
Energy Management and Cost Analysis in Residential Houses 
using Batteries 

Baris Aksanli and Tajana Rosing 
Computer Science & Engineering Department 

University of California San Diego 
{baksanli, tajana}@ucsd.edu 

 
Abstract—Residential energy consumption shows significant 

diurnal patterns that can be leveraged by energy storage devices. 
Batteries can store energy from either local renewable sources or 
from the grid when the electricity is cheaper, and provide it when 
the prices are higher. But, batteries are chemical devices and 
their efficiency and lifetime highly depends on the usage patterns.  
In this paper, we develop a framework that considers the physical 
properties of batteries, tests the feasibility of a battery 
deployment and finds the best battery types and configurations 
for a particular residential configuration. We validate the 
outcomes our framework through simulations that are informed 
by measurements. Our framework shows that up to 43% savings 
can be obtained with batteries, which may be lower or completely 
eliminated if the batteries are not used in specific configurations.  

I. INTRODUCTION AND RELATED WORK 
Residential energy consumption constitutes 38% of the total 

energy consumption in the US, with millions of individual 
customers [1]. In this paper, we focus on the demand side of the 
residential domain to minimize the cost of home energy use. 
Unlike the industrial domain, residential systems are not 
heavily automated and are prone to inefficiency due to 
unpredictable user behavior. The advancements in smart grid 
technologies, like smart metering, allow residential energy 
consumption to be monitored and managed more effectively. 
This monitoring enables smarter technologies to be deployed in 
residential domain, e.g. load shifting [2], peak shaving [3], 
voltage regulation [3], energy arbitrage [4], etc. Load shifting 
[2] classifies the demand of a house as deferrable and non-
deferrable and enables rescheduling of the deferrable demand. 
Peak shaving [3] reduces the maximum power draw of a house 
to avoid both peak power charges and circuit tripping. Voltage 
regulation [3] minimizes the voltage deviations, which are 
especially prevalent with the distributed energy generation.  

This paper focuses on energy arbitrage in a residential home 
using batteries. Time-of-use (ToU) pricing is a common 
method used by the utilities, which set cheaper electricity prices 
when the demand is expected to be low and higher prices when 
the demand is higher. Energy arbitrage leverages these different 
energy prices by buying the extra energy when the prices are 
low, storing it in an energy storage device and then using the 
stored energy when the price is higher.  

Several studies [4], [5], [3], [6] have investigated this idea 
in the residential domain and formulated optimization problems 
to maximize the energy cost savings. The amount of cost 
savings depends on how well the price difference can be used 
and the initial deployment cost of the batteries. Previous studies 
formulate the cost savings as the main optimization goal and 
find the capacity that maximizes the savings function [4], [5]. 
Some studies solve the battery capacity problem while 
including renewable energy from solar [3]. Others focus on 
when the batteries should be used to maximize the savings [6]. 
Barnes et al. [4] combine battery sizing and scheduling for 

different battery technologies. But, battery sizing and usage are 
not decoupled and should not be considered separately. 

The previous studies consider sizing problem and battery 
scheduling, but they consider only round trip efficiency when 
modeling different types of batteries, not the non-linear battery 
properties. These include how deep and how fast the batteries 
should be discharged. The battery lifetime decreases with 
deeper discharges and higher discharging current [7], [8]. If the 
batteries are not used in the best possible way, they have to be 
replaced prematurely, resulting in higher system costs.  

We leverage a detailed battery model to obtain the battery 
configuration for homes with ToU pricing. Battery 
configuration includes type, total capacity, depth-of-discharge 
and average discharging current. We validate our model against 
battery measurements and show that it is within 5% error. Our 
framework uses this model and obtains a closed form inequality 
that can query the profitability of a battery deployment and 
choose the most beneficial configuration. We validate the 
results of our framework with extensive simulation studies 
using measured house data from MIT’s REDD database [9]. As 
a case study, we compare two different battery technologies, 
lead-acid (LA) and lithium-iron-phosphate (LFP), under 
realistic ToU pricing schemes obtained from California ISO 
[10] and observe that LFP batteries are more cost effective, 
obtaining up to 43% more cost savings.  

II. BATTERY CONFIGURATION ANALYSIS 
Battery Configuration: We define a battery configuration as 
the depth-of-discharge (DoD) limit, discharging current, battery 
capacity and type. The first two can reduce the battery lifetime 
significantly if they are not controlled properly. Their effects 
also highly depend on battery type and capacity, and thus these 
variables should be evaluated jointly. We use state-of-health 
(SoH) metric to measure the battery lifetime. SoH is defined as 
the maximum deliverable capacity of a battery at a given time 
estimated as a percentage of its nominal capacity. We compare 
two battery types: lead-acid (LA) and lithium-iron-phosphate 
(LFP). The former is a commonly used inexpensive battery type 
whereas the latter is more efficient but also more expensive. 

We use the battery model from our previous work [11] [12], 
which adopts Coulomb counting from [8], incorporates the 
effects of high discharge currents on SoH from [7], and applies 
Peukert’s law [13] to accurately capture the effective capacity 
of a battery. We see that without these modeled, the effective 
capacity can be miscalculated by up to 42% [11] and the battery 
lifetime can be overestimated by up to 2.4x [12]. We validate 
our model using the full battery charge/discharge data from the 
NASA Ames Prognostics Data Repository [14]. Our model has 
4.67% average error as compared to measurements. 

System Framework: We next define and solve the battery 
configuration problem in a home with time-of-use (ToU) 



pricing. We assume that the house can be equipped with a 
battery with adjustable configuration. To simplify the problem, 
we assume that the house does not have any renewable sources. 
Since a majority of homes in the USA do not have any form of 
renewable energy, this is a reasonable assumption. We exploit 
the energy price difference by storing cheaper energy in the 
battery using the stored energy when energy prices are higher. 
When redirecting the energy flow through a battery, we 
consider the conversion losses and nonlinear battery behavior.  

Time of use pricing has a peak price during the day, 𝑐! , and 
an off-peak price 𝑐! [4], during the night. The battery is charged 
during the night and discharged during the day, when the 
energy demand of the house is higher. We also consider the 
amortized cost of the battery. The total energy cost with a 
battery should be smaller than the energy cost without it.  

We define the energy cost without using a battery, 𝐶!": 
𝐶!" = 𝑃!"!! ∗ 𝑡! ∗ 𝑐! + 𝑃!"!! ∗ 𝑡! ∗ 𝑐!     (1) 

where 𝑃!"!!and 𝑃!"!!  are average power demand (W) during 
peak and off-peak energy prices; 𝑡!and 𝑡!  are the durations 
(hour) of peak and off-peak energy price intervals; and 𝑐! and 
𝑐! are peak and off-peak energy prices in terms of (ȼ/kWh). 
This energy cost is calculated for a single day. Accordingly: 

𝐶!" = 𝑐! ∗ (𝑃!"!! ∗ 𝑡! − 𝐸!) + 𝑐! ∗ (𝑃!"!! ∗ 𝑡! + 𝐸!)  (2) 
where 𝐶!"  is the electricity cost with a battery, 𝐸!and 𝐸!are 
battery discharge and charge energy (Wh) respectively. 
Equation 2 subtracts the cost of energy that can be provided by 
the battery and adds the cost of the energy required for the 
battery charge. We add the battery cost to 𝐶!" later separately. 
We calculate 𝐸! and 𝐸!as follows: 

𝐸! = 𝑉 ∗ 𝐼! ∗ 𝑡! ∗ 𝛾   (3) 

𝐸! =   𝑉 ∗ 𝐼! ∗ 𝐻 ∗ !"#"$%&'
!!∗!

!
∗ 𝐷𝑜𝐷!"#"$ ∗ 𝛾  (4) 

𝐸! = 𝑉 ∗ 𝐼! ∗
!"#"$%&'∗!"!!"#"$

!!
= 𝑉 ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 ∗ 𝐷𝑜𝐷!"#"$ (5) 

where 𝑉 is the battery voltage (V), 𝐼! and 𝐼! are discharge and 
recharge currents (A), 𝑡!is the time (h) battery can discharge 
within 𝐷𝑜𝐷!"#"$ (%), 𝐻 is the rated battery hour (h), 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 
is the total battery capacity (Ah), 𝛾 is the battery efficiency, and 
𝑘  is the Peukert exponent of the battery. Equation 4 uses 
Peukert’s Law [13] to calculate 𝑡! and scales the battery output 
with its efficiency to calculate the actual energy provided by it. 
Both 𝐸!  and 𝐸!  are scaled with 𝐷𝑜𝐷!"#"$  to account for the 
available battery capacity, instead of the total. We also assume 
that the battery output is combined with the grid in any amount.  

If a battery deployment is profitable, the cost with batteries 
should be smaller than the cost without them: 

𝐶!" − 𝐶!" > 0    (6) 
If we combine 𝐶!"  and 𝐶!" into equation 6: 

!!!"!∗!  
!!"#

!
!!! ≥ 𝐻 ∗ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔!"#$  (7) 

where discharging rate is defined in terms of C current and 
calculated as !!

!"#"$%&'
. We use 1C current as a reference defined 

as the current that drains the battery in one hour.  
If the battery deployment cost is not considered, equation 7 

gives the feasible configuration. An interesting observation is 
that this inequality is independent of the power demand of the 
house. There is one other restriction from equation 2: 

𝑃!"!! ∗ 𝑡! − 𝐸! ≥ 0   (8) 

This inequality specifies that the discharge energy of the 
battery cannot be larger than the energy demand during the 
peak energy price interval.  

We then update equation 6 with the amortized battery cost:  
𝑆𝑎𝑣𝑖𝑛𝑔𝑠 =   𝐶!" − 𝐶!" −   𝐶! > 0   (9) 

where 𝐶! is the amortized cost of the deployed battery: 

𝐶! =
!"##$%&  !"#$%&"'(  !"#$

!"##$%&  !"#$%"&$
          (10) 

The battery deployment cost is computed as the market 
price of the battery: 

𝐵𝑎𝑡𝑡𝑒𝑟𝑦  𝑑𝑒𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡  𝑐𝑜𝑠𝑡 = 𝑐!"#$ ∗ 𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦      (11) 
where 𝑐!"#$ is the unit battery cost in $/Ah. We calculate the 
expected lifetime with 𝐷𝑜𝐷!"#"$ , 𝐼! and  𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦. We assume 
that the battery has one charge/discharge cycle per day:  

𝐵𝑎𝑡𝑡𝑒𝑟𝑦  𝐿𝑖𝑓𝑒𝑡𝑖𝑚𝑒 = !"#$%!!"!
!∗!"#$!!"#$%!!"#$ !!!       (12) 

where 𝐶𝑦𝑐𝑙𝑒𝑠!"! is the number of charge/discharge cycles that 
the battery can perform with given DoD value. By combining 
equations 10, 11, 12 into equation 9: 

𝑐! ∗ 𝛾   ∗ 𝐻 ∗ 𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑖𝑛𝑔!"#$ !!!! − 𝑐! ≥
!"!∗!!"#$

!"!!"#"$∗!∗!"#$%!!"!
 (13) 

The constant 10!appears due to the conversion between 
kWh ! Wh and $ ! ȼ. Equation 13 is the generalized version 
of equation 7, testing the feasibility of a battery deployment 
under ToU pricing with a peak and an off-peak price. The 
advantages of this closed form inequality are: 
• It is simple and the feasibility of a configuration can be 

tested independently of the energy demand of the house (The 
best configuration still depends on the house demand). 

• It shows the tradeoff between the peak and off-peak energy 
prices and battery unit price. 

• It determines how the battery should be used, e.g. 
discharging current, depth of discharge etc.  

• It can test if a battery configuration is feasible before the 
deployment.  

Capacity Analysis: We analyze the capacity for both LFP and 
LA batteries, for which the Peukert exponent is 1.05 and 1.15 
respectively. For both, the optimal capacity is on the order of 
10! Ah. But, we know that the capacity is limited by equation 
8, i.e. the optimal capacity depends on the power profile of the 
given house. If the capacity is further increased, the savings 
obtained by exploiting the electricity price difference cannot 
justify the additional battery capacity because it is not used.  

Discharging Current Analysis: The discharging current 
should be adjusted so that the expected battery lifetime is close 
to the battery shelf life. Lower discharging current does not 
bring any benefits, as the battery lifetime does not improve 
further beyond its shelf life. The expected shelf life is 10 years 
for both LA and LFP batteries [3]. For a house-sized battery, 
the discharging current should be at rate C/10-C/20 to obtain 
the maximum benefits from a battery deployment. If the power 
demand of the house increases, the battery capacity should be 
increased instead of increasing the discharging current. 

Depth-of-discharge Analysis: The optimal depth-of-discharge 
limit depends highly on the battery type. For this analysis we 
use the data from [11] for LA and LFP batteries along with our 
battery model. The most beneficial DoD limit for LFP and LA 
batteries are 50% and 20-30% respectively.   



III. RESULTS 
In this section, we leverage our model to analyze three 

different houses from the MIT REDD database [9]. The power 
profiles of these houses are shown in Figure 1. House 1 has the 
largest demand and exhibits duty cycling of some appliances 
such as HVAC. The demands of House 2 and 3 are lower than 
House 1. The former has less frequent and smaller demand 
whereas the latter may require frequent and higher 
instantaneous power compared to House 2.  

 
Fig. 1. Power demand profile of 3 houses from MIT REDD database [9] 

We assume that these residences have two-level time-of-use 
(ToU) electricity prices, representing off-peak and peak 
electricity prices. We obtain these prices by taking the 
minimum and maximum limits of the CAISO market price 
(Figure 2) during the day [10]. In Table I, we apply the peak 
between 7am and 11pm and off-peak in the rest of the day [15]. 

 

Fig. 2. Market electricity pricing from California ISO [10] 

TABLE I.  TOU PRICES 

 Time Interval Pricing Case 1 Pricing Case 2 
Peak 7am – 11 pm 35 ȼ/kWh 45 ȼ/kWh 

Off-peak 11 pm – 7 am 10 ȼ/kWh 10 ȼ/kWh 

We simulate the power profile of a house for a single day, 
corresponding to average, with different battery configurations. 
We refer to this process as load simulation. We use the results 
of load simulation as representative of the usage pattern of the 
battery going forward.   We then perform battery analysis to 
estimate the lifetime of the battery and calculate the amortized 
battery cost. Table II shows the battery related parameters we 
use in our battery analysis.  

TABLE II.  BATTERY PARAMETERS 

Input  LA Value  LFP value 
Battery unit price -rated with 20h 2 $/Ah [16] 5 $/Ah [17] 

Peukert’s exponent 1.15 [18] 1.05 [18] 
Battery shelf life 10 years [3] 10 years [3] 
Battery efficiency 80% [4] 92% [4] 

Battery nominal voltage 12V [11] 

Case 1: First, we study the case where the off-peak and peak 
prices are 10 and 35 ȼ/kWh, respectively.  This corresponds to 
CAISO pricing data we have [10]. Before carrying our 
simulation study and battery lifetime analysis, we put the 
battery parameters in equation 13 and see that the inequality is: 

• Satisfied for LFP when DoD level is between 50-70% 
• Not satisfied for LA at any DoD level 

We expect savings for only LFP battery and for only a 
narrow range of DoD values. We run simulations both to 
validate the feasibility conclusions of our framework and to 
find the best configurations. When we run our simulations, we 
find the optimal battery capacity for the case 1 pricing. Table III 
shows the results. LA battery does not result in any savings as 
we expected from our initial analysis. In contrast, LFP battery 
brings profits for all three houses. The optimal capacity changes 
depending on the power profile of the house. Since House 1 is 
the one with the highest demand, it can benefit more from 
larger capacity batteries. Also, simulation results show that the 
LFP battery brings profit only for DoD values between 50-70%, 
and C/20 discharging current rate. When the discharging rate is 
increased, both battery lifetimes and the effective battery 
capacity decrease, preventing us from taking full advantage of 
the price differences and do not get any cost savings. With this 
configuration the LFP battery lifetime is around 8 years. 

TABLE III.  OPTIMAL BATTERY CAPACITY FOR CASE 1 PRICING 

 LA LFP 
Capacity (Ah) Savings ($) Capacity (Ah) Savings ($) 

H1 
N/A 

359 298 
H2 138 89 
H3 324 233 

Case 2: In this case, we increase the gap between off-peak and 
peak electricity prices. We see that equation 13 is satisfied for: 
• LFP when DoD level is between 30% - 80% 
• LA when DoD level is between 10% - 70% 

We have a larger set of profitable configurations due to the 
larger price difference. Table IV shows the optimal battery 
configurations and the corresponding cost savings with case 2 
pricing. Compared to case 1, the optimal LFP capacities slightly 
increase due to elevated price difference. LA batteries become a 
feasible option. The optimal LA capacities are larger than LFP 
because of their highly nonlinear behavior, lower efficiency and 
cheaper unit cost. We again observe that the power profile of 
the house affects the optimal capacity. The optimal DoD levels 
for LA and LFP batteries are 20% and 60% respectively. LA 
battery limits DoD level more strictly since its performance 
degrades significantly with deeper discharges. LFP battery 
requires less capacity because it is allowed to discharge deeper. 
In contrast, the discharging current should be scaled as low as 
possible to maximize the battery lifetime and reduce the battery 
replacements. Our analysis concludes that the capacity should 
be increased instead of the discharging current.  

TABLE IV.  OPTIMAL BATTERY CONFIGURATION FOR CASE 2 PRICING 

 
LA LFP 

Cap. 
(Ah) DoD Cur. 

Rate 
Savings 

($) 
Cap. 
(Ah) DoD Cur. 

Rate 
Savings 

($) 
H1 624 20% C/20 481 359 60% C/20 1145 
H2 255 20% C/20 166 138 60% C/20 413 
H3 497 20% C/20 352 325 60% C/20 1006 

The maximum savings of LFP batteries is $1145, $413 and 
$1006 for House 1, 2 and 3 respectively. The savings are $481, 
$166 and $352 for LA batteries. These savings are observed 
over the expected lifetime of the batteries. The expected battery 
lifetime values for LFP and LA for the best battery 
configuration are 8 and 4 years respectively. When we compare 
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these different technologies over the same time interval, we see 
that LFP battery still brings 19%, 24% and 43% more savings 
for House 1, 2 and 3 respectively, 29% on average.  

Pricing Analysis: We study both a fixed price difference with 
varying low energy price (Figure 3.a) and a varying price 
difference with fixed low energy price (Figure 3.b) using the 
power profile of House 1. We select House 1 due to its higher 
demand, so that the effects of price changes are more visible. 
Both graphs have two y-axes, where the primary one stands for 
the savings obtained through the lifetime of the battery (8 years 
for LFP and 4 years for LA) in dollars and the other represents 
the best capacity value in Ah. The x-axis shows the varying low 
energy price in Figure 3.a and the price difference in Figure 3.b. 
We set the price difference to 35ȼ/kWh in Figure 3.a because it 
is the lowest that we observe savings for the LA battery.  

We see that the best capacity is almost fixed across different 
pricing schemes, supporting the fact that the best capacity 
depends highly on the power demand of the house. In Figure 
3.a, the LA battery performs better as the low energy price gets 
higher. For realistic (lower off-peak prices) cases, the LFP 
battery is more profitable. It compensates for its higher unit cost 
with long battery lifetime and higher efficiency. In Figure 3.b, 
the LA battery needs larger price difference to obtain savings, 
but even with larger price difference, the LFP is up to 3x more 
profitable than the LA battery. We do not show the DoD level 
and discharging rate results in Figure 3 for clarity. However, for 
both graphs, the best DoD values are 20% and 60% for LA and 
LFP batteries respectively. Also, the optimal discharging rate 
for all the cases is C/20. Once more, our framework shows the 
importance of choosing not only the optimal capacity but also 
the optimal battery type, discharging current rate and DoD level 
because we may not obtain the full benefits of the best battery 
capacity with a wrong battery configuration. 

IV. CONCLUSION 
Residential homes can benefit from using batteries to 

exploit electricity price differences applied by utilities. But, 
previous work neglected the effects of the nonlinear properties 
of the batteries. We develop a framework that models the 
nonlinear behavior of the batteries and tests the feasibility of a 
battery deployment. We validate the accuracy of our battery 
model against battery measurements and the results of our 
framework with real house data from the MIT REDD database. 
We compare LA and LFP batteries with two different ToU 
pricing cases with our framework and show that both batteries 

need to be specifically tuned to obtain savings, which is missed 
by previous work. We also show that LFP batteries are up to 
43% more profitable even though they are more expensive.  
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Fig. 3. Savings&capacity vs. price differences using House 1 power profile. a) Fixed 35 ȼ/kWh price difference with changing low energy price, b) Increasing price 
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