
Energy Management in Wireless Mobile Systems Using

Dynamic Task Assignment

Priti Aghera1, Jinseok Yang1, Piero Zappi2, Dilip Krishnaswamy2, Ayse Coskun3, and

Tajana Simunic Rosing1*

1University of California San Diego, San Diego, California, 92093, USA {paghera, jiy011, tajana}@ucsd.edu

2Qualcomm Research Center, San Diego, California, 92121, USA, {dilipk, pzappi}@qti.qualcomm.com

3Boston University, Boston, Massachusetts, 02215, acoskun@bu.edu

* Corresponding author: Tajana S. Rosing

Address:

University of California San Diego

Department of Computer Science and Engineering

9500 Gilman Dr

San Diego, California, 92093, USA

Office : +1 (858) 534-4868

Fax : (858) 534-7029

Email : tajana@ucsd.edu

Date of Receiving: to be completed by the Editor

Date of Acceptance: to be completed by the Editor

Energy Management in Wireless Mobile Systems Using

Dynamic Task Assignment

Priti Aghera, Jinseok Yang, Piero Zappi, Dilip Krishnaswamy, Ayse Coskun, and Tajana S. Rosing

Abstract — Wireless mobile sensing systems are hierarchical and heterogeneous in nature with

components that have different energy and performance capabilities. In such systems allocation of

tasks to different devices affects both performance and the entire system battery lifetime. In this paper

we formulate the problem of optimal task assignment with objectives related to minimizing the total

system energy consumption and maximizing the system lifetime as an Integer Linear Program (ILP).

We describe a heuristic algorithm and two dynamic graph-based partitioning algorithms that are

computationally efficient and that are able to adapt in real-time to changing system conditions. ILP

based solutions are able to achieve optimal task assignment, but cannot be used in dynamically

changing conditions due to their computationally expensive nature. We evaluate the performance of

our three dynamic algorithms using Qualnet and show that they have up to 88% longer system

lifetime than the ILP based solutions.

Keywords — Energy minimization, system life, task assignment, graph partitioning, mincut,

distributed processing, sensors, healthcare, wireless communications.

1 INTRODUCTION

Recent years have witnessed the grow of two technologies: (1) wireless mobile systems able to

provide wide coverage and seamless connectivity with personal devices, and (2) low-cost, miniature

physiological sensors which can be organized in Body Area Networks (BAN) and provide continuous

collection of personal data. The union of mobile systems and BAN enables the development of a large

number applications in healthcare [1], gaming [2] [3], sports [4] and education [5].

BAN is a Wireless Sensor Network (WSN) whose nodes are worn by the user and whose job is to

collect physiological signals [6]. Data from the body worn sensor nodes is forwarded to a sink node

carried by the user which stores it locally [7][8] or sends it to a server [9][10]. Mobile sensing

systems extend the BAN by adding a Local data Aggregator, LA, (i.e. a cell phone or a PDA) and a

Back End server, BE [11][12][13]. Within a mobile sensing system, the LA acts as the interface

between the user and the rest of the system, and provides enhanced computational and memory

capabilities to analyze the data from sensor nodes, provide feedback to the user, and seamless

connectivity between the BAN and the BE.

Typically data processing in mobile systems is centralized (all on the BE). In many applications it

is not possible to always have reliable connectivity to the back end servers. Furthermore, since the

cost of computing data locally is lower than wirelessly transmitting it [14][15], a more energy

efficient approach is to distribute tasks among different devices (the Sensors of the BAN, the LA and

the BE). However, efficient task allocation in a heterogeneous system is challenging due to

performance and energy constraints of LA and BAN.

In this paper we present and compare three different dynamic task allocation algorithms:

DynAGreen, DynALife and DynAGreenLife which address the following objectives respectively:

Minimizing the system energy – DynAGreen. System energy is defined as the total energy

consumed by all mobile components (i.e. sensors and LA) in the system. Minimizing the system

energy can result in a significantly different battery lifetime in heterogeneous devices due to the

uneven workload distribution. Since the system lifetime is the minimum battery lifetime of all devices,

minimizing system energy, while fair across nodes, may result in a node being depleted of its battery

energy faster, resulting in a shorter overall system lifetime.

Maximizing the system lifetime – DynALife. System lifetime is defined as the time from the start

of operation to the point in time when the first battery-operated device is out of energy. Due to

heterogeneity of the system, each device can have a very different battery capacity. Thus, optimizing

for system lifetime leads to significantly different task allocation as compared to the previous one.

Balancing the system energy and lifetime – DynAGreenLife. This objective balances the trade-off

between minimizing system energy and maximizing system lifetime.

We demonstrate the effectiveness of our algorithms by comparing them with the state of the art

Integer Linear Programming (ILP) based optimizations shown in Section 4. ILP solutions can find an

optimal task assignment for smaller problem formulations; however, this comes at a prohibitive

computational cost in dynamic scenarios and for larger problem sets. Similar approaches have been

used by other publications, such as in [35]. We compare our dynamic approaches to the static ILP

solutions and show in Section 6.1 that in static conditions our dynamic algorithms are within 0.001%

of the optimal ILP solution. Furthermore, we provide a detailed comparison to a quasi-dynamic table

based ILP solutions which provide an optimal solutions for when a mobile is near a base station, with

ILP-near, far from the base station, with ILP-far, and where mobile frequently changes direction,

with ILP-flip-flop. We show in Section 6 that our dynamic algorithms still outperform these table-

based ILPs by as much as 88%.

The rest of the paper is organized as follows. Section 2 discusses the prior work in wireless

healthcare. Section 3 provides a formal description of the system model and the task binding problem.

Section 4 describes state of the art ILP-based static techniques for the energy management in wireless

healthcare systems. Our dynamic assignment techniques are described in Section 5. Finally, we

present the results in Section 6, and conclude in Section 7.

2 RELATED WORK

The combination of body area networks and mobile systems that allow ubiquitous connectivity

have found recent application in wireless healthcare. Within the Mobihealth [16] European project, a

complete end-to-end m-health platform for ambulant patient monitoring, has been deployed over

UMTS and GPRS networks. The platform is based on a body area network which includes an ECG

sensor, a respiration sensor, an activity/movement sensor and a pulse-oximeter. This network

forwards the collected raw data to applications running on the backend. In [16], Dabiri et.al. have

presented the Electronic Orthotic Shoes system as a means of ulcer prevention for patients suffering

from neuropathy. There are many other systems such as Alarm-Net [18], SmartCane [19], I-Living

[20], and PAMM [21] to aid the elderly in their day-to-day lifetime. Similarly, [19] is an example of a

wireless preventive healthcare system.

Most state of the art solutions follow a sense-and-forward model where data is gathered by the

sensors and sent to the back end server for processing. Previous work has shown that transmitting or

receiving a bit wirelessly is significantly more expensive than processing the bit locally on a sensor

node microcontroller [14][15]. Thus, the sense-and-forward model may lead to significantly lower

system lifetime. Distributed task allocation is one way to extend the lifetime.

There is quite a bit of previous work on energy optimization in wireless sensor networks using

dynamic task assignment. In [22], the static EcoMapS algorithm is proposed for energy constrained

applications in single-hop clustered WSNs with homogeneous nodes, to map and schedule

communication and computation simultaneously. EcoMapS schedules tasks with the minimum delay

subject to energy consumption constraints. A quick recovery algorithm is executed to generate an

alternative schedule if a sensor fails. This technique works for homogeneous sensor networks, but

does not consider the case where nodes have different characteristics. An algorithm for task mapping

and scheduling in multi-hop homogeneous WSNs with real-time guarantees is proposed in [23].

Sensor network nodes are grouped in homogeneous clusters which execute an application and

communicate via a multi hop network. Thus, these results cannot be applied to sensor networks where

nodes have heterogeneous capabilities and are organized in a hierarchical manner.

Although task mapping and scheduling techniques have been applied to wired and wireless sensor

networks, very little has been done in wireless sensing systems with heterogeneous nodes organized

hierarchically. In [24], a technique based on an offline Maximum-Flow Minimum-Cut followed by

dynamic adjustment is proposed. This work schedules a set of tasks on a mesh network of nodes in

order to minimize the total network energy consumption. Dynamic adjustments are applied to reduce

the workload of nodes whose energy is below a fixed threshold. This solution makes the unrealistic

assumption that there are no constraints on the energy consumption of the local aggregator.

Furthermore, the time complexity of the proposed dynamic adjustment step can be more than

exponential in the worst case scenario, which makes it infeasible for complex systems made up of a

large number of low-power nodes.

Task assignment and scheduling for multiple devices are classical problems in traditional

computation and parallel computing [25][26][27]. Stone [27] provided a graph-based partitioning

solution to efficiently assign program modules in a two-processor, distributed computing system to

minimize the total execution time of system tasks. In our earlier work we propose a static, ILP based

solution that minimizes the maximum fraction of energy consumed with a specific task and device

binding [36], and then follow up by designing a simple heuristic solution that maximizes the system

lifetime in [37]. We also leveraged Stone’s min-cut graph method [27] and applied it to task

partitioning to optimize for the energy savings [38]. While both heuristic algorithms are compared to

their representative ILP solutions, they are not compared to each other, and are not studied under

more realistic conditions.

The work presented in this paper focuses on reducing the total energy consumption and maximizing

lifetime of mobile sensing systems by performing dynamic task assignment and scheduling. Unlike

most prior work in WSN and BAN task assignment, our strategy is able to work with a heterogeneous

set of nodes with various performance and energy characteristics and varying communication

capabilities. Our technique can adapt to changing system and workload characteristics at runtime,

such as varying wireless channel conditions, processing load, network load, task arrival rates, and the

available battery capacity of the devices. In this paper, we introduce a new objective in addition to

the system energy and lifetime optimization: we balance the tradeoff between system energy and

system lifetime using a graph based approach. We also propose an extension of our technique that

can perform energy efficient task allocation for specialized task sets, which distribute their output to

multiple dependent tasks (i.e. task out-degree greater than 1). This is particularly challenging since

the energy costs associated with data transmission depend on the tasks allocation and are not known a

priori. We provide a complete comparison between all three different objectives of our dynamic

algorithms, and comparisons to ILP-based solutions for each objective along with a table-based ILP

lookup method that provides a fast way to estimate a solution in dynamic conditions from pre-

computed ILP results. Furthermore, we study in depth how our algorithms behave in more realistic

dynamic scenarios by leveraging through Qualnet simulation [34] and show in Section 6 that our

dynamic algorithms outperform the table-based ILPs by as much as 88%.

3 SYSTEM MODEL

The architecture of the mobile sensing system addressed in this work is shown in Figure 1. The

system consists of three main components: Sensors, a Local Aggregator (LA), and a BackEnd Server

(BE). The sensors detect specific events on a human body and/or in the environment (e.g., low blood

sugar, CO level, ozone level) and send processed and/or raw sample data to their respective LA

wirelessly. No direct communication between sensors is available. Sensors can send and receive data

only through the LA. The LA aggregates sensor data and may process the data before sending it to a

centralized BE. It typically has multiple wireless technologies, such as Bluetooth and Zigbee to

communicate with sensors, and WLAN and WWAN to communicate with the BE. The BE in turn

receives the information from the LA and stores it in a database. The BE can also use the received

information for generating real-time alerts. In this heterogeneous architecture, the devices can differ

widely in their processing capabilities, battery charge, communication bandwidth, communication

range, and the types of radios.

Tasks of a mobile sensing application can be modeled as a Directed Acyclic Graph (DAG) G=(T,

C) where node set T represents a set of n sensing/processing tasks, Ti: i = 1, 2, … n, and C is a set of

edges that represent communication tasks between nodes, Cij : i, j = 1, 2, … n. Cij ∈ C represents a

precedence relation between tasks Ti , Tj ∈ T and the data produced by task Ti should be

communicated to Tj before Tj can start its processing. The weights wij on edge Cij ∈ C represent the

amount of data that needs to be transmitted from task Ti to Tj. Tasks that do not have any predecessors

are called source tasks, and tasks that do not have successors are called sink tasks. Generally, source

tasks are used for sensing and the sink tasks are used for data logging at the BE.

Given a DAG and a set of heterogeneous resources, our goal is to map the given DAG onto the set

of resources, R, such that i) the total system energy consumption is minimized; or ii) the system

lifetime is maximized; or iii) system energy and system lifetime are balanced. In this paper we use the

term resource to refer to nodes in a mobile sensing system: Sensors, LAs and/or BEs. The energy

consumed by all the battery-operated devices (Sensors and LA) is the total energy consumption. The

system lifetime is defined as the minimum of the battery lifetimes of all the mobile components

carried by the same user as this is what is important from each user’s perspective. Task allocation

must consider the hierarchical and heterogeneous nature of the system, which requires that some tasks

are bound to specific devices. For example, sensing can only be performed by the sensors of the BAN

and not by the BE. We assume that all the tasks that a device can execute are precompiled and loaded

in the device’s memory. This reduces the cost and time associated with device reconfiguration.

Tasks of the DAG are further characterized by a set of variables and constants given in Table 1. A

task i’s execution time is defined by tir and amount of data transmitted to task j is defined by wij.

Table 1 also defines variables and constants (EBr , PRr , PTr , PEr , µRr , µTr) to characterize a resource

r. These variables together define communication and computation energy cost of task i on resource r.

For example, ERir defines the energy consumed by task i to receive its input data on resource r. This is

calculated from resource r’s receive power PRr, its average receive data rate µRr and time to receive

task i’s input data from its predecessor task j is given by (Rrijw m). The receiving energy cost of a

task is nonzero only when the task’s predecessor is bound to a different resource than that of the

current task. Similarly ETir defines the transmit energy associated with task i on resource r. A task i’s

computation energy is given by PEr × tir. The total energy Er consumed by a resource r, is the sum of

the computation energy of all tasks assigned on r, the energy to receive input of these assigned tasks

and transmission energy to transmit the output of these tasks to its successor on other resources.

Additional communication tasks are added in the task graph for the case where a sensing or

processing task is executed on a sensor and its successor task is mapped to the backend server. In this

case, the data needs to be transferred through the local aggregator and the energy cost of this transfer

needs to be accounted for. By binding the communication task to the local aggregator, we can

calculate the energy cost of this transfer of data which would simply be the energy needed to receive

and transmit the data on the local aggregator.

A sample DAG for activity detection application is shown in Figure 2. The system includes three

accelerometers which are worn on hand, waist and leg to determine whether a person is sitting

walking or running. The three sensing tasks act as source tasks. Activity-Count1-2-3 are the

successors of their respective sensing tasks. These processing tasks generate activity count from the

accelerometer sensed data. Acc-Correlation is a processing task that combines the output of its three

predecessors and determines the current activity of the person. Activity-log is a sink task bound to BE

to store the activity log for future analysis by a medical professional, physical activity trainer, etc. In

this task graph ACC1, ACC2 and ACC3 are the source tasks and so they do not have any predecessor.

Activity Count1, Activity Count2 and Activity Count3 are the successors of ACC1, ACC2 and ACC3

respectively. Hence, sucACC1,ActivityCount1 = 1, sucACC 2,ActivityCount2 = 1, sucACC3,ActivityCount3 = 1,

predActivityCount1,ACC1 = 1, predActivityCount2,ACC2 = 1 and predActivityCount3,ACC3 = 1. Each of the tasks in a

task graph has start time si, an end time τi and a deadline di associated with it. To maintain the task

precedence, the start time of a successor should be greater than the end time of its predecessor. Thus,

in this task graph, sActivityCount1 > τACC1.

We next outline the ILP based optimization used to obtain the initial task assignment for our

dynamic task allocation algorithms described in Section 5. The ILPs are also used for comparison to

our dynamic solutions.

4 OPTIMAL STATIC TASK ASSIGNMENT

Integer Linear Programs (ILP) optimization is a state of the art technique that has been used to

compute the optimal task assignment in smaller size wireless sensor networks [28]. Two main

objectives are defined: i) ILPGreen - minimizing system energy ii) ILPLife - maximizing system

lifetime. These static solutions act as a baseline for comparison with the dynamic algorithms

presented in this paper. Furthermore, they provide the initial task assignment to dynamic solutions.

ILPGreen computes the most efficient task allocation that minimizes the total energy consumption

of the system. It distributes the tasks among the different nodes in the system (backend, LA, and

sensors) to make the entire system as energy efficient as possible. The format of the task graph is

the same as the DAG previously described, except that we add an explicit communication task in

between two dependent sensing/processing tasks to simplify the ILP formulation. Figure 3 shows a

sample graph transformation. From the graph, we can determine each task’s predecessors, successors,

amount of data needed from previous tasks, and the amount of data it produces. ILPGreen assigns

tasks with the aim of reducing the total energy consumption, which may actually result in more work

being assigned to a resource with relatively low battery charge. As a result, that resource would

discharge earlier, ultimately resulting in shorter system lifetime.

We next define ILPLife that maximizes the system lifetime using a min-max formulation on the

rate of energy consumption relative to the available battery capacity of each node. ILPLife has the

same constraints, constants and variables as ILPGreen but computes the optimal assignment with the

goal of maximizing system lifetime. This approach balances the energy consumption of all resources

so that each resource consumes approximately the same percentage of energy, since any resource

consuming a higher percentage of energy than the others would deplete the battery capacity first, and

shorten the overall system lifetime.The complete formulation of ILPGreen and ILPLife with goals

and constraints are given in Table 2 while all the variables and constants used are defined in Table 1.

Among the resources r, resource m denotes the backend server and resource m-1 denotes the local

aggregator. We solve the above ILPs’ for bir, the mapping of tasks i to resources r. Variable Er

represents the total energy consumed by a resource after tasks have been assigned to it. For ILPGreen,

our goal is to minimize the sum of energy consumed by all the resources except BE i.e. sum of all Er.

Our goal for ILPLife is to minimize the maximum percentage of energy consumption among

resources. In Table 2, Er/EBr represents the percentage of energy consumed by a resource r.

The constraints of the ILP are described in Table 2. Constraint (a) ensures that tasks are assigned to

only one resource. Constraint (b) states that a resource is not assigned to more tasks than the resource

has energy for. Resource allocation constraints (c), (d), and (e) ensure that all predecessor tasks of a

task are allocated to neighboring resources and that are able to communicate with each other.

Constraints (f), (g), and (h) are related to timing and delays. Constraint (f) ensures that tasks do not

start before their predecessor tasks have finished. Constraint (g) determines when a task finishes by

calculating the time it takes to receive, execute, and send the data. The deadline constraint (h) makes

sure that all tasks with deadlines finish on time.

In a practical system, we should be able to adapt to the various sources of runtime variations, such

as wireless channel condition changes due to a person moving inside of a building, or task execution

time changes due to more processing required in certain situation, or the introduction of new tasks.

Changes in wireless channel conditions result in changes in communication energy cost, while

changes in execution time affect computation energy cost. Since LA is a central component in our

system, it can easily keep track of varying system parameters without too much communication

overhead. Because of this, any dynamic task assignment algorithm should be run on LA at regular

intervals, or whenever the system parameters change.

We use an open source ILP solver, lp-solve [29], to get the optimal task assignment for each of our

task sets. Figure 4 shows the execution time of lp-solve on a 1.8GHz processor for various task sets

and compares it to runtime of dynamic algorithms described in next section. As the number of tasks

in a task set increases, the execution time of lp-solve increases exponentially and quickly becomes

prohibitively high to execute on the LA. Because of this, the ILP based solution is not practical and

cannot be deployed on the LA. To address this challenge, we have designed three fast task assignment

algorithms. These algorithms have very low computational overhead compared to ILP as shown in

Figure 4. While for more complex task sets the ILPs take close to 1000 seconds, the DynAGreenLife

algorithm presented in this paper runs in under a millisecond, more than a million times faster. Hence

the dynamic algorithms can be run frequently to find energy efficient task assignments in changing

environments. The following section describes these algorithms in detail.

5 DYNAMIC TASK ASSIGNMENT

We have designed three fast and energy-efficient task assignment algorithms: DynAGreen to

minimize total energy consumption; DynALife, to maximize the system lifetime; and DynAGreenLife

which balances the two objectives. These dynamic algorithms run periodically on LA to find an

energy-efficient task assignment. They monitor task energy consumption, node communication costs

and battery charge, and then compute the task assignment that meets the objectives. We assume that

the firmware on each sensor node and the application on the LA already include all the possible tasks

that a device may execute. Thus, once a new task assignment is computed, a simple reconfiguration

message is sent to the sensors to activate an already-present task. This approach reduces the time and

energy cost associated with device reconfiguration and has been used in previous work for wireless

sensor networks [29].

Each algorithm uses a hierarchical flow graph partitioning technique to partition tasks between

different components (BE, LA, sensors) which follows a common pattern composed of two steps. In

the first step, a flow graph constructed from a given task graph is partitioned between a server with

unlimited energy supply, BE, and a super- node referred as BAN that has both the LA and the sensors.

Weights on the edges in the flow graph represent communication and computation energy costs of

performing a task on BAN or BE. Partitioning is done using a maxflow/mincut algorithm. The

minimum weight cutset represents the energy cost if tasks are partitioned by the cutset. This provides

the partitioning of tasks that minimizes the energy consumption between the BE and the BAN. In the

second step, we partition the tasks within the BAN between the LA and the sensors to minimize the

utilization of energy within the BAN. We use the implementation of mincut/maxflow algorithm

proposed in [31] to implement our two stages of the hierarchical graph partitioning technique.

The following subsections first describe the energy minimization algorithm DynAGreen followed

by DynALife for system lifetime maximization and then we introduce DynAGreenLife algorithm

which balances both objectives.

5.1 DynAGreen Algorithm

The DynAGreen algorithm minimizes the total system energy consumption. Figure 5 shows the

outline of the DynAGreen algorithm. The step numbers listed below correspond to those in Figure 5.

I. Initialization: Energy cost parameters (ECPUa, ECPUi) and communication energy cost

parameters (Etx , Eidle, Erx) for all resources are initialized/updated. Here ECPUa(r) and

ECPUi(r) represent the energy consumed by a CPU in active and idle states respectively, Etx,

Erx, and Eidle represent the energy consumed by radio in transmit, receive and idle states

respectively. In the first run of the algorithm they are initialized with default values, while in

the subsequent runs they are updated based on the radio interface monitoring.

II. BAN-BE Partitioning: Tasks are partitioned between BAN and BE so that the total of

computation energy cost of performing tasks in BAN partition and communication energy

cost of sending output of those tasks to BE is minimum. To achieve this objective we

transform the task graph into a flow graph with communication and computation energy

costs as flow values, BAN as a source node and BE as sink node so that the minimum

weight cutset represents the total of computation and communication energy cost for the

partition. Following is a formal description of this transformation:

· A flow graph G' = (T', E') from a given task graph G = (T, E) is created by adding BAN

and LA nodes to T and adding EBAN and EBE edge sets to E. EBAN and EBE represent

the energy costs of computation while the edges in E represent the energy costs of

communication. Formally, T' = T∪{BAN, BE} and E'=E∪EBAN∪EBE. The BAN

node represents the sensors and LA.

· Defition of EBAN: EBAN is a set of edges from BAN to the each node t in T. The weight

of edge (BAN, t) corresponds to the computational cost of task t on BE and it is

defined by w(BAN, t) in Table 3. The rationale behind this weight assignment is that

if a mincut includes edge (BAN, t) then it means that t is in BE partition and the

computation cost of performing this task on BE is added to the weight of the cutset.

Being powered from power line, BE has unlimited energy, so in Table 3 the

computation energy cost of performing a task on BE to is set to 0. If a task t is bound

to a BAN, the minimum weight cutset should not include edge (BAN, t). We achieve

this objective by setting the weight of the edge (BAN, t) to ∞ (see Table 3).

· Defition of EBE: EBE is a set of edges from each node t in T to BE. The weight of edge

(t, BE) is equal to the computational energy cost of executing task t on BAN as

defined by w(t, BE) in Table 3 (ECPU(t, LA)). The rationale is the same as for (BAN,

t) weight assignment. If a mincut includes edge (t, BE) it means that t is in the BAN

partition and the computation energy cost of performing this task on BAN is added to

weight of the cutset. If the task is bound to a BAN we set its weight to 0. If the task is

bound to BE we set its weight to ∞ .

· Edge(tp, ts) in E represent the inter-task communication link between the predecessor

task tp and its successor task ts. The weight of edge (tp, ts) is equal to communication

cost of sending tp’s output from LA to BE. This value is defined in Table 3 as wwan(tp,

ts), where Eradio(tp, LA) is the communication energy consumed by task tp on

resource LA.

III. Min-cut partitioning: We find the minimum weight cutset to partition the constructed flow

graph into BAN and BE partitions. In [27] Harold Stone proves that such a minimum weight

cutset provides the optimal task assignment for a two processor system. Thus, our BAN-BE

task partition results in the minimum energy cost.

IV. Task allocation: Since we found the minimum energy cost partition between BAN and BE,

tasks in BE partition are assigned to BE while tasks in BAN partition need to be assigned

between Sensors and LA in the subsequent steps of the algorithm. Define TTBAN Í as a set

of tasks in BAN partition and EEBAN Í as a set of edges among tasks in TBAN.

V. Sensor-LA Partition: All the sensors are collectively represented by a single source node

Sensors and LA is represented by a single sink node LA in Sensors-LA flow graph. All tasks

trace back to one or more sensing tasks by following their predecessor chain. These sensing

tasks are pre-assigned to sensors or LA, depending on what device they are bound to. For

example, a processing task that receives its input from more than one sensor cannot be

assigned to a sensor since in our system sensors do not communicate with each other

directly. Such a task is assigned to LA or BE. By assigning appropriate weights on the edges

in flow graph, we ensure that such tasks cannot be in the Sensors partition. This also implies

that if a task is in the Sensors partition, it should receive its input from only one sensor.

Even though Sensors node in the flow graph represents multiple sensors, after finding

mincut, we can assign tasks in Sensors partition to the appropriate sensors. Similar to BAN-

BE partitioning, we partition tasks between Sensors and LA so that the total of computation

and communication energy cost of the system is minimized. The minimum weight cutset of

Sensors-LA flow graph represents the total of computation and communication energy cost

for the partition. Following is a formal description of this transformation:

· Create Sensors-LA partition: We create a new flow graph G" for Sensors-LA partition

using the tasks in BAN partition along with Sensors, LA and a set of proxy nodes.

Proxy tasks, Tproxy, are bound to LA and represents the communication energy cost of

sending data from LA or sensors (through the LA) to BE. A proxy task for each task

in TBAN whose successors are assigned on BE is added. The edges of this new graph

consist of the following edge sets: Esensors and ELA, which represent the computation

energy cost of the tasks on sensors and LA respectively, and Eproxy , which gives the

communication energy cost of tasks. Formally G" = (T", E"), where T" = (TBAN

∪Tproxy ∪{Sensors, LA}) and E" = (EBAN ∪ ESensors ∪ ELA ∪ Eproxy).

· Definition of ESensors: ESensors is a set of edges from sensor nodes to each node t in TBAN

∪ Tproxy. Its weight is equal to the computational energy cost of running task t on LA

(w(Sensors, t) in Table 4). The rationale is that if a mincut includes edge (Sensors, t)

then it means that t is allocated on LA and the computation cost of performing this

task on LA is added to weight of the cutset. If a task t is bound to a sensor, we ensure

that a minimum weight cutset does not include the edge (Sensors, t) by setting

w(Sensors, t) = ∞ (see Table 4). Similarly if a task t is bound to LA, we set

w(Sensors, t) = 0.

· Definition of ELA: ELA is a set of edges from each node t in TBAN ∪ Tproxy to LA whose

weight is equal to the computational energy cost of running the task t on the Sensors

(w(t, LA) in Table 4), where ECPU(t, Sensor) is the computation energy cost of

running the task t on a sensor). If a task receives input from multiple sensors, it is

bounded to LA and has w(t, LA) = ∞ to ensure that this edge does not become part of

minimum weight cutset. If a task t is bound to a sensor, w(t, LA) = 0 to ensure that

the edge (t, LA) is part of the minimum weight cutset. For tasks t that are not bound

to a sensor or LA, we find the sensor generating its input (by traversing task’s

predecessor chain) and we use that sensors processing costs to set the computation

energy cost of the edge.

· Definition of Eproxy: Eproxy is a set of edges (tp, ts) where tp ∈ TBAN and ts ∈ Tproxy. EBAN

is a set of edges (tp, ts) where tp, ts ∈ TBAN. The weight of an edge edges (tp, ts) ∈

EBAN ∪ Eproxy represents the communication cost of transmitting tp’s output from its

source. In Table 4 is given by wban(tp, ts) where Eradio(tp, Sensor) is the

communication energy consumed by task tp on the resource Sensor.

VI. Min-cut partition for Sensor & LA: We find the minimum weight cutset to partition the

constructed flow graph into Sensors and LA partition. This task partition results in a task

assignment that has minimum energy cost. Sensor-LA partitioning is explained in detail

below.

VII. LA & sensor task allocation: Tasks in Sensor partition are assigned to respective sensors

and tasks in LA partition are assigned to LA. Even though Sensors the node in flow graph

represents multiple sensors, after finding a mincut, we can assign the tasks in Sensors

partition to the appropriate sensor by traversing the task predecessors chain until we find the

source sensing task. The task is assigned to the same sensor node.

VIII.Parameter updates: To detect the changes in system characteristics, communication

parameters such as transmit power and time spent in various states (receive, transmit, idle,

sleep) by the radio on each resource are measured and updated. This measurement is done

over Least Common Multiple (LCM) of the period of all tasks in the task graph. The

algorithm restarts whenever significant change (in our case 30%) in the communication cost

parameters is detected.

We use the task set initially introduced in Figure 2 to provide an intuitive explanation of the

algorithm, starting with BAN-BE partitioning and then Sensors-LA partitioning steps.

BAN-BE Partition: Figure 6 shows the flowgraph G' for the BAN-BE task partition constructed

from the graph shown in Figure 2. Notice that we added two new nodes BAN and BE to the original

graph. All the edges from BAN to the tasks have the computation cost of running tasks on BE as their

weights (see Table 3). We set the computational cost of running a task on BE to zero since it does not

affect battery lifetime of sensors or LA. For example, the edges from the BAN node to tasks 3, 4, 5, 6

and 7 have weight of 0 in Figure 6. If a task is bound to a specific sensor or LA, we make sure that the

edge between BAN and the task does not become a part of minimum cutset. This is ensured by

assigning a weight of ∞ to these edges. Since in our example tasks 0, 1, and 2 are bound to their

respective sensors, weights of edges from BAN to tasks 0, 1, and 2 are set to ∞.

All the edges from tasks to BE have the computation costs of running them on LA. Their weights

are set as shown in Table 3. For example, edge from task 3 to BE has energy cost ECPU(3, LA). For the

tasks that are bound to either sensors or LA, we ensure that the edge from that task to BE is a part of

minimum cutset and hence we set it 0 in Table 3. If a task is bound to BE we ensure that an edge from

given task to BE is not part of minimum cutset and hence we set the weight to ∞ as in case of Activity

Log task in this example.

The weights of the edges between the tasks represent the communication cost. For example, the

weight of the edge between task 0 and task 3 represents the amount of energy required to send output

of task 0 from LA to BE. Table 3 summarizes how these weights are defined. We use LA’s wide area

network radio energy parameters for these cost calculations, since we are trying to find the tradeoff

between computing a given task on BAN and then sending its output to BE, or sending the input of

given task from LA to BE. In our specific example, communication cost of sending input of task 3 to

BE (3.145) is quite high compared to summation of communication cost of sending its output to BE

(1.51) and computation cost of doing task on LA (0.231). Figure 6 shows the minimum weight cut set

for the example task set. This provides the energy cost optimal assignment for BAN-BE partition as

per [27]. As a result of this, task 7 is assigned to BE.

Sensor-LA Partition: Figure 7 shows the flowgraph G" for the Sensors-LA task partition

constructed from graph G'. Nodes representing the Sensors and the LA are added to the tasks graph. In

our example, we also add an ACC Correlation Proxy task 6 because its successor is assigned on BE.

Therefore, if task 6 is assigned to a sensor we take into account also the fact that the LA should

forward the task output to the BE. Given the hierarchical nature of our system which do not allows

inter-sensor communication link, we cannot assign a task to a sensor if it receives its input from

multiple sensors sources. In our example ACC Correlation is bound to LA. The edges weights are

defined in Table 4. Figure 7 shows minimum weight cut set for Sensor-LA partition. All tasks in LA

partitions are assigned to LA. Note that if a task and task’s proxy are both in LA partition, we ignore

the proxy task since it is only required if its corresponding task is not assigned to LA.

In Figure 4, we compare the execution time of ILP-Green and DynAGreen when run on a PC. The

computational time of ILP is three order of magnitude higher (seconds) than DynAGreen’s execution

time (milliseconds). ILP-Green execution time increases exponentially with a number of tasks in the

task graph as indicated by Figure 4. Because of this low computational overhead compared to ILP-

Green, our approach enables frequent adaptation to dynamic changing system parameters.

5.2 DynALife Algorithm

In this section we describe a fast and energy-efficient task assignment algorithm called DynALife,

designed to meet the objective of maximizing the system lifetime. System lifetime is defined as a

minimum of battery lifetime of all devices in the mobile sensing system. Cellphones and sensors can

have different battery charge capacity and different rate of energy consumption. To maximize the

system lifetime, we need to assign tasks such that node with the least battery charge gets the least

amount of work. DynAGreen algorithm does not consider the remaining battery charge of a device

while assigning tasks and hence minimizing energy consumption using DynAGreen algorithm does

not always maximize the system lifetime. For example, let’s say at the time of assignment shown in

Figure 9 computed by DynAGreen, LA has only 10% battery charge remaining while all sensors have

80% of their battery capacity remaining. In this scenario we can reduce the workload on LA by

assigning Activity Count tasks to sensors instead of LA and thus increase the system lifetime.

Figure 10 outlines DynALife heuristic algorithm. We assign the tasks one at a time starting from the

source tasks. In each case we select a task assignment that maximizes the system battery lifetime

compared to all other task assignments possible at a given stage that also meet the task deadline. We

perform this operation iteratively until all tasks are assigned. After the initial assignment we iterate

over the assignments and reexamine each task’s assignment to see if an alternative assignment can

improve the system lifetime. We end the algorithm when further iteration does not improve the

system battery lifetime. Following are the definitions of the variables used by the algorithm: T : set of

n tasks in the system, TP Í : set of pre-allocated tasks, TAÍ : set of already assigned tasks, TR Í :

set of unassigned tasks, and TE Í : set of eligible tasks. Algorithm steps are shown in Figure 10.

For more details see [37]. The complexity of the entire DynALife algorithm is O(n3log(n)).

DynALife targets the most critical energy resource node (either the local aggregator or one of the

sensors) in a system with M nodes, and ensures that this critical node is assigned the least amount of

tasks in the system so that its lifetime is elongated as much as possible using the min-max

formulation. However, this process neglects how energy is distributed between the remaining (M-1)

nodes. Thus, we need a dynamic task assignment algorithm that maximizes the system lifetime while

consuming less energy. To address this challenge we designed a third algorithm, which we call

DynAGreenLife, that balances both system lifetime and system energy consumption.

5.3 DynAGreenLife Algorithm

In this section we describe DynAGreenLife that jointly optimizes for both system energy

consumption and system lifetime. DynaGreenLife effectively attempts to minimize a weighted energy

objective function ∑(wr *Er) where wr is proportional to the reciprocal of 1/EBr. When wr = 1, then

the objective function for DynaGreenLife reduces to that of DynaGreen. When wr is 0 for all nodes

except the one which has the fastest battery drainage (for which wr = 1/EBr), then the objective

function reduces to the min-max formulation for the objective function of DynaLife. DynAGreenLife

has exactly the same steps of DynAGreen except for step 5, the Sensors-LA partition. In the first step

we initialize or update the energy cost parameters. In the second and third step, we create BAN-BE

flow graph and find the mincut. In the forth step, we assign the tasks in BE partition to BE. In step 5,

which differs from DynAGreen, we create Sensor-LA flow graph with different edge weights

compared to DynAGreen. We obtain the weights of an edge by multiplying its DynAGreen weight

with a factor which depends on the relative battery charge of the sensor in question and the LA.

Equations (1)(2)(3) define the new weights of edges in the flow graph utilizing the definitions of

weights in Table 4.

)(
)()(

),(),(
LAE

LAEsE
tSensorswtSensorw

bat

batbat +
*=¢ (1)

)(
)()(),(),(

sE
LAEsELAtwLAtw

bat

batbat +
*=¢ (2)

)(
)()(),(),(

LAE
LAEsEttwttw

bat

batbat
spbanspban

+
*=¢ (3)

Equation (1) defines the weight of the edge from sensor node s to a task node t. Here s is the sensor

node which runs the source sensor task for task t. Equation (2) defines weight of the edge from a task

t to LA in the flow graph. To understand the effect of battery charge, consider a scenario in which

sensors’ battery has lower charge than LA’s battery. In this case w(Sensors, t) is multiplied by the

smaller factor compared to w(t, LA), resulting in relatively lower weight to edge from Sensors s to

task t. This results in increasing chances of t belonging to LA partition. Equation (3) defines the

weight of edge (tp, ts) from a predecessor task tp to successor task ts. Since we increase the weight of

communicating edges as well, this only favors the assignment of a task to LA if the cost of sending

tasks from sensor to LA does not result in higher sensor energy drain.

We use the same task set example shown in Figure 2 as we did in DynAGreen algorithm to explain

this algorithm in detail. The algorithm first performs BAN-BE partition and then Sensors-LA partition.

The BAN-BE partition is the same as DynAGreen and is shown in Figure 6. However, for step 5, the

DynAGreenLife computes the weights as shown in equations (1), (2), and (3). In our example, LA has

critically low battery so the multiplication factors of the weight between sensors and tasks are higher

than the one between tasks and LA,
)(

)()(
)(

)()(
sE

LAEsE
LAE

LAEsE

bat

batbat

bat

batbat +
>

+
. As a consequence, a

mincut does not pass through the edges from the sensors and more tasks are assigned on sensors. In

Figure 9, the weights of edges from task 0 to task 3, task 1 to task 4 and task 2 to task 5 are higher

than the weight on edges from tasks 3, 4, 5 to LA node. This helps to assign four tasks to our most

critical resource LA, by avoiding a cut on edges from task 0 to task 3, task 1 to task 4 and task 2 to

task 5. In Sensors partition we find a sensor node for a task by traversing its predecessor task chain

until we find the source sensing task. We assign the given task to same sensor node as its source

sensing task. For example, for task 3, task 0 is its source sensing task and hence task 3 is assigned to

the same sensor as task 0 if task 3 is in sensor partition.

5.4 Handling Multiple Outbound Edges

The proposed algorithms are extended to consider the case where a task has an outbound degree

greater than one. For example, consider the task graph presented in Figure 8. If the tasks TB and TC

have the same input from task TA, than the data sent by the sensor node to the LA is shared between

both task TB and TC so the communication cost should be changed accordingly. This may change the

optimal task allocation, especially in the case of complex tasks that operate on small amount of data

but require a large number of instructions. In this case the reduced cost of communication may result

in a different task allocation (i.e. on the BE, instead than on the LA). To solve this problem we use an

iterative approach. Figure 8 shows how our technique behaves on a sample dataset where the output

of one task has an out degree equal to 2. In this example we use DynaGreen algorithm, but our

technique applies as well to the other algorithms we presented.

1. Perform one round of dynamic task assignment using one of the techniques described in the

previous sections (Figure 8.a).

2. Check the task allocation results to detect if multiple tasks which share the same input data are

allocated on the same device (i.e. the LA or BE) and receive their input from a task executed on a

different device. For example, in Figure 8.a, tasks TB and TC are executed on the LA and receive

their input from a task TA which is executed on a sensor node.

3. Reduce the cost of communication between the tasks to consider the single transmission of the data,

and evaluate the energy cost of this partition. If the data is shared among N devices, the

communication cost is reduced to 1/N of the total cost. For example, if we consider the task graph

presented in Figure 8, the communication cost between TA, TB and TC is halved (Figure 8.b).

4. Perform a second round of dynamic task assignment with the new communication cost (Figure 8.c).

5. If the second round of task assignment results in a different assignment than the one obtained

during the first round, update the communication costs between the tasks and evaluate the energy

cost of this partition. For example, in Figure 8.b tasks TB, TC and TD are now allocated on the BE. In

this case an extra task (Proxy) is generated and allocated on the LA to reflect the fact the sensors

cannot communicate directly to the BE. The communication cost between the LA and the BE are

also halved to reflect that the data is shared between the two tasks, TB and TC.

6. Compare the energy cost of the partitions obtained at steps 3 and 5 and choose the one with the

lower energy cost.

Table 6 shows the energy costs for the sensor node and the LA for the two solutions in Figure 8b and

c. The latter task assignment is selected since it results in lower power consumption for the LA.

6 RESULTS

In this section we evaluate our dynamic task assignment techniques in terms of their effect on both

the system’s battery lifetime and energy consumption. We demonstrate results for different wireless

health care system task sets, and analyze the performance of the DynAGreen, DynALife and

DynAGreenLife algorithms in comparison with each other and with the static solutions given by

ILPGreen and ILPLife. We also demonstrate the ability of our algorithms to adapt to changing system

conditions. We show how DynAGreenLife algorithm balances both system lifetime and system energy

by comparing it with DynAGreen and DynALife algorithms.

6.1.1 Experimental Setup

We use three task graphs for our experiments, described in more detail in Table 7. These task sets

are from real applications used in the preventive healthcare system PALMS [32], whose objective is

to advance the exposure biology research by developing new methods of physical activity data

capture and analysis over longer periods of time [33]. Each task has an arrival rate, a deadline that is

equal to the task period, number of instructions to be executed, and the total size of the output. We

use Qualnet [34], a state of the art discrete event wireless network simulator, for our experiments.

Qualnet provides accurate wireless channel models, a variety of wireless protocols along with the

communication energy consumption, battery and mobility models. We add a model for computational

energy consumption and use CPU current loads appropriate for MicaZ and Intel XScale processors.

Sensor nodes are modeled as MicaZ nodes with Zigbee (802.15.4) radio. The LA is modeled as a

UMTS-UE (User Equipment i.e. Handset) with a Zigbee radio interface and CPU running at 400MHz.

We use Qualnet’s built in energy model for the MicaZ node and specify a constant transmit power of

3dBm. For UMTS, we leverage a default energy model and specify -10dBm as the minimum transmit

power and 30dBm as maximum transmit power. UMTS protocol uses dynamic power control

algorithm and sets the radio transmit power depending on channel condition. We used 2.4GHz carrier

frequency for UMTS and 905MHz carrier frequency for Zigbee.

The handset is connected to the BE via the UMTS network and to the sensors via Zigbee radio.

Tasks communicate via UDP if any of the successor tasks are not assigned on the same device. We

implement the logic for periodic task execution, data transmissions, radio link parameter

measurements and reporting, task assignment control messaging and execution of the dynamic

algorithms at the application layer.

6.1.2 Performance in Static Conditions

In the initial set of experiments, we assume that the system parameters such as the arrival rate of

tasks, computational complexity, and wireless channel conditions remain constant. We use 100 mAh

for sensors and 300 mAh for the cellphone battery energy so that the experiments are of appropriate

length. We compute the system lifetime achieved by task assignment given by both the ILPs and our

three dynamic algorithms and compare it to streaming all the data to BE for processing (All-On-BE).

In static conditions, both ILPs come up with the same task assignment for our task graphs. In

Figure 11 we show the percentage improvement in system battery lifetime based on the task

assignment, as determined by both ILPs i.e. ILPGreen and ILPLife with respect to All-On-BE. For the

All-Vital task graph, that has a higher number of processing tasks, both the ILPs perform 60% better

than All-On-BE. On average, the ILP improves the system battery lifetime by 37%. We ran our

dynamic algorithms using exactly the same setup described for the ILPs, and found results to be

within 0.001% of the ILP results shown in Figure 11, so this figure can be used to represent both

dynamic and ILP results in static conditions for our task graphs. Our dynamic algorithms perform

nearly optimal in these static scenarios.

In the next set of experiments we demonstrate the ability of our dynamic algorithms to adapt to the

different amount of battery charge and varying consumption rates. In contrast to previous experiments,

now we provide higher battery charge for the sensor (300 mAh), but a smaller amount for the LA (100

mAh). Figure 12 shows the battery lifetime improvement obtained by the ILPs and the DynA family

of algorithms compared to the All-On-BE strategy. It is evident from these experiments that task

assignment techniques make a large difference (of up to 140%) in battery lifetime compared to

following a simplistic approach of performing all processing on the BE. The results also show that

ILPLife, DynALife, and DynAGreenLife achieve a longer system life than ILPGreen and DynAGreen.

This is because the task partitioning of ILPGreen and DynAGreen is purely focused on minimizing

the system energy consumption without taking any consideration of the available battery charge of the

system devices. ILPLife has a lower system lifetime compared to DynALife and DynAGreenLife. This

is due to the fact that DynALife and DynAGreenLife periodically perform task repartitioning so that

the task allocation changes to better optimize for the system lifetime. Depending on the tasks assigned,

some nodes may deplete their energy more than desired. Hence a periodic repartitioning is necessary

for a better solution.

We compare the system battery lifetime and system energy consumption obtained by DynAGreen

and DynALife to that given by DynAGreenLife in Figure 13 and Figure 14. As expected DynAGreen is

not able to extend the battery lifetime of the system as much as DynALife as it does not take into

consideration the battery levels of the mobile devices. Both DynAGreenLife and DynALife take into

consideration the remaining battery charge and thus the rate of energy consumption in addition to

computation and communication cost. DynAGreenLife performs up to 43% better than DynAGreen in

terms of system battery lifetime. DynAGreenLife performes slightly better than DynALife in some

cases. DynAGreen uses a heuristic approach, assigning one task at a time instead of considering all

the tasks or a chain of tasks for assignment. On the other hand, DynAGreenLife is a graph based

solution that uses mincut/maxflow algorithm to partition tasks. Interestingly enough, although

DynAGreenLife attempts to simultaneously satisfy objectives associated with minimizing the system

energy and maximizing the system lifetime, it does as well or better with regard to maximizing

system lifetime compared to DynALife. On the other hand, as DynAGreen is a greener solution whose

goal is to minimize the energy consumption, it performs better than DynALife or DynAGreenLife in

terms of energy savings as shown in Figure 14. When we compare DynAGreenLife and DynALife,

both perform similarly in terms of battery lifetime but DynAGreenLife consumes up to 40% less

energy compared to DynALife algorithm. To further understand these results, consider the different

assignment given by both ILPs and dynamic algorithms for Activity Detect task set in the scenario

where LA has a critically low battery level (100mAh) compared to the energy available for sensors

(300mAh). For this task set and given the same set of static conditions, ILPGreen and DynAGreen

give the same task assignment. Both the algorithms assign all processing to LA as this assignment

minimizes the system energy consumption. On the other hand ILPLife and DynALife assign all three

Activity Count tasks to respective sensors. To extend the system lifetime, this assignment reduces the

processing load on LA while increasing the load on sensors even though assigning tasks on sensors

results in the higher system energy consumption. As we have seen in results this achieves the

objective of increasing the system lifetime at the cost of increased system energy consumption.

6.1.3 Dynamic Adaptability

In the following set of experiments we evaluate changes to various runtime characteristics and

demonstrate the capability of our dynamic algorithms to change the task assignments dynamically to

optimize the system lifetime and system energy consumption. We assume that the battery level is at

300 mAh for each sensor and that the cellphone has critically low battery level of 100 mAh. We show

the improvement in system energy consumption using the dynamic task assignments given by

DynAGreen with respect to the static assignment obtained by ILPGreen during initial setup. Similarly

we show the improvement in system lifetime obtained by DynALife compared to ILPLife.

We measure various radio link parameters such as transmit power and time spent in various states

(receive, transmit, idle, sleep) by each radio to detect the changes in system’s characteristics. This

measurement is done over a period in which tasks execution repeats. We use Lowest Common

Multiple (LCM) of the period of all tasks. This window gives us a reproducible workload on each

resource so that comparison of the various costs is fair. For our task sets LCM is around 1 minute. We

also use filtering to smooth out unusual spikes in measurements. We run our dynamic algorithms to

compute the task assignment only if the change in system parameters is more than 30% compared to

the last run of algorithm. This threshold can be changed for different system implementations. We

selected this threshold empirically for our simulation environment.

We divide our experimental scenarios in following two categories. 1) Illustrative scenario with

defined mobility, defined workload changes, and only one base station on a smaller terrain area. 2)

Urban scenario with random mobility, multiple base stations and large terrain area. In all these

scenarios, we show that our dynamic algorithm adapts to changing system parameters quickly and

results in better performance compared to optimal but static solution obtained using ILPs.

6.1.4 Illustrative Scenario

We simulated a typical day of the user to illustrate how our dynamic algorithms adapt to changes in

wireless channel conditions and LA workload. We assume that the user’s home is away from the base

station and thus wireless link conditions are relatively poor with lower effective data rates compared

to the case when the user is at work. The initial assignment is computed with the link conditions

observed at home. If the user is mobile during the day and gets closer to the base station (e.g. at work,

hospital, school), the wireless link conditions improve. Our proposed dynamic algorithms take

advantage of these improving link conditions and allocate some of the processing tasks on BE instead

than on LA. We assume that the user is at home at the start of the experiment and reaches very close

to the base station after three hours. The user stays near the base station for 4 hours and comes back

home in similar fashion. Since we maintain various link-related parameters for each mobile resource

in the system, the LA detects these changes and updates the task assignments. The cost of UMTS

transmission can increase by a factor of 10 depending on the user’s distance from the base station.

In Table 8 we compare our DynAGreenLife algorithm with static assignments given by ILPGreen

and ILPLife. When a user moves closer to the base station, our dynamic algorithms detect the reduced

communication cost for LA to BE transmission and activates the processing tasks on BE instead of on

LA if that results in lower system energy consumption or higher system lifetime. DynAGreen

improves system lifetime for all task sets compared to ILPGreen by 14% on an average .It even

improves system lifetime compared to ILPLife except for Activity Detection task by taking an

advantage of new lower communication cost. Similarly, DynALife improves system lifetime up to

50% compared to ILPGreen and ILPLife. DynAGreenLife has a similar improvement as DynALife

except for the case of Activity Detection task set. In this case it improves the system lifetime

compared to ILPGreen by 25% while reduces system lifetime compared to ILPLife but gains in terms

of the system energy consumption as shown in Figure 16.

Figure 15 and Figure 16 show the effectiveness of DynAGreenLife in balancing system lifetime

maximization and system energy consumption minimization. DynAGreenLife obtains up to 13%

better system lifetime compare to DynAGreen and up to 78% better system energy savings compared

to DynALife. For Activity Detect task set, DynAGreen assigns all processing tasks on LA when user is

away from the base station and it assigns all processing tasks to BE when user is closer to the base

station. These assignments result in lowest system energy consumption. DynALife on the other hand

considers the very low battery charge of LA compared to sensors and assigns all single source

processing tasks to respective sensors to reduce the energy consumption of LA. For multi-source

processing tasks DynALife keeps them on LA when LA is away from the base station and activates

them on BE when LA gets closer to base station. DynAGreenLife strikes a balance between the two

objectives. It generates the same assignment as DynALife when the user is away from the base station

and it generates the same assignment as DynAGreen when the user is closer to the base station

resulting in a nice balance of the system lifetime and system energy consumption.

Dynamic Load Balancing: Dynamic load balancing is required in the system as the processing

complexity of a task may change depending on the data itself, or due to increased load on a resource

in the system such as the LA (a phone serving as an LA may have to process other tasks). For example,

if the sensed information is static or pseudo-static, the complexity of the tasks can be low based on

the prior processed information. In our experiments we increase the execution time of processing

tasks by a factor of 2 after 6 hours and return back to normal for the next 6 hours to simulate the two

levels of processing load. We assume the same setup as in the previous experiment except for the fact

that LA is not mobile. The DynA algorithms detect this variation in load and quickly re-compute the

new task assignment in response. In Table 9 we compare the percentage improvement in system

lifetime obtained by all three dynamic algorithms relative to ILPGreen and ILPLife for change in

execution time of the processing tasks. Our dynamic algorithms detect the increased computation cost

and activate the processing tasks on the BE instead of LA if the computation cost is higher than the

communication cost. DynAGreen improves system lifetime for HR+Activity task sets compared to

ILPGreen by 10%. Similarly, DynALife improves system lifetime up to 51% compared to ILPGreen

and ILPLife.

6.1.5 Urban Scenario

In this section we include a larger terrain with multiple base stations and random mobility of the

users to demonstrate that our algorithm can handle a more complex, real-life urban situation. For our

experimental study, we created a 4900 meter x 4900 meter terrain with four base stations in Qualnet

simulator as shown in Figure 17. During the simulations the user moves randomly in this terrain in

any direction with one of three speed ranges to simulate the user moving in car, bike and walking.

Moreover, the user may pause for a predefined duration (15 min or 45 min). For these set of

experiment we only consider DynAGreenLife algorithm as it balances system lifetime and system

energy consumption. In Table 10, we compare the system lifetime given by our DynAGreenLife

algorithm to ILPLife-Far, ILPLife-Near and All-On-BE. ILPLife-Far is the assignment obtained by

ILPLife assuming the user is away from the base station and ILPLife-Near is the assignment

computed by ILPLife assuming the user is closer to the base station. Improvements due to the

dynamic adaptability of our algorithms depend on how different the system parameters are from the

initial condition used for ILP solution. These two variations are used to cover ILP solution with the

best and the worst communication costs between the cell-phone and base station.

We monitor link conditions every 1 minute (which is the LCM of all task periods) and run

DynAGreenLife when the change in communication costs is 30% higher than the last run of the

algorithm. We observe that while a person is moving in a car we can obtain up to 68% improvement

system lifetime and 25% on an average compared to ILPLife-Far and up to 18% improvement

compared to ILP-Near. If a person is on a bike or walking, we observe higher improvements

compared to ILPLife-Far. A sample user location trace for these experiments indicates that the user

remains closer to the base station most of the time and hence improvement over ILPLife-Near is not

as significant as the improvement of ILPLife-Far.

6.1.6 Utilizing Multiple ILP Solutions

Looking at results in Table 10, one would suggest a simple heuristic technique in which we switch

between task assignments provided by ILPLife-Near and ILPLife-Far depending on the user’s

proximity to a base station. Such a solution, labeled as ILP-Flipflop in Figure 18, would not handle

other additional changes in the system such as changes in the workload, or in channel conditions

between. To demonstrate this, we ran experiment with the same mobility described in the previous

section, but with the addition of change in execution time of processing tasks every hour. Change in

the execution time represents a practical scenario in which a processing task might be asked to

produce better quality results by doing more processing. Figure 18 shows the results of our

experiments for all three task sets. Our DynAGreenLife algorithm is up to 30% and on an average

21% better system lifetime than ILP-Flipflop technique described above. While the user is walking,

the improvement is higher. The reason is that the communication costs lay between the best and the

worst conditions longer as the user is moving at a slower speed.

7 CONCLUSION

Task assignment in a mobile sensing system consisting of heterogeneous resources may

significantly impact the lifetime and total energy consumption of the system. This work presents a

number of static and dynamic task assignment strategies to save energy and extend the system

lifetime. Two Integer Linear Program (ILP) algorithms are formulated to generate a design time

optimal task assignment to be used as a baseline for comparison. Given the dynamically changing

nature of mobile systems and computationally expensive nature of ILPs, a heuristic algorithm

(DynALife) and two dynamic graph-based partitioning algorithms (DynAGreen and DynAGreenLife)

are presented in this paper. These three algorithms are computationally efficient and are able to adapt

in real-time to the changing system conditions. All these algorithms are implemented in Qualnet to

simulate various real-time system scenarios. Task assignments generated by our dynamic algorithms

perform similar to the optimal task assignment of ILP in static conditions. Our algorithms have 1.4

times longer system lifetime compared to processing all data on backend server. They also

outperform ILP-based static solutions by adapting at runtime to dynamically changing conditions.

Results show that our techniques perform up to 88% better than the ILP based solutions.

DynAGreenLife has up to 43% longer battery lifetime compared to DynAGreen algorithm and

consumes up to 40% less energy than DynALife algorithm. Thus, DynAGreenLife algorithm balances

both system lifetime and energy.

ACKNOWLEDGMENTS

This work has been funded by NSF project, “Citisense” grant CNS-0932403, UCSD’s Center for

Networked Systems and Qualcomm. This work was also supported in part by the TerraSwarm

Research Center, one of six centers supported by the STARnet phase of the Focus Center Research

Program (FCRP) a Semiconductor Research Corporation program sponsored by MARCO and

DARPA.

REFERENCES

[1] S.C.K. Lam, K. L. Wong, K. O. Wong, W. Wong, W. H. Mow, “A smartphone-centric platform for personal health

monitoring using wireless wearable biosensors”, Information, Communications and Signal Processing

Conference, IEEE, pp.1-7, 2009

[2] C. Palazzi, D. Maggiorini, “From playgrounds to smartphones: Mobile evolution of a kids game”, Consumer

Communications and Networking Conference (CCNC), IEEE , pp.182-186, 2011

[3] D. Roggen, C. Lombriser, M. Rossi, G. Tröster, “Titan: an enabling framework for activity-aware "pervasive apps"

in opportunistic personal area networks”, opportunistic personal area networks, EURASIP Journal on Wireless

Communications and Networking, vol. 2011, pp. 1-22 , 2011

[4] L. Schmid, T. Holleczek, and G. Tröster, “Ridersguide: The first real-time navigation system for ski slopes”,

Eingebettete Systeme, Informatik aktuell, vol 1, Springer Berlin Heidelberg, pp. 71-80, 2011

[5] K. Sakamura ,N. Koshizuka, “Ubiquitous computing technologies for ubiquitous learning”, Wireless and

Mobile Technologies in Education, IEEE International Workshop on, pp.11-20, 2005

[6] P. Honeine, F. Mourad, M. Kallas, H. Snoussi, H. Amoud, C. Francis, “Wireless sensor networks in biomedical:

Body area networks”, Systems, Signal Processing and their Applications (WOSSPA), 7th International Workshop

on, pp. 388-391, 2011

[7] A. Salarian, H. Russmann, F. Vingerhoets, P. Burkhard, K. Aminian, “Ambulatory monitoring of physical activities

in patients with parkinson’s disease”, IEEE Transactions on Biomedical Engineering, vol.54, no. 12, pp. 2296-

2299, 2007

[8] H. L. Chan, P. K. Chao, Y.C. Chen, W. J. Kao, “Wireless body area network for physical-activity classification and

fall detection”, Medical Devices and Biosensors, 5th International Summer School, pp. 157-160, 2008

[9] E. Kantoch, M. Smolen, P. Augustyniak, P. Kowalski, “Wireless body area network system based on ecg and

accelerometer pattern”, Computing in Cardiology, pp. 245-248, 2011

[10] C. Otto, E. Jovanov, A. Milenkovic, “A WBAN-based system for health monitoring at home”, Medical Devices and

Biosensors, 2006 3rd IEEE/EMBS International Summer School, pp. 20-23, 2006

[11] S. Munir, B. Ren, W. Jiao, B. Wang, D. Xie, M. Ma, “Mobile wireless sensor network: Architecture and enabling

technologies for ubiquitous computing”, Advanced Information Networking and Applications Workshops, 21st

International Conference on, vol.2, pp. 113-120, 2007

[12] G. Yovanof, G. Hazapis, “An architectural framework and enabling wireless technologies for digital cities and

intelligent urban environments”, Wireless Personal Communications: An International Journal, vol. 49, Issue 3, pp.

445-463, 2009

[13] Z. Chaczko, F. Ahmad, V. Mahadevarr, “Wireless sensors in network based collaborative environments”,

Information Technology Based Higher Education and Training, 2005

[14] E. Jeannot and B. Knutsson, “Adaptive online data compression”, HPDC-11, pp. 379-388, 2002

[15] R. Xu, Z. Li, C. Wang, and P. Ni, “Impact of data compression on energy consumption of wireless-networked

handheld devices”, International Conference on Distributed Computing Systems, IEEE, 2003

[16] K. Wac, R. Bults, B. van Beijnum, I. Widya, V. Jones, D. Konstantas, M. Vollenbroek-Hutten, H. Hermens, “Mobile

Patient Monitoring: the MobiHealth System”,ˈ Engineering in Medicine and Biology Society(EMBS), IEEE, pp.

1238-1241, 2009

[17] F. Dabiri, A. Vahdatpour, H. Noshadi, H. Hagopian, M.Sarrafzadeh “Ubiquitous personal assistive system for

neuropathy”, Health Care and Assisted Living Environments(HealthNet), ACM, no. 17, 2008

[18] A. Wood, G. Virone, T. Doan, Q. Cao, L. Selavo, Y. Wu, L. Fang, Z. He, S. Lin, J. Stankovic, “Alarm-net: Wireless

sensor networks for assisted-living and residential monitoring”, Technical. Report CS-2006-13, University of

Virginia, 2006

[19] W. Wu, L. Au, B. Jordan, T. Stathopoulos, M. Batalin, W. Kaiser, A. Vahdatpour, M. Sarrafzadeh, M. Fang, J.

Chodosh, “The SmartCane system: an assistive device for geriatrics”, Body area networks(BodyNets), ICST 3rd

International conference on, no.2, pp. 1-4, 2008

[20] Q. Wang, W. Shin, X. Liu, Z. Zeng, C. Oh, B. AlShebli, M. Caccamo, C. Gunter, E. Gunter, J. Hou, K. Karahalios,

L. Sha, “I-living: An open system architecture for assisted living”, Systems Man and Cybernetics(SMC), IEEE,

2006

[21] H. Aghajan, J. C. Augusto, P. Mccullagh, J. ann Walkden, “Distributed vision-based accident management for

assisted living”, International Conference on Smart homes and health telematics(ICOST), Springer-Verlag, pp.

196-205, 2007

[22] Y. Tian, E. Ekici, F. Ozguner, “Energy-constrained task mapping and scheduling in wireless sensor networks”,

Mobile Adhoc and Sensor Systems(MASS) IEEE, pp. 211-218, 2005,

[23] Y. Tian, E. Ekici, “Cross-layer collaborative in-network processing in multihop wireless sensor networks”, IEEE

Transactions on Mobile Computing, vol. 6, no. 3, pp. 297-310, 2007

[24] C.U. Subrahmanya, B. Veeravalli, Y. Liu, S. Viswanathan, “On the design of static and dynamic energy-aware task

mapping algorithms for body area networks”, Medical Devices and Biosensors(ISSS-MDBS), International

Summer School and Symposium, pp. 156-156, 2008

[25] J. K. Lenstra, D. B. Shmoys, E. Tardos, “Approximation algorithms for scheduling unrelated parallel machines”,

Journal Mathematical Programming: Series A and B, vol. 46, no. 3, pp. 259-271, 1990

[26] S. Bokhari, “Partitioning problems in parallel, pipeline, and distributed computing”, IEEE Transactions on

Computers, vol. 37, no. 1, pp. 48-57, 1988

[27] H. Stone, “Multiprocessor scheduling with the aid of network flow algorithms”, IEEE Transactions on Software

Engineering, vol. SE-3, no. 1, pp. 85-93, 1977

[28] A. Pathak, V. Prasanna, “Energy-efficient task mapping for data-driven sensor network macroprogramming”, IEEE

Transactions on Computers, vol. 59, no. 7, pp. 955-968, 2010

[29] “LP-solve.” http://lpsolve.sourceforge.net/5.5/

[30] C. Lombriser, D. Roggen, M. Stäger, G. Tröster, “Titan: A tiny task network for dynamically reconfigurable

heterogeneous sensor networks”, Kommunikation in Verteilten Systemen(KiVS), Springer Berlin Heidelberg, pp.

127-138, 2007

[31] Y. Boykov, V. Kolmogorov, “An experimental comparison of mincut/max- flow algorithms for energy minimization

in vision”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004

[32] Personal Activity and Location Measurement System (PALMS) project, http://ucsd-palms-project.wikispaces.com/

[33] B. Demchak,.J. Kerr, F. Raab, K. Patrick, I.H. Kruger, "PALMS: A Modern Coevolution of Community and

Computing Using Policy Driven Development," Hawaii International Conference on System Sciences(HICSS), pp.

2735-2744, 2012

[34] Scalable Network Technologies, “Qualnet simulator,” http://www.qualnet.com

[35] Y. Yu, V. K. Prasanna., “Energy-balanced task allocation for collaborative processing in wireless sensor networks”,

Journal Mobile Network Applications, vol. 10, no. 1-2, pp. 115-131, 2005

[36] P. Aghera, D. Fang, T. Simunic Rosing, K. Patrick, "Energy management in wireless healthcare systems",

Information Processing in Sensor Networks(IPSN), IEEE, pp. 363-364, 2009

[37] P. Aghera, D. Krishnaswamy, D. Fang, A. Coskun, T. Simunic Rosing, "DynAHeal: Dynamic Energy Efficient Task

Assignment for Wireless Healthcare Systems", Design, Automation & Test in Europe Conference & Exhibition

(DATE), pp. 1661-1664, 2010

[38] P. Aghera, D. Krishnaswamy, and T. S. Rosing, , "DynAGreen: Hierarchical Dynamic Energy Efficient Task

Assignment for Wireless Healthcare Systems", Body area Networks(BodyNets), pp. 33-36, 2010

FIGURES AND TABLES

Figure 1. Wireless body area network architecture

Figure 2. Example task graph

Figure 3. Task graph transformation for ILP

Figure 4. Computational overhead of ILP and dynamic algorithms running on
1.8GHz CPU

Figure 5. DynAGreen Algorithm

Figure 6. BAN-BE partition

Figure 7. Sensor-LA partition

Figure 8. Task assignment for task set with task that have an out degree greater
than 1. Only the communication cost is shown on the graph edges. a) Initial

assignment. b) Reduction of the weight when the same data is sent to multiple
tasks. c) Second assignment including a Proxy task that takes care to forward

the data between the sensor node and the BE.

Figure 9. Sensor-LA partition

Figure 10. DynALife Algorithm

Figure 11. Percentage improvement in system battery
lifetime achieved in static conditions compared to All-On-

BE for both ILPs and for our dynamic algorithms.

Figure 12. Percentage improvement in system battery lifetime compared to All-On-BE

Figure 13. Comparison of system battery lifetime achieved by
dynamic algorithms

Figure 14. Comparison of system energy achieved by
dynamic algorithms

Figure 15. System lifetime comparison between dynamic algorithms with
change in wireless channel conditions

Figure 16. System energy consumption comparison
with change in wireless channel conditions

Figure 17. A screenshot of the simulation terrain. The LA (UMTS-UE) can communicate via
cellular network to multiple base stations (Node B) which act as gateway to the BE (GGSN,

SGSN). The body worn sensors (sensor) collect data from the user and send it to the LA. Note
that multiple user can operate in parallel. Each network of body worn sensors communicates

with their respective LA.

Figure 18. Percentage improvement in system lifetime achieved by
DynAGreen-Life relative to ILP-Flipflop with changing conditions

Table 1

VARIABLES AND CONSTANTS

EBr Battery capacity of resource r

PRr Power consumed by the receiver of resource r

PTr Power consumed by the transmitter of resource r

PEr Power consumed in the execution of a task by resource r

tir Execution time of task i on resource r

wij Weight of the edge from task i to task j

bir bir∈{0,1} s.t. bir = 1 if task i is assigned to resource r

μRr Average data rate of the receiver on resource r

μTr Average data rate of the transmitter on resource r

predij predij ∈{0,1} s.t. predij = 1 iff task j is a predecessor of task i

sucij sucij ∈{0,1} s.t. sucij = 1 iff task j is a successor of task i

ERir
Energy consumed by a resource r to receive input data for task i =

() (){ }å
=

-
n

j
RrjiRrjrij wPbpred

1
**1* m

ETir
Energy consumed by a resource r to transmit input data for task i

= () (){ }å
=

-
n

j
TrijTrjrij wPbsucc

1
**1* m

Er Total energy consumed by a resource r = (){ }å
=

++
n

j
TirirErRirij EtPEb

1
**

si Start time of task i

τi End time of task i

di Deadline of task i

Table 2

ILP OBJECTIVE AND CONSTRAINTS

ILPGreen := ÷
ø

ö
ç
è

æå
-

=

1

1
min

m

r
rE Minimize system energy consumption

ILPLife := { } 1,...,1,maxmin -= mrwhere
Br

r
E
E

r
 Maximize system lifetime

(a) å
=

="
m

r
ribi

1
, 1, Total Allocation Constraint: Each task is

assigned to one and only one resource

(b) Er ≤ EBr Battery Capacity Constraint

(c) (bjm + bjm-1) =1 if (bim =1 ∧ predij =1)

Resource Allocation Constraint 1:
Predecessor tasks of a task mapped to
the backend are mapped to either the

backend or the local aggregator

(d) (bjm-1 + å
-

=

2

1

m

k
jkb) =1 if (bim-1 =1 ∧ predij =1)

Resource Allocation Constraint 2:
Predecessor tasks of a task mapped to

the local aggregator are mapped to
either the local aggregator or a sensor

(e) bjk =1 where k=1,…,m-2 if (bik =1 ∧ predij =1)
Resource Allocation Constraint 3:

Predecessor tasks of a task mapped to a
sensor are mapped to the sensor

(f) si ≥ jj "),0max(t where predij = 1
Start Time Constraint: The starting time

for tasks must be greater than the
finishing time of all its predecessor tasks

(g)

å å
= = þ

ý
ü

î
í
ì

-*+-*++=
n

r
jrijjr

n

j
ijiririi bsucbpredtbs

1 1
))1()1((*t

Finishing Time Constraint: The
finishing time of a task is the start time

plus the time it takes to receive, execute,
and send the data for the task

(h) τi ≤ di For each sink task i in the task graph Deadline Constraint

Table 3

WEIGHTS OF EDGES IN BAN-BE PARTITION

Edge Value Condition

w(BAN,t)
0
∞

If t is not bound to BAN
If t is bound to BAN

w(t, BE)
ECPU(t, LA)

0
∞

If t is not bound
If t is bound to sensor or LA
If t is bound to BE

wwan(tp, ts) Eradio(tp, LA) where radio = LA’s WAN radio

Table 4

WEIGHTS OF EDGES IN SENSOR-LA PARTITION

Edge Value Condition

w(Sensor,t)
ECPU(t, LA)

0
∞

If task t is not bound
If task t is bound to LA
If task t is bound to a sensor

w(t, LA)
ECPU(t, Sensor)

0
∞

If task t is not bound
If task t is bound to a sensor
If task t is bound to LA

wwan(tp, ts) Eradio(tp, Sensor) where radio = source
sensor’s radio

Table 5

BATTERY LIFETIME ESTIMATION TABLE

Task
ID

Sensor lifetime
if on (sensor,
LA, BE) sec

LA lifetime if on
(sensor, LA, BE)
sec

System lifetime if
on (sensor, LA,
BE) sec

Deadline slack
if on (sensor,
LA, BE) msec

Max
system
lifetime
sec

Best
assign.
node ID

1 (600,1200,1020) (800,1500,1500) (600,1200,10200 (500,350,200) (1200) LA

Table 6

SENSOR NODE AND LA’S POWER CONSUMPTION

 Sensor node (mW) LA (mW)

First Allocation 2.77 1.70

Second Allocation 2.77 1.07

% Savings 0.0 38.8

Table 7

WORKLOADS

Taskgraph # of sensors # of tasks Application

HR + 1 accelerometer
activity detection 2 6

ECG sensor detects heart rate per
minute & accelerometer keeps

track of activity.

3 accelerometers activity
detection 3 8 Detects a person’s activity using

three accelerometers.

All-Vital 5 20
Log all vital signs like heart rate,

blood pressure, activity in addition
to individual’s location.

Table 8

PERCENTAGE IMPROVEMENT IN SYSTEM LIFETIME WITH VARYING WIRELESS CHANNEL CONDITIONS

Algorithm Taskgraph % System lifetime improvement achieved by
DynAGreenLife relative to

 ILP-Green ILP-Life-
Far

ILP-Life-Near

DynAGreenLife

% HR + Activity 23.79 23.79 66.68

% Activity Detection 24.88 -6.53 37.47

% All-Vital 22.14 22.14 4.28

Table 9

PERCENTAGE IMPROVEMENT IN SYSTEM LIFETIME WITH DYNAMIC LOAD CHANGES

Algorithm Taskgraph % System lifetime improvement achieved by
DynAGreenLife relative to

 ILP-Green ILP-Life-
Far

ILP-Life-Near

DynAGreenLife

% HR + Activity 20.51 20.51 6.12

% Activity Detection 40.86 14.66 14.66

% All-Vital 8.74 8.74 17.02

Table 10

PERCENTAGE IMPROVEMENT IN SYSTEM LIFETIME OF DynAGreenLife WITH RANDOM MOBILITY

Task graph: HR + Activity

Speed Pause
duration

% Improvement in battery lifetime relative to

ILP-Far ILP-Near All-On-BE

Car 15 min 24.17 3.15 47.19

Car 45 min 5.90 3.39 18.68

Bike 15 min 15.87 6.17 26.84

Bike 45 min 8.36 8.36 18.70

Walk 15 min 9.58 3.62 19.67

Walk 45 min 23.42 5.78 47.46

Task graph: Activity Detection

Speed Pause
duration

% Improvement in battery lifetime relative to

ILP-Far ILP-Near All-On-BE

Car 15 min 67.81 17.23 67.81

Car 45 min 47.88 6.84 47.88

Bike 15 min 34.53 9.71 34.53

Bike 45 min 87.98 5.7 87.98

Walk 15 min 43.15 6.12 43.15

Walk 45 min 32.51 12.09 32.51

Task graph: All Vital

Speed Pause
duration

% Improvement in battery lifetime relative to

ILP-Far ILP-Near All-On-BE

Car 15 min 21.36 2.3 70.07

Car 45 min 12.06 3.9 42.34

Bike 15 min 22.44 2.45 45.93

Bike 45 min 8.64 3.48 42.8

Walk 15 min 14.18 8.23 46.73

Walk 45 min 34.88 7.36 56.59

BIOGRAPHIES

Priti Aghera obtained her M.S. degree in Computer Science from University of California, San

Diego. Her thesis topic was Energy Measurement in Wireless Healthcare Systems Using Dynamic

Task Assignment. Currently she is working as staff engineer II in Broacomm's Bluetooth group. Her

focus at Broadcomm is Health Device Profiles and Bluetooth Low Energy.

Jinseok Yang received his M.S. degree in Electrical Engineering from the University of California,

San Diego in 2011. Since 2012 he has been pursuing his PhD at UCSD within the System Energy

Efficiency Lab. His reaearch is on wireless sensor networks and embedded systems.

Piero Zappi received Ph.D. and M.S. degrees in Electronics from the University of Bologna in 2009

and 2005 respectively. From 2010 to 2012 he held a post-doctoral position at University of California

San Diego (UCSD) within the System Energy Efficiency Lab (SEE Lab). He is currently working at

Qualcomm on projects related to energy efficiency and context awareness.

Dilip Krishnaswamy received a PhD in Electrical Engineering from the University of Illinois at

Urbana-Champaign in 1997. He was a platform architect at Intel. He is a Sr. Staff Researcher at the

Qualcomm Research Center in San Diego. He serves as Associate Editor-in-Chief of the IEEE

Wireless Communications magazine. His current research interests are in wireless distributed

processing, distributed machine learning, m2m services and technologies, edge services, and

nanobiological networks

Ayse K. Coskun is an assistant professor in the Electrical and Computer Engineering Department at

Boston University. She received her MS and PhD degrees in Computer Science and Engineering from

University of California, San Diego. Coskun’s research interests are temperature and energy

management, 3D stack architectures, computer architecture, and embedded systems. Prof. Coskun

has worked at Sun Microsystems (now Oracle), San Diego prior to her current position at BU. She

has served as an associate editor for ACM Transactions on Design Automation of Electronic Systems

and IEEE Embedded Systems Letters.

Tajana Šimunić Rosing is currently an Associate Professor of Computer Science and Adjunct

Associate Professor in the Electrical and Computer Engineering Department at UCSD. She is

currently heading the effort in SmartCities as a part of DARPA and industry funded TerraSwarm

center. Prior to that she led the energy efficient datacenters theme as a part of the MuSyC center. Her

research interests are energy efficient computing, embedded and wireless systems. Prior to this she

was a full time researcher at HP Labs while being leading research part-time at Stanford

University. She finished her PhD in 2001 at Stanford University, concurrently with finishing her

Masters in Engineering Management. Her PhD topic was Dynamic Management of Power

Consumption. Prior to pursuing the PhD, she worked as a Senior Design Engineer at Altera

Corporation.

