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Abstract—Small unmanned aerial vehicles (UAVs) equipped
with sensors offer an effective way to perform high-resolution
environmental monitoring in remote areas but suffer from limited
battery life. In order to perform large-scale remote sensing, a
UAV must cover the area using multiple discharge cycles. A
practical and efficient method to achieve full coverage is for the
sensing UAV to rendezvous with a mobile recharge vehicle (MRYV)
for a battery exchange, which is an NP-hard problem. Existing
works tackle this problem using slow genetic algorithms or
greedy heuristics. We propose an alternative approach: a two-stage
algorithm that iterates between dividing a region into independent
subregions aligned to MRV travel and a new diffusion heuristic
that performs a local exchange of points of interest between
neighboring subregions. The algorithm outperforms existing state-
of-the-art planners for remote sensing applications, creating more
fuel efficient paths that better align with MRV travel.

I. INTRODUCTION

As costs continue to drop for sensors and sensing prod-
ucts, remote sensing is transforming a range of industries,
including energy transfer, border security, climate monitoring,
and environmental surveying and management [1]. Remote
sensing missions face a trade off between access constraints and
resolution requirements. High-altitude aerial or satellite surveys
permit coverage of remote areas but lack the required resolution
while higher resolution measurements from deploying station-
ary sensors or low-altitude craft are limited by road access and
difficult terrain [2], [3].

An emerging application for high-resolution remote monitor-
ing is reducing the economic costs of forest fires, which were
estimated at more than $140B in California in 2018 [4]. Costs
can be reduced and damage mitigated through increased remote
sensing, including powerline monitoring [5], [6], surveying fire
breaks [7], [8], and early detection of forest fires [9]-[11].

Multi-rotor unmanned aerial vehicles (UAVs) equipped with
cameras and relevant sensors offer a cost-effective solution,
enabling close inspection of points of interest (POIs) with
flexible launch and recovery due to vertical take-off and landing
capabilities. Despite their high resolution sensing, UAVs are
limited in aerial endurance and range by their battery life.
For large-scale remote monitoring, trajectories must be planned
over multiple cycles, in between which the UAV must replenish
its energy by either recharging or replacing its battery. Recharg-
ing is a slow process (hours) but can be performed reliably
by autonomous stations. Conversely, replacing a battery is fast
(minutes) but requires complex mechanical solutions. Either
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Fig. 1. Overview of remote sensing paths for a UAV and MRV team, including

rendezvous locations, subregion divisions, and subregion fuel costs, after being
generated by CAR-Diff, the proposed algorithm.
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recharging or replacement can be effective depending on the
desired operational tempo.

One option is to rendezvous with static recharge stations that
either recharge or replace the battery [12]-[14]. Static recharge
stations are most useful when a fixed area is persistently
monitored, such as power plants [15] or regional borders [16],
but would be expensive and inefficient across large regions,
requiring many recharging stations, or at long intervals, such as
monitoring firebreaks [7], [8] or powerline corridor surveying
[5], [6] that are performed on monthly to yearly schedules.

We take an alternate approach of refuel rendezvous with
mobile recharge vehicles (MRVs). A single MRV can replace
an entire network of static recharge stations by traveling along
existing road networks to provide refuelling capabilities as
needed. The MRV-UAV refuelling rendezvous problem is a
form of the Mobile Depot Vehicle Routing problem, an ex-
tension of the canonical NP-hard traveling salesman problem.
Exact solutions can be computed for small problems [17], [18]
but heuristics are necessary for real-world problem sizes of
hundreds to thousands of POIs [17]-[24].

Current state-of-the-art algorithms are insufficient for land-
based refuelling rendezvous, developing MRV paths without
regard to potential travel constraints [19]-[21] or harboring an
inherent assumption that the MRV can get close to the POIs
[17]-[19], which is invalid for remote monitoring missions
where the UAV may travel far from the rendezvous locations.

We propose an algorithm that generates trajectories for
minimum-time remote sensing of a set of POIs by a UAV with
UAV-MRYV refuelling rendezvous called Clustering Aligned to
Roadways with Diffusion Heuristic (CAR-Diff). CAR-Diff is
an iterative two-stage algorithm that first transforms the mobile-
depot vehicle routing problem (VRP) problem into independent
TSPs by clustering the POIs based their aligned distance to the



roadway. The paths through each subregion can then be solved
independently and unconstrained for which efficient methods
exist. Second, we apply our proposed Diffusion Heuristic to
perform local search and exchange between subregions in
order to meet fuel constraints. The Diffusion Heuristic can
be easily tuned between greedy and random behavior through
the adjustment of several parameters. We compare CAR-Diff
against the existing state-of-the-art [18], [24] and report an
improvement of 7.8% avg. (25.6% max.) in monitoring time
and more efficient rendezvous for real-world examples.

II. RELATED WORK

Our specific problem of remote sensing with a fuel-
constrained UAV initially stems from two related research
areas: trajectory planning for an MRV for an already prescribed
set of UAV trajectories [25] and trajectory planning for a fuel-
constrained UAV traveling between static refuelling stations
[13], [14]. The combined problem forms the mobile-depot VRP
(MoD-VRP), a known NP-hard problem [18].

A common approach is to constrain rendezvous to a set of
discretized locations along the path, converting the problem
from a Mobile-Depot VRP to a Multi-Depot VRP. Early work
solved for a single path and a single MRV-UAV pair using a
genetic algorithm to maximizing POIs visited [26] or iterative
heuristics to improve upon an initial approximation [22]. Others
solved with a split heuristic problem, which creates a single
UAV tour and splits it into feasible ones given the UAV’s range
[19]. Maini et al. [18] follow a similar approach with their cut-
and-repair heuristic.

The addition of more autonomous agents beyond a single
UAV-MRYV team dramatically increases the solution space. For
situations that do not have constraints on MRV travel, heuristics
based on genetic algorithms have shown promise [20], [21],
[24], but while a solution can be generated, the solution quality
is typically worse, requiring additional heuristics to fix pathing,
and the solution is very dependent on hyperparameters.

The closest works to our problem of remote sensing are
by Maini et al. [18] and Li et al. [24]. Maini [18] proposes
two exact formulations to solve a VRP with MRV-UAV ren-
dezvous, which can be solved exactly for small problem sizes.
For refuelling rendezvous, the MRV is constrained to a road
network while UAV is only constrained by a inter-rendezvous
travel distance. To solve larger problems, the authors propose
a cut-and-repair heuristic (Repair 2019) that solves for an
approximate path with no constraints and applies constraints
afterwards in an iterative greedy process. Li [24] utilizes a
genetic algorithm termed the memetic algorithm (Memetic
2021). Due to the high complexity of the problem, the algorithm
first attempts to cluster the POIs into subregions, enabling the
memetic algorithm to better explore the solutions space.

The Repair algorithm suffers from an inherent assumption
that the cost of traveling from any POI to a valid roadway
will be minimal due to the greedy nature of selecting return
paths. CAR-Diff addresses the issue by representing rendezvous
locations by a supernode when generating paths with costs
equivalent to the minimum required to travel from a POI to
any rendezvous location. The Memetic algorithm clusters the

POIs but each cluster can be far away from a valid rendezvous
location. CAR-Diff remedies this by creating subregions that
are aligned with the MRV path.

III. PROBLEM FORMULATION

Consider a problem where a set of N POIs G, :=
{q1,...,qn} where ¢; € R? must all be visited in minimal
time by a UAV equipped with appropriate sensors. The UAV
is limited by maximum velocity V,, and fuel F', and we are
interested in the scenario where the region to be covered
exceeds the capacity of a UAV for a single flight cycle and
the UAV must rendezvous with a MRV for refuelling.

The MRV is limited by a maximum velocity V, but has
unlimited fuel, and during each rendezvous, the UAV energy is
replenished through a battery swap, which requires a constant
time of 7,.. MRV travel is constrained to a path represented by
the set of IV, points and linear interpolation between successive
points G, ;== {Ap; + (1 —XA)p,; |0<A<L,j=i+1Vi=
{1,...N, — 1} } where p; € R%. We model the MRV path as
a supernode, which has full connectivity to all POIs with the
edge cost equal to the fuel cost between the POI and the closest
point in G,,.

The POIs and rendezvous supernode form a graph {G,&}
with vertices representing sensing and refuelling locations
G := G, U G, and edges & representing fuel cost for traveling
between those locations. Note: to simplify notation, we use a
generic index ¢ when referencing a vertex of the graph, such
that ¢ € G can represent either ¢; or the closest point within
the supernode G,.

The path between two recharge rendezvous locations is
termed a cycle, and the set of all cycles is denoted as C :=
{1,..., K.}. In order to achieve complete coverage, a single
drone must travel multiple cycles or multiple drones can travel
one or more cycles, depending on the drone availability. The
continuity constraints ensure that each POI is visited once:
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Fuel costs for a given cycle are tracked using the variable z
which is the cost of reaching POI ¢ during cycle c.
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For this work, we assume a linear relationship between fuel
consumption and flight time:

fimi = kptj 3)

where f;_,; is the fuel consumed, k¢ is a constant relating fuel
consumption, and t;_,; is travel time between POIs j and . As
discussed in Sec. IV, our algorithm solves an unconstrained
TSP and then checks for fuel constraint violations during the
Diffusion Heuristic, allowing other more complex models of
energy consumption [27] to be applied without issue.



To ensure a continuous path for each route, a subtour elimi-
nation constraint should be applied each time the optimization
is run and a subtour is found. For a subset of vertices v C G,
we can define the set of edges leaving the subgroup as follows:
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Problem 1: The objective is to visit every POI while minimiz-
ing the mission total time, which includes the time required to
travel between all POIs and the time for each refuel rendezvous,
and being subject to a fuel constraint.
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where xf;) € [0, 1]V*Y indicate if an edge was travelled on
a given cycle ¢, t;_,; is the time cost to travel between g;
and g;, and 7, is the time required for a battery swap during
rendezvous.

IV. CAR-DIFF ALGORITHM

To generate a solution for the Problem 1, we propose
the Clustering Aligned to Roadways with Diffusion Heuristic
(CAR-Diff) algorithm with an overview presented in Alg. 1.
CAR-Diff is an iterative two-stage algorithm that first clusters
the POIs based on distance to a set of subregion generator
points that balance road travel with the density of nearby
points (Sec. IV-A). Each cluster represents a single cycle of
travel for the UAV and a shortest path is found using existing
TSP solvers without fuel constraints (Sec. IV-B). Then, our
Diffusion Heuristic is applied to balance the fuel costs of
each subregion (Sec. IV-C). If fuel constraints are met for all
subregions, the set of paths is returned. Otherwise, the number
of generator points is incremented and the process repeats.

A. Path-Aligned Clustering

Voronoi tessellation (VT) is an efficient method to subdivide
a region based on a set of generator points V := {v. | ¢ €
C} where v, € G, where the union of subregions cover the
entire space. Each generator point v, defines one subregion
R. that consists of the area closest to the generator point as
defined by the L2-norm, such that R, = {p ||[p — vm]ly <
lp —vnlls ¥ m # n}. All POIs are assigned to exactly one
unique subregion corresponding to a generator point and all
points in the subregion must be visited in a single cycle.

When clustering, special attention must be given to the
distance of the cluster to the nearest rendezvous location. Un-
necessary distance between clusters and rendezvous locations
can have a significant impact on fuel consumption. To enforce
that each cycle can form an efficient path, CAR-Diff selects
generator points along the MRV path distributed evenly across
the values of an objective function J, which balances the
number of nearby POIs and the distance traveled by the MRV.

Prior to calculating the objective function, the minimum-fuel
rendezvous location p; € G, and required fuel d; to reach p;

Algorithm 1 CAR-Diff Algorithm Overview
Input: POIs, Fuel Constraint, MRV Path Constraint, Initial
Subregion Count

Output: UAV Paths, MRV Path
1: Compute clustering objective function (Sec. IV-A, Eq. (6))
2: for K. in K.y to N do

Create K. subregions (Sec. IV-A)

4:  Compute TSP path for each subregion (Sec. IV-B)

5:  while Subregion cost not stabilized and H > 1 do

6: Perform Diffusion Heuristic (Sec. IV-C, Alg. 2)

7

8

9

(98]

Recompute TSP path for each subregion (Sec. IV-B)
if Subregion cost stabilized then
: Reduce H by decay factor

10: end if

11:  end while

12:  if All subregions meet fuel constraint (Eq. (2)) then

13: break

14:  end if

15: end for

16: return UAV Paths, MRV Path

are calculated for each POI (Alg. 1, Line 1). The values are
used to compute J as defined per unit MRV path length [ as:

_wy, (- wy)
() = F 1+ Sd > xi(l)d; (6)
where w; balances placement of generator points along the
road with placement dependent on nearby point density, L is
the total length of the road, [ is the travel distance from the
the first MRV point p; to the current linearized position on the
path, x;(1) is a binary indicator if the nearest road intersection
point p; has been passed, and d; is the distance from POI
at ¢; to the nearest rendezvous point. Setting w; = 1 places
generator points evenly along the MRV path while w; = 0
places generator points in proportion to nearby POIs. In our
experimentation, setting 0 < w; < 1 is appropriate as including
both terms balances the increased cycles for servicing dense
regions with the added distance required visit sparse points.
From the objective function J, K. generator points are
selected to evenly divide the range of .J, resulting in subregions
that are aligned with the road. Note that the computation to
form the objective function is only performed once and .J
does not change for successive iterations. An example of the
process is provided in Figure 2, which illustrates the initial POI
distribution, the assignment of each POI to a nearest rendezvous
location, the formation of the objective function J, and the
final subregion divisions derived from K. generator points. The
K. subregions are passed to a TSP solver, which generates a
minimum-cost path for all POIs within each subregion.

B. Pathing

For each subregion, a path is generated that services all points
and begins and ends along the MRV path using OR-Tools [28].
The path starts and ends at the road supernode with actual
rendezvous locations p; generated as the closest road locations
to the first and last POI in the sequence. CAR-Diff solves for
the optimal path without applying fuel constraints, enabling the

%



Fig. 2.

[llustrated example of path-aligned clustering using 300 POIs, w; = 0.1, and K. = 5. (a) Initial distribution of POIs (gray) and road (blue). (b)

Direction and scaled distance to nearest road point from Alg. 1. (c) Flattened road with associated distances. (d) Objective function J (shown in black) and K.
evenly selected generator points where the the red dotted lines illustrate evenly spaced values. (e) Initial segmentation from generator points.

formation of infeasible paths. The fuel cost for each subregion
is used as input for the next stage, the Diffusion Heuristic.

C. Diffusion Heuristic

With a path cost 2(©) for each subregion R., CAR-Diff
applies the Diffusion Heuristic, a local search technique that
exchanges POIs between neighboring subregions to: first, re-
duce maximum subregion cost below the fuel constraint, and
second, reduce the total time cost for the current cycle count.
The Diffusion Heuristic is run for multiple rounds of updates,
iterating between exchanging POIs between subregions and
resolving the visitation order by re-pathing (Sec. IV-B).

Algorithm 2 Diffusion Heuristic
Input: R., H, wy, wy
Output: R, (9
I: Pm.n < Eq. (7)
2: for hin 1 to H do
3 m,n “ {Pm.n}
p"" « Eq. (8)
i & iy
. 20 « remove(Rn, q;), 2" « insert(R,, ;)
8: end for
9: return R, 20

4
S:
6:
7

where i & {p:;} indicates randomly selecting index ¢ in
proportion to probability p; from the set of probabilities {p; },
remove reduces the cost of subregion m, and insert increase
the cost of subregion n by a minimum cost insertion. Note that
R. denotes all C' subregions and that R. is updated by the
diffusion heuristic, resulting in new subregion membership due
to insertion and removal in Line 7.

POIs are selected for exchange stochastically with two coeffi-
cients wy, and w,, that can be tuned to tradeoff between greedy
and random search, the classic tradeoff between exploitation
and exploration. Each round consists of H exchanges of a POI
between neighboring subregions. First, the exchange border and
direction is selected stochastically. Then, a POI is selected for
exchange based on its proximity to the exchange border.

The border and exchange direction are selected stochastically
in proportion to the probability p;; defined by the difference
of fuel costs for each region proportional to the border length
and scaled by a softmax function as follows:

P~ exp (wpCiy)
i
! Zm,nG{l,...,Kc} exXp (wamn)

Cij = by (Zu) _ zU)) wy =

!
Wy,

Fbgug

where p;; is the exchange probability of a POI from subregion
1 to j using scaling factor wy, C;; is the scaled cost difference
between neighboring subregions, b;; = b;; is the border length
between subregion ¢ and j, F' is the maximum fuel constraint,
and b, 4 is the average border length between subregions. For
subregions that do not share a border, the possibility of selecting
the border for exchange is removed by setting C;; = —oo.
Similar to diffusion, the exchange rate scales with the difference
in fuel cost across and the size of the border where higher
difference in neighboring subregion costs and larger borders
result in a higher probability of POI exchange.

The scaling factor w; controls the greediness of the border
selection. As w, — 0, the exchange approaches uniformly
random behavior. Conversely, as w, — oo, the exchange
selection becomes greedy and p;; — 1 for the border between
subregion ¢ and j that has the highest scaled cost difference.

After the border and direction of exchange are selected, a
POI is selected based on its proximity to the exchange border.
For a transfer from subregion i to subregion j, let di- be the
distance to the border for all points in ¢. The POI is selected
randomly using probabilities generated from a softmax function
on the distance to the border weighted by w,,:

)

plid) — exp(wpdy,) 8)
", exp(wydy)

where d; is the distance from POI m to the border between
subregions 7 and j. Unlike the probabilities in Eq. (7), which
must be normalized, p%’] ) from Eq. (8) does not require
normalization since only the points from a single region are

considered at a time for exchange.
The POI selected for exchange is inserted into the path of
the receiving subregion to minimize the increase in total length



from a simple insertion. The direct insertion may result in a
suboptimal path, so after H updates, the path through each
subregion is recomputed using the previously solved path with
insertions as the initial solution to improve convergence.

Once the cost of each subregion stabilizes as defined by
the best known solution not improving for K; iterations, the
number of updates H contracts by a decay factor A, such that
H < \H. If the cost of any region is above the fuel restriction
F and H = 1, then the constraints are deemed to not have been
met and the number of subregions K. is incremented. A new
set of generator points are selected according to the method
outlined in Sec. IV-A and the algorithm proceeds until the
minimum K. that meets the fuel constraints. The end result is
a set of K trajectories, one for each subregion, and an ordered
set of 2 K, points along the road that signify the rendezvous
points between the UAV and MRV.

V. RESULTS

The effectiveness of CAR-Diff for remote sensing was tested
by simulation over one synthetic (circular path with POIs
internal) and one realistic scenario (72 km loop near ignition
point of 2003 Cedar Fire in San Diego). For each, we performed
5 runs of uniformly random distributed 100, 300, 600, and 1000
POIs in the sensing region that were within 2 km to 5 km of
the MRV path. We assume the UAV has a constant velocity of
10 m/s for a 15 km fuel capacity in line with commercially
available UAV systems [29] and a recovery, battery exchange,
and launch time of 7, = 600 s.

We configure CAR-Diff in Random (w, = 0.2), Balanced
(wp = 2.0), and Greedy (wp = 20) exchange configurations and
compare against two state-of-the-art methods: a Repair Heuris-
tic [18] (Repair 2019) and a memetic algorithm [24] (Memetic
2021). For all tests, each algorithm was run sequentially on
the same PC with an Intel i5-8600k CPU at 3.6 GHz and
computation time was limited to 25 min, the maximum time for
a single cycle. The best trajectory found over that time frame
or the final trajectory if the algorithm completed is reported.

A. Comparison Algorithms

The Repair Heuristic [18] solves for an initial tour with
no constraints using the Lin-Kernighan-Helsgaun heuristic.
Progressing along the tour, when the fuel constraint is violated,
a direct path is found by attempting to connect the current tour
point to a rendezvous location, iterating backwards until the
constraint is satisfied. The Memetic Algorithm [24] performs
initial K-means clustering of the regions before application of
a genetic algorithm and local search, iteratively optimizing at
a cluster and local level. We use the recommended parameters
from the original publication ([24], Table II) with an incre-
menting number of clusters until the fuel constraint is met. All
reported times are for the last run of the algorithm, assuming
the correct number of clusters was initially selected.

B. Experimental Results

Improvement in total path cost was normalized to the best
performing state-of-the-art algorithm (Repair 2019). CAR-Diff
outperformed Repair 2019 by 7.8% avg. (25.6% max.) in

Normalized Total Cost
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Fig. 4. Comparison of Repair 2019 [18] (top-left), Memetic 2021 [24] (top-
right), and CAR-Diff Balanced (bot-left) methods for N = 300 POIs near the
origin of Cedar Creek Fire. Note the inefficient pathing for rendezvous with
the Maini algorithm and the inefficiency of clustering using Euclidean distance
when selecting subsets. (bot-right) Performance summary for 100-1000 POIs.

monitoring time across both the synthetic and real-world sce-
narios. For the synthetic example of a circular path, the highest
improvement was achieved for POIs that were distributed up
to 5 km from the MRV path (6.9% average improvement) as
opposed to when POIs were distributed closer to the MRV
path (5.2% average improvement). CAR-Diff was designed for
remote sensing applications where POIs are far or difficult
to access from paths, which these results support. For small
problem sizes of 100 POIs, Repair 2019 and CAR-Diff produce
similar solutions as seen in Fig. 4 (bot-right). The plot was
included to show the limited results that Memetic 2021 could
produce within the time limits of the simulation.

Due to inefficient clustering of POIs that was not aligned to
MRV paths and an inability to perform local swaps between
subregions, the Memetic 2021 algorithm planned more cycles
on average compared to Repair 2019 and CAR-Diff. For 100



POIs in the Cedar Fire loop, Memetic 2021 required an average
of 12.2 refuel rendezvous compared to 7.8 and 8.4 for Repair
2019 and CAR-Diff, respectively. The effect of the design
decisions of Repair 2019, Memetic 2021, and CAR-Diff can
be viewed in Fig. 4, which shows a set of example paths for
the Cedar Fire monitoring example. Note the small clusters
generated by Mimemtic 2021 and the difference in path quality
formed without (Repair 2019) and with (CAR-Diff) clustering.

Computation time for the algorithms is not critical for the
operational tempo of typical surveying missions as this can be
done offline, but it does offer insight into how the clustering of
CAR-Diff results in competitive computation times for larger
problem sizes. For 1000 POIs, the average computation time for
Repair 2019 was 46 s, nearly all on computing an initial path for
repair and average time for CAR-Diff was 117 s (random), 114
s (balanced), and 111 s (greedy). The time to compute CAR-
Diff approaches Repair 2019 for larger problem sizes due to
the exponential complexity of solving the TSP in Fig. 3(bot).
CAR-DiIff solves the TSP many more times than Repair 2019,
but each problem instance is smaller and can be computed
in parallel due to the road-aligned clustering. Memetic 2021
was unable to generate a solution within the allotted time for
any problem size greater than 100 POIs, which required 5000-
7500x the time required by Repair 2019.

VI. CONCLUSION

We proposed CAR-DIff, a two-stage algorithm to plan tra-
jectories for UAV remote sensing with refuelling rendezvous.
By aligning clustering with the mobile recharging vehicle
path, CAR-Diff can generate subregions with low-cost paths
to rendezvous locations. The proposed algorithm can be con-
figured for a tradeoff between computation time and solution
quality with the adjustment of two parameters. CAR-Diff was
compared against existing works [18], [24] and showed up to
25.6% improvement in monitoring time, enabling more efficient
surveying of the environment.
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