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Abstract— Datacenters are large cyber-physical systems with 

continuous performance and power measurements, and real-time 

control decisions related to workload placement, cooling and 

power subsystems etc. In our work we focus on the non-ideal 

UPS system used to shave peak power demands. Our novel 

distributed battery control design has no performance impact, 

reduces the peak power needs, and accurately estimates and 

maximizes the battery lifetime. We demonstrate that models 

which do not take into account physical characteristics of 

batteries overestimate their lifetime by 2.4x. In contrast, our 

design is within 3.3% of the centralized battery control in terms 

of battery lifetime with 10x reduction in the communication 

costs, while shaving 23MWhrs/week of energy in a 10MW 

datacenter, equivalent to adding 8760 more servers at no 

additional power cost. 

Keywords— datacenters, peak power shaving, batteries, 

distributed control 

I. INTRODUCTION 

Warehouse-scale datacenters can be viewed as large scale 

cyber-physical systems, consisting of computational 

components (e.g. servers), and support subsystem which 

ensures correct server operation (e.g. cooling subsystem, 

uninterruptible power supply - UPS). While quite a bit of work 

has been published on job scheduling and resource 

management among servers, and on cooling subsystem control, 

the topic of using batteries present as a part of a UPS system to 

reduce peak power is very new.  Furthermore, the few papers 

that recently did address this topic [1], [2], [3], neglected to 

consider more realistic physical characteristics of the batteries, 

and, as a result, estimated benefits were too optimistic - by 

more than a factor of two. This illustrates the need to correctly 

model both the physical properties of the system (in this case 

batteries), along with the cyber components. 

Datacenters often enter long-term power contracts with 

usage limits based on the expected peak to limit the cost of 

energy. The fundamental problem with power provisioning 

involves using as much power as possible without exceeding a 

fixed power budget. The overages charged at market prices 

may be five times more expensive than the contracted rates [4]. 

Although individual servers may reach peak power during 

normal operation, entire clusters of servers rarely operate at 

peak power simultaneously [5]. Several studies have proposed 

peak shaving (also called power capping) to increase power 

utilization [1], [2], [3]. This involves reducing the contracted 

power level and preventing utility-facing (or breaker-facing) 

power consumption from exceeding the contracted power with 

no cost to performance. 

 

Figure 1. Peak shaving with batteries 

Many mechanisms have been proposed to prevent servers 

from exceeding the provisioned power, including dynamic 

voltage and frequency scaling (DVFS) [5] [6], virtual machine 

power management [7], online job migration [8] [9], and 

batteries [1] [2] [3]. Batteries are particularly useful because 

they remove the performance overhead associated with 

meeting the power budget. Figure 1 illustrates peak shaving 

with batteries. The horizontal axis represents a 24-hour 

interval. The vertical axis is the aggregate power consumption. 

The upper horizontal line shows the original peak power 

demand and the lower one represents the power cap. If the 

demand is higher than the power cap, the batteries discharge to 

provide energy. They recharge during low power demand in 

preparation for the next peak. The extra energy required to 

recharge the batteries should be adjusted so that it does not 

create power cap violation. The difference between the original 

peak power draw and the power cap corresponds to energy 

savings. Alternatively, we can add more servers to the 

datacenter with the original power cap instead of saving energy 

[3]. In our work we also present the energy savings and 

number of additional servers we can put within the same power 

budget of a 10MW datacenter when using batteries for peak 

power shaving. Google’s 10MW datacenter with 45 containers 

and 40000 servers is a good example of such a large scale 

deployment [10]. We show that our approach shaves 
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23MWh/week of energy or enables us to add 8760 more 

servers within the same power budget. 

If the datacenter uses a centralized UPS for peak shaving, 

then all systems in the datacenter are switched to batteries until 

they exhaust their capacity or the peak subsides. This technique 

is useful primarily for peaks that are a few minutes long due to 

low battery capacity [4]. Recent trends in warehouse-scale 

datacenters focused on distributed UPS architectures, where 

individual servers [10] or collection of racks [11] have their 

own UPS. The distributed design shaves power more 

effectively due to its finer granularity but only works for 

datacenters willing to commit to a non-standard power 

architecture [3]. It also requires a control system to select 

discharging batteries carefully because management that does 

not take account of physical properties of batteries, may reduce 

battery lifetime and increase the overall cost. But, this 

coordination requires significant communication overhead that 

may increase reaction time during sudden spikes, causing 

expensive overages. 

We revisit the analyses for existing peak shaving designs 

using more realistic battery models. Existing centralized 

approaches discharge batteries in a “boolean” fashion: the 

entire datacenter power domain is fully disconnected from the 

utility power and supplied from the UPS. This requires 

batteries to discharge at much higher currents than rated, 

lowering both their lifetime and the actual capacity they can 

deliver. Simplistic models overestimate battery lifetime by 2.4x 

and the actual capacity by 1.2x. 

Distributed UPS design addresses boolean discharge 

problem at the whole datacenter level by providing the ability 

to discharge only a subset of batteries at a time, but a battery 

that is selected for discharge still operates in boolean fashion. 

The previous designs [2] [3] leveraged battery models that 

cannot capture the negative effects of this boolean mode and 

thus overestimated the peak shaving capabilities by up to 63%. 

In addition, that work does not address how to manage the 

coordination among the distributed batteries. The coordination 

is required to both reduce the communication overhead and to 

maximize the battery lifetime. Centralized controller for 

distributed batteries performs well in terms of both peak 

shaving and battery lifetime, but may take multiple seconds to 

respond to a power spike. To solve this problem, we present a 

distributed battery control mechanism that achieves the battery 

lifetime and power shaving performance within 3.3% and 6% 

of the best centralized solution with only 10% of its 

communication overhead. This power shaving enables 

23MWh/week energy shaving or 8760 additional servers 

within the same power budget when scaled to a typical 10MW 

datacenter. 

II. RELATED WORK 

Energy and power management is a major problem for 

datacenter operators because of high demand and job 

criticality. Approaches taken include applying power shaving 

mechanisms such as DVFS [5] [6] and virtual machine-based 

power management [7] to move the jobs where energy is less 

expensive [8] [9]. However, all of these solutions negatively 

impact performance, e.g. DVFS slows down the applications; 

consolidation and migration both incur network delays. 

In contrast, batteries have been proposed to reduce the peak 

power of datacenters with no performance overhead. Govindan 

et al. [4] suggest using existing batteries within the centralized 

UPS. However, the UPS can shave only peaks of a few 

minutes long because it powers the entire datacenter and uses 

lead-acid batteries (LA). Wang et al. [12] investigate additional 

options, such as flywheels and ultra-capacitors. Palasamudram 

et al. [2] and Kontorinis et al. [3] use overprovisioned 

distributed batteries to sustain peaks of several hours. Even 

though there is finer grained control of the battery output, each 

battery powering a single server requires high discharge 

current, known to decrease both the effective battery capacity 

and the useful battery lifetime [13]. A key problem is that these 

publications do not model and manage physical capabilities of 

batteries well, as they do not capture the negative effects of 

high discharge currents and thus overestimate the battery 

lifetime. The distributed UPS implementations do not study the 

overhead of managing the distributed batteries at large scale. 

We show in this paper that this is necessary and significant. 

III. DISTRIBUTED BATTERY CONTROL 

In this section, we first revisit the architectures of the 

existing designs. We show that their peak shaving capabilities 

are not accurately calculated without modeling the actual 

battery behavior observed in the peak shaving context. There 

are two battery placement architectures: centralized and 

distributed. The centralized design uses batteries within the 

datacenter-level UPS and does not require additional power 

equipment. A common power delivery hierarchy for this 

design is shown in Figure 2-a. When peak shaving occurs, UPS 

powers the entire datacenter, discharging the batteries at high 

rate.  According to Peukert’s Law, this drains battery capacity 

quickly [14]. Furthermore, the AC-DC-AC double conversion 

reduces UPS efficiency and decreases useful battery capacity 

by up to 20%. 

The distributed design co-locates the servers and batteries 

and eliminates the DC-AC battery power conversion [2] [3]. A 

sample design is shown in Figure 2-b. Each server may be 

switched to battery independently. This leads to finer grained 

control of the aggregate battery output because only a fraction 

of the servers are powered via battery at any given 

time.  Together, conversion efficiency and fine-grained control 

permit hours of peak shaving compared to a few minutes of the 

traditional centralized designs. 

A. Issues with the Previous Designs 

Even though the distributed design achieves finer grained 

control, each battery still needs to power the entire server with 

high discharge currents. The existing distributed architectures 

do not account for the negative effects of high discharging 

rate.  Figure 3 shows the peak shaving capability of the 

distributed design with and without a detailed battery model. 

We assume that each server is attached with a 20 Ah LA 

battery. A power cap is defined for each server at 255W. This 



Figure 2. Centralized vs. distributed battery placements 

 

a) State-of the art power distribution with centralized battery 

b) State-of-the-art power distribution with distributed batteries  

 PDU = Power Distribution Unit  

 UPS = Uninterruptible Power Supply 

 

 
Figure 3. Peak shaving capabilities of the distributed design  
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Figure 4. The maximum battery capacity with random battery selection 

 
 

 1 year random

Avg. 1 year best

Dead battery

Full capacity

 2 year random

Avg. 2 years best

Dead battery
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value reflects the average maximum server power that the 

datacenter can allocate. For example, some servers can go 

higher than 255W that have more stringent needs, and some 

can have less than that. But the average power should not be 

more than 255W. This defines the datacenter power cap by 

restricting the total datacenter power consumption to 

255W*#servers. The horizontal axis illustrates a range of peak 

server powers. The vertical axis represents the peak shaving 

duration. The upper curve estimates peak shaving duration with 

a simplistic battery model and the lower curve uses a more 

exact model, both outlined in section III.B. We see that the 

power shaving duration can be overestimated by up to 62% 

without a detailed battery model.  

The ability to discharge batteries independently is crucial in 

the distributed design. However, since not all batteries are 

discharged at the same time, they may have very different 

discharge patterns, depending on server load.  This variation 

results in capacity imbalances between them. Figure 4 

represents this variation one and two years after the batteries 

are deployed when selecting batteries randomly each time 

battery power is needed. The outermost circle represents the 

nominal battery capacity. The innermost circle corresponds to 

the end of the battery’s useful life. We consider a battery dead 

when it can use only 80% of its nominal capacity [15].  Each 

battery is denoted by a ray extending from the center.  The 

length of the ray indicates the battery capacity.  The line 

between the nominal and dead capacity indicates the ideal 

battery lifetime at each age.  This graph illustrates that 

remaining battery capacities significantly deviate from the 

ideal.  This deviation increases over time, resulting in early 

battery replacements, increasing the battery related costs. We 

may reduce this variation by selecting batteries more 

effectively. This requires coordination between the batteries, 

which may have delays on the order of seconds depending on 

network congestion.  Large delays can lead to miscalculating 

the total available battery capacity, reducing the peak shaving. 

B. Detailed Estimates of Battery’s Physical Condition 

UPS-based peak shaving requires accurate estimates of 

battery’s physical condition. This section provides estimates of 

battery’s depth-of-discharge (DoD), available capacity after 

recharging and discharging, and a method for calculating 

useful capacity over time. The available battery capacity at a 

given time is defined as the state-of-charge (SoC) and reported 

as a percentage of the maximum capacity. State-of-health 

(SoH) quantifies the maximum capacity over time as a 

percentage of the initial capacity.  

Battery lifetime modeling has been extensively studied 

before, especially in the context of mobile devices, e.g. [16] 

[17]. We combine a few models as a part of our work. 

Coulomb counting method presented in [18] describes the 

relation between DoD level and SoH using. The impact of 

using high discharge current rates on SoH is studied further in 

[13]. We also include Peukert’s law which states that the 

effective capacity of a battery decays exponentially depending 

on discharging current  [14]. The main benefit of the model we 

present is its simplicity and ability to easily leverage it in a 

large scale installation as it requires only voltage and current 

readings for all the calculations.  We start describing our model 

by first calculating released capacity during a discharge event: 

                          (1) 

where Δt is the length of the time interval and            is the 

discharge current. Then, we compute the DoD as the released 

capacity over the effective capacity: 

                       (
  

            
)
   

 
   

   
   (2) 

where      is the effective capacity when using            and 

   is the rated capacity. H is the rated discharge time in terms 

of hours (normal hours) and is obtained from the data sheets 

[14]. Peukert’s exponent, k, reflects battery chemistry. The 

typical value is 1.15 for lead-acid (LA) and 1.05 for lithium 

iron phosphate (LFP) batteries [19].      is also scaled with an 

SoH value (defined in equation (3)) to reflect the capacity loss. 

The DoD is subtracted from the SoC at the end of each 

interval. When the discharge ends, we save the total DoD 

value,          as (100-SoC)%. 

The effective capacity decreases with higher discharging 

currents. Figure 5 shows this effect on 20Ah LA and LFP 



batteries. The horizontal and vertical axes show the effective 

battery capacity and discharging current respectively. The LA 

battery has significantly less capacity at high current because it 

has greater nonlinear behavior, represented by a larger Peukert 

exponent.  At 40A, the LA battery loses 42% of its nominal 

capacity, but the LFP battery loses only 15%. 

The battery SoH is updated after a complete 

recharge/discharge cycle [18]. This update depends on the 

battery chemistry, effective capacity and          . The 

number of available cycles decreases with larger           We 

use a lookup table for each battery chemistry to define the 

effects of          shown in Figure 6. This data is available in 

battery datasheets. In Figure 6, the horizontal axis shows the 

DoD level for charge/discharge at 20h discharge rate, which is 

defined as the current that drains the battery in 20h. The 

vertical axis illustrates the number of cycles a battery can 

provide for a particular DoD level. As DoD increases, the cycle 

count decreases exponentially. 

We calculate the impact of each cycle on SoH by 

normalizing the effect of one cycle with          value over 

the lifetime. The lifetime is defined as the interval in which 

battery SoH is between 100% and the SoH value that 

determines when the battery is dead,         . It is generally 

assumed to be 80% [15]. If the battery has                 

cycles available with           value, the SoH of battery is 

updated as [13]: 

                      
 

               
 

  

    
      (3) 

Battery management unit normally monitors and manages 

battery voltage and current, making it easy to implement our 

model which just requires these two measurements. In contrast, 

the simple battery model used by previous work [1] [2] does 

not calculate     . Instead, it uses nominal battery capacity,     

to compute DoD, resulting in up to 42% overestimated 

discharge duration. It also does not account for the effects of 

decreasing SoH on the     , which further increases errors. 

TABLE I. BATTERY MODEL VALIDATION 

Battery  Error 

Li-Ion5 4.3% ± 2% 

Li-Ion6 5.8% ± 3.6% 

Li-Ion7 3.8% ± 2.7% 

Model verification: We use battery data available from the 

NASA Ames Prognostics Data Repository [20] to validate the 

accuracy of our model. The repository includes the results of 

the experiments that charge/discharge the 2Ah Li-ion batteries 

at different currents and temperatures. Each result set consists 

of the complete charge-discharge profiles of a single battery 

until it reaches end-of-life. We use the results of 3 batteries, 

tested at room temperature, to check our model and compare 

the SoH values at the end of each charge/discharge cycle. 

Table I shows that our model has a 4.6% average error 

compared to the battery measurements. 

C. Distributed Control Mechanism 

The distributed architecture permits finer grained control 

than centralized architectures because server batteries may be 

discharged independently. This process requires intelligent 

selection of batteries during each power peak.  In section III.A, 

we demonstrate that simple battery selection algorithms may 

distribute power load unevenly and induce high variations in 

battery SoH. This variations lead to premature battery 

replacements because capacity is reduced sooner than 

expected.  Therefore, the distributed design requires a 

mechanism that monitors battery health and selects batteries in 

a way that minimizes this variation.  

The distributed controller first estimates the number of 

batteries to discharge during each peak power pulse as follows: 

            ⌈
                  

                   
⌉   (4) 

where ⌈ ⌉ is the ceiling function,         is the peak power 

demand at a given time,            is the peak power threshold 

to be maintained,          is the single battery voltage and 

           is the single battery discharging current. We use 12V 

batteries [10] and set             to 23A. Since the servers use 

the battery power without AC-DC conversion, the battery 

incurs no conversion losses in the server. In our experiments, 

the measured server peak power is 350W and power supply 

unit (PSU) efficiency is 80%. Therefore, the server actually 

uses 280W, which corresponds to 23A discharging current. 

An ideal controller for the distributed design should poll 

every server to gather data on server power demand, battery 

SoC and SoH. This process requires message exchanges 

through the datacenter network.  However, the controller 

becomes subject to communication delays between the 

thousands of servers and large background traffic. Previous 

work shows that the switch delay can increase by over 100x 

with excessive queuing in the switches [21]. 

Our new method groups the batteries into multiple 

distributed controllers to address the communication 

complexity. Table II lists the possible group sizes and shows 

the corresponding level in the datacenter power hierarchy. The 

two extremes represent fully localized control, at each 

individual server, and the datacenter level, which is equivalent 

to fully centralized control.  In between are rack level, PDU, 

which consists of approximately 10 racks, and cluster level, 

which is about the size of a typical datacenter container. We 

 
Figure 6. Cycle life of LA and LFP 
batteries rated at 20h [27], [28] 
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Figure 5. Effective capacity of 20Ah 

LA and LFP batteries in our model 
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TABLE II. GROUP SIZES           TABLE III. POLICIES TO CONTROL  

      BATTERY GROUPS  

Hierarchy 

Level  
Size of a 

group 

 
Policy  Communication 

Server 1  Random Local 

Rack 20-50 [4]  LRU(Iterative) [3] Local 

PDU 200 [3]  Max-SoH-local Local 

Cluster 1000 [3]  Max-SoH-global Global 

Data 

center 

Multiple 

clusters 

 Max-SoH-limited-

comm. 
3 groups  

  
 Max-SoH-more-

limited-comm. 
2 groups 

     

Calculate number 
of batteries to use

Send signal 
to other 
groups

Wait 
response 

from other 
groups

Group 
1

Group 
n

…..

Other groups communicating 
with group i

If the selected 
battery is in 

another group

Start 
discharging 

local 
battery

If the selected 
battery is local

Timeout when 
waiting data

Power demand 
Battery SoH, SoC

Start

Select the 
batteries

 
Figure 7.  Battery selection with communication based policies 

chose these hierarchy layers as they correspond to the typical 

organization found in the datacenter’s power hierarchy. 

Each level of the controller implements one of the policies 

shown in Table III to select a battery. Random, Least-Recently-

Used (LRU) and Max-SoH-local policies make a local decision 

regarding which battery to use for peak power shaving from 

their immediate group. Random policy selects a random battery 

from available ones. LRU, also used in [3], always selects the 

next available battery from its local list. Max-SoH-local 

chooses the available battery with the greatest SoH value. We 

assume that the controllers do not know or predict the length of 

the upcoming peak power pulse. Hence, selecting the battery 

with the greatest SoH value is the best a controller can do 

because it minimizes the probability that the selected battery 

empties during the peak power pulse. These policies result in 

lower latency with smaller groups, but their knowledge about 

total power demand and battery status is limited.  

We implement three other Max-SoH policies to address this 

problem. They are similar to Max-SoH-local, but controllers 

can communicate with other ones during a decision process. 

The Max-SoH-global policy represents a centralized controller 

and uses all data available in the system. Although this 

controller can make the best decision, it leads to large 

communication delays and becomes a single point of failure. 

Max-SoH-limited and –more-limited communication policies 

are limited to two and one other groups. Each group’s partners 

are assigned statically based on power and network 

infrastructure. We compare these policies with the local ones to 

demonstrate the trade-off between the communication 

overhead and power shaving, and battery lifetime performance. 

Figure 7 shows the peak shaving and the battery selection 

process of a single group when communicating with others. 

The number of sharing groups depends on the policy. The 

controller first awaits power consumption and battery data 

from its sharing groups. It next computes the peak power that 

can be shaved by finding the number of batteries required and 

selects the batteries to use. Local batteries discharge 

immediately. Remote batteries require explicit signals to their 

controller. We use a timeout when waiting for the data from 

other groups to avoid problems, including miscalculating the 

total available battery capacity. The timeout may decrease the 

quality of selection since less data will be present. 

IV. METHODOLOGY 

We present our experimental setup and describe how we 

use it to evaluate different battery designs and control 

implementations. We start with power measurements and the 

description of the workloads we use. Since our measurement 

infrastructure is not of sufficient size to compare to effects 

observed in large scale datacenters, we also design and 

describe our simulation platform.  Lastly, we present a number 

of test cases that illustrate the improvements with a detailed 

battery model and the benefits of using distributed control to 

manage the batteries. Our results show that both power shaving 

capabilities and battery lifetime is overestimated with a simple 

battery model. Distributed and hierarchical control decreases 

the communication overhead of the centralized solution by 10x 

while staying within 6% and 3.3% of the centralized control 

performance in terms of power shaving and battery lifetime, 

respectively. 

A. Power Measurements and Workloads Run 

We use measurements from our datacenter container on 

campus to estimate the overall power cost for a larger scale 

datacenter. Our container has 200 servers consisting of 

Nehalem, Xeon and Sun Fire servers running Xen VM. We run 

a mix of commonly used benchmarks to measure power and 

performance of service and batch jobs on our servers. We use 

RUBiS [22] to model service-sensitive eBay-like workload 

with 90
th
 percentile of response times at 150ms, and Olio [23] 

to model social networking workloads with response times 

ranging from 100ms up to multiple seconds, depending on the 

type of request (e.g. text post vs. video upload). Multiple 

Hadoop [24] instances are run as batch jobs. We measure 

performance at 10ms sampling rate and obtain power at 60Hz. 

The measurements are used to create an event-based 

simulator that embeds the power information and the workload 

characteristics to simulate a larger datacenter environment. We 

model each 8-core server with an M/M/8 queuing model, and a 

linear CPU utilization based power estimate commonly used 

by others [5] [6]. Table IV shows that the average simulation 

error is well below 10% for all quantities of interest, with 3% 

average error for power estimates, while performance for 



   
 

Figure 8. Datacenter workload mix       Figure 9. DoD level variation 
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TABLE VI. PEAK SHAVING CAPABILITIES OF THE SQUARE POWER PEAK WITH CENTRALIZED AND DISTRIBUTED DESIGNS USING LA & LFP BATTERIES. 

Peak power/ 

server (W) – 

shaving % 

Centralized – 3200Ah total capacity LA Distributed – 20Ah/server LA – 40Ah/server LFP 

Power capping duration (min) 
Error 

(%) 

Power capping duration (min) Error (%) 

Model simple model detailed model 
LA LFP 

Simple Detailed LA LFP LA LFP 

300 – 15% 8 4 100% 240 480 148 423 62% 13% 

310 – 17% 7 3 133% 186 372 114 327 63% 14% 

320 – 20% 7 3 133% 135 270 82 237 64% 14% 

 

services has only 6% and MapReduce completion times are 

within 8% of measured values. 

TABLE IV: VERIFICATION OF POWER AND PERFORMANCE MODELS 

Parameter Ave. Error 

Avg. Power Consumption 3% 

Services QoS 6% 

Avg. MapReduce Comp. Time 8% 

To understand the benefits of peak power shaving, we 

model the typical user request load for a full datacenter. We 

use a year of publicly available traffic data of two Google 

products, Orkut and Search, as reported in Google 

Transparency Report [25]. A week’s worth of workload 

combinations based on the waveform shown in Figure 3 of [26] 

where Social Networking and Search workloads represent 

service jobs, and MapReduce is for batch jobs. Table V shows 

the workload parameters, while Figure 8 compares each job’s 

contribution to the total datacenter load. The maximum load 

ratio is around 80% with average of 45%. 

TABLE V. WORKLOAD PARAMETERS 

Workload  
Average Time 

Service Interarrival 

Search [6] 50ms 42ms 

Social Networking [23] 1sec 445ms 

MapReduce [26] 2 min 3.3 min 

B. Datacenter and Battery Simulation 

Fine event granularity in simulation is computationally 

expensive, so we limit our datacenter simulation period to a 

week. We extract the datacenter power consumption along with 

the each battery’s charge/discharge profile. These values are 

scaled to longer time intervals in order to analyze the required 

battery DoD, the discharge current profile and to get an 

estimate of the lifetime. 

Figure 9 shows the DoD level variation with different level 

controllers over a week when DoDgoal is set to 60%. Higher 

level distributed controllers are more consistent. They use all 

the available battery capacity, because the battery power output 

can be distributed evenly across them. In contrast, the DoD 

value is uniformly distributed between 20% and 60% with a 

server level controller because individual server power profiles 

vary and there is limited coordination between the servers. 

After analyzing short-term battery usage profiles, we use 

the battery model described previously and simulate only 

charge/discharge cycles to estimate the battery lifetime. We 

simulate several years of simulation time and consider a battery 

dead when its SoH goes below 80% [15]. We include both LFP 

[3] & LA [1], [2], [4] batteries in our study. The battery 

capacity is sized to the maximum volume that fits per server 

(40Ah and 20Ah respectively) with 12V nominal voltage [3].  

V. RESULTS 

A. Accuracy of the Battery Model 

We start our evaluation by comparing the power capping 

capabilities of the state-of-the-art (SoA) battery placement 

designs with both LA and LFP batteries. The SoA centralized 

design adjusts the battery capacity to handle only emergency 

cases, which last only a few minutes. We assume that this 

design has a 3200 Ah LA battery as proposed in [10], [3] to 

support a single datacenter container. In distributed case, each 

server has a dedicated 20Ah LA or 40Ah LFP battery, the 

maximum possible given their volume, same as in [3]. These 

battery capacities are adjusted to match previous work. In 

Table VI, we compute how long the batteries can shave a fixed 

average peak power pulse per server with specified magnitude 

where the datacenter power cap is defined at 255W/server. We 

first apply the simplistic battery model used by recent SoA 

publications. This model accounts only for the total battery 

capacity and ignores the effects of high discharge currents and 

nonlinear behavior of different battery types [2] [4]. Table VI 

shows that the centralized design can shave a peak for only 7 

minutes whereas the distributed design can successfully shave 

peaks of over 3 and 6 hours with LA and LFP batteries, 

respectively. 

Next, we use the detailed battery model presented in 

section III.B to account for the battery type and the negative 

effects of high discharging currents. Surprisingly, the peak 

power shaving amount can be overestimated by 133% in the 

centralized design. The discharging current in the distributed 

design is still high, but the rate of the discharging current is 

lower relative to total battery capacity. This results in error of 

64% for LA batteries, and 14% for LFP. LFP’s error rate is up 

to 4.5x lower than the LA’s because of its more linear 

discharge behavior. However, the error, a result of an 

inaccurate model and interaction with physical devices – the 



batteries, is still significant to affect peak power shaving 

decisions, such as determining battery design or the total 

needed capacity. 

TABLE VII. BATTERY LIFETIME ESTIMATION COMPARISON 

 LA LFP 

Low current rated estimations 3 years 10 years 

Our estimations 1.4 years 4.1 years 

We use our battery model with our long term battery 

simulation to estimate the average lifetime of an LA and LFP 

battery when shaving peak power. Table VII compares our 

long-term battery lifetime estimates with previous work [3], 

[2]. Neglecting the effects of high current results in high error: 

as much as 210% and 240% longer battery lifetime estimates 

leading to severely underestimated battery costs and overstated 

cost savings due to peak shaving. 

B. Performance of the Distributed Control 

We next evaluate the performance of our communication 

based distributed controllers, which increase the overall battery 

lifetime by balancing the power demand across the batteries. 

We use 1000 40Ah LFP batteries [3] with configurations 

shown in Table II, with policies described in Table III. Tables 

VIII and IX summarize the comparison between different 

policies and group sizes in terms of peak shaving and average 

battery lifetime. To calculate the best peak power shaving for 

each configuration we first use the workload distribution 

shown in Figure 8 to create the power profile of the datacenter 

over a week. We initially set a power cap, e.g. 280W/server, 

and reduce it in each simulation experiment until we cannot 

guarantee that cap. We then compute the power shaving 

percentage with the amount of power shaved over the peak. 

TABLE VIII. AMOUNT OF ENERGY SHAVED FOR A 10MW DATACENTER PER 

WEEK IN MWHRS & (% OF POWER SHAVED COMPARED TO THE PEAK) 

Policies 

Datacenter partitioning 

1 cont. 5 PDUs 10 PDUs 
50 

Racks 

1000 

Servers 

Local 
30 

(19%) 

14.3 

(16%) 

11.2 

(15%) 

4.8 

(12%) 

2.5 

(10%) 

Max-SoH – 
glob. 

30 
(19%) 

30 
(19%) 

30 
(19%) 

30 
(19%) 

30 
(19%) 

Max-SoH – 

lim. comm. 

30 

(19%) 

23.1 

(18%) 

14.3 

(16%) 

6.6 

(13%) 

2.5 

(10%) 

Max-SoH – 
m-lim. comm. 

30 
(19%) 

18.1 
(17%) 

11.2 
(15%) 

4.8 
(12%) 

2.5 
(10%) 

Table VIII shows energy savings per week due to various 

peak power shaving strategies scaled to a datacenter of peak 

capacity 10MW, along with peak power shaving percentages 

for each configuration based on the smallest power cap we can 

guarantee. Google’s 10MW, 45 container datacenter, with 

40000 servers [10] is an example of such a deployment.  The 

best peak power shaving can be achieved with a centralized 

controller – as much as 19% of the peak power of the entire 

datacenter, equivalent to 30MWh/week of the 10MW 

datacenter, or 9380 more servers with no additional peak 

power cost. Although we have the same total battery capacity 

in all of the configurations, the power shaving capability 

decreases significantly with lower level controllers because of 

their limited knowledge of the total power demand. They shave 

up to 50% less power and 92% less energy compared to the 

best solution. In contrast, we observe that our PDU level 

controllers with communication can shave 18% of the peak 

power and 23MWh energy, within 6% and 23% of the 

centralized solution. 

Table IX shows the average battery lifetime, normalized to 

the case with the individual server level controllers. Local 

policies perform poorly regardless of their battery selection 

algorithm as they are unaware of batteries in other groups. 

Changing the group size does not affect performance of the 

local policies, except for Max-SoH, which reduces to Max-

SoH-global when there is only one group. The centralized 

controller gives the best results, performing 2x better than the 

local policies by processing the data from all the batteries. The 

performance of policies with limited communication depends 

on the group size and communication span. Increasing span 

with 5 PDU level controllers using limited communication by 

one group results in up to 20% longer battery lifetime, within 

3.3% of the centralized solution. Thus, our distributed 

controllers well approximate the performance of the centralized 

controller in terms of both power shaving and battery lifetime, 

showing that intelligent control and good characterization of 

datacenter’s physical infrastructure can dramatically improve 

the overall system efficiency. 

TABLE IX. NORMALIZED AVERAGE BATTERY LIFETIME 

Policies 

Datacenter partitioning 

1 

cont. 

5 

PDUs 

10 

PDUs 

50 

Racks 

1000 

Servers 

Random 1.02 1.03 1.04 1.04 1.00 

LRU 1.07 1.07 1.07 1.07 1.00 

Max-SoH-local 1.97 1.07 1.07 1.07 1.00 

Max-SoH – glob. 1.97 1.97 1.97 1.97 1.97 

Max-SoH – lim. 
comm. 

1.97 1.91 1.76 1.77 1.73 

Max-SoH - more 

lim. comm. 
1.97 1.59 1.59 1.51 1.48 

C. Communication overhead analysis 

In this architecture, each group controller polls the servers 

in its group using the datacenter network to collect server 

power consumption and battery statistics. The controller then 

delivers the battery selection decision to the servers. Intra-rack 

communication is extremely fast, but relaying messages 

through multiple switches introduces far more delays. 

Assuming a common a fat-tree topology, we model the links in 

the network with 10 Gbps capacity, which can transmit a 1K 

package at 1us. We evaluate an ideal network, without queuing 

delay, a network with normal level congestion where a single 

message transmission delay in a switch is 50us and a network 

with a high level congestion reaching 350us delay [21]. In this 

experiment, container level models global communication. 

Figure 10 shows the results of the communication analysis. 

The vertical axes are on a log scale. The total delay increases 

exponentially with higher level controllers because of the 

increasing number of out-of-rack communication signals, 

going over several hops. Rack level controller gives the best 



results with only tens of ms total delay even in the presence of 

high congestion. However, it has 32% less power shaving and 

11% shorter battery lifetime compared to the centralized 

solution. In contrast, the container level controller may have 

seconds of delay, 100x more than the rack level in high 

congestion. With 5 PDU controllers there is a 10x decrease in 

the total communication delay relative to the global solution 

while being within 6% and 3.3% of the centralized controller in 

terms of peak power shaving and battery lifetime. Clearly this 

is a great replacement for the centralized control for peak 

power shaving with batteries. 

  

Figure 10. Communication overhead 

VI. CONCLUSION 

Peak shaving with batteries has gained significant 

importance because of its ease of applicability and no 

performance overhead. Previous work does not model the 

physical characteristics of the batteries and therefore 

overestimates the benefits by as much as 2.4x longer battery 

lifetime and up to 113% longer peak power shaving duration. 

We propose a distributed control mechanism to manage the 

physical properties of the batteries. Our mechanism removes 

the single point of failure of the traditional centralized control 

and reduces its communication overhead by 10x while being 

within 6% and 3.3% of its peak power shaving and battery 

lifetime, respectively. This power shaving leads to 23.1 MWh 

energy shaving when scaled to a typical 10MW datacenter 

[10]. This work illustrates the benefits of correctly modeling 

and tracking the physical phenomena (batteries). Thus, 

designing an appropriate infrastructure to manage the batteries 

is critical for obtaining great results. 
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