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Abstract—Several studies have proposed job migration over 

the wide area network (WAN) to reduce the energy of 

networks of datacenters by taking advantage of different 

electricity prices and load demands. Each study focuses on 

only a small subset of network parameters and thus their 

results may have large errors. For example,  datacenters 

usually have long-term power contracts instead of paying 

market prices. However, previous work neglects these 

contracts, thus overestimating the energy savings by 2.3x. We 

present a comprehensive approach to minimize the energy cost 

of networks of datacenters by modeling performance of the 

workloads, power contracts, local renewable energy sources, 

different routing options for WAN and future router 

technologies. Our method can reduce the energy cost of 

datacenters by up to 28%, while reducing the error in the 

energy cost estimation by 2.6x. 
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I.  INTRODUCTION 

Recent improvements in computer and network 
technologies and increasing computation demand have 
resulted in dramatic growth of large scale datacenters. Some 
companies, such as Google, Microsoft, deploy multiple 
datacenters distributed across the globe. A recent study 
indicates that the total power consumption of all datacenters 
in the world has increased by 56% from 2005 to 2010, with 
the total energy cost reaching billions of dollars [1]. The 
energy cost is expected to increase in the future as a result of 
higher cost of brown energy and the introduction of carbon 
emission taxes [2].  

Previous publications focused on geographically 
separated datacenters, employed “follow the sun” or cheaper 
cost of brown energy strategies, [3], [4], [5]. They use WAN 
to increase system performance via load balancing [6], [7] 
improve energy efficiency by migrating jobs [3], [4], [5], or 
to determine new datacenter locations [8]. But, these studies 
do not model the energy cost of WAN, the long-term 
datacenter power contracts or the benefits of local renewable 
energy sources. 

Datacenters often enter long-term power contracts with 
usage limits based on the expected peak power to limit the 
cost of energy. They are charged lower, fixed energy prices 
up to the contracted amount.  Above the contracted power 
limit they pay energy at market prices which can be 5x more 
expensive [9]. Previous work neglected these power 
contracts. As a result, they miscalculate both the network 
usage and the potential energy cost savings.  

Previous studies generally do not model local renewable 
energy sources due to their high variability. Some do account 
for expensive grid supplied renewable energy [10].  

Renewable energy prediction can be used to decrease the 
variability of local green energy and increase its usage 
efficiency [11]. In our work, we include local renewable 
energy sources in the network of datacenters along with 
renewable energy prediction algorithms [11].  

In this study, we develop a comprehensive algorithm that 
minimizes the energy cost of datacenters connected by 
WAN. Unlike previous work, our algorithm optimizes the 
datacenter and WAN parts of the system simultaneously, 
allowing feedback between them, thus improving the job 
migration decisions. Our model of network of datacenters 
leverages prediction of local wind and solar energy sources. 
We also include datacenter power contracts in our model and 
show that not accounting for these contracts can overestimate 
the energy savings by 2.6x. We analyze the impact of new 
technology and policies in datacenter WAN, such as energy-
proportional routing and green energy aware routing policies. 
We show that using WAN to transfer workloads between 
datacenters can decrease the cost of energy by up to 28% 
with a negligible performance overhead compared to no data 
migration.  

II. RELATED WORK 

Moving jobs across WAN among different datacenters 
has been proposed by several studies. They all leverage the 
locality of the electricity prices, renewable energy 
availability and load demands due to different locations of 
datacenters. These studies take advantage of these 
differences to decrease electricity cost [12], [13], [4], [10], 
minimize carbon footprint [8] or maximize the load balance 
among the datacenters [7], [14]. 

Buchbinder et al. [12], Qureshi et al. [13] and Rao et al. 
[4] minimize the electricity cost by moving jobs to where the 
energy is cheaper. Their model lacks different energy types, 
detailed workload performance analysis and different routing 
options for datacenters. Le et al. [10] also minimizes the total 
energy cost with green energy included in their model. They 
assume a central dispatcher and do not model the network 
latency and cost. Hence, their model is not applicable to 
network of datacenters using WAN. Liu et al. [6] minimizes 
the brown energy usage by leveraging local green energy. 
However, they do not address the variability of green energy 
and do not have any network model or specify datacenter 
workloads they use. Aksanli et al. [7] use WAN to balance 
the load among datacenters. They include the network 
latency and job performance in their design but do not 
consider the cost of energy. In this study, we first outline the 
important aspects of datacenters and their WAN connectivity 
and show that a comprehensive approach is necessary to 
draw accurate energy saving estimations. We then design an 



algorithm to minimize the total cost of energy for various 
configurations. 

III. COST MINIMIZATION IN NETWORK OF DATACENTERS 

A. Datacenter and Backbone Network Models 

Multiple datacenters provide several optimization 
opportunities, such as load balancing and cost minimization, 
due to the variation in green energy availability, brown 
energy pricing and load demand in different places. 
Although multiple datacenters increase the capacity and 
parallelism of the computation, a fast, reliable network is 
necessary to maintain performance of workloads during 
optimization. In this section, we first present our datacenter 
and backbone network models to capture the behavior of a 
large network of datacenters and then develop an algorithm 
to minimize the cost of distributed and renewable-powered 
datacenters connected with backbone network.  

 
Figure 1: Network Topology; squares=datacenters, circles = routers 

1) Backbone Network Model 
We use a subset of LBNL ESnet’s network topology, as 

shown in Figure 1, to model the datacenter WAN. It includes 
5 datacenters and 12 routers distributed over the USA, where 
each connection link has a predefined capacity from 10Gbps 
to 100Gbps. We reserve 10% of this capacity for background 
traffic in our experiments. We compute the total network 
energy need with the router power and a fixed offset for the 
link power consumption. We estimate the router power 
consumption with a linear model based on bandwidth 
utilization [15].  

 
Figure 2: Power curves for different router power schemes 

The power consumption of current routers is not 
proportional to the utilization, i.e. the idle power is very 
close to the peak regardless of the utilization. Since there 
have been several studies to design more energy proportional 
routers [7], we construct representative power 
proportionality models to account for future technologies.  
Figure 2 reflects 4 power curves representing different 
technologies: the non-proportional curve is an actual state-

of-the-art router [16], and the step function is the result of 
turning line cards ON/OFF. This power curve is actually 
implementable with current technology [7]. Smooth 
proportionality is a linear correlation of the step function, 
and ideal proportionality assumes there is no idle power. 

We implement two routing algorithms to find a path 
between two endpoints. The default algorithm is Dijkstra’s 
Shortest Path Routing (SPR), which leads to static decisions. 
Our Green Energy Aware Routing algorithm (GEAR) [7] 
finds a path dynamically, based on green energy availability 
in router locations. Results section compares these routing 
algorithms based on their energy consumption and effects on 
job performance. 

2) Datacenter Model 
We model each datacenter in  by the interaction between 

servers and the workloads they execute. We use 
measurements from our datacenter container on campus to 
capture the workload behavior and estimate the power 
consumption of a large scale datacenter. Our container 
includes 200 servers consisting of Nehalem, Xeon and Sun 
Fire servers. We run the workloads in multiple Xen virtual 
machines (VMs) and obtain the runtime characteristics of 
servers. Our measurements include resource, e.g. CPU and 
memory, utilization and power consumption values. We use 
these measurements to build and verify a baseline model for 
our simulations. 

We classify the workload into two categories: service 
jobs with tight response time constraints and batch jobs with 
performance concerns but no explicit latency limits. The 
representative service jobs are RUBiS [17], a workload 
similar to eBay having 90

th
 percentile of response times at 

150ms, and Olio [18], a social networking workload with 
response times ranging from 100ms up to multiple seconds. 
We run multiple Hadoop, a common MapReduce (MR) 
implementation [19], instances as batch jobs.  

 
Figure 3: Job arrival processes in the datacenter model 

Figure 3 shows the decoupled job interarrival to the 
system and how we schedule each different job. MR jobs 
are placed into a global active job queue whereas a service 
job is assigned to a server immediately. Each MR job 
consists of multiple tasks.  A number of tasks are dispatched 
from an active job and sent to different servers. We use the 
scheduling policy described in [11] in order to guarantee the 
quality of service (QoS) of service jobs. This policy sets the 
maximum number of batch jobs that can simultaneously run 
on a server to limit the interference effects between service 
and batch jobs. We use separate lognormal distributions to 
model the interarrival process of each type of job and find 
the parameters of the distributions from measured data [11]. 

We model each server as an M/M/8 queue and calculate 
its power consumption with a linear CPU-utilization based 
equation [20]. We scale the aggregate server power 
consumption with power usage effectiveness (PUE) metric 
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to account for power related overheads, such as cooling, 
distribution losses, etc. We use a PUE value of 1.15 in our 
simulations [21]. The error between our simulations and 
measurements is 3% for power consumption, 6% for service 
job QoS and 8% for MR job performance. 

B. Cost Minimization Algorithm 

The peak hours and electricity prices of datacenters have 
variations because of geographic distribution of datacenters. 
A datacenter with higher electricity prices can send some of 
its workload to another datacenter to take advantage of the 
lower prices there, with performance overhead due to 
network delay [4], [12], [13].  The live VM migration over 
high speed WAN has made this idea feasible, as it reduces 
the effects of network delay with fast data transmission [22]. 
Network elements should use the local green energy supply 
as much as possible to reduce their overall energy cost. But, 
today’s static routing decisions may not always minimize the 
brown energy consumption. A comprehensive cost 
minimization problem targeting network of datacenters 
needs to model the energy cost of both datacenter and 
network elements accurately to minimize the total cost and 
monitor the network delays in order to manage the 
performance of the workloads. 

The main decision variable of the job migration is the 
energy prices. Previous studies mostly use the market prices 
to decide a data transfer. But, datacenters often make power 
contracts to decrease their energy cost. These contracts 
include a fixed price up to the contracted amount and change 
depending on the both the location and the expected demand 
of a datacenter. The demand exceeding the contracted 
amount is charged with market prices, which are generally 
much higher than the contracted price, up to 5x [9]. 
Therefore, a data transfer should not increase the power 
consumption beyond the power contract to avoid the high 
market prices. If these power contracts are not modeled, we 
can make incorrect data transfer decisions and cause power 
threshold violations. 

In addition to the utility power, we include local 
renewables, such as solar and wind, to generalize the source 
of energy. Our algorithm uses accurate prediction methods to 
manage the unreliable nature of the renewable energy. It 
divides the timeframe into epochs of equal length. We set 
this length to 30 min because of the length of the prediction 
interval and that average batch job completion time is around 
30 min [11]. The goal of our algorithm is to find which 
workloads can be relocated in each interval. 

We prioritize green energy over brown energy as the 
green energy is generated and used locally and its cost is 
already paid at the time of deployment. Thus, we first target 
to maximize the green energy usage by transferring 
workloads to datacenters which have extra green energy 
available. Our next goal is to take advantage of cheap brown 
energy prices. These prices are fixed up to a contracted 
amount due to datacenter power contracts. Thus, we also 
maintain the utilization level in datacenters to avoid power 
threshold violations. If the utilization levels of all the 
datacenters are above their threshold values, we use the 
market prices in that interval to decide the data transfers. 

Figure 4 outlines our algorithm. We calculate the energy 
need of each datacenter at the beginning of each interval, 
based on the load rate from the previous interval and the 
incoming load rate. For each interval we get the fixed and 
variable brown energy cost, peak power thresholds and 
estimate the green energy availability by using prediction. 
Then, each datacenter calculates the extra green energy 
based on its energy need and green energy availability. We 
send workloads from datacenters with the highest utilization 
to those with the largest amount of available green energy. 
Each sender selects jobs from its migrateable workloads to 
transfer until either there are no migrateable workloads left 
or there is no extra green energy in the receiver. In this study, 
batch jobs are the only migrateable workloads due to tight 
response time constraints of the service jobs. We continue 
this process until every datacenter is analyzed. Next, if there 
are any remaining workloads, the algorithm moves 
workloads from the datacenters with higher energy costs to 
those with the cheapest brown energy. This process 
continues until the sender does not have any migrateable 
workloads left or the receiver has reached its peak power 
threshold. Any remaining jobs after this point are scheduled 
based on the market energy prices and datacenter resource 
availability.  

 
Figure 4: Flowchart of the cost minimization algorithm 

We complete the datacenter part of the algorithm, which 
computes the transfer matrix representing data transfers, at 
the end of this iterative process. The next step is the 
networking part that takes the transfer matrix as input and 
calculates the path between each sender/receiver datacenter 
pair and how much bandwidth to be allocated on each path. 
The default routing algorithm used in today’s WAN is 
shortest path routing (SPR).  We compare SPR to our green 
energy aware routing algorithm (GEAR). SPR always selects 
the shortest path between two points whereas GEAR 
allocates the path with the least brown energy need. The 
implementation details of SPR and GEAR are given in [7].  

We include a load threshold for datacenters that is 
different than the power contract thresholds. It is used to 
reserve some resource capacity for emergency cases, such as 
hardware failures. Thus, we verify the load ratio of the 
receiving datacenter at the end of the networking part. If the 



ratio is higher than the load threshold of the datacenter, we 
cancel the incoming transfers. Similarly, if we cannot select 
a path for a job migration in the transfer matrix due to 
network unavailability, the job is rescheduled to either run on 
a different remote center or its original owner. We iterate this 
process until all datacenters are checked. 

We also model the energy proportionality of both servers 
and routers in the network of datacenters. Along with the 
increased energy proportionality, our work is the first to 
consider local green energy with prediction, fixed power 
contracts, the impact of different routing algorithms, and 
green energy in WAN, all together in a cost minimization 
problem for network of datacenters. 
Algorithm complexity: Our algorithm executes at most in 
time O(n

2
) in each step, where n is the number of 

datacenters. The first part of the algorithm converges faster 
because when the green energy availability is high, fewer 
workloads need to be migrated. In contrast, there are fewer 
migrateable jobs when fewer datacenters have green energy 
available. The second part of the algorithm can take longer 
to converge since and nearly all jobs could potentially 
migrate based on fluctuating energy prices. In this case, the 
number of migrateable jobs is limited by the available 
workloads and peak power thresholds.  

The time required to apply the results of the algorithm in 
each epoch is the sum of running time of the algorithm and 
the communication delay between datacenters. The estimated 
running time of the algorithm is negligible for a network 
consisting of tens of datacenters. The communication delay 
is also low due to high speed (up to 100 Gbps) of the WAN 
links. The information each datacenter needs to broadcast in 
each epoch consists of green energy availability, brown 
energy prices, and the number and size of jobs that can be 
relocated. The amount of data required to represent this 
information is relatively small, and the time needed for small 
data transfers between datacenters are on the order of 
milliseconds [23].  Since we assume that all the data between 
datacenters is anyway replicated for fault tolerance needs, 
the actual transfer only requires any most recent changes to 
the job’s data set, a relatively small fraction of the overall 
data.  As the latency of batch jobs is on the order of minutes, 
this additional delay is insignificant. 

IV. METHODOLOGY AND RESULTS 

A. Methodology 

We use an event-based simulation framework to analyze 
and compare the results of our solution to the cost 
minimization problem. The inputs to our simulator are 
derived from measurements on our datacenter container and 
data obtained from industrial deployments. This section 
discusses how we construct the simulation environment, 
including the datacenter loads, simulation parameters, green 
energy availability, and brown energy prices. 
Datacenter load: We use a year of traffic data for two 
Google products, Orkut and Search, reported in the Google 
Transparency Report [24] to represent latency-centric 
service jobs and reproduce the waveform in Figure 3 in [25] 
to represent MR workloads to model the throughput-
oriented batch jobs in datacenters. In Figure 5, we show a 

sample workload combination with Social Networking and 
Search jobs representing service jobs, and MR workloads to 
represent batch jobs. The maximum load ratio is around 
80% with average of 45%. We use these data to find the 
parameters of the statistical workload models described in 
Section III.2 and feed them into our simulator. We list these 
parameters in Table I. We also only migrate batch jobs, 
which corresponds to 15-20% of the total workload, due to 
the tight response time constraints of service jobs. 

 
Figure 5: Datacenter workload mixture 

Brown and Green Energy Costs: Datacenters make power 
contracts to decrease the cost of energy. These power 
contracts are generally adjusted to meet the load demand 
and if the datacenter exceeds the contracted amount of 
power, it is charged with higher market prices. We obtain 
sample contract pricing for the Midwest, the east and the 
west coasts from [10]. We use the California ISO [26] 
database to obtain brown energy prices for various 
California locations to represent variable market prices and 
time-shift and scale those values for the other locations 
based on published averages [27]. Figure 6 shows summer 
and winter daily pricing values for brown energy in 
comparison to contracted costs. 

 
Figure 6: Daily brown and amortized green energy cost (c/kWh) 

We represent the local green energy costs as a fixed 
offset to our cost model, which is amortized over the lifetime 
of an installation, including both the capital and the 
maintenance costs. We use data from [28] to obtain the 
capital and operational expenses of several solar and wind 
farms, amortized over their lifetimes, as representative solar 
and wind costs per interval. 

Green Energy Availability: We obtain solar energy data 
from the UCSD Microgrid and wind data from a wind farm 
in Lake Benton, MN, made available by the National 
Renewable Energy Laboratory. Both solar and wind 
databases have data from a number of years that are sampled 
at minimum 1 second intervals. We scale these measured 
results to published average data for other locations in our 
experiments [29], [30].  

Table II shows our simulation parameters and Table II 
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presents our network topology and green energy availability. 
Green energy is scaled to 80% of peak datacenter and router 
energy needs. 

TABLE I: Simulation parameters (ST: service time, IAT: interarrival time) 

Parameter Value Parameter Value 

Avg. Web Req. IAT/client 5ms Avg. # tasks/MR  job 70 

Avg. Web Request ST 20ms 
Avg. throughput level 

per MR job 
0.35 

Service Request SLA 150ms #servers/datacenter 1000 

Mean MR Job IAT 2 min #datacenters 5 

Mean MR Task ST 4 min #routers 12 

Idle Server Power 212.5W Idle Router Power 1381W 

Peak Server Power 312.5W Peak Router Power 1781W 

Single link capacity [7] 100Gbps Avg. batch VM size 8 GB [25] 

TABLE II: Renewable energy and network configuration for each location 

Location Node Type Location Node Type 

Chicago DC+Router Wind Kansas Router - 

Atlanta DC+Router Solar Nashville Router Wind 

New York DC+Router Wind El Paso Router Solar 

San Diego DC+Router Solar Cleveland Router Wind 

San Francisco DC+Router Both Houston Router Solar 

Denver Router - Washington DC Router - 

B. Results 

In this section, we present the results of our cost 
minimization solution. We first compare the results with the 
case where there is no data transfer. Then, we analyze the 
effects of power contracts. The power contracts are applied 
based on a percentage of the peak power. For example, with 
an 85% power contract, a datacenter pays the contracted 
power price for each Watt up to 85% of the peak power and 
market price for each Watt exceeding that limit. We also 
evaluate different energy proportionality options for both 
servers and routers, along with the outcomes of GEAR.  

 
No job migration: In this case we assume that each 
datacenter executes its own jobs, i.e. does not transfer data 
to another, and uses the locally available green energy. This 
case is the baseline for our comparison, as it represents the 
nominal brown energy cost and the base performance of 
batch jobs. We study different combinations of power 
contracts and server energy proportionality. The first and the 
third columns for each different power contract 
configuration in Figure 7 correspond to this case with non-
proportional and energy proportional servers, respectively. 
We schedule service and batch jobs simultaneously [11]. 
The response time constraints of service jobs are always met 
(service QoS ratio is always less than one) where the 
average MR job completion time is 22.8 min. In addition, 
59% of the overall green energy supply is consumed by the 
datacenters locally with the given green energy profile. We 
can use migration to improve the green energy usage level 
and decrease the total energy cost.  
 
Cost minimization using migration: The main goal of our 
cost minimization framework is to maximize green energy 
and inexpensive brown energy usage, while minimizing the 
overall cost of energy and meeting performance constraints. 
Each datacenter can transfer workloads depending on the 
cost of energy in the remote center and the availability of 
local green energy. We also show the results of the case 

where servers are more energy proportional to quantify the 
benefits of our policy for future systems.  

We obtain 66% of the green energy usage efficiency, 7% 
more than the baseline. This increase is significant given the 
high idle power of servers and the fact that we can move 
only 15-20% of the total workload. There is no performance 
overhead for service requests and the average job 
completion time for MR jobs is only 4.5% worse than the 
baseline.  

Figure 7 shows the effects on total cost of adding energy 
proportionality and different types of power contracts to our 
model. The left axis shows the total cost that is normalized 
against the no migration case with an 85% power contract 
and non-proportional servers. The second and the fourth 
columns correspond to the energy cost values when job 
migration is allowed with non-proportional and energy 
proportional servers, respectively. The previous work 
neglects the power contracts, thus overestimating the total 
cost of energy by 28% even when there is no job migration. 
We obtain 19% energy savings with only market prices 
whereas the savings are 12% and 8% with a 70% and 85% 
power contract, respectively. Similarly, the previous work 
overestimates the cost savings by up to 2.3x when not 
considering power contracts. When we use energy 
proportional servers, the savings increase: 28% without a 
power contract; 18% and 11% with a 70% and 85% power 
contract. The savings are overestimated by up to 2.6x with 
energy proportionality. As seen, with future technologies, 
the error due to incorrect energy pricing increases. Figure 7 
also shows that our algorithm can achieve up to 18% and 
28% savings with and without a power contract, 
respectively. 

 
Figure 7: Normalized cost and average bandwidth utilization with different 

power contracts and energy proportionality 

The right axis in Figure 7 shows the average bandwidth 
utilization and how it changes with different power 
contracts. Energy proportionality of the servers does not 
affect the migration decisions and thus bandwidth utilization 
values are similar compared to the non-proportional case. In 
contrast, the power contracts decrease the network 
utilization by up to 24%. This is because they create a more 
balanced energy cost scheme across datacenters. 
Furthermore, the contracted power level is inversely 
proportional with the network utilization. We observe 55% 
average bandwidth utilization with the 85% power contract 
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and 62% utilization with the 70% contract. Datacenters 
reach the contracted power threshold earlier with a lower 
contract and start sending more jobs to each other to avoid 
expensive market prices. Therefore, neglecting the power 
contracts can result in overestimated network usage. 

 
Using a green energy aware network:  We next study the 

effects of using green energy in routers along with GEAR. 

Instead of selecting the shortest path between two 

datacenters, GEAR chooses the path with the least brown 

energy need. The average bandwidth utilization increases 

with GEAR as compared to SPR: 61% vs. 55% when using 

85% peak power limit. The main reason is that GEAR 

sometimes selects a longer path, which results in higher 

utilization of the network. In Figure 8, we show the 

comparison between SPR and GEAR in terms of total and 

brown energy consumption of the routers. The brown 

energy percentage that GEAR uses 62% of the router peak 

power, compared to 65% of SPR, i.e. even though GEAR 

has larger overall power consumption, it lowers the brown 

energy usage. The difference between GEAR and SPR 

becomes more visible with increasing router energy 

proportionality, up to 65% with current proportionality 

schemes. GEAR also has 3% higher network delay as a 

result of sometimes choosing a longer path, whose effect on 

batch job completion time is unnoticeable. 

 
Figure 8: Comparison between SPR and GEAR in terms of total and brown 

energy consumption of routers with different router energy proportionality 

V. CONCLUSION 

Energy efficiency of network of datacenters has gained a 
lot in importance. Previous work migrates workloads over 
WAN to leverage the load demand, electricity price and 
green energy availability variations in different locations. 
But, these large scale systems have a lot of different aspects 
to be modeled that previous work neglects.  In this paper, 
we show that using inaccurate datacenter energy price 
models can overestimate the cost savings by up to 2.6x. Our 
paper is the first to show the effects of fixed power contracts 
and energy proportionality on the cost savings of 
datacenters. We also use a dynamic green energy aware 
routing algorithm that can decrease the brown energy 
consumption of the network with a negligible performance 
overhead. Finally, our cost minimization algorithm reduces 
the datacenter energy cost by up to 28%. 
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