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Abstract— Peak power shaving allows data center providers to 
increase their computational capacity without exceeding a 
given power budget. Recent papers establish that machines 
may repurpose energy from uninterruptible power supplies 
(UPSs) to maintain power budgets during peak demand.  Our 
paper demonstrates that existing studies overestimate cost 
savings by as much as 3.35x because they use simple battery 
reliability models, boolean battery discharge and neglect the 
design and the cost of battery system communication in the 
state-of-the-art distributed UPS designs. We propose an 
architecture where batteries provide only a fraction of the data 
center power, exploiting nonlinear battery capacity properties 
to achieve longer battery life and longer peak shaving 
durations. This architecture demonstrates that a centralized 
UPS with partial discharge sufficiently reduces the cost so that 
double power conversion losses are not a limiting factor, thus 
contradicting the recent trends in warehouse-scale distributed 
UPS design. Our architecture increases battery lifetime by 
78%, doubles the cost savings compared to the distributed 
design (corresponding to $75K/month savings for a 10MW 
data center) and significantly reduces the decision coordination 
latency by 4x relative to the state-of-the-art distributed 
designs. 

Keywords-data center, batteries, peak power, energy cost 

I. INTRODUCTION 

Warehouse-scale data centers consume several 
megawatts and require careful power provisioning to ensure 
that costly power infrastructure is utilized effectively [1].  
These data centers typically enter long-term power contracts 
and are charged market prices when exceeding their contract.  
The overages may be five times more expensive than their 
contracted rates [2]. Data centers often size their contracted 
power based on the expected peak power to avoid costly 
overages.  The basic problem with power provisioning 
involves using as much power capacity as possible without 
exceeding a fixed power budget. Although individual 
machines may consume peak power, entire clusters of 
machines rarely operate at peak power simultaneously [1]. 
Several studies proposed peak shaving (capping) to increase 
power utilization [3], [4], while maintaining power budgets 
and amortizing capital expenditures over more machines [5].  

Many mechanisms have been proposed for peak shaving, 
including dynamic voltage and frequency scaling (DVFS) 
[1], [6], virtual machine power management [7], online job 
migration [8], [9], [10], and batteries [3], [5], [4].  Among 
these, batteries are particularly useful as they do not 
introduce the performance overhead associated with meeting 
the power budget. This is especially critical during the peak 

user demand. Battery-based peak shaving instead employs an 
uninterruptible power supply (UPS) to power machines.  

Figure 1 illustrates two different strategies for using peak 
power shaving. The horizontal axes represent a 24-hour 
interval and the vertical axes show the aggregate power 
consumption. In Figure 1-a, the dotted horizontal line 
denotes the contracted power for the data center. The lower 
curve indicates the power consumption of a nominal size 
data center without peak shaving. A significant amount of 
provisioned power is wasted during low activity periods, 
resulting in lower profit. The upper curve adds extra servers 
and handles oversubscribed power with peak shaving, so that 
the power utilization is higher. Peak shaving prevents the 
power consumption from exceeding the contracted energy 
costs shown by the shaded region. The dashed line illustrates 
how much power the data center would consume without 
peak shaving, which would then incur as much as 5x [2] 
higher costs. Peak shaving increases the revenues by adding 
more machines to service more users and prevents utility-
facing power consumption from exceeding the provisioned 
power with no performance cost. 

Figure 1-b uses peak shaving just to decrease the level of 
contracted power without increasing the number of servers. 
The upper horizontal line represents the original peak power 
demand and the lower one shows the power cap. The 
difference between the original power draw and the power 
cap corresponds to energy savings as the data center can 
contract for less power. If the power demand is greater than 
the power cap, the batteries provide energy. During low 
power demand, the batteries recharge to regain energy in 
preparation for the next peak.  

In state-of-the-art (SoA) work, if the data center uses a 
centralized UPS, the entire circuit is switched to battery until 
the batteries exhaust their capacity or the peak subsides.  
This technique is useful primarily with short pulses (a few 
minutes long) due to low battery capacity [2]. Recent trends 
in data centers focused on distributed UPS architectures, 

Figure 1. Sample peak shaving a) with and b) without extra servers  



where individual machines [11] or collection of racks [12] 
have their own UPS. This architecture shaves power more 
effectively due to the finer granularity but only works for 
data centers willing to implement the non-standard power 
architecture [5].  

The main disadvantage of a centralized UPS design is the 
double AC-DC-AC conversion, leading up to 35% energy 
loss. The distributed design can avoid this double conversion 
by taking batteries next to the servers. Recently, DC power 
distribution in data centers has been proposed as a solution to 
decrease the conversion losses. In this paper, we also analyze 
the conversion losses of these different designs and quantify 
the effects the losses have on peak shaving capabilities.  

We revisit the analyses for existing peak shaving designs 
using more realistic battery models and find that the benefits 
of peak shaving may be overestimated by up to 3.35x with 
simplistic models, resulting in unacceptably short peak 
power shaving times of only several minutes, for the 
centralized lead-acid UPS designs. Existing approaches 
discharge batteries in a “boolean” fashion: the entire data 
center power domain is fully disconnected from the utility 
power and supplied from the UPS. As a result, batteries 
discharge at much higher currents than rated, which lowers 
battery lifetime and raises the cost.  

Distributed UPS design addresses this issue partly by 
providing the ability to discharge only a subset of batteries in 
a data center at a time and by using lithium iron phosphate 
(LFP) batteries which have both higher energy capacity and 
5x more charge/discharge cycles than lead-acid (LA) 
batteries. The individual batteries are directly connected to 
servers, but still operate in boolean mode, leading to lowered 
battery lifetime and higher cost. Also, distributed batteries 
require coordination to provide the best performance. 
Palasamudram et al. [4] assume a centralized control 
mechanism and do not model the effects of coordination in 
their study. Kontorinis et al. [5] analyze the peak shaving 
performance of control mechanisms placed at different levels 
of power hierarchy. They conclude that the centralized 
controller for distributed batteries performs the best but do 
not comment on the feasibility of this centralized solution for 
a large scale system. In our estimates, the response time of a 
centralized controller can take up to multiple seconds which 
may be too long to meet the power thresholds. 

A key insight that we leverage in our proposed new peak 
power shaving architecture is that the ideal design should 
have the minimum management overhead of the centralized 
UPS with the capability to provide “just enough” current to 
the data center, at a level that optimizes the individual 
battery lifetime. We accomplish this with a centralized UPS 
architecture using grid-tie inverters to partially power loads 
(in contrast to previous boolean discharge), so that the 
battery capacity decreases super-linearly with respect to 
discharge current [13], thus enabling the partial discharge 
architecture to overcome the efficiency problems associated 
with the state-of-the-art solutions. Our centralized grid-tie 
solution has 78% longer battery lifetime and doubles the cost 
savings compared to the best SoA distributed designs. Also, 
since the batteries are placed together, the communication 
overhead is reduced by 4x.  

II. RELATED WORK 

High demand and job criticality make energy a major 
problem for data center operators. There is a large body of 
work focusing on improving energy efficiency with local and 
global solutions. The former includes applying power 
shaving mechanisms such as DVFS [1], [14] and virtual 
machine-based power management [7] where the latter 
generally leverages the differences in energy prices and 
moves the jobs to places with cheaper energy [8], [9], [10]. 
But, all of these solutions adversely affect performance, e.g. 
DVFS slows down the applications; consolidation and 
migration undergo network delays. 

In contrast, recent work proposes batteries to reduce the 
peak power of data centers with no performance overhead. 
The first approach is to use the existing batteries within the 
centralized UPS [2]. However, this method is applicable to 
only short peaks because the UPS powers the entire data 
center. In addition to batteries, Wang et al. [15] analyze 
flywheels and ultra-capacitors for peak shaving. Kontorinis 
et al. [5] and Palasamudram et al. [4] propose 
overprovisioned distributed batteries to sustain longer peaks. 
This design leads to finer grained battery output control. But, 
batteries require high discharge current since each one 
powers an entire server. High discharging current reduces 
both the effective battery capacity and the useful battery 
lifetime [16]. These publications cannot capture the negative 
effects of high discharge currents due to simplistic battery 
models and overestimate the battery lifetime. The distributed 
UPS implementations also do not study the overhead of 
management of distributed battery system at large scale.   

Grid-tie inverters mainly convert DC energy generated 
by renewable sources into AC and feed it into the grid [17]. 
They allow excess DC energy to be sold back to the grid 
where net-metering is available. They are also used with 
batteries and UPS devices in grid-interactive systems for 
local storage and emergency response. In contrast, we 
propose combining battery power with the grid through grid-
tie inverters during peak power periods in data centers. This 
achieves finer battery output control without distributing the 
batteries to servers, decreasing the system complexity and 
increasing the battery lifetime. 

III. STATE-OF-THE-ART PEAK POWER SHAVING ISSUES 

This section analyzes the key architectural challenges for 
peak shaving using batteries to have a cost and energy 
efficient peak shaving mechanism. We consider battery 
placement, power distribution type, battery chemistry, and a 
battery performance model. The battery placement decision 
and distribution system affect conversion losses.  The battery 
chemistry dictates the peak shaving capacity.  Accurate 
battery performance models are necessary to produce 
informed decisions on cost. 

A. Battery Placement Designs 

There are two battery placement architectures: 
centralized and distributed. The centralized design uses 
batteries within the data center-level UPS and does not 
require additional power equipment or infrastructure. A 



Figure 2. Different power delivery options with centralized and 
distributed battery placements  

a) State-of the art centralized power distribution  

b) AC power distribution w/ distributed batteries  

c) DC power distribution w/ distributed batteries  
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common power delivery hierarchy for this design using AC 
distribution is shown in Figure 2-a. When peak shaving 
occurs, the battery powers the entire data center, discharging 
the batteries at high rate.  According to Peukert’s Law, this 
drains battery capacity very quickly.  Also, both the AC-DC-
AC double conversion in UPS and the losses on the power 
delivery path result in up to 35% energy loss. These losses 
reduce both UPS efficiency and useful battery capacity. We 
analyze the effects of these in more detail in section VII. 

The distributed design co-locates the servers and batteries 
and eliminates the DC-AC battery power conversion [5], [4]. 
A sample design with is shown in Figure 2-b.  Each server 
may be switched to battery independently. This leads to finer 
grained control of the total battery output because only a 
fraction of the servers are operating on battery at any given 
time.  Together, conversion efficiency and fine-grained 
control permit longer peak shaving than traditional 
centralized designs. 

In Figure 3, we compare the power shaving capabilities 
of the SoA centralized and distributed designs during a 
fixed-magnitude spike in demand without considering 
conversion losses. We assume each server has a 20Ah LA 
battery in the distributed design because that is the maximum 
size that can fit in a rack [5]. The centralized design has 
equivalent aggregate capacity to the distributed batteries. In 
Figure 3-a, the x-axis illustrates a range of peak server power 
values.  We assume a provisioned power of 255W per server. 
This value limits the power consumption of the entire data 
center to 255*(# servers). The y-axis represents the peak 
shaving duration corresponding to different peak power 
spikes. We illustrate the fixed peak power magnitude and 
peak power threshold in Figure 3-b. In this figure, the power 
curve of a data center consists of two long pulses: the peak 
pulse and the low pulse. The resulting power curve after 
peak shaving is mostly linear, having the value of the 
provisioned power. We define the duration batteries can 
sustain a specific peak pulse as the peak shaving duration. 
Figure 3-a has two curves showing the peak shaving 
durations for both centralized [2] and distributed [4] designs 
with different peak pulses. The former cannot scale its peak 

shaving duration for lower magnitude peaks, whereas the 
latter can throttle the battery energy.  The latter reduces peak 
power even for higher peak spikes, outperforming the 
centralized design by 5x when shaving 25% above 
provisioned power. 

The success of the distributed design is due to its finer 
grained battery power control, but each battery still needs to 
power the entire server. High current reduces the effective 
battery capacity and reduces battery lifetime, increasing the 
cost.  The existing distributed architectures do not account 
for these negative effects.  In fact, our work shows that the 
average battery lifetime of the distributed design can be 
overestimated by up to 2.44x when batteries are not modeled 
accurately. If the battery discharge current could be shared 
among a group of batteries, the negative effects of high 
individual discharge currents would be reduced. We discuss 
our architecture that supports this capability in Section IV. 

TABLE I.  GROUP SIZES, EQUIVALENT HIERARCHY LEVEL AND THE 

BEST PEAK SHAVING PERFORMANCE FOR EACH GROUP [5]. 

Hierarchy Level Size of a group Best Peak Shaving 

Server 1 10% 

Rack 20 12% 

PDU 200 16% 

Cluster 1000 19% 

Previous studies on distributed batteries [5], [4] assume a 
centralized control mechanism to obtain the best peak 
shaving performance with them. Palasamudram et al. [4] do 
not actually model a controller but their solution depends on 
the coordination among all the batteries, implying centralized 
control. Kontorinis et al. use controllers deployed at different 
levels of power hierarchy. Table I shows the different 
hierarchy levels used in that study and the corresponding 
number of batteries each controller needs to manage. Table I 
also shows the best peak shaving percentages obtained with 
each level of controller. Kontorinis et al. conclude that a 
centralized control mechanism is required to get the best 
performance of the distributed batteries. But, since the 
batteries are distributed to the servers, the centralized control 
mechanism needs to use the data center interconnect to 
manage the batteries. Kontorinis et al. do not analyze the 
effects of data center interconnect delays.  

Currently, data centers distribute AC power because it is 
easy to deliver and transform.  This requires multiple 
conversions in the power delivery hierarchy (Figures 2-a, b), 
such as AC-DC-AC conversions in a centralized UPS and 

Figure 3. a) Peak shaving capabilities of different designs                   

b) Illustration of fixed peak magnitude and peak shaving duration 



 
Figure 5. Cycle life of LA & LFP 
batteries rated at 20h [43], [44] 
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Figure 4. Effective capacity of 
20Ah LA & LFP batteries 
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AC-DC conversion in the server power supply.  These 
conversions reduce the efficiency of the centralized battery 
output and the distributed battery input.  The former reduces 
the useful discharge time of the battery, and the latter leads 
to longer recharges.    

In contrast, DC power distribution has been proposed to 
improve energy efficiency [18], [19]. The AC utility input is 
converted to DC once within a centralized DC 
UPS.  Delivery and transformation are handled using DC. 
The DC option aids UPS-based peak shaving because it 
eliminates multiple AC-DC conversions, and up to 35% 
energy loss on the power delivery path.  Figure 2-c shows a 
sample DC power distribution system with distributed 
batteries.  This design reduces power distribution losses by 
up to 50% compared to the AC distribution (section 
VII.B).  Despite its advantages, DC is not common, as it 
requires a new power infrastructure.  It is a good option for 
new data centers but impractical for existing ones as the 
entire power distribution system must be redesigned. 

B. Battery Model and Chemistry Selection 

Peak shaving using batteries needs accurate estimates of 
battery’s physical behavior. This section demonstrates how 
we calculate the useful battery capacity over time and 
estimate its depth-of-discharge (DoD) along with its 
available capacity after recharging and discharging. The 
available battery capacity at a given time is defined as the 
state-of-charge (SoC) and reported as a percentage of the 
maximum capacity. State-of-Health (SoH) quantifies the 
maximum deliverable capacity of a battery over time as a 
percentage of its initial capacity.  

There are several studies estimating battery SoC and 
SoH, especially for mobile devices, e.g. [20] [21]. In our 
work, we combine a few models to both estimate the 
physical properties of the batteries and capture the negative 
effects of high discharging currents. Coulomb counting 
method presented in [22] describes the relation between DoD 
level and SoH. We take the model described in [16] to 
capture the effects of high discharge currents on SoH. We 
also include Peukert’s law which states that the effective 
capacity of a battery decays exponentially with increasing 
discharging current  [13]. The main benefit of this model is 
its simplicity and ability to easily leverage it in a large scale 
installation as it requires only voltage and current readings 
for all the calculations. We start describing our model by 
first calculating released capacity during a discharge event:  

                                    (1)  

where    is the length of the time interval and            is 

the discharge current. DoD is computed as: 

     
         

    
   (2) 

where      is the effective capacity:  

                       (
  

            
)
   

 
   

   
             (3) 

where            is the discharging current and    is the 

rated capacity. We use H to denote rated discharge time in 

terms of hours and obtain its value from the data sheets, 
which is generally 20 hours [13]. Peukert’s exponent is 
shown by k, which changes depending on the battery type. 
For LA batteries, the typical value is around 1.15 whereas for 
LFP batteries it is 1.05 [23]. Effective capacity is also scaled 
with SoH value to reflect the capacity loss as the battery is 
used. The DoD is subtracted from the SoC at the end of each 
interval. When discharging ends, we save the total DoD 
value during that discharge period,         as      
    %. 

Peukert’s law states the effective capacity of a battery 
decreases with higher discharge current. Figure 4 shows this 
negative effect on 20Ah LA and LFP batteries. The 
horizontal and vertical axes show the effective battery 
capacity and discharging current respectively. The effective 
capacity of the LA battery decreases faster due to its greater 
nonlinear behavior, represented by a larger Peukert 
exponent. At 40A, corresponding to 2C rate for both of these 
batteries, the LA battery loses 42% of its nominal capacity, 
but the LFP battery loses only 15%. 

We update the battery SoH after a complete 
charge/discharge cycle [22]. This update depends on the 
battery chemistry, determining Peukert’s exponent, 

    and         . The number of charge/discharge cycles 

decreases with deeper discharges, represented by a larger 

         value. We use a lookup table derived from 

effective capacity graphs provided in commonly available 
battery data sheets; similar to Figure 5 for each battery 

chemistry to define the effects of            
In Figure 5, the horizontal axis shows the DoD level for 

charge/discharge at 20h discharge rate, which is defined as 
the current that drains the battery in 20h. The vertical axis is 
on a log scale and illustrates the number of cycles a battery 
can provide for a particular DoD level. As the battery is 
discharged deeper in each cycle, the available number of 
charge/discharge cycles decreases exponentially. LFP 
batteries provide 5x more cycle life compared to LA 
batteries in average.  

We normalize the effect of one cycle with 
         value to calculate its impact on the battery lifetime. 

The battery lifetime is defined as the interval in which 
battery SoH is greater than a state of health value which 
determines when the battery is dead,         . Battery 
manufacturers generally recommend 80% for this value [24] 
[25], i.e. the battery is considered dead if the maximum 
capacity it can provide falls below 80% of its rated capacity. 

If the battery has                 cycles with           
value, the battery SoH is updated as: 
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This equation normalizes the effect of one cycle with 
         over the battery lifetime and penalizes high 

discharge currents.  
Batteries generally include a battery management unit 

that both manages and monitors the voltage and the current 
of the battery. This unit makes it practical to use our model 
as it requires only voltage and current measurements of the 
battery. In contrast, the simple battery model used by 

previous work [3], [4] does not calculate        They use 
nominal battery capacity,     to compute DoD. This leads to 
up to 42% overestimated discharge duration and thus, 
overestimated peak shaving capabilities. They also assume 
the same battery capacity over its lifetime and do not 
consider the effects of decreasing SoH on      , further 
increasing the errors.  

TABLE II.  BATTERY MODEL VALIDATION 

Battery  Error 

Li-Ion5 4.35% ± 2.05% 

Li-Ion6 5.83% ± 3.60% 

Li-Ion7 3.84% ± 2.75% 

We validate our model using the battery data available 
from the NASA Ames Prognostics Data Repository [26]. 
The repository includes the measurements of 2Ah Li-ion 
batteries charging and discharging at different currents and 
temperatures. Each measurement has the complete 
charge/discharge profile of a single battery until the end-of-
life condition. We check our model using the results of three 
batteries tested at room temperature. Table II shows that our 
model has 4.67% average error compared to the 
measurements.  

In summary, a battery-based peak shaving architecture 
needs to have 1) an appropriate power delivery option and 
battery placement design to eliminate the power losses as 
much as possible, 2) finer grained control of the battery 
power output to shave longer peaks, 3) low battery 
coordination overhead to ensure timely response to peak 
pulses, 4) a cost effective battery type to reduce the battery 
costs and a battery model to accurately estimate the effects of 
high discharging current. 

IV. OUR PROPOSED ARCHITECTURE 

In previous sections, we show that previous designs do 
not capture the effects of a binary battery discharge, which 
requires high discharging current. Furthermore, the 
distributed design requires a centralized controller to obtain 
its peak performance. The performance of this controller 
highly depends on the data center interconnect and can be 
negatively affected with increasing delay. Finer-grain control 
with the smaller batteries is a key to achieving good peak 
shaving results. This section presents our battery-based peak 
shaving architecture. Our design places the batteries in a 
centralized location and connects their aggregate output to 
the utility grid with a grid-tie inverter. Our model 
outperforms the distributed design by exploiting the 

nonlinear nature of Peukert’s Law, despite additional DC-
AC conversion losses in the centralized UPS. It obtains 
improved battery lifetime and requires significantly less 
communication overhead than SoA distributed designs. 

 

Figure 6: Our battery placement proposal using a grid-tie 

Instead of decentralizing the batteries, we place them 
together and connect the batteries to the main grid using a 
grid-tie inverter. A grid-tie inverter allows any quantity of 
DC power to be converted into AC and fed into the grid in an 
efficient way [17], [27]. Figure 6 presents the layout of our 
design. The integration of battery power to the system is 
controlled with two switches. When switch SA is in mode 
“1”, the data center operates normally, accepting any 
quantity of battery power output from the grid-tie, which is 
controlled by the switch SB. If it is “OFF”, the grid is the 
only power supplier, i.e. we are under the power threshold. If 
it is “ON”, the batteries are active and shaving peak power. 
The batteries can be recharged directly by the grid through a 
rectifier. SA is in mode “2” only in emergency cases, making 
sure that the only power supplier is the battery. The case 
where SA is in mode “2” and SB is “ON” is not allowed 
because it just combines the same battery output. 

Even though the batteries are centralized, we still treat 
them as distributed and enable them to individually 
charge/discharge. The fact that grid-tie inverter allows any 
quantity of DC to be combined with AC makes it possible to 
adaptively select the discharge current of the batteries.  
Instead of using batteries with high current rates as in both 
SoA centralized and distributed designs, we can increase the 
number of batteries being discharged and scale down the 
current. In fact, this leads to finer grained control of the 
battery output compared to both existing designs. 
Furthermore, having more batteries used simultaneously with 
the same discharging current, we reduce the variation in 
battery discharge profiles. Decreasing both this variation and 
discharging current helps increase the battery lifetimes. 

We place the batteries together and allow the discharging 
current to scale down instead of being in a binary mode. We 
have a set, Φ, of discharge currents, and we choose the 
smallest current from Φ that can sustain the peak demand 
with the available batteries. Based on this current, we 
compute the number of batteries to use: 

          {  |                              (5) 

   ⌈
       

    
⌉    (6) 

where    is the voltage of a single battery,    is the peak 
power demand,    is the peak power threshold to sustain,    

is the number of available batteries,     is the number of 



batteries required to discharge and    is the selected 
discharging current. These equations make sure that the 
minimum feasible discharging current is selected over all the 
selected batteries by ensuring the number of selected 
batteries is smaller than the number of available batteries. 
The set of available batteries include all the batteries having 
SoC greater than             , where        is a 

predetermined value between 1 and 100 to better control the 

battery lifetime [5], [4]. Larger        values can shave 

bigger peak power pulses for a longer duration but they lead 
to shorter average battery lifetime values. We refer this 
process as the discrete_current policy.  

This policy may select a subset of batteries to discharge. 
During battery selection, we choose the batteries available 
with the greatest SoH values. This minimizes the probability 
that a battery breaks down during discharging and it is the 
best a controller can do without any knowledge about the 
future power demand. The advantage of our architecture is 
that since the batteries are placed centrally they do not need 
to go through the data center network to coordinate for the 
battery selection process. They can use a dedicated network 
for this coordination. Thus, we can use a centralized 
controller with a much smaller expected latency, up to 4x 
less vs. the distributed design. 

Alternatively, we can use all the available batteries to 
discharge at the same current. We define the number of the 
available batteries, i.e. the ones with SoC greater than 

            , as Na. The discharging current, Id, becomes:  

   ⌈
        

     
⌉    (7) 

where   is the power demand,   is the peak power threshold 
and    is the voltage of a single battery. Different than the 
previous policy, this policy does not let any battery to be idle 
during a peak power pulse, i.e. a battery is either drained or 
discharging. As a result, it does not have a predefined set of 
discharging currents and it selects the discharging current on-
the-fly based on the number of available batteries. We refer 
this process as the all_battery policy. Since it discharges all 
the available batteries, there is no battery selection problem. 

We use AC power delivery because it is most common in 
today’s data centers and existing systems can apply our 
design without new infrastructure cost. Despite the power 
losses associated with the centralized placement, we still use 
it because of its simplicity and low maintenance 
requirements. We address this problem by adding 8% 
(section VII.C) more batteries into our architecture and 
compensating the additional capacity cost with elevated 
battery life. Furthermore, our design can leverage a dedicated 
network to establish coordination among the batteries, 
instead of being dependent on the data center network, 
reducing the communication overhead.  

We compare our design against SoA designs in Table III 
in terms of the key architectural challenges we describe 
previously. Our design leverages the useful properties of 
existing designs that are necessary to shave long peaks. We 
add the ability to adjust the discharging current adaptively 
and a detailed battery model to capture the effects of a high 
discharge current. Also, our design can facilitate the locality 

of the batteries by using a dedicated network to establish the 
communication, instead of using the data center network. 

TABLE III.  COMPARISON OF OUR DESIGN VS. STATE-OF-THE-ART (SOA) 

 
SoA [2] 

centralized 

SoA [4], [5] 

distributed 
Our design 

Placement Centralized Distributed Centralized 

Selective Discharge X   

Adaptive Current X X  

Battery Model X X  

Coordination 

Medium 
N/A 

Data center 

network 

Dedicated 

network 

V. COST MODELS 

This section presents the cost models used by the 
previous work to quantify the benefits of the peak power 
shaving. For each different model, we show the domains 
they are applicable to, how they are calculated and 
specifically focus on how the battery cost affects the overall 
cost. The latter part is important since we show that the 
average battery lifetime is overestimated by up to 2.44x with 
simplistic battery models, increasing the battery cost with 
more frequent replacements. As a result, the benefits of peak 
shaving with batteries are also overestimated. 

A. Co-location Rental (CLR) Cost Model 

Co-location providers rent their data center equipment 
and space to retail customers. This applies to companies that 
require a data center-like system but do not want to build 
their own. A well-known example for a co-location renter is 
content delivery networks (CDNs) [4]. These renters make 
long-term power contracts with co-location providers and 
pay based on their provisioned power, instead of their actual 
consumed power. As a result, decreasing their peak power 
consumption immediately translates to savings (Figure 1-b). 
Palasamudram et al. [4] target this domain for their 
distributed battery-based peak shaving design and calculate 
the total cost as: 

                     
  

 
             (8) 

where    is the unit power price,        is the total 

provisioned power,    is the unit battery price,         is the 
total battery capacity and   is the expected battery lifetime. 
Then, they calculate the savings as: 

            
                                            

                       
   (9) 

where                     and                         
represents total cost with and without batteries, respectively. 
When calculating the total cost without the batteries, we can 
just neglect the battery related parts of Equation 8. The main 
purpose of peak shaving in this case is to reduce the 
provisioned power level so that the co-location renters can 
contract for less power. 

B. Total Cost of Ownership (TCO) Model 

There are several companies that own their data centers, 
where they still make power contracts based on their peak 
power consumption to reduce their cost of energy. However, 



TABLE  V.          TCO/SERVER BREAK-DOWN IN DIFFERENT DESIGNS [5]. THE COMPONENTS WITH DIFFERENT TRENDS ARE HIGHLIGHTED. 

TCO Component 
w/o peak 

shaving 

Distributed Design Break-down Grid-tie Design 

TCO/server trend 

with more servers 

Battery Model TCO/server trend 

with extra servers 

Break-

down Simple Detailed 

Facility space depreciation $3.40 Decreasing $2.74 $2.74 Decreasing $2.72 

UPS depreciation $0.13 Constant $1.67 $5.00 Constant $3.33 

Power infrastructure depreciation $5.94 Decreasing $4.79 $4.79 Constant $5.94 

Cooling infrastructure depreciation $2.46 Decreasing $1.98 $1.98 Decreasing $1.96 

Racks, monitoring, installation $8.97 Decreasing $7.23 $7.23 Decreasing $7.17 

Data center opex $7.49 Decreasing $6.04 $6.04 Decreasing $5.99 

Server depreciation $31.25 Constant $31.25 $31.25 Constant $31.25 

Server opex $1.56 Constant $1.56 $1.56 Constant $1.56 

PUE overhead $1.94 Constant $1.94 $1.94 Constant $1.94 

Utility monthly energy cost $8.71 Constant $8.71 $8.71 Constant $8.71 

Utility monthly power cost $4.20 Decreasing $3.39 $3.39 Decreasing $3.36 

Total $76.04 Decreasing $71.30 $74.63 Decreasing $73.94 

 

 

 

they achieve this peak value rarely and underutilize the 
provisioned power. A solution to this is to add more servers 
to the data center, which improves the power utilization but 
also increases the peak power level. A peak shaving 
mechanism can ensure that the provisioned power level is 
not violated with additional servers. In this case, the 
provisioned power level does not decrease but both the 
provisioned power and the data center equipment can be 
used to host more servers and thus TCO/server reduces. 
Also, assuming that each server brings a constant amount of 
revenue, the total profit increases [5]. This also shows that 
the savings is directly proportional to TCO/server reduction. 

TABLE IV.  TCO MODEL INPUTS RELATED TO THE BATTERIES 

Input  LA Value  LFP value 

Battery unit price -rated with 20h 2 $/Ah [30] 5 $/Ah [29] 

Per server capacity 20 Ah [5] 40 Ah [5] 

Peukert’s exponent 1.15 [23] 1.05 [23] 

Battery nominal voltage 12V [11] 

Data center depreciation time 10 years [31] 

Server depreciation time 4 years [31] 

Utility energy price 4.7¢/kWh [32] 

Utility power price 12 $/kW [2] 

Kontorinis et al. [5] use this analysis by collecting the 
depreciation and opex data from the APC’s commercial TCO 
calculator [28]. This model computes the TCO/server by 
dividing it into multiple parts, calculating each part 
separately and analyzing how each part changes with more 
servers within the same power budget. Table V summarizes 
the different components of TCO and shows the TCO break-
down for different designs. More servers decrease the 
TCO/server and increase the profit obtained from a server. 
We compare the TCO/server of each battery placement 
design in our study with the TCO/server of a data center 
which does not use batteries for peak shaving (base model). 
The part we are interested in TCO partitioning is the UPS 
depreciation, accounting for the battery costs. If the 
associated UPS depreciation cost is high, we can obtain 
negative savings compared to the base model. Some reasons 
for high UPS depreciation include short average battery 
lifetime (requires frequent replacements) or using an 
inappropriate battery type for peak shaving (low energy 
density, short service time, etc.). Table IV lists the input 

values for both this model and CLR model. Further details of 
the TCO model are not in the scope of this paper and 
covered in detail in [5].  

Our grid-tie design requires more power distribution 
infrastructure than the distributed design because we keep 
transmitting power throughout the data center, even if the 
power is not drawn from the utility. For example, a 10MW 
data center may have 1MW worth of additional servers due 
to peak shaving. In our case, the extra power is provided 
from the UPS through the data center power infrastructure to 
the servers. In the distributed case, this extra power is not 
provided through the data center power infrastructure. 
Although all the servers are connected to the main power 
infrastructure, during a peak pulse some of them may 
disconnect themselves from the main power infrastructure 
and get power locally from the on-board UPS. Therefore, the 
provisioned power infrastructure is sufficient. This means 
that our approach has constant power infrastructure 
depreciation, whereas the distributed design decreases this 
depreciation with more servers. But, our design does not 
require a custom PSU or power distribution, as opposed to 
the DC architecture. This makes it practical for the existing 
data centers. The additional peak shaving opportunities from 
our approach outweigh the additional infrastructure costs. 

VI. METHODOLOGY 

Power Measurements and Workloads: We estimate the 
power consumption of a large scale data center using 
measurements from our data center container. It has 200 
servers consisting of Nehalem, Xeon and Sun Fire servers 
running Xen VM. We compose a mix of common 
benchmarks to measure power and performance of different 
jobs on our servers. We use RUBiS [33] to model service-
sensitive, eBay-like, workloads with 90th%ile of response 
times at 150ms, and Olio [34] to model social networking 
workloads with response times ranging from 100ms up to 
multiple seconds depending on the type of data uploaded 
(e.g. text vs. photos). Multiple Hadoop [35] instances are run 
as batch jobs with 2 min mean arrival time and with average 
execution time of 10 min [36]. Performance is measured at 
10ms sampling rate, while power is obtained at 60Hz.  
We create an event-driven simulator embedding the power 



 
Figure 7. Data center workload mix                Figure 8. DoD level variation 

information and the workload characteristics of the 
measurements to simulate a data center. We model each 8-
core server with an M/M/8 queue, and use a linear CPU 
utilization based power estimate commonly used by others 
[1], [6]. Table VI shows that the average simulation error is 
below 10% for all quantities of interest, with 3% for power 
estimates, while performance for services has only 6% and 
MapReduce completion times are within 8% of measured 
values on our data center container. 

TABLE VI.  VERIFICATION OF POWER AND PERFORMANCE MODELS 

Parameter Average Error 
Avg. Power Consumption 3% 

90
th

%tile Services QoS 6% 
Avg. MapReduce Comp. Time 8% 

TABLE VII.  WORKLOAD PARAMETERS 

Workload  
Average Time 

Service Interarrival 

Search [6] 50ms 42ms 

Social Networking [34] 1sec 445ms 

MapReduce [37] 2 min 3.3 min 

We model typical user request load onto a full data center 
to understand the benefits of peak power shaving. We use a 
year of publicly available traffic data of two Google 
products, Orkut and Search, as reported in Google 
Transparency Report [38] to represent latency-centric service 
jobs. We reproduce the weekly waveform of MapReduce 
jobs shown in Figure 3 of [37] to model batch jobs. Table 
VII shows the parameters of these workloads. We created a 
week’s worth of workload mixture. Figure 7 compares the 
workload components to the maximum load. The max load 
ratio is around 80% while the average is 45%, shown by the 
horizontal line. 
Data Center and Battery Simulation: We limit our data 
center simulation to a week because it is not computationally 
feasible over long periods due to fine event granularity. We 
extract the power profile of the data center as well as the 
charge/discharge profile of the batteries in the given 
timeframe and scale these profiles appropriately for longer 
time intervals. We refer to this process as data center 
workload simulation. The main goal of this preprocessing is 
to analyze the required DoD level and discharging current 
profiles for the batteries.  

Figure 8 shows the DoD level variation of the grid-tie 
design and the distributed design with different level 

controllers over a week using LFP batteries when         is 

set to 60%. Both designs shave 15% of the peak power. The 
grid-tie architecture is more consistent, followed by high 
level distributed controllers. In these cases, the batteries use 
all the available capacity, because the battery power is 
distributed evenly across the batteries. In contrast, the DoD 
value is distributed between 20% and 60% approximately 
uniformly with a server level controller since individual 
server power profiles vary and there is no coordination 
between them. In Figure 9, we present the average 
discharging current profile of the distributed and grid-tie 
design over a 3 day period from the same experiment 
described above. The grid-tie design reduces the discharging 

current significantly without affecting the amount of peak 
power shaved, and thus can decrease the negative effects of 
high discharging current.  

 
Figure 9. Avg. discharging current for the distributed design (left) and grid-
tie design (right) over a 3 day period, with LFP. 

We include both LFP and LA batteries in our study and 
assume that the battery capacity per server is 40Ah and 20Ah 
respectively with 12V nominal voltage. These capacity 
values are the maximum that can fit into a 2U server [5]. 

Each battery is allowed to discharge up to        . We 

change the        to see how it impacts both average 

battery lifetime and peak power level that can be sustained. 
Our battery model estimates the SoC and SoH of each 
battery. After analyzing short-term battery usage profiles, we 
use our battery model and simulate only charge/discharge 
cycles of the batteries. We run the simulation for several 
years of simulation time to estimate the battery lifetime. We 
consider a battery dead when its SoH goes below 80% [24], 
[25]. We refer to this process as battery simulation. 

VII. RESULTS AND EVALUATION 

This section first shows the effects of incorporating a 
detailed battery model on savings. We analyze CLR and 
TCO cost models and show that the savings are 
overestimated with both by up to 3.35x. Then, we compare 
the peak shaving capabilities and efficiencies of different 
designs. DC distribution gives the best performance, but it is 
not preferable for current data centers as it requires a 
complete redesign of the power delivery equipment. Finally, 
we compare our design with SoA designs in terms of average 
battery lifetime and cost savings. Our design achieves up to 
78% longer battery lifetime and thus, up to 50% more cost 
savings with only 8% more batteries to account for non-ideal 
battery characteristics. 

TABLE VIII.  BATTERY LIFETIME ESTIMATION COMPARISON 

 LA LFP 

SoA low current rated estimates [4], [5] 3 years 10 years 

Our estimates 1.4 years 4.1 years 
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TABLE IX.          CLR COST SAVINGS FOR DISTRIBUTED LA AND LFP BATTERIES 

LA – distributed design LFP – distributed design 

Cost 2 $/Ah 3 $/Ah 4 $/Ah 5 $/Ah Cost 5 $/Ah 8 $/Ah 10 $/Ah 12 $/Ah 

Lifetime CLR Savings (%) Lifetime CLR Savings (%) 

1 0.9 -3.6 -8.1 -12.7 1 -25.3 <-50 <-50 <-50 

2 5.5 3.2 0.9 -1.3 2 -2.7 -16.3 -25.3 -34 

3 6.4 4.6 2.7 1 3 1.8 -9.4 -17 -24 

4 8.2 5.9 4.6 3.2 4 6.4 -1.8 -7.2 -13 

7 
Not possible 

7 11 5.5 1.9 -1.8 

10 10 15.5 12.7 11 9.1 
 

TABLE X.          TCO/SERVER SAVINGS FOR DISTRIBUTED LA AND LFP BATTERIES 

LA – distributed design LFP – distributed design 

Cost 2 $/Ah 3 $/Ah 4 $/Ah 5 $/Ah Cost 5 $/Ah 8 $/Ah 10 $/Ah 12 $/Ah 

Lifetime TCO/server Savings (%) Lifetime TCO/server Savings (%) 

1 0.02 -2.08 -4.18 -6.27 1 -13.48 -26.63 -35.4 -44.17 

2 2.21 1.2 0.2 -0.81 2 -2.52 -9.1 -13.48 -17.87 

3 2.65 1.86 1.07 0.28 3 -0.33 -5.59 -9.1 -12.61 

4 3.09 2.52 1.95 1.38 4 1.86 -2.08 -4.71 -7.35 

7 
Not possible 

7 4.05 1.42 -0.33 -2.08 

10 10 6.24 4.93 4.05 3.18 
 

 A. Effects of the Detailed Battery Model 

We start our evaluation by quantifying the effects of a 
simplistic battery model on the cost. We use our battery 
model with our long term battery simulator to estimate the 
average lifetime of an LA and LFP battery when shaving 
peak power. Table VIII shows the comparison between our 
long-term battery lifetime estimates and the low-current 
rated estimates used by the previous work. We see that 
neglecting the effects of high current results in 2.14x and 
2.44x longer battery lifetime predictions. This leads to 
underestimated battery costs and overestimated cost savings. 
Table IX and X show the CLR and TCO/server savings, for 
both LA and LFP batteries with varying battery lifetime 
values. In our analysis, we obtain 9.5% and 19% peak power 
capping with distributed LA and LFP batteries, respectively. 
This peak shaving also enables 10.5% and 24% extra servers 
to be deployed within the same power budget when using the 
TCO model. We first use inexpensive batteries rated at low 
currents. In this case, CLR savings are 2.8% and 6.4%; 
TCO/server savings are 0.9% and 1.86% for LA and LFP 
batteries, respectively. If we do not capture the effects of 
high discharge current, these savings are 6.4% and 15.15% 
for CLR model and 2.65% and 6.24% for the TCO model. 
The savings are overestimated by up to 2.94x and 3.35x for 
LA and LFP.  

Next, we use batteries with larger rated currents: 10h, 5h 
and 1h [39], that are also more expensive: 8, 10, 12$/Ah for 
LFP and 3, 4, 5 $/Ah for LA. The average LFP lifetime 
increases to 5, 6 and 8 years and 2, 2.5 and 3 years for LA. 
Table IX shows that CLR cost savings become 3.2%, 2.7%, 
1% for LA and 5.5%, 1.9%, -1.8% for LFP batteries with 
10h, 5h and 1h rated batteries. Similarly, Table X shows that 
TCO/server savings become 1.2%, 0.94%, 0.28% for LA and 
1.42%, -0.33% and -2.08% for LFP with 10h, 5h and 1h 
rated batteries respectively. Although the battery lifetime 
values are closer to the low current rated estimates, higher 
battery price overshadows the savings obtained by fewer 
battery replacements. 

B. Peak Shaving Efficiency of State-of-the-Art Designs 

We continue our evaluation by comparing the peak 
shaving capabilities of SoA battery placement designs. We 
also include our battery model to account for the high 
discharge currents. Most data centers use a centralized LA 
battery, powering the entire data center when it is active and 
not overprovisioned for peak shaving. The capacity of this 
battery is adjusted to handle only emergency cases, which 
last a few minutes. We assume that this design has 3200 Ah 
worth of LA batteries [2], [5]. Then, we compute the amount 
of time a battery can shave a fixed peak pulse and how long 
it takes to fully recharge it during low demand. Table XI 
shows that the centralized design shaves the peak power for 
only 3-4 minutes when            is set to 255W per server. 
It cannot sustain long peaks and needs to apply other policies 
such as DVFS which have performance overhead.  

TABLE XI.  PEAK SHAVING CAPABILITIES OF THE CENTRALIZED DESIGN 

WITH DIFFERENT BATTERY TYPES.  PTHRESHOLD IS SET TO 255W PER SERVER. 

Peak Power Per 

Server (W) – 

Shaving %  

Power Shaving Duration (min) 

Centralized – 

LA not scaled 

Centralized 

– LA scaled 

Centralized 

– LFP scaled 

300 – 15%  3.81 24.24 70.46 

310 – 17.5% 3.67 23.34 68.07 

320 – 20.3% 3.54 22.50 65.84 

To address this problem, we increase the capacity of the 
centralized battery by 5x and obtain ~6x longer peak 
shaving. LA batteries have large volume, so the capacity 
cannot be scaled significantly. The increase in peak shaving 
duration is more than 5x because the stress on discharging 
current rate decreases nonlinearly as a result of Peukert’s law 
[13]. In contrast, the recharging duration increases almost 
linearly with scaling capacity. The peak shaving duration, 
despite increased capacity, is still not sufficient enough to 
sustain peaks lasting hours. Another option is to use LFP 
batteries with more energy density and less nonlinear battery 
behavior [5]. This can scale up the capacity further. We use a 



TABLE XIII.          EFFICIENCY OF CENTRALIZED VS. DISTRIBUTED DESIGNS CONSIDERING DIFFERENT POWER EQUIPMENT AND DELIVERY OPTIONS 

Unit 
Efficiency 

common 

Efficiency 

best 
Design 

% Battery energy wasted 

before providing server power  

% Grid energy wasted before 

charging the batteries 

Common Best Common Best 

Centralized double 

conversion UPS  
85% [47] 90% [19] 

Distributed 

w/ AC 

power  

5% 2% 35% 23% 

AC distribution PDU 98% [19] 

Server AC PSU 75% [46] 90% [19] Distributed 

w/ DC 

power  

2% 2% 12% 8% DC UPS 92% [21], [47] 95% [19] 

DC distribution PDU 99% [19] 

Server DC PSU 92% [19] 
SoA 

Centralized  
38% 15% 5% 5% Filter + Rectifier 95% [19] 97% [48] 

Grid-tie inverter 95% [45] 
 

 

 

total capacity of 40K Ah [5] and get up to 70 minutes of 
peak shaving at high cost. The peak shaving benefits are 
insufficient to compensate for high battery costs. This 
analysis shows that centralized battery design is not a good 
option for peak shaving when the battery powers the entire 
data center in boolean fashion as in the state-of-the-art work. 

TABLE XII.  PEAK SHAVING AND BATTERY RECHARGING CAPABILITIES OF 

THE DISTRIBUTED DESIGN WITH DIFFERENT BATTERY TYPES AND AC VS. 

DC POWER DELIVERY OPTIONS. PTHRESHOLD IS SET TO 255W PER SERVER. 

Peak Power Per 

Server (W) – 

Shaving % 

Power Shaving Duration (min) 

Distributed – 

LA with AC  

Distributed – 

LFP with AC 

Distributed – 

LFP with DC 

300 – 15%  192.92 552.23 552.23 

310 – 17.5% 157.07 451.09 451.09 

320 – 20.3% 132.27 381.08 381.08 

Low Power Per 

Server (W) 

Recharging Duration (h) 

Distributed – 

LA with AC  

Distributed – 

LFP with AC 

Distributed – 

LFP with DC 

220 8.47 16.95 14.81 

210 6.58 13.16 11.56 

200 5.38 10.75 9.43 

Ideally, batteries should supply power only for the 
portion above the peak level. The centralized design cannot 
achieve this because it operates in boolean mode at data 
center level. The distributed design allows battery power to 
be controlled in finer granularity by selectively discharging 
only a subset of all the batteries. We analyze the power 
shaving duration of distributed LFP and LA batteries in 
Table XII. The size of each LA and LFP battery is set to be 
20Ah and 40Ah, respectively. These are the maximum 
capacities that can fit in a 2U server [5]. Although the LFP 
capacity is more than LA by 2x, it shaves a given peak for 
~3x longer because LFP battery behavior is less nonlinear at 
high current, proving to be a better fit for the distributed 
design. But, recharging all the batteries back to back takes 
more time for LFP due to its larger capacity. Since batteries 
can selectively discharge, this is not much of an issue. 

Another important key challenge is to reduce the 
conversion losses that impact the effective battery 
input/output. The distributed design puts the batteries next to 
the servers and increases the effective battery capacity 
compared to the centralized design. DC power delivery can 
be used to further eliminate the conversion losses on the 
power path, reducing the input power required to recharge 
the battery. We show the best and common efficiency values 
for the power infrastructure of both AC and DC options in 

Table XIII. It also shows the amount of energy wasted to 
recharge the batteries and battery output wasted before going 
into the servers.  

The centralized design does not waste a lot of grid power 
but the battery output loss is 15%, which further reduces its 
peak shaving duration. We see that the distributed DC design 
obtains the best efficiency by having the smallest total 
conversion losses. The AC counterpart provides similar 
battery output power but it wastes the grid input 3x more 
than the DC design and results in longer discharges. Table 
XII also shows the comparison between AC and DC 
distributed options in terms of effective discharge and 
recharge durations. Discharging capabilities are the same but 
the DC design takes 14% shorter time to fully recharge, 
which makes it a safer option as batteries get ready for the 
next peak earlier. Although the DC option is more energy 
efficient, it is an unfeasible option for existing data centers 
because its high cost to replace the power infrastructure.  

C. Performance of Our Grid-tie Design 

We compare our grid-tie design with previous designs in 
terms of energy efficiency, average battery lifetime, cost 
savings, and communication overhead. As we place the 
batteries in a centralized location, we still lose 15% of 
battery output because of the conversion losses (see Table 
XIII). However, batteries are used at lower discharge current 
and have higher effective battery capacity. This reduces the 
effects of the conversion losses. Instead of 15% performance 
difference, we get an average of 8% performance loss 
compared to the distributed design as shown in Table XIV. 
We compensate for this performance loss by adding 8% 
more battery capacity, which is feasible because we are not 
limited by rack size as in the distributed design. 

Table XV shows the power shaving statistics of our grid-
tie design and the distributed design. We analyze our design 
with and without additional battery capacity as well as with 
all_battery and discrete_current policies (see section IV). 
The average battery lifetime does not change with additional 
battery capacity, but the all_battery policy results in longer 
average battery lifetime. The average battery lifetime 
estimates are 5.4 and 2.2 years for LFP and LA respectively 
using the discrete_current policy. We obtain 6.4 and 2.5 
years with the all_battery policy. The battery lifetime values 
are 60% and 78% higher compared to the distributed design 
for LFP and LA batteries respectively since the discharging 
current can be scaled down with our design so that the 
negative impact on the battery lifetime is minimized. The 



TABLE XV.  GRID-TIE VS. DISTRIBUTED DESIGN, HIGHLIGHTED BEST VALUES. (EB = EXTRA BATTERIES, BL = BATTERY LIFETIME, PS = PEAK SHAVING, ES = EXTRA SERVERS) 

Design - Policy EB 

LFP LA 

BL PS ES 
CLR 

savings 

TCO/server 

savings 
BL PS ES 

CLR 

savings 

TCO/server 

savings 

Grid-tie all_battery 
8% 6.4 

yrs 

20% 25% 11% 2.77% 
2.5 yrs 

9.9% 11% 5.5% 1.87% 

0% 16% 19% 7.7% 1.36% 7% 8% 2.8% 1.14% 

Grid-tie 

discrete_current 

8% 5.4 

yrs 

20% 25% 9.4% 2.77% 
2.2 yrs 

9.9% 11% 4.9% 1.44% 

0% 16% 19% 6.1% 1.36% 7% 8% 2.2% 0.42% 

Distributed -N/A N/A 4 yrs 19% 24% 6.4% 1.86% 1.4 yrs 9.5% 10.5% 2.7% 0.9% 

 

 

all_battery policy scales down the discharging current more 
by using all available batteries and thus performs better than 
the discrete_current policy.  

TABLE XIV.  PEAK SHAVING CAPABILITIES OF OUR DESIGN COMPARED 

TO THE DISTRIBUTED DESIGN.  PTHRESHOLD IS SET TO 255W PER SERVER. 

Peak Power Per Server (W) – 

Shaving %  

Power Shaving Duration (min) 

Distributed – LFP  Grid-tie –LFP  

300 – 15% 552 516 

310 – 17.5% 451 418 

320 – 20.3% 381 351 

Our grid-tie design with 8% larger capacity obtains 
similar peak shaving performance compared to the 
distributed design. It compensates the increased battery costs 
with longer battery lifetime. Our design achieves up to 11% 
and 5.5% savings for LFP and LA batteries when renting 
from co-location providers. These savings are 70% and 
100% higher than the distributed design. Similarly, we 
obtain up to 2.77% and 1.87% TCO/server savings using 
LFP and LA respectively. These TCO/server savings 
correspond to up to $75K/month for a 10MW data center 
[28]. The TCO savings are 48% and 107% higher than the 
savings of the distributed design.  

The distributed design requires a centralized controller to 
get the best peak shaving performance [4], [5]. Since the 
batteries are distributed to the servers, this controller 
communicates with the batteries through the data center 
interconnect. High network usage leads to large signal delays 
to/from batteries. This can affect the performance of the 
controller negatively by increasing the response time to a 
peak pulse or transmitting outdated battery and server load 
information. The distributed design can also use multiple 
controllers placed at different levels of power hierarchy [5]. 
A decentralized control mechanism significantly reduces the 
peak shaving capabilities (see Table I). Our design can 
isolate itself from the data center interconnect, achieving fast 
communication even with high network congestion.  

Figure 10 compares the total delay of our grid-tie design 
during a discharge process with that of different controllers 
deployed in distributed design. We analyze the worst-case 
scenario where the controller needs to poll each battery. The 
left vertical axis is on a log scale and shows the 
communication delay whereas the right vertical axis presents 
the peak shaving percentage achieved by each configuration. 
We assume a fat-tree network topology [40] and model the 
links in the network with 10 Gbps capacity, transmitting a 
1K package at 1us [41]. We evaluate three different network 
congestion levels: an ideal network, network with normal 
and high level congestion. The first one has no queuing delay 

whereas the other two have 50 us and 350us delay when 
transmitting a single message in a switch, respectively [42]. 
In this experiment, cluster level corresponds to centralized 
communication for the distributed design. The low-level 
controllers have less total delay compared to our design in 
the ideal network case, but as the network congestion 
increases, our design performs better, except for the rack 
level controller, which has 60% less peak shaving 
performance than our design. Our design has similar peak 
shaving performance (1% better) compared to the centralized 
control in distributed design.   But, even in the ideal case of 
network, our design has around 20 ms total delay compared 
to 100 ms of the centralized control for the distributed 
design. Even in this case, we obtain 4x less communication 
overhead, and this difference increases exponentially as the 
network delay ramps up. 

 
Figure 10. Communication and peak shaving performance of the gird-tie 

design vs. the distributed design 

VIII. CONCLUSION 

Peak shaving with batteries has gained significant 
importance because of its ease of applicability and great 
performance. In this paper, we address the key challenges of 
architecting a cost and energy efficient battery-based peak 
shaving design. We first use a detailed battery model to 
capture the negative effects of high discharging currents. Our 
results indicates that not having a detailed battery model 
overestimates the battery lifetime up to 2.44x and leads to 
3.35x error in cost saving estimates. Second, we propose a 
new grid-tie based design which preserves the advantages of 
the existing designs, such as individual control of the 
batteries, and eliminates the key drawbacks, such as 
adaptively selecting the discharge current. It can use a fast, 
dedicated network to coordinate the batteries, reducing the 
communication overhead by 4x compared to the distributed 
design. Our design achieves up to 78% longer battery 
lifetime and doubles the savings compared to the state-of-
the-art designs. 
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