles, it is not considered further.

We now focus on the per server distributed UPS design and explore the

degree of over-provisioning that is most financially beneficial. Battery cost is es-

timated based on its 20h-rated capacity in Amp-hours (Ah) and the cost per Ah.

We derive the required battery capacity based on the amount of power we want

to shave and the corresponding energy stored in a battery for a given daily power

profile. We derive the cost per Ah from [AA 12, Ele01]. Tables 4.2 and 4.3 show

all the inputs for the battery sizing estimation.

To derive the required battery capacity, we first set a peak power reduction

goal and estimate the total energy that needs to be shaved at the data center level

over the period of a day. We assume all batteries get charged and discharged once

per day because, according to [Goo12], all the traffic profiles of large distributed

applications demonstrate a single peak. The daily shaved energy is equivalent to

83

Table 4.2: Input values for battery cost estimation.

Input
Value

Reference
LA LFP

Service time 4yrs 10yrs [Win09, Ele01]
Battery Cost per Ah 2$/Ah 5$/Ah [Ele01, AA 12]
Depth of Discharge 40% 60% Estimated (see figure 4.8)
Peukert’s exponent 1.15 1.05 [Har09]
Existing Server

3.2Ah [Goo09]
Battery Capacity
Recharge Cycles f(DoD) – Table 4.3 [STR08, Win09]
Battery Voltage 12V [Goo09]
Max Battery

23A
Estimated

Discharge Current (ServerPeak * PSUeff / Voltage)
PSUeff 0.8 [Cli11]
Discharges per day 1 Based on data from [Goo12]
Battery losses 5% [RL11, ZLI+11]

Table 4.3: Recharge cycles as a function of depth of discharge (DoD). Deep battery

discharge results in a fewer recharge cycles[STR08, Win09].

DoD (%) 10 20 30 40 50 60 70 80 90 100
Rcycles LA 5000 2800 1860 1300 1000 830 650 500 410 330
Rcycles LFP 100000 40000 10000 6000 4000 3000 2000 1700 1200 1000

the integral between the power curve and the flat power line we set as the peak

goal. For simplicity in this section we consider a power peak as a diurnal square

pulse with a specified height and duration. For that workload, the required data

center discharge energy is given by equation 4.2.

EDataCenter = DataCenterPeakPower × PowerReduction × PeakT imePerDay

(4.2)

To simplify the analysis, we assume that all servers discharge their batter-

ies at the same rate. We relax this assumption (and several other assumptions

applied to this initial analysis) in section 4.7. Equation 4.3 estimates the energy

84

that each battery should provide to the associated server. Since the distributed

battery is attached after the power supply the power drawn from the battery goes

directly to the motherboard and is not wasted on losses of the Power Supply Unit

(PSUefficiency).

Eserver =
EDataCenter × PSUefficiency

Nservers
(4.3)

Given the energy each battery must provide, we estimate the energy stored

per battery and the corresponding battery capacity using Peukert’s law. This re-

lation is given by equation 4.4, where C1h is the battery capacity in Ah (1h means

that the battery capacity, equivalent to charge, is measured drawing constant cur-

rent for 1h), I is the discharge current, PE is Peukert’s exponent, and T is the

battery discharge time [Sma11, RL11]. Lead-acid batteries typically have a Peuk-

ert’s exponent in the range of 1.05-1.25 while Lithium Iron Phosphate batteries

are in the range of 1.03-1.07 [Har09].

T =
C1h

IPE
⇒ C1h = T × IPE =

Eserver

V × I
× IPE =

Eserver

V
× IPE−1 (4.4)

We also account for battery depth of discharge (DoD), the degree to which

we allow the battery to be drained. Fully discharging the battery (100% DoD) to

extract the required amount of energy would seriously degrade the lifetime of the

battery and translate to higher battery replacement costs (see table 4.3). Limiting

DoD also allows us to use excess capacity for power capping without increasing

exposure to power failures. Consequently, we only want to discharge the battery

partially. However, the less we discharge a battery, the larger battery capacity

we need in order to discharge the same amount of energy. For discharge current,

we conservatively assume the max value of the server current (IMAX = 23A).

Additionally, batteries lose a portion of their capacity as they age. Once they

reach 80% of their original capacity, battery manufacturers consider them dead.

We pessimistically take this effect into account by scaling the capacity by a factor

of 1/0.8. Using equation 4.4, we get the provisioned 1h-rated battery capacity for

each server battery (equation 4.5).

85

C1h prov. = C1h ×
1

DoD
× 1

0.8
=

Eserver

V
× I PE−1

discharge ×
1

DoD
× 1

0.8
(4.5)

Finally, we convert the 1h-rated capacity into 20h-rated capacity [RL11,

Sma11], the value reported by battery manufacturers.

The previous capacity estimation methodology allows us to translate a peak

power reduction goal to per-server provisioned battery capacity and the associated

cost. To compute the monthly UPS depreciation, we also need to know the average

battery lifetime. The battery lifetime is equal to the min of the battery service time

in months and the number of recharge cycles as a function of depth of discharge,

divided by 30 (one recharge cycle per day):

UPSDepr =
C20h prov. × BatteryCostPerAh × Nservers

MIN (serviceLife, cycles(DoD)/30)
(4.6)

We use the described equations to contrast LA with LFP technologies as we

vary the peak time in the power profile, study the effect of decreasing battery cost

per Ah, and identify the depth of discharge that minimizes TCO/server. Fig-

ure 4.6 shows the provisioned battery capacity for a given peak power time and

a targeted reduction in peak power as well as the respective TCO/server reduc-

tion. More energy needs to be stored in the battery to achieve the same reduction

in peak power as the duration of peak power demand increases. Hence, the cost

of the distributed UPS increases. In the LA case, over-provisioning is no longer

helpful when the peak power lasts for 12 hours. This means that the additional

distributed UPS cost is greater than the reduction of TCO/server due to amorti-

zation of the infrastructure costs on more servers. LFP batteries remain beneficial

at 12 hours of peak demand. Size constraints only allow shaving 5% of the 2-hour

peak demand, in the LA case, while we can shave 5% of an 8-hour pulse with LFP.

In the TCO/server diagrams in figure 4.6, we denote the battery capacities that

do not fit in a 2U server by hatch shading the respective columns. For the same

spike duration, it always makes sense to shave more peak with a bigger battery,

within size limitations. To further quantify these profits, we find using the analy-

sis of section 4.2 that 6.8% monthly TCO/server reduction translates to $6.4 per

86

(a
)

L
A

(b
)

L
F
P

F
ig

u
re

4.
6:

B
at

te
ry

ca
p
ac

it
ie

s
fo

r
d
iff

er
en

t
p
u
ls

e
w

id
th

s
an

d
p
or

ti
on

of
p
ea

k
p
ow

er
sh

av
ed

.
W

e
al

so
sh

ow
th

e
m

on
th

ly

T
C

O
p
er

se
rv

er
sa

vi
n
gs

,
as

su
m

in
g

cu
rr

en
t

b
at

te
ry

co
st

s,
fo

r
th

e
sp

ec
ifi

ed
ca

p
ac

it
ie

s
of

L
ea

d
-a

ci
d

(L
A

)
an

d
L
it

h
iu

m
Ir

on

P
h
os

p
h
at

e
(L

F
P

)
b
at

te
ri

es
.

W
h
en

th
e

b
at

te
ry

ca
n
n
ot

fi
t

w
it

h
in

a
2U

se
rv

er
,
th

e
as

so
ci

at
ed

sa
vi

n
gs

ar
e

h
at

ch
sh

ad
ed

.

87

month per server, or more than $21M over the 10-year lifetime of a data center

with 28,000 servers.

Figure 4.7 presents the monthly TCO/server savings as the battery costs

change. The projection for LA batteries is that costs do not change, while LFP

prices are expected to be reduced due to the push for cheaper hybrid and electric

cars [Eco08]. For these graphs we assume that LFP cost reduces yearly at 8%

[And09]. At 4h peak per day, we achieve 7% TCO/server reduction for lead-acid,

ignoring space considerations, while this value drops to 1.35% for a battery that

fits within a 2U server design. Using LFP batteries today we can achieve 8.5%

TCO/server reduction and these savings will increase to 9.6% in the next 6 years.

Figure 4.8 presents the relation between depth of discharge and the TCO /

server gains for both LA and LFP technology. There is a clear peak for the values

40% and 60% DoD, respectively. For low DoD values, the battery costs dominate

the savings, because we need larger batteries to provide the same capping. For large

DoD values, the lifetime of the battery decreases and more frequent replacements

increase the UPS cost. The peak reduction of TCO/server occurs when the number

of recharge cycles / 30 is equal to the battery service life. Note that due to the

battery over-provisioning, less than 5% charge can sustain the server for 1 min and

ensure data center continuity. Therefore, battery lifetime considerations affect

TCO/server well before data center continuity becomes a concern.

To summarize our discussion on battery technologies and battery proper-

ties, we conclude: (1) Battery-based peak power shaving using existing batteries

is only effective for brief spikes. To tolerate long spikes, larger batteries are neces-

sary. However, the benefits from increased peak power shaving outweigh the extra

battery costs even when high demand lasts 12 hours. (2) LFP is a better, more

profitable choice than LA for frequent discharge/recharge cycles on distributed

UPS designs. This is due to the increased number of cycles and longer service

lifetime, better discharge characteristics, higher energy density, and the reduction

in battery costs expected in the near future. (3) It makes sense to increase the

capacity of the battery to the extent that it fits under the space constraints. This

translates to increased power reduction and more savings. (4) For each battery

88

Figure 4.7: For the 2h pulse we show the projection of savings (ignoring space

constraints) as the battery cost changes in the future [And09].

(a) LA (b) LFP

Figure 4.8: The relation between targeted depth of discharge and the reduction in

TCO.

technology, there is a depth of discharge value that maximizes savings (40% for LA

and 60% for LFP). This is the point where battery lifetime is no longer limited by

the battery service time and needs to be replaced earlier due to frequent charging

and discharging.

4.5 Policies

The analysis in the previous section assumes a simplified model of the power

profile and perfect coverage of that peak by the batteries. As we move to a more

89

complex model of real data center workloads and the associated power profiles, we

investigate a number of policies for peak power shaving which react to the observed

load on the data center power infrastructure.

We evaluate three policies for peak power shaving using distributed, per-

server batteries. We examine policies that operate at different levels of the power

hierarchy. The first policy budgets power at the server level. The second operates

at the PDU level to coordinate the batteries of all the servers powered by the same

PDU. Finally, power budgeting at the cluster level coordinates all the machines

in a cluster. The communication protocol to remotely enable/disable batteries

or start recharge can be easily supported with existing network interfaces, such

as SNMP or IPMI. The actual control algorithm can be implemented entirely in

software. The policies manage battery discharge and also recharge. Recharging the

batteries requires appreciable power and is thus best performed when the overall

data center load is low. We consider the following policies:

1. Server with Local Controller (ServCtrl) When a server’s power

exceeds a preset threshold, this policy switches that server from grid power to

battery power. The value of the power threshold defines how aggressively we cap

power. When the overall power consumption is less than the threshold and there

is sufficient margin to recharge the battery without exceeding the budget, battery

recharge is enabled. Each server has its own local LFP battery and a controller

that periodically monitors server power. Figure 4.9(a) shows the state machine for

this controller. If measured server power is higher than the local power threshold

(peak power cap / number of servers), then the controller switches the server to

battery power. Recharge activates when battery depth of discharge reaches the

set goal (60% for LFP) and there is sufficient margin between the current server

power and the target power cap to accommodate recharge power.

2. PDU with Centralized Controller (PduCtrl). This policy im-

plements a controller per PDU. Each controller coordinates the operation of the

batteries associated with the servers under a common PDU in order to match the

energy to be shaved with the number of discharging batteries. It periodically es-

timates the power difference between current PDU power and the targeted PDU

90

$YDLODEOH ,Q�8VH

5HFKDUJH 1RW�
$YDLODEOH

/RFDO�3RZHU�!�7KUHVKROG

/RFDO�3RZHU���7KUHVKROG

'
LVFKDUJH�!�'

R'
*
RDO5

HF
KD
UJ
H�
&
RP

SO
HW
HG

/RFDO�3RZHU���7KUHVKROG�� 5HFKDUJH�3RZHU

$YDLODEOH� ,Q�8VH�

5HFKDUJH�
1RW�

$YDLODEOH�

&75/Æ�(QDEOH�

&75/Æ�'LVDEOH�
'

LVFKDUJH�!�'
R'

�JRDO��
�1RW$YDLODEOH���Æ

�&
75

/�

5
HF

KD
UJ

H�
&

RP
SO

HW
HG

��
�$

YD
LOD
EO
H�
��
Æ
�&
75

/�

&75/Æ�5HFKDUJH�
&75/�Æ

�5
HFKDUJH�

(a) Server controller state machine (b) PDU/cluster controller state machine

State=[NumAvail,NumInUse,NumNotAvailable,NumRecharging]
/* NumAvail: Batteries with charge currently idle (Available state)

NumInUse: Batteries with charge currently discharging (Inuse)
NumNotAvail: Batteries without sufficient charge (NotAvailable)
NumRecharging: Batteries currently recharging (Recharge) */

1: delta = load - threshold /* Get delta of current and targeted power */
2: ∆Bats = abs(delta)/serverAveragePower /* Get delta in batteries */
3: if (delta > 0) then
4: EnBats = min(NumAvail, ∆Bats) /* Over peak goal */
5: NumInUse += EnBats
6: NumAvail -= EnBats
7: Enable EnBats batteries
8: end if
9: if (delta < 0) and (∆Bats > 25) then

10: DisBats = min(NumInUse,∆Bats) /* Under peak goal */
11: NumAvail += DisBats
12: NumInUse -= DisBats
13: Disable DisBats batteries
14: RSlackBats = ∆Bats-DisBats
15: if RSlackBats > 0 then
16: NumRecharging += RSlackBats
17: Recharge RSlackBats batteries
18: end if
19: end if

(c) PDU/cluster controller coordination algorithm

Figure 4.9: State machines for the local policy ServCtrl (a) and coordinated policies

PduCtrl and ClustCtrl (b). The coordination algorithm is presented in (c)

91

peak. As soon as this delta becomes positive, the controller estimates the ap-

proximate number of batteries that should start discharging (abs(delta) / server-

AveragePower). Similarly, when the delta is negative and there are discharging

batteries, the local controller will signal a number of batteries proportional to the

magnitude of the estimated difference to stop discharging. We introduce an addi-

tional condition that the number of batteries we want to stop needs to be more

than 25, which provides some hysteresis. The value 25 is a function of how fast

the workload changes and how fast our controller responds (controller period is 3

mins).

Figure 4.9(b) and 4.9(c) show the state machine for the local battery con-

troller and pseudo-code for the algorithm running on the PDU level controller.

Arcs labeled in light color correspond to events sent to or from the centralized

controller, whereas the other arcs, such as determining when the DoD goal has

been met, remain local decisions. The controller attempts to distribute the en-

abling and disabling of batteries evenly by employing a static sequence that is

interleaved across racks. When no batteries are currently enabled, the controller

gradually signals discharged batteries to recharge. The controller also forces bat-

teries that have not yet discharged to the DoD goal, but have not recently been

recharged, to begin recharging in anticipation of the next day’s peak. Staggering

recharge limits the possibility of power violations during low demand periods due

to recharge power drawn from the utility.

3. Cluster with Centralized Controller (ClustCtrl). This policy

applies the same logic as PduCtrl, but at the cluster level. Data center power

delivery involves circuit breakers at several levels of the hierarchy. The previous

policy, PduCtrl, maintains a power budget at the PDU level allowing additional

servers at the PDU level. This policy targets a power budget at the cluster level,

enabling over-subscription at the cluster level. We again employ a sequence to

enable and disable batteries to evenly distribute the power load across the levels

of the power hierarchy.

92

4.6 Methodology

Section 4.2 derives upper bound power savings based on a simplified model

of the workload and oracle knowledge of that workload. Here we present the

tools used to model a variable, data-driven workload and realistic reactive capping

policies that do not rely on oracle knowledge.

We developed a discrete-event simulator that captures the behavior of 1000

server nodes at the back-end of large distributed web applications. Each server is

modeled as a queue with 8 consumers (cores) per server to service the incoming

requests. Thus, we simulate a large network of M/M/8 queues. Our simulator

monitors all levels of the data center power delivery hierarchy, namely the servers,

racks, PDU, cluster, and data center. We measured the idle power of a Sun Fire

X4270 server with a Hioki powermeter as 175W and the peak while fully utilized

as 350W. We model server power as varying linearly between these two values,

based on utilization.

For our results, we assume a distributed UPS with 12V LFP batteries at-

tached to each server, provisioned at 40Ah, the maximum capacity that fits within

the server size constraints. These batteries can sustain peak load for 92 minutes

and take 2 hours to recharge once fully drained, measure 285.27 in3 or 16% of the

2U rack space and should fit in front of the server in the cold aisle. To properly

capture Peukert’s effect during discharge, we recalculate remaining charge time

every time the power draw on an individual server changes.

Table 4.4 presents the parameters of the workloads we use in our simulator.

We assume a mix of web search, social networking, and MapReduce background

computation. To capture the dynamic behavior of our workloads throughout the

day, we use the Google Transparency Report [Goo12] and scale interarrival time

accordingly. We collect the traffic data for a whole year (10/1/2010-9/30/2011) for

two google products in the United States. Google unencrypted search represents

search traffic, and Orkut represents social networking traffic (similar to Facebook).

MapReduce is a company internal product and, as such, does not appear in the

Transparency report. Instead, we reproduce the weekly waveform that appears in

figure 3 of [CGGK11] and repeat it over the period of a year.

93

Table 4.4: Workloads

Workload Service Time Mean Interarrival Time Mean Reference

Search 50ms 42ms [MSB+11]
Social Networking 1sec 445ms [Apa12]
MapReduce 2 mins 3.3 mins [CGGK11]

Table 4.5: Relative traffic numbers as obtained from [Ale12]. MapReduce jobs are

15% of the load.

Workload Relative Normalized Traffic

Search 29.2%
Social Networking 55.8%
MapReduce 15%

We model a data center which serves all three types of workloads, with

relative total demand placed on the servers in the ratios shown in Table 4.5. The

relative loads of search vs Facebook/Orkut is chosen to match worldwide demand

as reported by www.alexa.com [Ale12]. Note that we use Orkut data to define

the shape of the social networking demand curve, but use Facebook data to gauge

the magnitude of the load. The maximum daily peak of the aggregate load is

set to 80% of the data center peak computational capability. This number leaves

sufficient computing margin to ensure stability of the system, and is consistent

with published data center design goals, as shown in figure 1 in [MSB+11]. Note

that because of this restriction the peak observed value of the average server power,

315W, is less than than the peak achievable power of 350W.

Figure 4.10(a) shows the day-to-day variation of the daily data center en-

ergy. The yearly daily average corresponds to 240.1W per server and varies mod-

erately throughout the year. Weekends and summer months demonstrate lower

traffic. We test our policies on the three consecutive days with the highest de-

mand in energy. Graph 4.10(b) zooms in on these days (11/17/2010-11/19/2010)

and presents the daily power profile for each workload separately, as well as the

94

Ϭ͘ϴ

Ϭ͘ϴϱ

Ϭ͘ϵ

Ϭ͘ϵϱ

ϭ

ϭ͘Ϭϱ

ϭ͘ϭ

K
Đƚ
Ͳϭ
Ϭ

E
Žǀ

Ͳϭ
Ϭ

�Ğ
ĐͲ
ϭϬ

:Ă
ŶͲ
ϭϭ

&Ğ
ďͲ
ϭϭ

D
Ăƌ
Ͳϭ
ϭ

�Ɖ
ƌͲ
ϭϭ

D
ĂǇ
Ͳϭ
ϭ

:Ƶ
ŶͲ
ϭϭ

:Ƶ
ůͲϭ

ϭ
�Ƶ

ŐͲ
ϭϭ

^Ğ
ƉͲ
ϭϭ

ZĞ
ůĂ
ƚŝǀ

Ğ�
�Ă

ŝůǇ
��

�Ă
ƚĂ
��
ĞŶ

ƚĞ
ƌ��

ŶĞ
ƌŐ
Ǉ�

��������������������'D\�������������������������'D\�������������������������'D\��

��

���

���

���

���

���

���

$Y
HU
DJ
H�
VH
UY
HU
�S
RZ

HU
�:

�

0DS5HGXFH
6HDUFK
6RFLDO1HWZRUNLQJ
0,;

(a) (b)

Figure 4.10: On the left we see the variation of data center energy throughout

the year. During weekends and the summer traffic is lower. The average energy

corresponds to 240.1W per server or utilization of 37.1%. On the right we zoom

on the three days with highest energy requirements (11/17/2010-11/19/2010). We

show average server power for each service and for MIX, the aggregate load. The

average power for these days is 250.5W and the corresponding utilization 43%.

combined mix. The peaks of Search and Facebook are adjacent resulting in a wave-

form with broader peak. MapReduce traffic increases the variance of the graph.

We evaluate the workload mix in figure 4.10(b) under two different web

service allocations: 1) restricting each service to its own dedicated set of servers

(split case), 2) co-locating all web services, with highest priority for search, lower

for social networking and lowest for MapReduce jobs (mixed case).

Additionally, we emulate the scheduling of jobs across individual servers.

Specifically, we consider a simple round-robin scheduling policy, similar to the oper-

ation of a naive web traffic load balancer, and a load-aware policy with knowledge

of server CPU utilization. This scheduler is responsible for allocating the work

among servers and is independent from the per-server scheduler that maps jobs

to specific cores. In our simulated data center, the load-aware policy is extremely

effective at distributing the load evenly, probably unrealistically so. Thus, the

round-robin scheduler represents a more uneven distribution of work. A deployed

load-aware scheduler probably falls somewhere between the two.

95

4.7 Results

The capacity of the battery, as well as the targeted depth of discharge, place

an upper limit on the power capping that is possible for a given traffic pattern. In

practice, though, the max achievable power capping also depends on the effective-

ness of the policies that control the batteries. Setting the power capping threshold

aggressively creates lower margins for wasted energy in our solution. There are

two sources of battery energy waste: spatial and temporal. Spatial waste enables

more batteries than necessary to shave a portion of overall power, while temporal

waste enables batteries when capping is not required.

In this section, we gradually lower the peak power threshold until a policy

begins to violate it. We show results for the lowest threshold (per server) that

succeeds (horizontal line in figures 4.11, 4.12). Thus, we can compare policies

based on that threshold. Some policies are not effective enough to cap power over

a reasonable range. For those we give examples to illustrate why they fail. On an

average day, it is to be expected that conservative estimates of peak power will

result in a decent margin between battery capacity and the shaved peak load (some

days the batteries may not be used at all). However, because we are modeling

the worst days of the year, it is reasonable to expect that the available battery

capacity is fully utilized. This methodology is reflective of what would happen on

those days.

The ServCtrl policy (Figure 4.11(a)) assumes distributed, per-server bat-

teries and does not require any centralized coordination. It relies completely on

local server information. It is easy to implement, but due to the lack of coordina-

tion this scheme does not make efficient use of battery stored energy. Specifically,

ServCtrl introduces temporal energy waste when transient effects create imbal-

ances in the load across servers, resulting in battery discharge even if the total

data center power does not exceed the threshold, leaving fewer batteries available

to hide the real peak. We can even have batteries recharging during the peak. In

the round-robin case, we cannot effectively shave peak for any meaningful power

threshold,

When very effective load-balancing is in place, we see fewer instances of

96

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

n((SG

p�$I 7��%��R qY��RYBjI s����$�R

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

1M;SG

p�$I 7��%��R qY��RYBjI s����$�R

(a) ServCtrl - Round-robin (b) ServCtl - Balanced

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

1E;SG

p�$I 7��%��R qY��RYBjI s����$�R

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

1E1SG

p�$I 7��%��R qY��RYBjI s����$�R

(c) PduCtrl - Round-robin (d) PduCtl - Balanced

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

1x;SG

p�$I 7��%��R qY��RYBjI s����$�R

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

1x1SG

p�$I 7��%��R qY��RYBjI s����$�R

(e) ClustCtrl - Round-robin (f) ClustCtrl - Balanced

Figure 4.11: These plots show the average server, grid and batter power during

battery discharge and charge. Grid power is equivalent to server minus battery

power. Power capping at higher power hierarchy levels is more effective.

97

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

1((

1x(

n((

nx(

V
%
��
s�

�S
7
��
%
��
S_

B
b
��
Sw
G

D

_IZ(w�$-D

_IZdw�$-D

_IZ1w�$-D

_IZnw�$-D

_IZ;w�$-D

(a)

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

1((

1x(

n((

nx(

V
%
��

s�
�S

7
��

%
��

S_
B
b

��
Sw

G
D

_IZ(w�s}i�IZ{�D

_IZdw7B{�W��b�D

_IZ1w7B{�W��b�D

_IZnw7B{�W��b�\7�s�{YD

_IZ;w7�s�{YD

(b)

(;M(�E(d;;(d�1(1;((1MM(nnE(nM;(;n1(
q$8�Sw8$tRD

(

x(

d((

dx(

1((

1x(

n((

nx(

V
%
��
s�
�S
7
��
%
��
S_
B
b
��
Sw
G
D

*$R{Ys��$t�

]Ys��$t�

1�dSG

p�$I 7��%��R qY��RYBjI s����$�R

(c)

Figure 4.12: Here we quantify the effect of segmenting webservices into predefined

PDUs. In (a) we show the server average power per PDU (without batteries) for

the mixed case. In (b) we show the split case. When webservices run on split

servers there are fewer available batteries to deal with a power peak. This is why

in (c), when we use the batteries we can only guarantee peak power of 291W.

98

unnecessary discharge, but we observe a new problem. Once traffic increases to

the degree that the power of each server crosses the threshold, all batteries begin

discharging. As a result, a power dip follows. This effect is clearly visible in

figure 4.11(d). Because the batteries reduce overall datacenter power well below

the threshold, this overuses the total battery capacity. This is a similar effect

experienced with power capping on a centralized UPS that can only produce power

from the grid or the UPS, but not both. With this scheme, the batteries cannot

sustain the peak, and grid power eventually exceeds the threshold.

There is a trade-off between recharge time and recharge current. Large

values for recharge current (power) reduce recharge time but make it harder to find

the necessary margin to initiate a recharge without violating the power budget.

On the other hand, low recharge current provides ample margin for batteries to

recharge, but risk having the battery still charging when the next peak arrives.

For the ServCtrl policy we use a small recharge current of 3.7A (∼0.1C) In the

coordinated policies, PduCtrl and ClustCtrl, the controller initiates the recharge of

each server battery. It is much easier to find sufficient power slack to recharge a

battery without violating the PDU or the cluster power budget respectively. For

these policies, we use a high recharge current of 18.5A (∼0.5C) that corresponds

to a charge time of 2 hours.

Figure 4.11b shows that the PduCtrl policy performs much better than

ServCtrl, maintaining a power threshold of 264W for round-robin and 262W for

the load-aware scheduler. This is the result of coordination among batteries to

achieve a local cap at the PDU level. Just enough batteries in each PDU region

are activated to reduce power below the threshold, thus preserving other batteries

to ride out the full peak. Battery recharge is similarly coordinated so that no more

than the available spare power is used for recharge. Global imbalances in the loads

seen by each PDU result in slight noise in the total power; however, because each

PDU is enforcing its threshold, that noise only results in grid power varying a little

below the threshold.

That result holds when all three services run on all PDUs, because each

PDU sees a similar power profile. For the PduCtrl we also study the scenario

99

where each service is allowed to run on a subset of the PDUs. In this case, batteries

are statically partitioned. As a result, search batteries are not available to help

with the Facebook peak, and vice versa. Globally, we have batteries charging

and discharging at the same time, which is clearly suboptimal. The lowest power

budget that we can enforce in the split case is 291W (figure 4.12). This analysis

motivates resource sharing among applications, despite the associated complexity

for fairness and quality of service.

Figures 4.11c, 4.11f show the ClustCtrl policy applied on the mixed scenario

for the round-robin balancing and the load-aware balancing. The lowest power cap

for this policy is 254W and 252W for the two cases. Note that both of these results

are very close to the ideal scenario which would reduce power to 250W (average

power for the worst day). This increased efficiency is a direct result of being able

to take a more global view of power. Imbalances between the PDUs no longer

result in undershooting the power threshold, allowing us to preserve batteries that

much longer.

There are many considerations that might determine the right level to ap-

ply our battery control policies. Our results show that the policy becomes most

effective as we move up the power hierarchy. Most importantly, the policy should

be applied no lower than the level at which the component workloads of the data-

center are mixed together. These results indicate that with properly sized batteries

and an effective control policy, we can do much more than shave the extreme peaks

of the load – in fact, we almost completely flatten the power profile very close to

the average power. Capping peak power from 315W to 254W corresponds to a

reduction of 19.4%. This reduction will allow 24% more servers within the same

provisioned power and reduce TCO/server by 6.3% (see section 4.2), resulting in

more than $15M savings in costs for a data center with 28,000 servers over its

lifetime.

Guard band and DVFS – when projections fail Prior work on power cap-

ping either applied performance degrading techniques, like DVFS, at peak load,

or fall back to it as a failsafe when the batteries fail [GSU11]. However, applying

techniques such as DVFS at peak load is often an unacceptable option. Many

100

datacenter applications track performance by watching the tail of the performance

distribution – e.g., 95th percentile response time. Applying DVFS at peak load,

even for a short time, can have a disastrous effect on those metrics. DVFS not

only extends latencies, but also reduces throughput and induces higher queuing

delays. Reducing performance at peak load increases the response time of those

jobs already at the tail of the distribution.

Our technique does not apply DVFS, even when the peak power exceeds

our conservative estimates, nor do we give up and allow the grid power to increase.

In all the previous algorithms we disable the batteries once we hit the DoD goal

(preserving battery lifetime – see Section 4.4). However, another benefit of the high

DoD limit is additional stored energy in our batteries that can be used in case of

emergency. With LFP per-server batteries there is approximately 35% guard band

before we are in danger of not having sufficient reserves to survive a grid failure.

This guard band can be used on days where the power profile exceeds worst-case

peak power estimates. Our projections for the optimal DoD level were based on

daily discharge; however, going below 40% to say, 35% or 30%, a couple times a

year, or even once a month, will have no significant impact on the lifetime of the

battery. Thus, we never need to apply performance-reducing mechanisms at peak

load unless our estimated peak power is off by enormous margins. That does not

mean that DVFS cannot still be an effective power management technique. But

in our system, we would apply it during low utilization, where there is slack in

the response times. By reducing power at low demand, we create more margin for

recharging and accelerating the recharge cycle. This technique is not employed in

the results shown in this chapter, but would allow us to shave even more power

with minimal performance impact.

Failure analysis In large data centers it is common to cluster maintenance op-

erations to reduce costs. This means that a non-negligible portion of batteries may

be unusable for peak power shaving purposes before these batteries get replaced.

Figure 4.13 shows how the lowest achievable peak changes when we assume that

a portion of batteries has failed. We compare the best policy ClustCtrl with and

without the use of the additional energy provided by discharging our batteries be-

101

Figure 4.13: As the number of unusual batteries increase, the lowest possible peak

power increases. Allowing to exceed our DoD goal occasionally, permits even higher

peak power reduction. Load imbalances discharge batteries at different rates and

make power capping harder.

yond the DoD goal. The peak threshold gradually increases with a larger portion

of dead batteries. However, the increase is relatively small. Even when half of the

batteries are dead we can still shave 16% of peak power. For these experiments,

we find that we do not need to modify the algorithm of the controller to handle

the unusable components. The controller signals a faulty component to start dis-

charging, but no decrease in power takes place. As a result, the controller signals

additional batteries in the next round and eventually corrects for the failure with-

out any direct feedback. We also observe that the additional energy from (rare)

deeper discharge of the batteries allows us to shave more power with fewer bat-

teries. However, if the datacenter is allowed to enter deeper discharge frequently

while dead batteries stack up for an extended period, then it can have an impact

on the battery lifetime.

Energy proportionality The server used for this study is a representative mod-

ern platform, with idle power close to 50% of peak, based on our measurements. In

the future, servers are expected to become increasingly energy proportional. We

102

model the impact of a server that is completely energy proportional.

Energy proportional servers essentially increase the height of the peak, rela-

tive to the average power, since power is significantly lower during off-peak periods.

Consequently, we can further reduce the power threshold. Our simulations indicate

the ability to reduce the peak observed power from 280W to 175W, a reduction of

37.5%. That results in an increase in server capacity of 60%.

4.8 Related work

Peak Power Provisioning and Capping: Reducing power consump-

tion in server clusters is a well-studied problem in the literature [RLIC06, NS08,

MGT09, GCU+09]. The overall idea is to combine CPU throttling, dynamic volt-

age/frequency scaling (DVFS), and switching entire servers on/off depending on

the workload. Raghavendra, et al. [RLIC06] note that more efficient power man-

agement solutions are possible by managing power at the rack level than at indi-

vidual blades. They devise proactive and reactive policies based on DVFS to cap

power budgets at the rack level. Nathuji and Schwan [NS08] introduce the notion

of power tokens to deal with heterogeneity across hardware platforms. Govindan,

et al. [GCU+09] combine applications with heterogeneous characteristics in terms

of burstiness. As a result, the power budget is exceeded statistically infrequently.

DVFS is used as a failsafe mechanism to prevent against lasting peak power vio-

lations.

Femal et al. [FF05] were among the first to use formal control theory to

maximize throughput while capping power. Raghavendra, et al. [RRT+08] extend

the control theory idea to present a hierarchy of coordinated controllers that cap

power across different levels of the power hierarchy and minimize performance im-

pact. They argue for nesting controllers that operate at different time granularities

to ensure stability and emphasize the information flow between the controllers.

Using batteries in data centers: Battery power management has been

studied in the embedded/mobile system domain with various works proposing

techniques to adjust the drain rate of batteries in order to elongate the system

103

operation time [PDR+01, RV03, Rak05, RP03]. Prior research has also investigated

analytical models for battery capacity and voltage in portable devices [PDR+01,

RP03, JH08].

The work of Chang, Pedram et al [PCKW10] investigates hybrid electric

energy storage systems. These systems, which includes supercapacitors, li-ion as

well as lead-acid batteries, can dynamically select the most appropriate energy

storage device and drive down cost. Similarly to our work, they find li-ion battery

technology to be more cost-effective than lead-acid for frequent use while shaving

peak power. Admittedly, the idea of hybrid energy storage solutions in the context

of data centers is worth further exploration. However, super-capacitors are better

suited for really short and tall power spikes and do not map well to our observed

data center loads. Additionally, their follow-up work [WKX+11] admits significant

energy conversion loses to migrate charge between energy storage elements. This

argues towards a simple solution with as few energy conversions as possible.

Govindan, et al [GSU11] introduce the idea of reducing data center peak

power by leveraging the stored energy in a centralized UPS. During peak load,

power from the UPS batteries augments the main grid, effectively hiding the peak

from the utility service. During low load, the batteries recharge, consuming addi-

tional power.

In a follow-up work [GWSU12], they extend their prior work to also use

distributed UPSs for peak power capping. That work focuses on power capping at

the rack, using small lead-acid batteries to shave peak power. This approach allows

them to prevent rare, brief power emergencies without performance degradation

and relies on DVFS and load migration for peaks longer than several minutes. In

our work, we examine solutions at multiple levels of the power hierarchy, show the

financial advantages of more aggressive batteries with a more detailed model that

incorporates battery lifetime considerations, and employ solutions that sacrifice no

performance – the desired solution in a performance-sensitive data center under

peak load.

In a separate work [GWC+11], the same authors also argue for a distributed

UPS solution from a cost and reliability perspective. They find that a hybrid

104

distributed UPS placement, at PDU and server level, yields the most promising

topology. They do not consider battery energy for peak power capping in that

work, but this finding provides additional motivation for our work on the use of

distributed batteries for power capping.

4.9 Conclusions

State-of-the-art data centers such as Google’s and Facebook’s have adopted

a distributed UPS topology in response to the high cost associated with a central-

ized UPS design. In this work we explore the potential of using battery-stored

energy in a distributed UPS topology to shave peak power. We describe how to

provision the capacity of the battery and elaborate on how recharge cycles, the

depth of discharge, and the workload power profile affect the potential for peak

power shaving. We leverage the distributed nature of the batteries and design a

controller to use them only when needed and thus prolong the duration of their

usage, without violating the targeted power budget. Significant peak power reduc-

tions of up to 19.4%, are possible with our technique. Power capping in the data

center context reduces over-provisioning of power delivery infrastructure, allows

us to accommodate more servers under the same power budget and to reduce the

TCO per server by 6.3%, significantly increasing the computation that can be done

per facility and saving millions of dollars per datacenter.

Acknowledgments

Chapter 4 contains material from Managing Distributed UPS Energy for

Effective Power Capping in Data Centers, by Vasileios Kontorinis, Liuyi Zhang,

Baris Aksanli, Jack Sampson, Houman Homayoun, Eddie Pettis, Dean Tullsen and

Tajana Rosing, which appears in Proceedings of the 39th International Sympo-

sium on Computer Architecture (ISCA). The dissertation author was the primary

investigator and author of this paper. The material in this chapter is copyright

c©2012 IEEE. Personal use of this material is permitted. However, permission to

105

reprint/republish this material for advertising or promotional purposes or for cre-

ating new collective works for resale or redistribution to servers or lists, or to reuse

any copyrighted component of this work in other works must be obtained from the

IEEE.

Chapter 5

Summary

Because of fundamental transistor scaling properties increasing active tran-

sistors per chip while keeping its power constant has become challenging. In this

new regime, it is imperative to mitigate any form of power over-provisioning. In

this thesis, we explore mechanisms that reduce power over-provisioning, and thus

manage peak power, by powering-off unused or underutilized resources in three

different domains: microprocessor core, across 3D-stacked dies, and the data cen-

ter.

5.1 Core peak power management

An the core level we reduce the level of core over-provisioning by keeping

a portion of the core, particularly those resources least required for performance,

constantly off. We demonstrate that most applications have few resource bot-

tlenecks and application can retain most of their performance as long as those

critical resources are fully provided. We use this fact to dynamically provide the

appropriate resources and power-gate the rest and in doing so we cap peak power.

Prior work on average power reduction relies on local, uncoordinated heuris-

tics to power-off under-utilized resources. However, this approach does not provide

any peak power guarantees as there can be periods of time where all resources are

maximally configured and hence we still need to provision the power delivery for the

worst case. In contrast, we manage the enabled and disabled resources centrally.

106

107

Centralized coordination ensures that not all resources are maximally configured

at any time. To lower the overhead of dynamic reconfiguration and make a hard-

ware implementation feasible we use a table-driven approach. A table placed next

to the core holds valid configurations for a particular peak power budget. This

approach can lower core peak power budget by 25% while giving up less than 5%

of performance compared to the core with all resources enabled. Additionally, our

dynamic approach outperforms the best static design that respects the power bud-

get by more than 10%. Power capping in the core translates to 5.3% less on-chip

decap area to achieve the same voltage variation goal, or 26% reduction in voltage

variation for a given on-chip decoupling capacitance.

There is nothing preventing a single architecture from having multiple ta-

bles, or modifying the table contents over time, switching between them either at

verification/test time, bootup time, or even runtime. This raises a number of new

and promising potential uses of this technology to be explored in future work.

(1) We could use it in conjunction with Dynamic Thermal Management –

thermal events trigger the core to go into a lower peak power envelope. We could

even have different power envelopes for other events – plugged in/not plugged in,

low battery, etc.

(2) We could account for thermal heterogeneity in the processor (e.g., cores

in the center tend to run hot, those on the edges cooler [CSTSR09]) by applying

a different peak power envelope to different cores.

(3) Similarly, we could counteract the effects of process variation by filling

the ROM at verification time with a set of configurations which match the exact

thermal and power characteristics of that individual core.

(4) Our technique can be coupled with fault tolerance. If a hard error is

detected on an adaptable component, then the configurations that incorporate

that specific partition can be disabled, as part of the core’s overall fault isolation

solution. In this way, we naturally redirect the power from faulty components to

those that can use them.

(5) We could maintain an overall processor peak power envelope, but use it

judiciously to maximize global throughput. We allow a core that can use the extra

108

power for more performance to go to P +∆ while another is forced to P −∆. Our

architecture, applied to a CMP, already provides a mechanism for transforming a

homogeneous design into a heterogeneous architecture (each core configured sep-

arately to make the best use of its peak power limit). This optimization further

enhances that ability, as we now have the ability to set the peak power limit of

each core according to the needs of the individual application.

5.2 Resource pooling for power efficiency

In the context of 3D stacked dies we reduce over-provisioning by eliminating

idle resources across the boundary of a core. Previous attempts to share resources

across cores in the 2D plane were limited by long wire delays and high commu-

nication latency. With a 3D architecture, we can dynamically pool bottleneck

resources within a single cycle and therefore enable much more efficient resource

sharing.

To make this architecture possible we need to address several key issues.

We discuss circuit level implementation details for the resources we pool: the

reorder buffer, instruction queues, and register files. Our design partitions the

pooled resources and dynamically allocates each partition so that it is owned by

a single core at any point of time. We quantify the overheads associated with our

technique in terms of additional logic and potential frequency degradation, which

are found to be small and we show that fine grain resource partitioning is not

required, because back-end resources get populated in bursts.

We advocate the use of a low-power core instead of a complex, high-power

core to deal with thermal and power concerns raised because of stacking logic on

top of logic. With this approach, we can design a simpler, less over-provisioned core

and reclaim the performance difference using resource pooling. To achieve signifi-

cant improvement we have to carefully balance the degree of flexibility on pooling

resources. Allocating large portions of core resources to the common pool may

lead to resource starvation, allocating small portions limits the potential benefits

of pooling.

109

The performance of the low-power core is on average 67% of the high-power

core performance. With resource pooling and all four cores active, low-power core

performance improves by 9% and reaches 71% of the high-power core performance.

With only two out of four cores used, simple core performance is 27% better and

reaches 86% of complex core performance. When a single core is active and the

rest cores contribute to the pool, performance improves by 45% and the simple

core operates at 97% of the performance of the complex core.

This study has opened several new research directions that are worth pur-

suing in the future.

(1) Pooling core back-end resources exposes different bottlenecks. For ex-

ample we cannot take advantage of the additional instruction level parallelism

exposed, unless we have sufficient instruction issue bandwidth. Additionally, there

are applications that depend on first level cache to hide long latency misses. By

pooling additional resources at the core level, such as execution units and first level

cache ways we can potentially achieve even better performance.

(2) This architecture can be useful for finer granularity thermal manage-

ment. If the register file is a hotspot on one core, we can completely decommission

the registers on that core without stopping (or perhaps even slowing) execution on

that core. Through adaptation we can mitigate hot spots.

(3) We can also leverage 3D pooling to provide fine-grain reconfiguration

around faulty components. Once we identify a partition of pooled resource as

faulty, we can remove it from the pool and continue chip operation until the pool

is completely emptied.

5.3 Managing peak power for data centers

Finally, we study an idea to reduce over-provisioning costs for data centers.

We use the energy stored in distributed UPS batteries to provide additional power

capacity during high activity and recharge the batteries during low activity.

We perform a detailed analysis of data center total cost of ownership and

make the associated models publicly available. Our analysis, shows that the bene-

110

fits from power capping justify investing in larger, more capable per server batter-

ies. Additionally, we find that a different battery technology than the lead acid is

better suited for aggressive battery-based power capping. Lithium Iron Phosphate

batteries offer an order of magnitude more recharge cycles and higher energy den-

sity than lead acid batteries, hence are more cost-effective once re-purposed for

frequent use.

We also design a controller that activates battery charge and discharge in

the data center and we discuss alternatives regarding the level in the power hierar-

chy where we apply the power capping and the associated trade-offs. Cluster level

power capping is more beneficial than server or power supply unit level capping.

Our best performing techniques can reduce provisioned power by 19.5%. By al-

lowing 24% more server under the same power infrastructure we better amortize

initial, one-time capital investments in the data center and we decrease total cost

of ownership per server by 6.3%. This reduction corresponds to $15M savings for

the lifetime of a data center.

This study examines the applicability of battery-based power capping for

data centers with distributed UPSs. There are several ways to extend this work in

the future.

(1) We can explore the same idea of battery-based power capping for data

centers with heterogeneous server configurations. Several data centers contain

servers with different capabilities. As ideas like specialization gain prominence we

will see more embedded or streaming devices employed in this context.

(2) The idea of battery capping can be combined with dynamic voltage

frequency scaling (DVFS). These two techniques can be complimentary. DVFS

may negatively affect performance by decreasing throughput at high utilization

levels, while battery-based capping does not. We can aggressively use DVFS during

low utilization periods and create additional margins for battery based capping.

(3) We can explore power capping together with workload migration. Vir-

tualization in modern data centers significantly simplifies load consolidation. Once

we treat battery energy as a resource we need to incorporate battery charge aware-

ness in virtual machine placement management algorithms.

111

5.4 Concluding remarks

Our ability to extract performance under tight power budgets will define

how long performance trends will remain exponential. Key to achieving this is re-

moving any form of over-provisioning in the computing stack. This thesis presents

techniques towards this direction in three different domains: the core, the chip and

the data center.

Bibliography

[AA 12] AA Portable Power Corporation. Portable Power
Product design, assembly and quality control.
http://www.batteryspace.com/lifepo4cellspacks.aspx, 2012.

[ABD+03] David H. Albonesi, Rajeev Balasubramonian, Steven G. Dropsho,
Sandhya Dwarkadas, Eby G. Friedman, Michael C. Huang, Volkan
Kursun, Grigorios Magklis, Michael L. Scott, Greg Semeraro, Pradip
Bose, Alper Buyuktosunoglu, Peter W. Cook, and Stanley E. Schus-
ter. Dynamically tuning processor resources with adaptive processing.
IEEE Computer, December 2003.

[AG] International Electron Devices Meeting 2002 Keynote Lun-
cheon Speech Andy Grove. http://www.intel.com/pressroom/archive/
speeches/grove 20021210.pdf.

[Alb99] D. H. Albonesi. Selective cache-ways: On demand cache resource al-
location. In International Symposium on Microarchitecture, 1999.

[Ale12] Alexa. Web information, traffic metrics, search analytics, demograph-
ics for websites. http:/www.alexa.com, 2012.

[And09] D. Anderson. An evaluation of current and future costs for lithium-
ion batteries for use in electrified vehicle powertrains. Master’s thesis,
Duke University, 2009.

[AP07] Behnam Amelifard and Massoud Pedram. Optimal selection of voltage
regulator modules in a power delivery network. In the annual confer-
ence on Design Automation, 2007.

[Apa12] Apache. Olio, a web 2.0 benchmark.
http://incubator.apache.org/olio/, 2012.

[APC08] APC. InfraStruxure Total Cost of Ownership.
http://www.apc.com/tools/isx/tco/, 2008.

112

113

[BAS+01] Alper Buyuktosunoglu, David Albonesi, Stanley Schuster, David
Brooks, Pradip Bose, and Peter Cook. A circuit level implementa-
tion of an adaptive issue queue for power-aware microprocessors. In
Great Lakes Symposium on VLSI, 2001.

[BG01] James Burns and Jean-Luc Gaudiot. Area and system clock effects
on SMT/CMP processors. In International Conference on Parallel
Architectures and Compilation Techniques, 2001.

[BKAB03] A. Buyuktosunoglu, T. Karkhanis, D.H. Albonesi, and Pradip Bose.
Energy efficient co-adaptive instruction fetch and issue. In Interna-
tional Symposium on Computer Architecture, 2003.

[BM01] D. Brooks and M. Martonosi. Dynamic thermal management for high-
performance microprocessors. In International Symposium on High
Performance Computer Architecture, 2001.

[BNWS04] B. Black, D.W. Nelson, C. Webb, and N. Samra. 3D processing tech-
nology and its impact on IA32 microprocessors. In International Con-
ference on Computer Design, 2004.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A
framework for architectural-level power analysis and optimizations. In
International Symposium on Computer Architecture, 2000.

[CAH+10] D. Cuesta, J. Ayala, J. Hidalgo, M. Poncino, A. Acquaviva, and En.
Macii. Thermal-aware floorplanning exploration for 3D multi-core ar-
chitectures. In Great Lakes Symposium on VLSI, 2010.

[CAR+10] Ayse K. Coskun, David Atienza, Tajana Rosing, Thomas Brun-
schwiler, and Bruno Michel. Energy-efficient variable-flow liquid cool-
ing in 3D stacked architectures. In Design Automation and Test in
Europe, 2010.

[CGB97] Yi-Shing Chang, Sandeep K. Gupta, and Melvin A. Breuer. Analysis
of ground bounce in deep sub-micron circuits. In IEEE VLSI Test
Symposium, 1997.

[CGGK11] Yanpei Chen, Archana Ganapathi, Rean Griffith, and Randy Katz.
The case for evaluating MapReduce performance using workload suites.
In Technical Report No. UCB/EECS-2011-21, 2011.

[Cli11] Climate Savers Computing. Power supply efficiency specifications.
http://www.climatesaverscomputing.org/resources/certification,
2011.

114

[CSTSR09] Ayse K. Coskun, Richard Strong, Dean M. Tullsen, and Tajana Simu-
nic Rosing. Evaluating the impact of job scheduling and power manage-
ment on processor lifetime for chip multiprocessors. In International
joint conference on measurement and modeling of computer systems
(SIGMETRICS), 2009.

[DBB+02] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. H. Albonesi,
S. Dwarkadas, G. Semeraro, G. Magklis, and M. L. Scott. Integrat-
ing adaptive on-chip storage structures for reduced dynamic power.
Technical report, Univ. of Rochester, 2002.

[DGR+74] R.H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc. Design of Ion-Implanted MOSFET’s with Very Small Phys-
ical Dimensions. In IEEE Journal of Solid-State Circuits, October
1974.

[Duk09] Duke Energy. Utility bill. http://www.duke-energy.com/pdfs/ scsched-
uleopt.pdf, 2009.

[Dup07] Dupont Fabros Technology, Inc. Sec filing (s-11) 333-145294, August
9, 2007.

[Eco08] Economist. In search of the perfect battery. http://www.miten-
ergyclub.org/assets/2009/9/25/Economist Batteries 2008.pdf, March
2008.

[EE08] Stijn Eyerman and Lieven Eeckhout. System-level performance metrics
for multiprogram workloads. IEEE Micro, 28:42–53, May 2008.

[Ele01] Electic motor sport. EV construction, thundersky batter-
ies. http://www.electricmotorsport.com/store/ems ev parts batteries
.php, 2001.

[Fac11] Facebook. Hacking conventional computing infrastructure.
http://opencompute.org/, 2011.

[FF05] Mark E. Femal and Vincent W. Freeh. Boosting data center perfor-
mance through non-uniform power allocation. In ACM International
Conference on Autonomic Computing, 2005.

[FKM+02] Krisztián Flautner, Nam Sung Kim, Steve Martin, David Blaauw, and
Trevor Mudge. Drowsy caches: simple techniques for reducing leakage
power. In International Symposium on Computer Architecture, 2002.

[FWB07] Xiaobo Fan, Wolf-Dietrich Weber, and Luiz Andre Barroso. Power
provisioning for a warehouse-sized computer. In International Sympo-
sium on Computer Architecture, 2007.

115

[GAT03] Ed Grochowski, David Ayers, and Vivek Tiwari. Microarchitectural
di/dt control. In IEEE Design and Test, 2003.

[GCU+09] Sriram Govindan, Jeonghwan Choi, Bhuvan Urgaonkar, Anand Siva-
subramaniam, and Andrea Baldini. Statistical profiling-based tech-
niques for effective power provisioning in data centers. In EuroSys,
2009.

[GFA+08] Shantanu Gupta, Shuguang Feng, Amin Ansari, Jason A. Blome, and
Scott A. Mahlke. The stagenet fabric for constructing resilient multi-
core systems. In International Symposium on Microarchitecture, 2008.

[Goo09] Google Summit. http://www.google.com/corporate/datacenter/
events/dc-summit-2009.html, 2009.

[Goo12] Google. Transparency report. http://www.google.com/transparency-
report/traffic/, 2012.

[GSU11] Sriram Govindan, Anand Sivasubramaniam, and Bhuvan Urgaonkar.
Benefits and limitations of tapping into stored energy for datacenters.
In International Symposium on Computer Architecture, 2011.

[GWC+11] Sriram Govindan, Di Wang, Lydia Chen, Anand Sivasubramaniam,
and Anand Sivasubramaniam. Towards realizing a low cost and highly
available datacenter power infrastructure. In HotPower Workshop on
Power-Aware Computing and Systems, 2011.

[GWSU12] Sriram Govindan, Di Wang, Anand Sivasubramaniam, and Bhuvan
Urgaonkar. Leveraging stored energy for handling power emergencies
in aggressively provisioned datacenters. In International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2012.

[HAG+10] Michael B. Healy, Krit Athikulwongse, Rohan Goel, Mohammed M.
Hossain, Dae Hyun Kim, Young-Joon Lee, Dean L. Lewis, Tzu-Wei
Lin, Chang Liu, Moongon Jung, Brian Ouellette, Mohit Pathak, He-
mant Sane, Guanhao Shen, Dong Hyuk Woo, Xin Zhao, Gabriel H.
Loh, Hsien-Hsin S. Lee, and Sung Kyu Lim. Design and analysis of
3D-maps: A many-core 3D processor with stacked memory. In IEEE
Custom Integrated Circuits Conference, 2010.

[Har09] Frank Harvey. Listing of ev batteries.
http://www.39pw.us/car/batteryTable.html, 2009.

[HB09] Urs Hoelzle and Luiz Andre Barroso. The Datacenter as a Computer:
An Introduction to the Design of Warehouse-Scale Machines. Morgan
and Claypool Publishers, 2009.

116

[HBS+04] Zhigang Hu, Alper Buyuktosunoglu, Viji Srinivasan, Victor Zyuban,
Hans Jacobson, and Pradip Bose. Microarchitectural techniques for
power gating of execution units. In International Symposium on Low
Power Electronics and Design, 2004.

[HDC10] Xiang Hu, Peng Du, and Chung-Kuan Cheng. Exploring the rogue
wave phenomenon in 3D power distribution networks. In IEEE Confer-
ence on Electrical Performance of Electronic Packaging and Systems,
2010.

[HVE+07] M. Healy, M. Vittes, M. Ekpanyapong, C. S. Ballapuram, S. K.
Lim, H.-H. S. Lee, and G. H Loh. Multiobjective microarchitectural
floorplanning for 2-D and 3-D ICs,. In International Conference on
Computer-Aided Design, 2007.

[IBC+06] Canturk Isci, Alper Buyuktosunoglu, Chen-Yong Cher, Pradip Bose,
and Margaret Martonosi. An analysis of efficient multi-core global
power management policies: Maximizing performance for a given
power budget. In International Symposium on Microarchitecture, 2006.

[IBM03] IBM Corporation. PowerPC 750 RISC. In Microprocessor Technical
Summary, August 2003.

[IKKM07] E. Ipek, M. Kirman, N. Kirman, and J.F. Martinez. Core fusion:
Accommodating software diversity in chip multiprocessors. In Inter-
national Symposium on Computer Architecture, 2007.

[Int00] Intel Corp. Intel Pentium 4 Processor in the 423-pin Package Thermal
Design Guidelines, Datasheet, November 2000.

[JH08] M.R. Jongerden and B.R. Haverkort. Battery modeling. Technical
report, TR-CTIT-08-01, CTIT, 2008.

[Kar98] Ashish Karandikar. Low power SRAM design using hierarchical di-
vided bit-line approach. In International Conference on Computer
Design, 1998.

[KFJ+03] Rakesh Kumar, Keith I. Farkas, Norman P. Jouppi, Parthasarathy
Ranganathan, and Dean M. Tullsen. Single-ISA Heterogeneous Multi-
core Architectures: The Potential for Processor Power Reduction. In
MICRO 36: Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture, 2003.

[KHM01] Stefanos Kaxiras, Zhigang Hu, and Margaret Martonosi. Cache decay:
exploiting generational behavior to reduce cache leakage power. In
International Symposium on Computer Architecture, 2001.

117

[KJT04] Rakesh Kumar, Norman P. Jouppi, and Dean M. Tullsen. Conjoined-
core chip multiprocessing. In International Symposium on Microarchi-
tecture, 2004.

[KMW98] R.E. Kessler, E.J. McLellan, and D.A. Webb. The alpha 21264 mi-
croprocessor architecture. In International Conference on Computer
Design, 1998.

[Kon12] Vasileios Kontorinis. Battery-aware Data Center TCO models.
http://cseweb.ucsd.edu/ tullsen/DCmodeling.html, 2012.

[KSG+07] Changkyu Kim, Simha Sethumadhavan, M. S. Govindan, Nitya Ran-
ganathan, Divya Gulati, Doug Burger, and Stephen W. Keckler. Com-
posable lightweight processors. In International Symposium on Mi-
croarchitecture, 2007.

[KTJ06] Rakesh Kumar, Dean M. Tullsen, and Norman P. Jouppi. Core ar-
chitecture optimization for heterogeneous chip multiprocessors. In
International Conference on Parallel Architectures and Compilation
Techniques, 2006.

[KTJR05] R. Kumar, D.M. Tullsen, N. Jouppi, and P. Ranganathan. Heteroge-
neous chip multiprocessing. IEEE Computer, November 2005.

[KTR+04] Rakesh Kumar, Dean M. Tullsen, Parthasarathy Ranganathan, Nor-
man P. Jouppi, and Keith I. Farkas. Single-ISA Heterogeneous Multi-
core Architectures for Multithreaded Workload Performance. In Inter-
national Symposium on Computer Architecture, June 2004.

[KZL+10] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhat-
tacharya. Virtual machine power metering and provisioning. In ACM
Symposium on Cloud Computing, 2010.

[LB08] Benjamin C. Lee and David Brooks. Efficiency trends and limits from
comprehensive microarchitectural adaptivity. In International Confer-
ence on Architectural Support for Programming Languages and Oper-
ating Systems, 2008.

[LKL11] Harold Lim, Aman Kansal, and Jie Liu. Power budgeting for virtual-
ized data centers. In USENIX, 2011.

[LNR+06] Feihui Li, C. Nicopoulos, T. Richardson, Yuan Xie, V. Narayanan, and
M. Kandemir. Design and management of 3D chip multiprocessors
using network-in-memory. In International Symposium of Computer
Architecture, 2006.

118

[LXB07] Gabriel H. Loh, Yuan Xie, and Bryan Black. Processor design in 3D
die-stacking technologies. IEEE Micro, 27:31–48, May 2007.

[MBB01] Roberto Maro, Yu Bai, and R. Iris Bahar. Dynamically reconfiguring
processor resources to reduce power consumption in high-performance
processors. In Proceedings of the First International Workshop on
Power-Aware Computer Systems-Revised Papers, 2001.

[MD05] J. W. Schultze M. Datta, T. Osaka. Microelectronics Packaging. CRC
Press, 2005.

[MES+07] P. Muthana, A.E. Engin, M. Swaminathan, R. Tummala, V. Sun-
daram, B. Wiedenman, D. Amey, K.H. Dietz, and S. Banerji. Design,
modeling, and characterization of embedded capacitor networks for
core decoupling in the package. Transactions on Advanced Packaging,
2007.

[MGT09] David Meisner, Brian Gold, and Wenisch Thomas. Powernap: Elimi-
nating server idle power. In International Conference on Architectural
Support for Programming Languages and Operating Systems, 2009.

[MJDS08] Ke Meng, Russ Joseph, Robert P. Dick, and Li Shang. Multi-
optimization power management for chip multiprocessors. In Inter-
national Conference on Parallel Architectures and Compilation Tech-
niques, 2008.

[MSB+11] David Meisner, Christopher M. Sadler, Luiz André Barroso, Wolf-
Dietrich Weber, and Thomas F. Wenisch. Power management of online
data-intensive services. In International Symposium on Computer Ar-
chitecture, 2011.

[MZM+09] N. Madan, Li Zhao, N. Muralimanohar, A. Udipi, R. Balasubramo-
nian, R. Iyer, S. Makineni, and D. Newell. Optimizing communication
and capacity in a 3D stacked reconfigurable cache hierarchy. In High-
Performance Computer Architecture, 2009.

[NKH+07] K. Najeeb, Vishnu Vardhan Reddy Konda, Siva Kumar Sastry Hari,
V. Kamakoti, and Vivekananda M. Vedula. Power virus generation
using behavioral models of circuits. In VLSI Test Symposium, 2007.

[NS07] Ripal Nathuji and Karsten Schwan. Virtualpower: coordinated power
management in virtualized enterprise systems. In ACM Symposium on
Operating Systems Principles, 2007.

[NS08] Ripal Nathuji and Karsten Schwan. Vpm tokens: virtual machine-
aware power budgeting in datacenters. In ACM Symposium on High-
Performance Parallel and Distributed Computing, 2008.

119

[PAV+01] Michael D. Powell, Amit Agarwal, T. N. Vijaykumar, Babak Falsafi,
and Kaushik Roy. Reducing set-associative cache energy via way-
prediction and selective direct-mapping. In International Symposium
on Microarchitecture, 2001.

[PCKW10] Massoud Pedram, Naehyuck Chang, Younghyun Kim, and Yanzhi
Wang. Hybrid electrical energy storage systems. In International Sym-
posium on Low Power Electronics and Design, 2010.

[PDR+01] Debashis Panigrahi, Sujit Dey, Ramesh R. Rao, Kanishka Lahiri,
Carla-Fabiana Chiasserini, and Anand Raghunathan. Battery life es-
timation of mobile embedded systems. In VLSI Design, 2001.

[PJS97] S. Palacharla, N.P. Jouppi, and J.E. Smith. Complexity-effective su-
perscalar processors. In International Symposium on Computer Archi-
tecture, 1997.

[PKG06] Dmitry V. Ponomarev, Gurhan Kucuk, and Kanad Ghose. Dynamic
resizing of superscalar datapath components for energy efficiency.
IEEE Transactions on Computers, February 2006.

[PL06] Kiran Puttaswamy and Gabriel H. Loh. Dynamic instruction sched-
ulers in a 3-dimensional integration technology. In Great Lakes Sym-
posium on VLSI 2006, 2006.

[PL07] K. Puttaswamy and G.H. Loh. Thermal herding: Microarchitecture
techniques for controlling hotspots in high-performance 3D-integrated
processors. In High-Performance Computer Architecture, 2007.

[PMF08] M. Popovich, A. V. Mezhiba, and E. G. Friedman. Power Distribution
Networks with On-Chip Decoupling Capacitors. Springer, 2008.

[PMZ+10] Steven Pelley, David Meisner, Pooya Zandevakili, Thomas F. Wenisch,
and Jack Underwood. Power routing: dynamic power provisioning in
the data center. In International Conference on Architectural Support
for Programming Languages and Operating Systems, 2010.

[Pon10] Ponemon Inst. National Survey on Data Center Outages, 2010.

[PPWT00] Mondira Deb Pant, Pankaj Pant, D. Scott Wills, and Vivek Tiwari.
Inductive noise reduction at the architectural level. In International
Conference on VLSI Design, 2000.

[pr07] SAVVIS press release. Savvis sells asserts related to two
datacenters for $200 million. http://www.savvis.com/en-
US/Company/News/Press/Pages/SAVVIS+Sells+Assets+Related+
to+Two+Data+Centers+for+200+Million.aspx, June 29 2007.

120

[PR08] V.S. Pandit and Woong Hwan Ryu. Multi-ghz modeling and charac-
terization of on-chip power delivery network. In IEEE Conference on
Electrical Performance of Electronic Packaging, Oct. 2008.

[Rak05] Daler N. Rakhmatov. Battery voltage prediction for portable systems.
In IEEE International Symposium on Circuits and Systems, 2005.

[RL11] T. B. Reddy and D. Linden. Linden’s Handbook of Batteries (4th
edition). McGraw-Hill, 2011.

[RLIC06] Parthasarathy Ranganathan, Phil Leech, David Irwin, and Jeffrey
Chase. Ensemble-level power management for dense blade servers.
In International Symposium on Computer Architecture, June 2006.

[RMD+05] P. Royannez, H. Mair, F. Dahan, M. Wagner, M. Streeter, L. Boue-
tel, J. Blasquez, H. Clasen, G. Semino, J. Dong, D. Scott, B. Pitts,
C. Raibaut, and Uming Ko. 90nm low leakage soc design techniques
for wireless applications. In IEEE International Solid-State Circuits
Conference, 2005.

[RNA+12] Efraim Rotem, Alon Naveh, Avinash Ananthakrishnan, Doron Ra-
jwan, and Eliezer Weissmann. Power-management architecture of the
intel microarchitecture code-named sandy bridge. IEEE Micro, Febru-
ary 2012.

[RP03] Peng Rong and Massoud Pedram. An analytical model for predicting
the remaining battery capacity of lithium-ion batteries. In Design
Automation and Test in Europe, 2003.

[RRT+08] Ramya Raghavendra, Parthasarathy Ranganathan, Vanish Talwar,
Zhikui Wang, and Xiaoyun Zhu. No ”power” struggles: coordinated
multi-level power management for the data center. In International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2008.

[RV03] Daler N. Rakhmatov and Sarma B. K. Vrudhula. Energy manage-
ment for battery-powered embedded systems. ACM Transactions in
Embedded Computing Systems, 2003.

[SAT+08] K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang, C. S.
Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang, R. J. Polastre,
R. R. Horton, and J. U. Knickerbocker. 3D chip-stacking technology
with through-silicon vias and low-volume lead-free interconnections.
In IBM Journal of Research and Development, November 2008.

[Shm05] Roger R. Shmidt. Liquid cooling is back. Electronics Cooling, 2005.

121

[SHP+09] Amirali Shayan, Xiang Hu, He Peng, Wenjian Yu, Wanping Zhang,
Chung-Kuan Cheng, Mikhail Popovich, Xiaoming Chen, Lew Chua-
Eaon, and Xiaohua Kong. Parallel flow to analyze the impact of the
voltage regulator model in nanoscale power distribution network. In
International Symposium on Quality Electronic Design, 2009.

[SK09a] John Sartori and Rakesh Kumar. Distributed peak power management
for many-core architectures. In Design Automation and Test in Europe,
March 2009.

[SK09b] John Sartori and Rakesh Kumar. Three scalable approaches to im-
proving many-core throughput for a given peak power budget. In High
Performance Computing Conference, December 2009.

[Sma11] SmartGauge. Peukert’s law equation.
http://www.smartgauge.co.uk/peukert.html, 2011.

[SPHC02] Timothy Sherwood, Erez Perelman, Greg Hamerly, and Brad Calder.
Automatically characterizing large scale program behavior. In Inter-
national Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 2002.

[SSH+03] Kevin Skadron, Mircea R. Stan, Wei Huang, Sivakumar Velusamy,
Karthik Sankaranarayanan, and David Tarjan. Temperature-aware
microarchitecture. In International Symposium on Computer Archi-
tecture, 2003.

[ST00] A. Snavely and D. M. Tullsen. Symbiotic jobscheduling for a simul-
taneous multithreading architecture. In Proceedings of International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2000.

[STR08] Maciej Swierczynski, Remus Teodorescu, and Pedro Rodriguez. Life-
time investigations of a lithium iron phosphate (LFP) battery sys-
tem connected to a wind turbine for forecast improvement and output
power gradient reduction. In Stationary Battery Conference, BattCon,
2008.

[TB09] W. Pitt Turner and Kenneth G. Brill. Cost Model: Dollars per kW
plus Dollars per Square Floor of Computer Floor, Uptime Inst. White
paper, 2009.

[Tez] Tezzaron Semiconductor. www.tezzaron.com.

[Tho10] T. Thorolfsson. Two 3DIC case studies: Memory-on-logic and logic-on-
logic. In IBM Research Student Workshop on 3D System Integration,
2010.

122

[TMAP08] Shyamkumar Thoziyoor, Naveen Muralimanohar, Jung Ho Ahn, and
Norman P.Jouppi. Tech report CACTI 5.1. Technical report, HPL,
2008.

[TRfS03] International Technology Roadmap for Semiconductors.
http://public.itrs.net, 2003.

[Tul96] D.M. Tullsen. Simulation and modeling of a simultaneous multithread-
ing processor. In 22nd Annual Computer Measurement Group Confer-
ence, December 1996.

[Uni03] Battery University. Online university education about batteries.
http://batteryuniversity.com/, 2003.

[Uni04] Granich Unikowsky. Allocating decoupling capacitors to reduce simul-
taneous switching noise on chips. MIT PhD Thesis, 2004.

[VHW+07] Balaji Vaidyanathan, Wei-Lun Hung, Feng Wang, Yuan Xie, Vijaykr-
ishnan Narayanan, and M.J. Irwin. Architecting microprocessor com-
ponents in 3D design space. In International Conference on VLSI
Design, 2007.

[WDW10] Yasuko Watanabe, John D. Davis, and David A. Wood. WiDGET:
Wisconsin decoupled grid execution tiles. In International Symposium
on Computer Architecture, 2010.

[Win09] Windsun. Lead-acid batteries: Lifetime vs Depth of discharge.
http://www.windsun.com/Batteries/Battery FAQ.htm, 2009.

[WKX+11] Yanzhi Wang, Younghyun Kim, Qing Xie, Naehyuck Chang, and Mas-
soud Pedram. Charge migration efficiency optimization in hybrid elec-
trical energy storage (hees) systems. In International Symposium on
Low Power Electronics and Design, 2011.

[WSLL10] Dong Hyuk Woo, Nak Hee Seong, D.L. Lewis, and H.-H.S. Lee. An op-
timized 3D-stacked memory architecture by exploiting excessive, high-
density TSV bandwidth. In High-Performance Computer Architecture,
2010.

[YCH07] Hao Yu, Chunta Chu, and Lei He. Off-chip decoupling capacitor allo-
cation for chip package co-design. In the annual conference on Design
Automation, 2007.

[YDT+05] Soner Yaldiz, Alper Demir, Serdar Tasiran, Yusuf Leblebici, and Paolo
Ienne. Characterizing and Exploiting Task-Load Variability and Cor-
relation for Energy Management in Multi-Core Systems. In Workshop
in Embedded Systems for Real-Time Multimedia, 2005.

123

[YKT+09] Hiroshi Yoshikawa, Atsuko Kawasaki, Tomoaki, Iiduka, Ya-
sushi Nishimura, Kazumasa Tanida, Kazutaka Akiyama, Masahiro
Sekiguchi, Mie Matsuo, Satoru Fukuchi, and Katsutomu Takahashi.
Chip scale camera module (cscm) using through-silicon-via (TSV). In
IEEE International Solid-State Circuits Conference, 2009.

[ZHC02] Yumin Zhang, Xiaobo (Sharon) Hu, and Danny Z. Chen. Task schedul-
ing and voltage selection for energy minimization. In the annual con-
ference on Design Automation, 2002.

[ZLI+11] Lu-Lu Zhang, Gan Liang, Alexander Ignatov, Mark C. Croft, Xiao-
Qin Xiong, I-Ming Hung, Yun-Hui Huang, Xian-Luo Hu, Wu-Xing
Zhang, and Yun-Long Peng. Effect of Vanadium Incorporation on
Electrochemical Performance of LiFePO4 for Lithium-Ion Batteries.
In Journal of Physical Chemistry, June 2011.

[ZWX+00] Xunwei Zhou, Pit-Leong Wong, Peng Xu, F.C. Lee, and A.Q. Huang.
Investigation of candidate VRM topologies for future microprocessors.
Transactions on Power Electronics, Nov 2000.

[ZXD+08] Xiuyi Zhou, Yi Xu, Yu Du, Youtao Zhang, and Jun Yang. Thermal
management for 3D processors via task scheduling. In International
Conference of Parallel Processing, 2008.

