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ABSTRACT OF THE DISSERTATION

Energy and Cost Efficient Data Centers

by

Baris Aksanli

Doctor of Philosophy in Computer Science

University of California, San Diego, 2015

Professor Tajana Simunic Rosing, Chair

Data centers need efficient energy management mechanisms to reduce their

consumption, energy costs and the resulting negative grid and environmental ef-

fects. Many of the state of the art mechanisms come with performance overhead,

which may lead to service level agreement violations and reduce the quality of

service. This thesis proposes novel methods that meet quality of service targets

while decreasing energy costs and peak power of data centers.

We leverage short term prediction of green energy as a part of our novel

data center job scheduler to significantly increase the green energy efficiency and

job throughput. We extend this analysis to distributed data centers connected

with a backbone network. As a part of this work, we devise a green energy aware

routing algorithm for the network, thus reducing its carbon footprint.

xix



Consumption during peak periods is an important issue for data centers due

to its high cost. Peak shaving allows data centers to increase their computational

capacity without exceeding a given power budget. We leverage battery-based so-

lutions because they incur no performance overhead. We first show that when

using an idealized battery model, peak shaving benefits can be overestimated by

3.35x. We then present a distributed control mechanism for a more realistic bat-

tery system that achieves 10x lower communication overhead than the centralized

solution. We also demonstrate a new battery placement architecture that outper-

forms existing designs with better peak shaving and battery lifetime, and doubles

the savings.

Data centers are also good candidates for providing ancillary services in the

power markets due to their large power consumption and flexibility. This thesis

develops a framework that explores the feasibility of data center participation in

these markets, focusing specifically on regulation services. We use a battery-based

design to not only help by providing ancillary services, but to also limit peak power

costs without any workload performance degradation.

xx



Chapter 1

Introduction

Recent improvements in computer and network architectures have made

internet-based applications and cloud computing systems popular. Some compa-

nies, such as Google, Amazon, Facebook, Microsoft, have multiple, geographically

distributed data centers with thousands to millions of servers. One important

problem of these huge computation-oriented structures is their energy consump-

tion due to their significant demand. A recent study shows that the total energy

consumption of all data centers in the world has increased by 56% from 2005 to

2010 [74]. As a result of this important issue, there is a large body of studies focus-

ing on how to improve the energy efficiency in data centers. Even a small efficiency

improvement translates into millions of dollars savings for large scale data centers.

This topic will continue to be important in the future as the price of brown en-

ergy, the energy produced by non-renewable resources, rise due to additional taxes

placed on carbon emissions [87]. Energy efficient solutions, ranging from utilizing

green energy sources, such as solar and wind, to optimizing HW, SW and system

design for energy efficiency, along with peak-power aware solutions will continue

to be important.

The individual elements in a data center can be classified into two cate-

gories: IT and non-IT elements [28]. The former includes the components that do

the computation whereas the latter maintain the functionality of the whole sys-

tem. Servers comprise a large portion of the overall energy cost in IT component,

with networking infrastructure, such as switches and routers, being a relatively

1



2

Figure 1.1: Data center components [28]

smaller component. There are a number of non-IT elements that contribute to

the high energy costs of the data centers. Examples include power distribution

units (PDU) which provide power to the IT elements, uninterruptible power sup-

plies (UPS) used for emergency situations, and computer room air conditioners

(CRAC) that keep the data center temperature within determined limits to ensure

server reliability. Figure 1.1 shows all these components and how they interact.

In order to maintain the health of the electric grid and take advantage

of the large energy consumption of data centers, energy providers charge data

centers based on not only their energy use but also on their peak power level,

which is measured as the highest power demand of the data center in a given

billing period, e.g. a month. This is because the peak power level, especially

for buildings that require considerable amount of power, determines the number

of generators (i.e. power plants) that the energy providers need to activate at a

given time. This activation can drastically impact the cost of energy production

for energy providers. The cost of peak power is generally much higher than the

cost of energy and can contribute up to 50% of the electricity bill [62] if data
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centers do not carefully adjust their peak power levels. Data centers can apply

traditional power management methods, such as dynamic voltage and frequency

scaling (DVFS), to control their peak power levels at the expense of performance

overhead. Recent studies propose new mechanisms that reduce the peak power of

data centers without affecting the performance.

A power/energy management method that a data center uses can change its

power demand significantly. Since data centers are, in nature, large buildings with

high power demands, the fluctuations in their demand can automatically affect the

dynamics of the electric grid. Thus, it is critical to study the relation between data

centers and the grid. The recent work on this topic explores the opportunities for

both data centers [10] and the utilities (energy providers) to exploit such a collabo-

ration. Utilities generally allow their customers to help balance the energy supply

and demand by creating ancillary services such as demand response, regulation

services, spinning and non-spinning reserves. Each service has different properties,

such as timing requirements, capacity allocation, etc. and thus, has separate com-

pensation rates. Data centers can participate in this ancillary services market and

make extra profits for their services. Although this seems as a mutually beneficial

operation for data centers and the utilities, data centers should carefully allocate

their resources for such operations to avoid an increase in their energy costs. This

is because the contracts of power/energy usage and ancillary service participation

are generally made separately .

This thesis proposes new energy and cost efficient solutions for data centers,

and explores data center participation in regulation markets, one of the well-known

ancillary services. It first analyzes how renewable energy can effectively be used in

data centers and wide area networks connecting data centers. It then extends this

analysis to a network of data centers where each data center is treated individually,

but also modeled such that they can coordinate to increase the overall efficiency of

the whole system. We continue with the peak power aware solutions to decrease

the peak-to-average ratio of data centers in order to obtain savings. Our main focus

on this part is to use batteries and using them as efficiently as possible. Lastly,

we study data center - grid interaction, while focusing on regulation services. We
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investigate how data centers can participate in these markets effectively.

Next, we introduce and classify different energy management mechanisms

for data center systems. These mechanisms range from a single data center to a

network of data centers connected with wide area networks. They include renew-

able energy usage, job migration to increase the efficiency of multiple data center

systems, peak power shaving, and grid-connected mechanisms.

1.1 Renewable Energy in Data Centers

Data center energy needs are supplied mainly by non-renewable, or brown

energy sources, which are increasingly expensive as a result of availability and the

introduction of carbon emissions taxes [87]. Consequently, several data center op-

erators have turned to renewable energy to offset the energy cost. The integration

of renewable energy is complicated by the inherent variability of its output. Out-

put inconsistency typically leads to inefficiency due to lack of availability or sub-

optimal proportioning, which carries an associated financial cost. These costs are

mitigated in various ways: several data center owners, such as Emerson Networks,

AISO.net, and Sonoma Mountain Data Center supplement their solar arrays with

utility power, and other data center owners, such as Baronyx Corporation and

Other World Corporation, have been forced to augment their input power with

other forms of energy or through over-provisioning, respectively [59]. Previous in-

vestigation into the state of the art in data center green energy demonstrates that

variability results in low utilization, on average 54%, of the available renewable

energy [90].

Previous studies have investigated the several strategies to manage renew-

able energy as a part of data center operation. The work in [59] reduces the

peak data center power with local renewable sources and power management algo-

rithms. They investigate power capping, both of individual servers using dynamic

frequency scaling, and of server pools by reducing the number of machines utilized

in each pool. However, they have significant quality-of-service (QoS) violations

when limiting peak power. The study in [90] explores brown energy capping in
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data centers, motivated by carbon limits in cities such as Kyoto. The authors lever-

age distributed Internet services to schedule workloads based on electricity prices or

green energy availability. By defining workload distribution as a local optimization

problem, the authors demonstrated 35% lower brown energy consumption with a

nominal (10%) hit on service level agreement (SLA) violations. The authors of [75]

analyze the opportunities and problems of using supply-following loads to match

green energy availability. When green energy is insufficient, workloads are termi-

nated or suspended, restarting or resuming when availability returns. However,

the results show very low green energy efficiency and a failure to meet required

service-level guarantees. The above data center examples demonstrate the ne-

cessity of integrating renewable energy into the data centers, but do not address

their highly variable nature, leading to severe under-utilization of these alternative

energy resources.

1.2 Energy Efficient Network of Data Centers

Connected with a Wide Area Network

Multiple data center networks offer great advantages in terms of both per-

formance and energy. As each data center is located in a different location, their

peak hours and electricity prices vary. The data center with the higher electricity

price can send some of its workload to another data center with a lower price.

Additionally, data centers generally contract a fixed price for a specific amount

of energy, which is known as the tiered electricity price. This fixed price changes

depending on the location, and it is beneficial to run jobs in a data center with

a lower fixed price. However, the transfer should not increase the utilization so

that the power consumption is more than the tier-price. Furthermore, the peak

power costs with increased workloads can be high, omitting the savings obtained

by relocating the workloads. The live migration of virtual machines over WAN has

made this idea feasible, as it offers fast transmission without a serious performance

hit [122].

Existing studies that are concerned with energy costs primarily propose ”fol-
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low the sun” or cheaper cost of brown energy strategies and generally neglect the

cost of wide area networking (WAN) which is incurred for job migrations across the

globe. The cost of WAN is relatively small when the data center operators own a

WAN between their geographically distributed sites. Examples of work that lever-

ages this idea include proposals where WANs are used to increase performance of

the overall system via 1) reducing the electricity cost using only brown energy [33],

2) choosing the most suitable location for a new data center to be deployed [91], 3)

minimizing the cost with different local brown energy markets [109], 4) migrating

jobs to load balance the data centers in different locations [83], 5) capping the

brown energy using utility green energy with different pricing in different locations

[79]. However, their arguments are not applicable for large WAN costs and data

centers that lease the network. Additionally, the large scale of these data center

systems makes it hard to analyze them as a whole. Consequently, studies focusing

on these networks model the data center parts only relevant to their problems and

neglect the rest. This might result in significant inaccuracies when computing the

associated savings.

WANs connect the geographically distributed data centers. Previous studies

neglect the energy costs of the WANs, primarily because their energy consumption

was considered insignificant compared to data centers. However, not all data

center systems own their own network and might need to rent this service from a

network provider. As the energy becomes more expensive or less available, these

providers tend to charge their customers more to compensate for the high costs

they have to pay. The network providers [54] also have Bandwidth-on-Demand

services, especially for applications across multiple data centers [85]. The cost

of these Bandwidth-on-Demand services can dramatically increase as WAN usage

increases, since the network providers tend to charge their customers more with

increased demand. They can also charge their customers based on the time of day

when the WAN is used. For instance, the network might be more expensive in a

peak hour compared to an idle period, aligning with electricity market prices [131].

Then, the increased cost of using the WAN turns into an important part of the

data center costs.
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1.3 Peak Power Aware Data Centers

Peak power costs are an important part of the data center utility bill. The

data centers are charged based on the peak power level they achieve in a bill period,

even though they operate at peak level very rarely. This phenomenon, thus, leads

to high costs for data centers. Data centers can use peak power shaving methods

to keep their peak power level below a predetermined power threshold, so that they

can limit these costs. The peak power shaving methods can also allow data center

providers to increase their computational capacity without exceeding a given power

budget.

Data centers can leverage already existing energy management mechanisms

to reduce their peak power level. These mechanisms include well-known dynamic

voltage and frequency scaling based methods [50][88], virtual machine manage-

ment (such as consolidation and resource management) [93], online job migration

as described in the previous subsection [33][109]. Since these mechanisms rely

on changing the computational resource dynamics, they may result in significant

performance degradation. In contrast, recent work establishes that machines may

repurpose energy from uninterruptible power supplies (UPSs) (i.e. batteries) to

maintain power budgets during peak demand. The idea is to adjust the battery

charge/discharge periods to make sure that the power threshold is not violated.

Since these battery-based solutions do not interfere with workloads, they do not

introduce any performance overhead. This is especially critical during the peak

demand periods when several applications need fast response times simultaneously.

There are multiple approaches to use batteries for peak power shaving.

The first approach is to use the existing batteries within the centralized UPS

[62]. Nonetheless, this method is applicable to only short peaks because the UPS

powers the entire data center. In addition to batteries, Wang et al. [125] analyze

flywheels and ultra-capacitors for peak shaving, and identify which energy storage

device might the most suitable for a given power demand curve. Kontorinis et al.

[73] and Palasamudram et al. [97] propose overprovisioned distributed batteries

to sustain longer peaks. This design leads to finer grained battery output control.

But, batteries require high discharge current since each one powers an entire server.
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High discharging current reduces both the effective battery capacity and the useful

battery lifetime [45]. The models that these studies use cannot capture the negative

effects of high discharge currents due to simplistic battery models and overestimate

the battery lifetime. The distributed UPS implementations also require another

layer of control to manage the distributed batteries at large scale. Since the number

of batteries scales up with the number of servers in this design, the overhead of

this battery management system can be serious, resulting in a slow response time

to the peak power spikes and consequently a power budget violation.

1.4 Data Centers in the Grid

Recently, researchers have started to study the relations between data cen-

ters and the electric grid. They mainly model these interactions in the form of

ancillary services and estimate the amount of savings data centers can obtain.

These ancillary services include regulation services, demand response, voluntary

load reduction and spinning and non-spinning reserves.

Out of the ancillary services, participating in regulation markets is the one

that is most studied due to its higher return. But, this higher return requires fast

responses from data centers’ end. Chen et al. [37] use server-level DVFS to create

the power consumption flexibility required to participate in regulation services.

The data center first chooses which market it participates in, i.e. either hour or

day ahead. It then reports the regulation capacity it can provide to the grid. It

adjusts its power consumption based on the requests coming from the grid. These

requests can demand either an increase or a decrease in consumption within the

capacity agreed previously. These requests demanding power changes are fulfilled

with DVFS.

Another well-known service that data centers can provide is demand re-

sponse (DR). Ghamkhari et al. [55] analyze how data centers can participate in

demand response with clever job scheduling. In another study, the authors analyze

the potential of data centers for demand response participation [81]. Aikema et al.

[10] study different types of ancillary services and show which one is more profitable
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given the workload profile of the data center. The services they include in their

study include regulation services, spinning and non-spinning reserves, voluntary

load reduction and emergency DR. They conclude that the regulation service is

the most profitable service for data center participation in ancillary services. They

use different power management methods such as load shifting, DVFS, and job

rescheduling to create the necessary flexibility in data center power consumption.

1.5 Thesis Contributions

This thesis focuses on energy supply and global efficiency of data centers

along with their interactions with the grid. It shows methods to increase the energy

efficiency of data centers using green energy, multiple data center systems where

the overall efficiency can be improved with online job migration, battery-based

peak power shaving solutions and how data centers can interact and collaborate

with the electric grid. The following discussion demonstrates the contributions

and the outlines of the rest of the thesis:

• It presents a new data center job scheduling methodology that uses green en-

ergy prediction to mitigate the variability issue of the green energy resources.

We develop a data center model based on 200 Intel Nehalem servers. Our

model uses the measured data obtained on a test bed of these servers that

run a mixture of latency-critical service and throughput oriented batch jobs.

This mixture enables our model to have a realistic data center environment.

Our scheduler makes sure that the service jobs complete within their required

response times and improves the batch job performance by executing addi-

tional batch tasks with available green energy. The results show that our

predictive job scheduler increases green energy efficiency by 3x, the amount

of work performed by green energy over brown energy by 1.6x and reduces

the number of jobs terminated due to the lack of instantaneously available

green energy by 7.7x. The predictive scheduler is described in chapter 2.

• It analyzes how renewable energy can improve the efficiency of wide area

networks connecting multiple data center systems. The main target is to
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increase the renewable energy integration to the networking systems without

performance penalties for service and batch jobs running in the data center.

We quantify the energy cost of data transfers over wide area networks and

show that moving jobs may not always be feasible due to this cost. We design

a green energy aware routing algorithm (GEAR) that ensures the quality of

service requirements of the data center workloads are met and improves the

energy efficiency by 10x. The details of GEAR are described in chapter 3.

• It uses green energy prediction in local renewable energy sites and varying

brown energy prices to propose an online job migration algorithm among data

centers to reduce the overall cost of energy. We uniquely consider network

constraints such as availability, link capacity and transfer delay at the same

time, i.e we model the impact of the network and create a more holistic mul-

tiple data center model. We investigate tiered power pricing, which penalize

the data center for exceeding a certain level of energy consumption, along

with WAN leasing costs/cost models, which leverage energy-aware routing.

We also analyze the impact of new technologies in data center WAN, such as

energy-proportional routing, green energy aware routing, and analyze leasing

vs. owning the WAN. We observe that green energy prediction helps signifi-

cantly increase the efficiency of energy usage and enables network provision-

ing in a more cost effective way. Similarly, we show that using a WAN to

transfer workloads between data centers increases the performance of batch

jobs up to 27% with our performance maximization algorithm, and decreases

the cost of energy by 30% compared to no data migration with our cost min-

imization algorithm. We show the potential for green energy to go beyond

simply cost reduction to improving performance as well. Our analysis of

leasing WAN shows that network providers can increase profits by charging

data center owners by bandwidth, but data centers can still benefit by us-

ing dynamic routing policies to decrease their energy costs. We additionally

analyze server and router energy proportionality, demonstrating increases in

both data center cost savings and network provider profits. This study is

shown in chapter 4.
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• It re-analyzes existing peak shaving designs using more realistic battery mod-

els and finds that the benefits of peak shaving may be overestimated by up to

3.35x with simplistic models. We address the battery coordination problem

of the distributed battery placement designs by proposing a distributed bat-

tery control mechanism that achieves the battery lifetime and power shaving

performance within 3.3% and 6% of the best centralized solution with only

10% of its communication overhead. The coordination is required to both re-

duce the communication overhead and to maximize the battery lifetime. We

also present a new peak power shaving architecture that has the capability

to provide ”just enough” current to the data center, at a level that optimizes

the individual battery lifetime. Our design places batteries centrally using

grid-tie inverters to partially power loads. This new architecture has 78%

longer battery lifetime and doubles the cost savings compared to the best

existing distributed designs. Also, since the batteries are placed together,

the communication overhead is reduced by 4x. The details of the distributed

control mechanism and the new battery placement architecture are presented

in chapter 5.

• It proposes a framework that analyzes the data center participation in the

regulation markets while also considering the peak power objectives. Our

framework consists of two cases corresponding to different peak power as-

sumptions for a data center. We present multiple methods to address each

case. It first analyzes if providing regulation services is reasonable and then

computes the regulation capacity to maximize savings. We leverage data

from different utility markets and show that for a 21MW data center, up to

$480,000/year savings can be obtained, and 5.08% increase in data center

profit percentage. We present our framework in chapter 6.

Chapter 1 contains material from ”Using datacenter simulation to evaluate

green energy integration”, by Baris Aksanli, Jagannathan Venkatesh and Tajana

Simunic Rosing, which appears in IEEE Computer 45, September 2012 [19]. The

dissertation author was the primary investigator and author of this paper.



Chapter 2

Renewable Energy in Data

Centers

Green energy sources promise to mitigate the issues surrounding nonrenew-

able generation, but their output is very susceptible to environmental changes.

This limits the use of green energy in time-sensitive applications. Prediction can

reduce the uncertainty of the available resources, allowing end-users to scale de-

mand with the predicted supply [120]. Data centers are a significant source of

energy consumption with an estimated 2% global greenhouse gas emissions at-

tributed to them [127]. However, the time-sensitive nature of their service-level

workloads has precluded the use of green energy, as jobs might need to be stopped

when the available green energy drops [75].

Data centers also have longer-running batch jobs (on the order of tens of

minutes [71]) whose performance is measured in terms of throughput and job com-

pletion times instead of latency guarantees (e.g. web crawling, index update in

search engines, web log analysis [121]). A number of computing frameworks have

been developed to simplify the process of those jobs. Examples include MapReduce

[43], Dryad [69], and Pregel [86]. The fault-tolerant nature of these frameworks

mitigates source instability, allowing execution of a subset of the tasks in a job in

order to scale with the available energy, as well as allowing re-execution of cancelled

tasks that have been stopped due to a sudden lack of input energy.

Green energy prediction over short time intervals (tens of minutes) allevi-

12
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ates these issues by scaling the workload to the expected available green energy,

resulting in better maintenance of forward progress and allowing more tasks/jobs

to continue their execution even if instantaneous green energy supply drops below

the necessary amount. The system offsets the remainder of the immediate need

with brown energy with the assurance that over the prediction interval the aver-

age green energy will ultimately be available. This allows a more efficient use of

the available energy; reducing the amount of wasted green energy and the num-

ber of tasks/jobs that must be re-executed; and ultimately, increasing the overall

throughput of the data center.

The contribution of this chapter is to develop a new data center job schedul-

ing methodology that effectively leverages green energy prediction. We simulate a

data center of 200 Intel Nehalem servers using measured data obtained on a small

test bed of Nehalem servers that ran a mix of services (Rubis [112]) and batch

jobs (MapReduce [65]). Our scheduler ensures that the required response time

targets for services are met while minimizing the completion times and maximiz-

ing the number of MapReduce tasks run. We use green power data from a solar

installation in San Diego [3], and wind power from National Renewable Energy

Laboratory (NREL) [4] as our sources of green energy. Our results show maxi-

mum increase of 3x in green energy usage efficiency, a 1.6x increase in the amount

of work performed by green energy over brown energy, and a 7.7x reduction in

the number of jobs terminated due to the lack of instantaneously available green

energy.

2.1 Related Work

2.1.1 Energy Prediction

Solar energy prediction is typically obtained with estimated weighted mov-

ing average (EWMA) models, because of its relative consistency and periodic pat-

terns [67]. As long as the weather conditions remain consistent within a period,

the prediction is accurate, but becomes inaccurate, with mean error well over 20%,

with frequent weather changes. Recent work utilizing small-scale solar genera-
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tion uses a weather-conditioned moving average (WCMA), taking into account the

mean value across days and a measured factor of solar conditions in the present

day relative to previous days [100]. While this work provides only a single future

interval of prediction, it specifically addresses inconsistent conditions, with a mean

error of under 10%.

Wind energy prediction can be separated into two major areas: time-series

analysis of power data; and wind speed prediction and conversion into power.

Kusiak et al. [76] present a comparison of several methodologies of time-series

modeling of wind farms. The boosting-tree algorithm with both wind speed and

power data performs well in their analysis, while the integrated model, a time-series

analysis utilizing only wind speed measurements, performs poorly for calculating

wind power, likely due to the cubic relationship between wind speed and power.

Giebel et al. [57] focuse on the latter, describing a number of meteorological mod-

els including Numerical Weather Prediction (NWP), which forecasts atmospheric

conditions over longer term. They use the resulting predictions to simulate the

output of a wind farm providing accurate estimates for 3-6 hour time periods.

However, this comes at the cost of needed a whole data center to calculate predic-

tion. Sanchez et al. [114] suggest a statistical forecasting system that generates

power curves (wind speed vs. wind power) for each turbine based on meteorolog-

ical information and machine characteristics. They then utilize the power curves

and available wind data for forecasting.

2.1.2 Green Energy in Data Centers

Green energy usage in a data center environment is a relatively new topic.

Gmach et al. [58] augment a data center with PV and municipal solid waste based

energy. However, since solid waste energy supply is constant over time, they do

not address the problem of variability in renewable energy supply. Lee et al. [79]

model an optimization problem which uses the market prices of brown and green

energy to decide how much energy of each type should be bought in each interval.

They do not make server level scheduling decisions based on the amount of green

energy.
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Stewart and Shen [118] analyze the energy requirement distributions of

different requests and how to integrate green energy to the system. They state

that the variable nature of green energy can be a problem, but do not propose

solutions. Gmach et. al. [59] use wind and solar energy to cap the power usage of

a data center environment. The paper addresses the problem of variability of green

energy and overcomes this problem by adding extra energy storage. Krioukov

et al. [75] use renewable energy for execution of MapReduce type jobs. They

schedule MapReduce tasks with available green energy, but terminate them when

the scheduler realizes that there is not enough green energy in subsequent intervals.

Our work, in contrast, uses prediction methods to estimate the amount

of green energy in a given interval and utilizes that data to make decisions about

scheduling policies of individual servers. We aim to increase the green energy usage

efficiency by prediction as well as reduce the destructive impact of the variable

nature of the green energy sources on batch job completion times. Additionally,

unlike previous work, we include service jobs and batch jobs together in our model

to obtain a more realistic system view, as data centers normally see both types of

workloads.

2.2 Solar and Wind Energy Prediction

The focus of current work on large-scale green energy prediction is on

medium to long-range time horizons lasting from hours to days. As such, the

techniques are highly complex, requiring intensive data acquisition and analysis

from using SCADA units [67] for solar energy to entire data centers [57] for NWP

wind prediction models. Our prediction interval needs to be only as long as the

workloads we desire to schedule, which is on the order of tens of minutes (our pre-

dictor uses 30 min). We chose this interval based on run-time experiments on the

scalable, fault-tolerant Hadoop framework [65], which we use as our batch work-

load. Furthermore, as the response time constraints of services that run in data

centers can be quite short (tens of ms), our job scheduler and predictor need to

be fast. As a result, we designed solar and wind energy prediction models of lower
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complexity and shorter time horizons.

2.2.1 Solar Prediction Methodology

We applied various time-series prediction algorithms described in the related

work to the output data retrieved from a solar farm at the University of California,

San Diego [3]. While most solar prediction algorithms are accurate when weather

conditions are stable, exponential weighted moving average (EWMA) algorithms

have 32.6% mean error in variable weather. We instead re-purpose the weather

conditioned moving average (WCMA) algorithm [100], which was originally de-

signed for wireless sensor networks to larger solar installations. WCMA takes into

account the actual values from previous days and the current day’s previous mea-

surement samples. It averages the values for the predicted slot from previous days

and scales it with a factor, which represents the correlation of the current day

against the previous days. The details of this method can be found in [11]. It

performs very well, with a mean error of 9.6% for 30 min prediction window even

in artificially-created worst-case scenarios.

2.2.2 Wind Prediction Methodology

We develop a novel, low-overhead predictor that utilizes readily available

data that has been shown to strongly correlate with wind energy prediction [76]

wind speed and wind direction. Our algorithm produces weighted nearest-neighbor

(NN) tables to generate wind power curves using available wind speed and direction

data at each 30-minute interval. Weighted tables allow the algorithm to adapt to

seasonal changes by weighting recent results highly, while the power curves offer

flexibility, allowing the algorithm to be used with different wind farms. More

details of this prediction method can be found in [20].

The algorithm has been tested against a wind farm installation over a year’s

worth of power output data provided by the NREL, and the meteorological data

provided by the National Climatic Data Center (NCDC). The results show a mean

error of 17.2% for a 30-minute prediction interval, equaling or outperforming the
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time-series models described in [76], at much lower computational cost.

2.3 Green Energy Scheduling and Data Center

Modeling

Our goal in this work is to evaluate the benefit of green energy prediction

for increasing the data center job throughput while not sacrificing service jobs’

response time constraints. To accomplish this we designed both predictive and

instantaneous green energy based schedulers and compare them to the baseline

of using only brown energy. The scheduler uses two separate job arrival queues

as shown in Figure 2.1. One queue is for web services that have response time

requirements (e.g. 90th percentile should be less than 150ms), and the other for

batch jobs which are more concerned about throughput and job completion time.

When a web services client request arrives, the controller allocates a server that

has the smallest number of batch jobs running on it in order to reduce the interfer-

ence effects between these two types of workloads. Additionally, we put a limit to

the number of clients a host can serve to distribute the web-requests evenly among

servers. This limit is determined by using current number of clients and total num-

ber of host machines. For simplicity, we assume that each server has at minimum

one web services request queue, and one or more batch jobs slots to execute. Web

services start execution whenever there are available computing resources (CPU

and memory) to ensure their response time requirements are met whenever pos-

sible. Therefore, we guarantee that the system provides enough brown energy to

maintain these service requests. In this work we use Rubis as representative of

web services [112]. Based on our measurements and [47] we model the inter-arrival

time of Rubis requests generated by a client using a log-normal distribution.

We use open source version of MapReduce, Hadoop [65], to represent batch

jobs. Input data of any given job is split and processed by many map/reduce tasks

distributed across a fixed number of map/reduce slots in a cluster as shown in

Figure 2.1. If there are more tasks than the available slots, the tasks without slots

are queued. If any task fails, the MapReduce scheduler starts a fresh copy the task.
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Figure 2.1: System Architecture

The arrival process of this type of jobs is modeled by a lognormal distribution, as

demonstrated in [71]. The total number of servers given to a job depends on

the energy availability and green energy scheduling algorithms. At each time

instance, power consumption of servers is estimated using a linear model based on

CPU utilization as in [46]. The overall data center energy cost is calculated using

aggregate server power scaled by the power utilization efficiency ratio (PUE) to

account for the impact of other sources of inefficiencies (e.g. cooling costs). We

use our data center test bed measured average PUE value of 1.26.

Predictive green energy scheduler: Our green energy predictor uses

a 30-min prediction interval, a duration that is longer than that of our run-time

tests of MapReduce jobs to ensure enough energy is available to finish the tasks.

The predictor provides the scheduler with an estimate of the next period’s average

green energy availability at the beginning of each batch job allocation interval. It

then computes the number of batch job slots that can be used for the given amount
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Figure 2.2: Additional batch jobs running with predicted green energy

of energy in that interval. When computing the number of extra slots the scheduler

uses the average power/slot information we got from our measurements (see next

subsection). If this number is greater than the current number of available slots,

the remaining extra slots are distributed to the active MapReduce cluster, so that

they can run more tasks in parallel. This process is shown in Figure 2.2. However,

if this number is smaller, then the scheduler deallocates some jobs. Jobs that

run more concurrent tasks than their base requirement have their slots reduced

first. The tasks running in deallocated slots are either immediately terminated

or restarted with green energy later on (jobs using more than needed slots), or

continue but use brown energy instead. This decision is made depending on the

number of concurrent tasks in a job. The energy consumed to run the terminated

jobs in the previous interval is wasted. In the results section, we quantify this cost

of incorrect energy prediction by using the green energy usage efficiency metric.

The main benefit of a predictor is that the number of deallocated slots for batch

jobs can be dramatically reduced, and the number of available slots increased.

Instantaneous green energy scheduler: We compare the impact of

green energy prediction to the instantaneous use of green energy presented in [75].

To simplify evaluation we use the same algorithm as predictive scheduler, but with

a 1min scheduling interval which reflects the instantaneous case well.
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Table 2.1: Measured interference of MapReduce and Rubis

# cores MapReduce 1-4 5 6 7 8

Rubis QoS 0.047 0.08 0.1 0.4 0.93

MapReduce Performance 100% 94% 88% 83% 81%

2.3.1 Model Validation Using Experimental Testbed

We developed a discrete event-based simulation platform for scheduling a

mix of service and batch jobs in a data center consisting of hundreds of servers.

This enables us to evaluate the impact of using a combination of brown and green

energy at scale. To ensure accuracy of our estimates, the parameters for our event-

based simulator are obtained from measurements on Intel Nehalem [68] servers

when running a mix of service (Rubis [112]) and batch workloads (MapReduce

[121]) within Xen VMs. Rubis and MapReduce are run in separate VMs, with

MapReduce run across 2 VMs, one utilizing 4 cores, and the other varying the

number of cores occupied. Rubis is run with 9000 concurrent users.

Table 2.1 shows the measurements we obtained by scheduling an increasing

number of MapReduce tasks on the same machine with service requests. We report

a measure of normalized response time as Quality of Service (QoS) ratio, which

is calculated using 90th percentile response time over the expected response time

(for Rubis it is 150ms). We see that even in the worst case, where we allocate

the maximum number of available cores to MapReduce jobs, normalized response

time of Rubis, as measured by QoS ratio, is still less than 1. In addition, we see

that the worst case performance impact on normalized MapReduce job completion

times is maximum 20%. Mean measured service time of a single map or reduce

task is around 10 minutes, though the maximum can be as high as 20 min, thus

justifying our choice of 30min green energy prediction interval.

Given the measurements presented above, in our simulations we use 150ms

as the target Rubis response time with 12ms service times for 1000 to 5000 clients

representing different times in a day, 2min mean arrival time of MapReduce jobs

[71] with average execution time of 10 min. To ensure that in our simulations we
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Table 2.2: Verification of simulation outputs

Measured Simulated Error

Avg. Power Consumption 246W 251W 3%

Rubis QoS Ratio 0.08 0.085 6%

Avg. MapReduce Comp. Time 112 min 121 min 8%

have at most 10% performance impact on MapReduce tasks, we use 5 slots per

server. We compare simulation results using this setup to actual measurements

on the Nehalem server. Table 2.2 shows that the average error is well below 10%

for all quantities of interest, with power estimates having only 3% average error,

while performance for services has only 6% and MapReduce completion times are

within 8%.

2.4 Results

We use our discrete event-based simulation platform to schedule a mix

of service (Rubis) and batch jobs (MapReduce) in typical data center container

consisting of 200 Intel Nehalem servers. The overall duration of simulation is 4.5

days. Simulations are repeated until we obtain a statistically stable average.

Each server has a single web service queue that servers multiple clients.

Incoming client requests are distributed over the servers evenly. The client arrival

distribution is assumed to be exponential as in [89], while client requests are gener-

ated using a log-normal distribution with mean 100 ms and 15 ms as mean service

time. MapReduce jobs arrive to the system with a mean of 2 min and each task has

10 min execution time on average. We use 5 MapReduce slots per host. Services

QoS ratio in all of our simulations remains between 0.09 and 0.2, thus ensuring

that web request response time requirements are never violated. The ratio gets

closer to 1 when the number of web services clients exceeds 10000. The average

queue length for web requests is 0.8 for 1000 clients and 5.5 for 5000 clients.

We use a number of metrics reported in Table 2.3 to compare our predictive

scheduler (Pred.) with the state of the art instantaneous green energy usage (Inst.)
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Table 2.3: Comparison of instantaneous and predicted green energy with different

alternative energy sources

GE Efficiency GE Job Ratio % Incomplete Jobs

Wind Energy
Inst. 30% ± 2.5% 35% ± 5% 10% ± 3.3%

Pred. 90% ± 2% 50% ± 5% 1.3% ± 0.4%

Solar Energy
Inst. 60% ± 5% 28% ± 4% 8.6% ± 2.5%

Pred. 93% ± 2% 45% ± 3% 2.4% ± 0.5%

Combined
Inst. 72% ± 5% 40% ± 4% 12% ± 2.5%

Pred. 93% ± 3% 55% ± 5% 3% ± 0.5%

[75] when using only wind, only solar and combined two green energy sources. We

define GE Efficiency as the ratio of the green energy doing useful work versus

the total green energy available: GEusefulwork/GEtot. Energy consumed by a task

that is terminated before completion is not counted as a part of GEusefulwork.

Green energy under-prediction is penalized by this metric. The percentage of jobs

that are terminated as a result of the lack of green energy at the beginning of

the scheduling interval, % incomplete jobs, is calculated relative to the overall

number of jobs completed using green energy. This occurs when jobs launched

with currently available green energy in a previous scheduling interval cannot be

sustained due to the energy availability drop in the subsequent interval. Lastly,

the efficiency of the system is in terms of green energy usage, GE Job Ratio, is

defined as the total amount of work done with green energy, JobsGE, over the total

work done in the system, Jobstot: JobsGE/Jobstot.

Table 2.3 shows that prediction improves green energy efficiency up to 3x

relative to instantaneous energy. The main reason for this result is that the system

has good quality information on green energy availability for a longer interval and

hence can make better scheduling decisions. Therefore, less green energy is wasted

and 5x fewer MapReduce tasks need to be terminated. Finally, our predictive

scheduler increases the number of MapReduce tasks executed with green energy

by 2x relative to the instantaneous approach as a result of more accurate energy

provisioning. Figure 2.3 shows how the average completion time of MapReduce
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Figure 2.3: Average completion time of MapReduce jobs

Table 2.4: Brown Energy for Inst. vs. Pred. Energy

Total BE w/o GE Add. BE for Inst. Add. BE for Pred.

240 kWh 4.6 kWh 0.64 kWh

jobs changes over time as a function of the way green energy is used. The baseline

case uses only brown energy to run a mix of services with just enough MapReduce

jobs so that services response time constraints and performance requirements of

MapReduce jobs (maximum 10% hit to completion times) are met. In this scenario,

we create the MapReduce jobs at the same rate to highlight the green energy effect

more clearly. Our green energy prediction scheduler decreases MapReduce task

completion times on average by 20%. In contrast, instantaneous usage of green

energy results in 12% higher average batch task completion times compared to

prediction.

An alternate way to compare using predicted vs. instantaneous green energy

schedulers is to supplement with brown energy whenever there is not enough green

energy to complete batch jobs. In this way we ensure that all service jobs meet their

response time requirements and all batch jobs complete, so none are terminated.

The first column of Table 2.4 shows the amount of brown energy needed to run all

the tasks in the absence of green energy. When we use green energy instantaneously

and do not terminate any tasks when there is not enough green energy available,
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we need extra 4.6 kWh of brown energy per data center container, but if we use

our predictor, the extra brown energy needed is decreased by more than 7x to 0.64

kWh.

2.5 Conclusion

As the cost of brown energy is becoming a critical bottleneck in data center

environments, the need for alternative energy sources is growing. In this section, we

present a novel green energy predictor, along with a data center scheduling policy

which uses prediction information to obtain better performance for batch jobs

without significantly affecting the performance of latency sensitive web requests.

We use a simulation platform to compare our predictive policy with instantaneous

use of green energy. Our simulation platform has been verified by measurements

on real systems, with maximum 8% error across all relevant metrics. Our results

show that prediction leads to 3x better green energy usage and reduces the number

of terminated tasks up to 7.7x compared to instantaneous green energy usage. The

response time requirements of web requests stay well below the 90th%ile during

all the experiments.

Chapter 2 contains material from ”Using datacenter simulation to evaluate

green energy integration”, by Baris Aksanli, Jagannathan Venkatesh and Tajana

Simunic Rosing, which appears in IEEE Computer 45, September 2012 [19]. The

dissertation author was the primary investigator and author of this paper.

Chapter 2 contains material from ”Utilizing Green Energy Prediction to

Schedule Mixed Batch and Service Jobs in Data Centers”, by Baris Aksanli, Ja-

gannathan Venkatesh, Liuyi Zhang and Tajana Simunic Rosing, which appears in

ACM SIGOPS Operating Systems Review 45, no. 3, 2012 [20]. The dissertation

author was the primary investigator and author of this paper.



Chapter 3

Renewable Energy in Wide Area

Networks

The number of online services. such as search, social networks, online gam-

ing and video streaming, has exploded. Due to data locality issues and the demand

for fast response times, such services are usually distributed across geographically

diverse set of data centers. This is clearly already the case for larger companies,

such as Google and Facebook, but is also increasingly true of smaller companies

who can leverage cloud offerings from companies such as Amazon [21]. This trend

is also fueled by a dramatic increase in the usage of virtualization technology. For

example, Amazon’s EC2 allows load balancing between virtual machine instances

[21].

Internet services usually have frontline service jobs and a background set

of batch jobs that prepare data for the online services. For example, in order for

eBay to be able to guarantee very low response times to their customer’s requests,

they need to have an updated and well indexed database of items, usually obtained

by running batch jobs. Often, there are two classes of performance metrics used

services response times, usually measured in 10s to 100s of milliseconds, and batch

job throughput. Normally the service providers’ goal is to ensure that service

times are within specified bounds, while batch jobs are expected to progress at a

reasonable rate.

In addition to performance, a key challenge in such distributed data centers

25
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is the energy cost which includes the cost of computing and data transmission. A

previous study [58] shows that as of 2007 at least 2% of the total carbon emission

of the world comes from IT. World-wide power consumption due to IT has been

growing, with more than 80% due to the way equipment is used [101][128]. The

telecommunication infrastructure takes up to 40% of the total IT energy cost,

and is expected to continue growing as demand for distributed data processing

continues to rise [128].

One of the key trade-offs in the design of distributed services is how data

center operators and network providers deliver the needed performance at mini-

mum energy cost. While quite a bit of work has focused on energy optimization of

data center computing, relatively little has been done for geographically distributed

networks connecting the data centers. The overall electricity cost (”brown energy”)

of networking can be very high. For example, Telecom Italia is the second largest

consumer of electricity in Italy [99]. One way to reduce these costs is to leverage

green energy sources such as solar and wind. Intermittent green energy has been

explored as a way to perform additional work in data centers [75] and to cap the

peak power of a data center [59], but has not been leveraged to offset the cost of

backbone networking.

An alternate way is to redesign network elements so that they consume

less power. For simplicity purposes we model the total energy cost of backbone

networking as a function of power consumption of routers and links. Typically the

power cost of the links is a function of distance due to the need for signal ampli-

fication, while router power cost is largely fixed at the peak level as the primary

objective of router design has been maximizing performance at all cost. As a re-

sult, routers dominate the backbone network’s energy consumption [123]. Recently

there have been a few publications studying how routers could be redesigned to be

more energy proportional [31][51]. As the utilization levels of backbone networks

tend to be low, around 30% [51], redesigning routers to be energy proportional

and then enabling network to leverage this is important. Furthermore, routers

are the primary network elements that ensure high speed connectivity between

distributed data centers. Currently routes are typically determined statically by
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using shortest-path algorithm. However, as routers become more energy propor-

tional, and as their supply is complemented by using highly variable green energy,

there will be a need for dynamic route adjustment depending on the current state of

the load on particular connections, the performance needs of applications running

in the data centers, and green energy availability.

In this chapter, we analyze the use of wide area network in a multiple data

center system. The main goal is to improve the energy efficiency of the networking

infrastructure, while ensuring service times and batch job throughput constraints

are met for large scale distributed data center deployments. We also show that

with increasing network speed, online job migration across multiple data centers

becomes more feasible, increasing the total throughput. The main contributions

of this chapter can be summarized as follows:

• We quantify the energy cost of a data transfer over the backbone network.

• We show that energy proportionality and green energy can make a dramatic

difference to network energy efficiency.

• We design a novel green energy aware routing algorithm capable of ensuring

quality of service needs are met while improving energy efficiency by 10x.

• We analyze the feasibility of online job migration with varying data center

and backbone network properties, and show that the backbone network needs

to have higher speed links than the conventional 10 Gbps ones.

3.1 Related Work

A number of projects have explored the idea of wide area job balancing for

distributed data centers. A number of strategies have been developed to determine

the best strategy for transferring data center jobs to locations where the electricity

is cheaper [109][106][30]. This has been aided by the fast live VM migration that

is possible with very short downtimes, on the order of a few seconds [122]. Green

energy usage in data center systems is a very recent topic [82][83][59][58][75][79].
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Work presented recently explored how to effectively leverage green energy avail-

ability to complement brown energy supply for data centers [82][83][75]. Green

energy has been used to cap the peak power in the system [59]. Our work in the

previous chapter studies green energy prediction as an effective way to dramati-

cally increase the effective renewables utilization for data center operations in [20].

However, none of the projects that have looked at job balancing in distributed data

centers consider the energy cost of the backbone networks while transport energy

consumption can be significant for distributed cloud-based data center applications

[26].

On aggregate, network service providers consume a lot of electricity, with

Telecom Italia and British Telecom taking around 1% of nation’s electricity [32].

This comes at a steep cost, with electricity costs reaching up to 50% of operating

expenses for some providers. There has been quite a bit of research on energy

efficient backbone networks. The first category includes shutting down idle network

elements [51] and provisioning the network to identify the elements that can be shut

down without affecting the connectivity [39][123][130]. Another way to increase

network energy efficiency is to leverage the fact that line cards consume a large

portion of the router power and by adjusting the number of active line cards

the power consumption can be decreased significantly [36]. Additionally, dynamic

software solutions such as energy aware routing [98][22] to select the energy efficient

path and bandwidth adjusting to reduce the router power consumption [70] are

used to improve network energy efficiency. Recent projects, like the GreenStar

network, propose to experiment with using green energy to power zero-carbon data

centers and migrating workloads over the network based on presence of renewable

energy [95]. Another work uses brown and green energy together in a problem

formulation to minimize carbon emissions [110]. However, energy aware policy

they deploy and the green energy supply do not change and adapt over time.

In contrast to the related work, we focus on increasing the energy efficiency

of the backbone network without shutting down any connected data centers, net-

work devices or links connecting them. We showcase the effects of theoretical and

practical proportionality in network elements on energy efficiency. We use dynamic



29

prediction of green energy availability to improve the reliability and decrease the

carbon footprint of the network. In addition, we show that the design of dynamic

routing policies leveraging green metrics effectively utilizes energy-efficiency of the

routers and decreases the brown energy use significantly.

3.2 Data Center and Network Modeling

An effective strategy for managing backbone network energy costs, while at

the same time ensuring that data center jobs meet their performance constraints,

requires careful modeling of not only the network links, but also of the data centers

and the servers within them. In this section, we present the models we use to

represent data centers and the network elements. For the data center validation we

use the methods illustrated in section 2.3.1, while for validating backbone network

energy costs we leverage models of energy consumption of state-of-the-art backbone

routers [123].

3.2.1 Data Center Model

Each data center container is modeled after the one we have on campus.

It has 200 Intels Nehalem servers running Xen VM. The model of a single data

center is the same as in section 2.3, where we run Rubis on our machines to

model service-sensitive eBay-like workload [112] with 90th%ile of response times

at 150ms and multiple MapReduce instances are run as batch jobs. A single

MapReduce job consists of a number of tasks that are dispatched in parallel. The

job is complete when all tasks finish. Although we have two types of jobs in a

data center, we transfer only batch jobs between geographically distributed data

centers, as service request sensitive tasks have very tight timing constraints, and

often relay on fast local connections to ensure those constraints are met. We

assume that data is replicated among the data centers automatically in order to

ensure better reliability [56]. Thus, when a batch job is moved, relatively little

data has to be moved with it.

Each data center scheduler uses two separate job arrival queues: web ser-
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Table 3.1: Inter-arrival and service time parameters

Lognormal Distribution Parameters α µ

Rubis 1600 Clients Inter-arrival time (ms) 1.23 0.59

Rubis 3200 Clients Inter-arrival time (ms) 1.12 0.43

MapReduce Job Service time (sec) 1.44 5.24

vices (Rubis) and batch jobs (MapReduce). Service and batch job inter-arrival

times are modeled using lognormal distribution based on our measurements of Ru-

bis and MapReduce running on Nehalem servers and results of analysis presented

in [71] and [47] respectively (see Table 3.1 for parameters). For simplicity, we as-

sume that each server has at minimum one web services request queue, and one or

more batch jobs slots to execute. Web services start execution whenever there are

available computing resources (CPU and memory) to ensure their response time

requirements are met whenever possible. Load balancing strategy described in [20]

is used to distribute requests within data centers, as shown in section 2.3. Al-

though data centers have the same number and type of servers, the request arrival

rates are different for each of them representing varying demands based on location

and the time of day. We leverage these differences for geographically distributed

load balancing.

For simplicity we have a single controller that monitors and manages load

of the data centers and the network. Each data center sends the available resource

(CPU, memory etc.) profile to the controller every 30 min as MapReduce jobs typ-

ically take less than 30min to complete. Based on this information, the controller

computes the average resource usage of the overall set of data centers. Then, start-

ing from the center with least amount of extra resources, it balances the resources

across the system. This process continues until the amount of available resources in

each data center is more balanced under the constraint of available network band-

width or a data center cannot find a task to transfer. The actual transfer of batch

jobs is initiated by the controller once the re-balancing analysis completes. Data

centers provide lists of candidate jobs, while the network computes the path and

the available bandwidth of the path, depending on the routing policies used. Then
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Table 3.2: Parameters and values used in the simulation

Parameter Value Parameter Value

Mean Web Request

Inter-arrival time
5ms Number of data centers 5

Mean Web Request

Service time
20ms Number of routers 12

Service Request SLA 150ms Idle Server Power 212.5W

Mean MapReduce Job

Inter-arrival time
2min Peak Server Power 312.5W

Mean MapReduce Task

Service time
4 min Idle Router Power 1381W

Average # tasks

per MapReduce job
70 Peak Router Power 1781W

Average required throughput

level per MR job
0.35 Number of line cards 10

Number of servers

in a data center
200

the controller computes the traffic matrix between data centers in terms of size of

data (a function of the number of VMs) and initiates the transfers accordingly.

We compare the simulation results with a real experimental setup running

a mix of Rubis and MapReduce workloads on a set of Intel Nehalem servers from

our data center container, as shown in section 2.3.1. We also present the parameter

values we use in our simulation in Tables 3.1 and 3.2.

3.2.2 Backbone Network

Our model is based on typical telecom network characteristics [132] con-

sisting of routers, hubs, storage and computation elements, complemented with

infrastructure PDUs, UPS, and air conditioners to keep them operational. Given

that the large fraction of the overall network energy cost is due to routers, we
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specifically focus on this aspect. In addition, routers maybe designed to be more

energy proportional going forward, while optical links have a fixed energy cost

that is a function of the distance between amplifiers [51]. Thus, in our analysis we

neglect the link cost, as it is just a fixed offset to the overall energy consumed. The

power consumption of the router can be estimated using a linear model [84] with

bandwidth utilization ratio 0 < u < 1, idle power, Pidle and peak power, Ppeak as

follows:

P = Pidle + u(Ppeak − Pidle) (3.1)

In current routers, Pidle is high, thus the energy consumption is not at all

proportional to network load limiting the potential savings. However, there have

already been a number of proposals on how routers can be made more energy pro-

portional [31][51], ranging from turning off line cards that are not being used, to

more complex circuits and system solutions. Figure 3.1 shows the power models of

routers we use in our simulations. The non-proportional model represents measure-

ments of an actual state-of-the-art router [123] that is capable of supporting four

100Gbps links concurrently. Its peak and idle power value are listed in Table 3.2.

The step function proportional is the power curve we measured by removing line

cards from the same router similar to on/off approach presented in [84]. Smooth

proportionality model assumes techniques have been developed to ”smooth out”

the step proportional curve, while the ideal proportionality represents the best case

linear proportionality.

In our simulations we model a subset of LBNL ESnets network topology

as shown in Figure 3.2 [48]. We use 5 endpoints where data center containers

reside (represented by squares) with 12 intermediate routers connected with all

relevant connections (circles on Figure 3.2). Upon request for a larger backbone

data transfer, the network identifies a path to carry the data between two endpoints

of a transfer. State-of-the-art systems determine and configure that path statically

by using shortest path algorithm.

ESnet dramatically improved on the state-of-the-art routing and bandwidth

allocation algorithms by developing On-Demand Secure and Advance Reservation
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Figure 3.1: Power curves for different network power schemes

Figure 3.2: Network Topology; squares = data centers, circles = routers

System (OSCARS) [64]. OSCARS enables users to reserve dynamic virtual circuits

(VC) by computing path online to construct VCs with required bandwidth. This

solution works well in situations where the only goal is performance. However, the

energy consumption is becoming another key constraint. As a result, an energy-

aware dynamic routing algorithm is needed to identify and adjust the path during

the transfer so both performance and energy constraints can be met in the most

effective way.

To reduce the router’s brown energy consumption, we assume that each

routing site has its own green energy source, solar and/or wind. Table 3.3 lists the
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Figure 3.3: Solar and wind energy availability

types of renewable energy available in different locations. The renewable energy

data, including location, and amounts generated over time has been provided by

NREL [5][6]. We use a weather-conditioned moving average (WCMA) for solar and

weighted nearest-neighbor (NN) table based algorithm for wind energy availability

prediction over 30min intervals [20]. We also assume that green energy supply

systems provide on average 80% of the energy need per router, 1.6 kW, where

available.

In Figure 3.3, we show a subset of the green energy availability measure-

ments. Solar data is gathered from the UCSD Microgrid and wind data is obtained

from a wind farm in Lake Benton, MN, made available by the National Renewable

Energy Laboratory. The representative outputs for the other various locations

in our experiments (San Francisco, Chicago, etc.) are obtained by scaling and

time-shifting the measured results from our available sources to published average

availability data for the target areas [5][6].

To best leverage green energy availability, we design a novel green energy

aware routing (GEAR) algorithm and compare it to shortest path routing (SPR)

which is based on Dijkstra’s algorithm [64]. GEAR selects the path capable of

reserving the required bandwidth while ensuring it also has the lowest brown energy

consumption. The algorithm in Figure 3.4 provides the overview of GEAR. GEAR
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Location Type Location Type Location Type

Chicago Wind New York Wind San Francisco Solar+Wind

Atlanta Solar San Diego Solar Denver -

Kansas - El Paso Solar Houston Solar

Nashville Wind Cleveland Wind Washington DC -

Table 3.3: Renewable energy availability in different locations

Figure 3.4: Green energy aware routing algorithm

analyzes brown energy need of each path with required bandwidth between a pair

and selects the one with least brown energy need. The paths are pre-computed to

avoid re-computation. We leverage the dynamic circuit construction capability of

OSCARS to not only compute paths that best leverage green energy availability,

but to also dynamically allocate those paths.

In addition to green energy aware routing, step proportional router design

can be best leveraged by a new routing policy as well. In this case the additional

bandwidth utilization might not always increase the power consumption of a router

due to fairly coarse set of steps as shown in Figure 3.1. The network controller

calculates how much extra power a path between two points would need and selects

the path with the least extra power required. The algorithm is similar to GEAR,

except that green energy usage in line 8 is set to zero.
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3.2.3 Simulation of Backbone Network with Data Centers

We use a discrete event-based simulation platform that models the perfor-

mance and energy cost of a large scale backbone network connecting geographically

distributed data centers [20][19]. The simulator keeps track of each process in every

data center. The main controller of the simulator is responsible for synchronizing

both the data centers and the network. In our simulation, we set the load balance

control interval to 30 min. This duration is appropriate given the typical length of

batch jobs, and the fact that individual service requests are much shorter lasting.

The load in each data center follows a day/night pattern appropriate for the par-

ticular location [39]. Power is estimated using models presented in section 2.1 for

the data center, and using Figure 3.1 for power cost of routing. Renewable energy

data has been obtained from NREL [5][6]. We do not quantify the power cost of

supporting systems such as cooling as our goal is to compare the improvements

to energy efficiency of backbone network as a function of changing availability of

green energy and novel router designs. This could be easily accounted for by using

a PUE factor.

3.3 Results

In the previous sections we describe the models we use for data centers and

the backbone network, along with the simulator that we developed to evaluate the

benefits of changing the design of routers, and leveraging green energy availability

along the routes. The parameters that we use in simulation are shown in Tables

3.1 and 3.2. Each VM has a single job in it that is either service or MapReduce and

is allocated 8GB, which is reasonable for current systems [21]. Predictor accuracy

is 83% for wind and 90% for solar within the 30min rebalancing interval used by

the overall system controller. Network is assumed to have 10% BW reserved for

background data transfers in all our simulations, to account for the transfers other

than data center load balancing. In all cases, except where otherwise noted, we

assume 100Gbps backbone network links. The power profiles for various energy

proportional router designs are given in Figure 3.1. We simulate four days. For our
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Table 3.4: Metrics and their definitions

Metric Definition

Network Related Metrics

BWave Average bandwidth per link in Gbps

TotPave Average power consumption per router

TotPmax Maximum power consumption per router

BrownPave Average router ”brown” power consumption

Energy Efficiency Metrics

BrownE % Brown energy used per router relative to total energy

BWave/BE Ave. bandwidth util. efficiency per brown energy spent

NetEeff # MapReduce jobs completed per brown energy spent

analysis we define multiple metrics as shown in Table 3.4. In addition to traditional

metrics, such as average bandwidth used and router power consumption, we also

define two energy efficiency metrics. The first quantifies the increase in the number

of batch jobs finished as a function of brown energy used, and the second evaluates

how well bandwidth is utilized per brown watt consumed.

We first evaluate the job performance without distributed load balancing.

In this case the batch job completion time is 22.8 min while service response

time constraints are met. Next we analyze the benefits of leveraging the various

types of network configurations for transferring jobs, ranging from baseline design

that replicates the state of the art, to having a network populated with energy

proportional routers that have green energy supply sources as well. The cases

where there is no green energy use shortest path routing (SPR), while when green

energy is available we compare SPR with our GEAR algorithm. We next provide

the analysis of all these results.

Non-Proportional Routers: Data centers transfer batch job VMs to

a remote center in order to reduce the computational burden and obtain higher

performance for the waiting jobs. When transferring data, we use two different

bandwidth allocation policies. The first one, all-bandwidth policy, allocates all the
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Table 3.5: Baseline results: all bandwidth (AB), necessary bandwidth (NB)

Metric AB NB Metric AB NB

Ave. MR job completion (min) 17.5 16.8 TotPave 85% 83%

Ave. MR task completion (min) 4.22 4.25 Bave 66 48

available bandwidth of the links whenever a path is constructed. The second one,

necessary-bandwidth policy, allocates just enough bandwidth to the path, so that

the transfer time for data takes at most 100 sec through a 100Gbps path. The first

policy yields faster data transfer, however it also saturates links. The second results

in more network availability. Table 3.5 summarizes results for both policies. Using

network to adaptively distribute batch jobs improves the job completion times by

30% while not changing the service’s response times. Both AB and NB policies

have comparable performance and power consumption as the dynamic power range

of baseline network is very small. Bandwidth utilization is 1.5x lower for NB, which

may enable additional data to be transferred as needed. As a result, our simulations

show that with NB policy 34% of the tasks are executed in a remote center with

5% more tasks transferred than with AB.

In Figure 3.5 we explore the performance of the batch jobs and the aver-

age power consumption of a router with different bandwidth values available per

link when utilizing the necessary bandwidth policy. Performance and power con-

sumption do not change significantly between 50-100Gbps of the available network

bandwidth. MapReduce job completion times approach the case where no load

balancing is used as network bandwidth drops down to 10Gbps. This explains

why today’s load balancing is not done very often as most links are at 10Gbps.

By increasing the number of servers by 2x and keeping the server load constant,

we get better job performance. However, further increased of number of servers

does not result in better performance as there is no need for extra resources with

the fixed load rate. Increasing the server load 2x while keeping the server number

fixed decreases performance by 7%. Further server load increase creates significant

performance drop, 15%, with 10-20 Gbps bandwidth.

Energy Proportional Routers: We use three different proportionality
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Figure 3.5: MapReduce job completion time and power vs. bandwidth

schemes as shown in Figure 3.1 ideal, smooth and step proportionality. Job com-

pletion time service times do not change significantly as compared to the non-

proportional network case. Table 3.6 summarizes all results for the next subsec-

tions. All power numbers are reported as a percent of router peak power listed in

Table 3.2. Bandwidth, BWave, is in Gbps. Looking at the columns corresponding

to situations where no green energy is used, it is clear that NB allocation yields

better power consumption for all proportionality schemes. Average power savings

are around 70% if there is ideal, 50% for smooth and 35% for step function propor-

tionality compared to non-proportional case. Network energy efficiency, NetEeff ,

improves dramatically - by 3x, while bandwidth energy efficiency, BWave/BE,

increases by at most 4x.

We also use the energy aware routing algorithm for step proportionality

(described in Section 3.2.2) with NB policy in our simulation and obtain 48% of

peak power per router on average. The dynamic policy results in 6% better power

consumption compared to the state-of-the-art shortest path policy, but leads to

3% more transfer delay.

Green Energy & Non-Proportional Routers: For the next two sce-

narios we supplement the traditional grid (brown) power with green energy and
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evaluate the benefits of green energy along with green-energy aware routing, and

new router designs. Our goal is to reduce the brown energy consumption as much

as possible by effectively leveraging renewable energy availability. Here we use our

green energy aware routing (GEAR) algorithm. When there is a data transfer

initiated between two data centers, GEAR chooses the path with the least brown

energy needed, which may not be the shortest one. Thus, in Table 3.6 we compare

GEAR to the shortest path routing (SPR) for all tests with green energy. The

difference between SPR and GEAR routing algorithms when using green energy

with non-proportional routers is minimal as non-energy proportional routers have

very high idle power.

Green Supply & Energy Proportional Routers: We next combine

GEAR with energy proportional router design. We do not implement any changes

to GEAR specific to energy proportionality assumption as it chooses the path with

smallest brown energy need regardless of the power curve used. The total (green +

brown) power consumed by all networking elements with GEAR increases between

0.5- 5% compared to SPR depending on router design. However, GEAR compen-

sates this increase by using more green energy, which results in lower brown energy

usage. As a result, GEAR uses 7% less brown energy for non-energy proportional

routers and 15% less for smooth proportional routers. The percentage of brown

energy consumed when using GEAR, BrownE, drops dramatically with energy

proportional hardware, dropping down to as low as 3% when ideal proportionality

is assumed and as high as 12% with step proportionality.

Furthermore, GEAR has 2x better network energy efficiency, NetEeff , and

2.3x better BWave/BE compared to SPR. Compared to non-proportional router

design with no green energy usage, the improvement is 7x for NetEeff and 8x for

BWave/BE with step proportionality, 10x for NetEeff and 11x for BWave/BE

with smooth and 27x for NetEeff and 31x for BWave/BE with ideal proportional-

ity. These dramatic improvements indicate that even relatively simple redesign of

routers along with green energy availability and novel green-energy aware routing

algorithm design can results in dramatic reductions in the operating expenses for

backbone network operators.
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3.4 Conclusion

High bandwidth and energy efficient backbone network design is critical

for supporting large scale distributed data centers. In this chapter, we propose

novel energy aware routing policies along with different energy proportionality

schemes for network hardware. We use a simulation platform to compare our

energy aware policies to state-of-the art routing policy with different power curves.

Our results show that the network brown energy efficiency improves 10x with

smooth proportionality and can be as high as 27x with ideal energy proportionality

using energy aware policies.

Chapter 3 contains material from ”Benefits of Green Energy and Propor-

tionality in High Speed Wide Area Networks Connecting Data Centers”, by Baris

Aksanli , Tajana Rosing, and Inder Monga, which appears in Proceedings of De-

sign Automation and Test in Europe (DATE), 2012 [17]. The dissertation author

was the primary investigator and author of this paper.



Chapter 4

Energy Efficiency in Networks of

Data Centers

Multiple data center systems have been a widespread solution for companies

in order to meet the constantly increasing need for computation, as shown in

chapter 3. As the number of these huge buildings increases, their energy demand

becomes a bigger problem due to elevated cost. Additionally, their energy needs are

supplied mainly by non-renewable, or brown energy sources, which are increasingly

expensive as a result of availability and the introduction of carbon emissions taxes

[87]. We address this problem by efficiently integrating renewable energy into these

systems as discussed in chapters 2 and 3. These multiple data center systems can

also leverage temporal differences in workloads, energy prices and green energy

availability, if applicable, by migrating workloads among each other. This online

migration has become a feasible solution due to faster backbone networks, as shown

in chapter 3.

This chapter expands the energy efficiency analysis of the previous chap-

ter by focusing on data centers and the wide area networks (WAN) together. It

proposes two online job migration (cost minimization and performance maximiza-

tion) algorithms that use green energy prediction in local renewable energy sites

and varying brown energy prices. We use the backbone network model described

in chapter 3 to obtain a holistic multiple data center model. We investigate the

impact of two aspects of data center operation typically overlooked in previous

43
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studies: tiered power pricing, which penalize the data center for exceeding certain

level of power restrictions, and WAN leasing costs/cost models, which leverage

energy-aware routing.

4.1 Background and Related Work

Multi-data center networks offer advantages for improving both perfor-

mance and energy. As each data center is in a different location, its peak hours and

energy prices vary. A data center with high electricity prices may need to migrate

work to another data center with a lower price, incurring some performance and

power cost due to data migration. The live migration of virtual machines over high

speed WAN has made this idea feasible, as it offers fast transmission with limited

performance hit [122].

The study in [79] explores brown energy capping in data centers, motivated

by carbon limits in cities such as Kyoto. The authors leverage distributed In-

ternet services to schedule workloads based on electricity prices or green energy

availability. Similarly, [33] optimizes for energy prices, to reduce overall energy

consumption by distributing workloads to data centers with the lowest current en-

ergy prices. The insight is that renewable sources such as solar energy are actually

cheapest during the day, when workloads are at the highest and utility sources are

most expensive. Job migration is then modeled as an optimization problem, and

the authors identify a local minimum energy cost among the available data centers

that still meets deadlines.

Previous publications concerned with energy costs primarily propose a fol-

low the sun cost management strategy [59][75][78][30][109][115] and generally ne-

glect the cost of wide area networking (WAN) incurred by job migration between

data centers. This assumption is reasonable for small data center networks that

own the WAN and incur low network costs. Consequently, related work has WANs

used to increase system performance via load balancing [83][77][108] or improve

energy efficiency by migrating jobs [30][109][115]. However, these arguments are

not applicable for large WAN costs and data centers that lease the network.For
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example, WAN may be leased, with lease costs quantified per increment of data

transferred, and thus might be too high to justify frequent migration of jobs be-

tween datacenters [106].

Data centers lease the WAN by agreeing to pay a certain price for a fixed

bandwidth usage. However, as WAN usage increases, network owners [54] of-

fer Bandwidth-on-Demand services, especially for data center applications [85].

Additionally, the WAN may take up to 40% of the total IT energy cost, and is

expected to continue growing as demand for distributed data processing continues

to rise [101] and as the server hardware becomes more energy efficient [9]. With

the increasing importance of managing energy consumption in the network, WAN

providers can charge users not just on the amount of bandwidth they use, but also

the time of day when they use it. For example, using the network in a peak hour

may be more expensive than when it is idle, reflecting electricity market prices

[131]. Moreover, with the introduction of carbon taxes, WAN providers can also

vary energy prices depending on the energy source. Consequently, data centers

might be open to longer, less expensive paths on the network. For example, a data

center may request a path that uses green energy to avoid paying extra carbon

emission taxes, or a less-utilized path to avoid extra utilization costs. This chapter

considers both the costs of geographically distributed data centers and the profits

of the network provider. We model different network cost functions, along with

the analysis of new technologies that would allow using more energy proportional

routers in the future.

Furthermore, data centers often undergo a tiered power pricing scheme. The

energy under a specific level may cost a fixed amount and this fixed price changes

depending on the location, so it is beneficial to run jobs in a data center at a lower

fixed price. Data migration should not increase the total power consumption to

more than the amount specified by the specific tier level. Otherwise, extra power

costs are calculated using higher prices, generally much higher than the fixed price.

Table 4.1 summarizes and compares the key state of the art contributions

for managing distributed data centers in order to minimize an objective function,

e.g. the overall cost of energy. Buchbinder et al. [33], Qureshi et al. [106] and Rao
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et al. [109] relocate jobs to where the energy is cheaper to minimize the energy cost.

They do not model different energy types; perform detailed workload performance

analysis and different routing options for both WAN providers and data centers.

Le et al. [79] solves a similar problem including green energy in their model but

they assume a centralized dispatcher and do not analyze network latency or cost.

Liu et al. [83] and Mohsenian-Rad et al. [91] minimize the brown energy usage

or carbon footprint. They either do not consider the variability of green energy or

do not have a network model. In the previous chapter, we solve a load-balancing

problem by modeling network properties, but do not consider energy costs. As

we can see from this analysis, previous studies do not consider all the important

aspects of multiple data center networks simultaneously in their models. This can

lead to overestimated cost savings or overlooked performance implications due to

not considering both the requirements of different types of applications and WAN

characteristics.

In the next subsection, we present two online job migration solutions across

data centers. First one reduces the total cost of energy by moving the compu-

tation to the locations with lower energy prices or additional renewable energy

availability whereas the other one uses renewable energy to improve the overall job

performance globally by matching renewable energy generation with computation.

Our methods also bring a holistic approach by considering both data centers and

WANs simultaneously.

4.2 Cost Minimization and

Performance Maximization Algorithms

The goal of the cost minimization algorithm is to determine which workloads

we need to transfer among different data centers during each interval to minimize

the energy cost. The current algorithm assumes a centralized implementation for

control for job migration decisions, though each data center generates its own

workloads. We assume that green energy is generated and used locally, and is

prioritized over brown energy to minimize the total cost, as green energy is a fixed,
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amortized cost. Thus, we transfer workloads to data centers which have available

capacity and extra green energy. Because of data centers’ energy pricing scheme,

energy in a particular location may have a fixed, low cost up to a specified amount

of peak power capacity. After this level, energy becomes much more expensive.

Therefore, our goals include maintaining utilization in data centers such that we

do not increase the power consumption further than the power tier levels.

Figure 4.1 illustrates our cost minimization algorithm. The algorithm per-

forms in discrete time steps of 30 minutes. Each interval begins with the calculation

of the amount of energy required by each data center, incorporating the previous

and incoming load rates. The former represents the active jobs at a given time,

and the latter is determined by the statistical distributions of real applications.

Each data center has its own workload distributions that represent different types

of applications in a data center environment. The properties of these distributions

are determined by applying statistical analysis on real data center traces, outlined

in section 2.3.1. We estimate the green energy availability using prediction (section

2.2), obtain the current brown energy pricing, and check power restrictions. Based

on the energy need and green energy availability, each data center determines if it

has surplus green energy. The key assumption is that if brown energy has already

been within the lower price region, it makes sense to use it for running jobs, while

green energy can be used to both reduce power consumption and to run extra jobs

which otherwise might not be scheduled.

Then workloads are transferred from the data centers with the highest need

to those with the highest available green energy. The workload that can be trans-

ferred from a data center is determined by what is migrateable, while the workload

that can be transferred to a particular data center is limited by the amount of ad-

ditional green energy and WAN availability. This process continues until every

data center is analyzed. If there are workloads remaining in any data centers at

the end, the algorithm focuses on data centers with the cheapest brown energy

cost. It moves workloads from the data centers with higher energy costs to those

with the cheapest brown energy. The amount of data that can be transferred is

limited by receiving datacenter’s peak power constraints and tiered power levels.
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Figure 4.1: Overview of the cost minimization algorithm

If there are still unscheduled jobs remaining at the end of this process, they are

scheduled in data centers where the market electricity prices are the lowest.

We can also modify this iterative part of our algorithm to maximize the

performance of the workloads instead of minimizing the total cost of energy. In

this case, we transfer the jobs that are actively waiting in the execution queue to

data centers with excess green energy availability. The iterative process of the cost

minimization algorithm is also valid here, but the migration depends only on green

energy availability, i.e. jobs are not migrated to data centers with cheaper brown

energy prices because extra brown energy would be required for these additional

jobs. We denote this process as performance maximization as it runs additional

jobs with surplus green energy.

At the end of this iterative process, we obtain a matrix representing work-

load transfers among data centers. This transfer matrix is then provided to the

networking algorithm, which calculates the paths to be used and the amount of

bandwidth that needed by each selected path. In our study, we analyze different
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path selection algorithms, such as shortest path routing (SPR), green energy aware

routing (GEAR), and network lease based routing. A detailed description of SPR

and GEAR implementations is in section 3.2.2. Network lease based routing se-

lects the path with the least per-bandwidth price in the case the WAN is leased.

In our results, we analyze different network cost functions as well. If a selected

path in the transfer matrix is unavailable due to network limitations, the job is

rescheduled with a limitation on target data centers.

Our algorithm is similar to those proposed in related studies (section 4.1),

but it minimizes the cost of energy more comprehensively. This is because it has

a more complete view of data center energy costs, modeling both fixed energy

costs under fixed amounts and variable, higher tier energy prices. This helps us

to calculate the energy cost savings in a more accurate way. Secondly, it con-

siders the side effects of the WAN, analyzing both the performance implications

of different routing algorithms and additional leasing costs if necessary. This is

key when multi-data center systems lease the WAN. Job migration may not be

feasible for those systems if the cost of leasing the network is too high. Third,

the green energy availability information is enhanced by using prediction which

can provide information 30-minute ahead and thus help us allocate the workloads

across multiple data centers in a more effective manner. Last but not the least; our

algorithm is flexible in the sense that it can perform for both cost minimization

and performance maximization purposes. It specifically shows that green energy

can be used to maximize the performance rather than just minimizing the total

cost of energy of geographically distributed multi-datacenter systems.

Note that the data center and WAN models, as well as the green energy

prediction algorithms, used by our algorithms are taken from previous chapters:

the data center model from sections 2.3 and 3.2.1, the backbone network model

from section 3.2.2 and renewable energy prediction algorithms from 2.2.
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4.3 Methodology

We use an event-based simulation framework to analyze and compare the

results of our algorithms. The inputs to our simulator are derived from mea-

surements performed on our data center container (sections 2.3 and 3.2.1) and

data obtained from industrial deployments. This section first discusses how we

construct the simulation environment including the data center loads, simulation

parameters, green energy availability, and brown energy prices.

Data center load: The load models and mixtures for our experiments are

the same as in chapter 3. More specifically, we use the data center model from

section 3.2.1, backbone model from section 3.2.2). These models include both

workload mixtures and power equations. The parameters of the simulation can be

seen in Table 3.2. Note that we only migrate batch jobs due to the tight response

time constraints of service jobs.

Green energy availability: The green energy availability, along with

prediction, in different locations is the same as in section 3.2.2. Green energy

availability in different locations are presented in Table 3.3.

Brown and green energy costs: Data centers contract power from util-

ities to obtain competitive prices for their expected loads. This can be seen as a

tiered pricing scheme. If a data center exceeds the tiered amount in an interval,

it is relegated to higher prices, sometimes even market prices. We obtain sample

fixed pricing for the mid-west, the east and the west coasts [80]. Since market

prices change over time, we use the California ISO [8] wholesale pricing database

to obtain brown energy prices for various California locations, and time-shift and

scale those values for the other locations based on published averages [2]. Figure

4.2 shows daily pricing values for brown energy in comparison to fixed costs. The

straight lines correspond to fix, under-tier prices and the others show samples of

variable, market prices which can be used to charge data centers that go over their

tiered amounts.

Local green energy costs are typically amortized over the lifetime of an in-

stallation, incorporating the capital and the maintenance costs. This is represented

by a fixed offset to our cost model. We use data from [90] to obtain the capital
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Figure 4.2: Daily brown and amortized green energy cost (¢/kWh)

and operational expenses of several solar and wind farms, amortized over their

lifetimes, as representative solar and wind costs per interval.

4.4 Results

This section presents the simulation results for the base case of no migra-

tion, and the workload migration policies for performance maximization and cost

minimization.

4.4.1 No Migration

In this scenario, each data center runs its own workload using only locally

available green energy. This is the baseline for our comparisons, as it represents the

nominal brown energy need and quantifies the performance of batch jobs without

the overhead of migration. A power tier level accounts for 85% of data center’s

power needs, while the rest, when needed, is provided at variable market prices.

We allow service and batch jobs to run on the same servers while ensuring that

they meet quality of service (QoS) requirements (service job QoSratio < 1), and

find that the average MapReduce job completion time is 22.8 min. Only 59% of

the total green energy supply is consumed by data centers locally, motivating the

distributed policies described previously.
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4.4.2 Performance Maximization Using Migration

In this algorithm, we leverage migration to complete more batch jobs than

previously possible. Data centers with high utilization transfer jobs to locations

with low utilization or where there is excess green energy, effectively completing

more work in the same amount of time.

Most MapReduce jobs (representative of batch jobs) complete within 30 min

[20], which becomes the threshold for both the green energy prediction interval and

the interval for checking data center utilization. At each interval, the controller

retrieves the resource usage and green energy profiles of each data center and

optimizes the system by initiating extra workloads in data centers with green

energy availability while still meeting under-tier power constraints. It calculates

the available transfer slots between each end-point pair, and selects the tasks to

be executed remotely from each data center’s active batch jobs. Once the tasks

finish execution in a remote data center, the results are sent back to the original

center. The key to this policy is that waiting tasks are migrated, as opposed to

active tasks, resulting in more jobs executed overall (section 4.2).

Our simulation results show that the average completion time of MapRe-

duce jobs is 16.8 min, 27% faster than the baseline, with no performance hit for

service requests. Furthermore, since we are leveraging all available green energy for

extra workloads, the percentage of green energy used is 85%, significantly higher

than the baseline.

Figure 4.3 reports the total cost normalized against the no migration case

with different tier levels specified as a percentage of the data center’s peak power

capacities and network lease options. Without tiered energy pricing (where all the

consumption is charged using market prices), we demonstrate a 25% increase in

the total energy cost. However, when we do include tiered energy pricing, we see

more accurate results, with a cost increase of only 12% for a 70% level, and a total

cost increase of 6% for an 85% level.

Since the WAN may not be owned by a data center, we also analyze the

case where the network is leased. In this case, a bandwidth-dependent cost is

incurred. Figure 4.3 shows the results of this analysis over different cost functions
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Figure 4.3: Normalized performance maximization algorithm costs for data cen-

ters and network

that net-work providers use. For linear increase (section 3.2.2), we see that the

network cost can be up to 40% of the data center cost. This ratio increases with

tiered energy pricing from < 1% to 25%, since this pricing scheme reduces data

center power consumption and magnify the network cost.

For this policy, we also calculate the profit of network providers based on

the energy costs associated with the WAN. Table 4.2 shows the profit normalized

against fixed bandwidth cost and non-energy proportional routers. Energy pro-

portionality of routers enables up to 37% more profit for network providers with

ideal power curves and 20% with step proportionality WAN router power curve.

We also observe that different power tier levels do not affect the savings of the

network provider because the migration is based only on green energy availability

in other locations.

4.4.3 Cost Minimization Using Migration

The main goal of the cost minimization policy is to maximize green energy

usage and then leverage as much as possible inexpensive brown energy. Also, we

show the impact of energy proportional servers to quantify the policy’s benefit in
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Table 4.2: Profit of network providers for performance maximization with differ-

ent router energy proportionality schemes

Network Cost Function
Profit

Non-prop Step Smooth Ideal

Fixed Cost 1x 1.2x 1.2x 1.4x

Linear Increase 4.5x 6.7x 6.8x 6.9x

future systems.

Unlike performance maximization, cost minimization does not transfer extra

jobs, and thus, does not obtain any performance improvement. Furthermore, the

overhead of network transfer decreases the performance of MapReduce jobs. We

observe 23.8 min average job completion time for MapReduce jobs, 4.5% worse

than the no migration case with green energy efficiency of 66%, a 7% improvement

over no migration, with no performance overhead for service jobs.

In Figure 4.4, we show the impact of energy proportionality and tiered

energy pricing to our model, normalized against the no migration case. We observe

a 10% decrease in total cost when tiered energy pricing is incorporated into the

model. Cost reduction grows to 15% when energy proportional servers are used.

This shows the potential of cost minimization method in the future when servers

become more energy proportional.

We also analyze how the total cost of data centers changes if the network

is leased. Unlike the performance maximization policy, we prevent migration if

the cost is higher than the potential savings. Figure 4.5 shows the results of this

analysis, and additionally incorporates server energy proportionality. We use the

same coefficients for the network cost functions as in the previous case. Neglecting

the cost of network leasing can result in up to 15% error. The network costs

are up to 17% of the data center cost, which is significantly less than results we

saw with the performance maximization, where it is up to 40%. This is mainly

because this policy sacrifices a potential increase in performance if the cost of a

data transfer outweighs the cost savings. Figure 4.5 also shows how bandwidth

utilization changes with different power tier levels and network lease options. First,
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Figure 4.4: Normalized cost minimization algorithm costs with different power

tier levels and energy proportionality

Table 4.3: Profit of network providers for cost. min. with different router energy

prop. and with server energy prop.

Network Cost Function

Profit

Non-prop Step Smooth Ideal

85% 70% 85% 70% 85% 70% 85% 70%

Fixed Cost 1x 1.2x 1.2x 1.4x 1.2x 1.4x 1.4x 1.6x

Linear Increase 2.2x 2.45x 3.26x 3.6x 3.4x 3.8x 3.5x 3.9x

as network costs become more dominant, bandwidth utilization decreases due to

a growth in unfeasible data transfers. As a result, if the lease cost is not modeled,

the average band-width utilization has up to 60% error. Introducing tiered power

levels decreases network utilization because they create a more balanced energy

cost scheme across data centers. Table 4.3 shows the normalized profit of the

network providers. The cost minimization policy inherently limits network profits,

since it only allows financially profitable transfers.
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Figure 4.5: Normalized total cost and utilization for cost min. with different

power tier levels and network lease options using energy proportional servers

4.4.4 Cost Min. Using a Green Energy Aware Network

We now investigate the cost minimization policy incorporating green energy

aware routing (GEAR). Instead of simply selecting the shortest path between two

data centers, GEAR chooses the path with the least brown energy need. As we

only change the network routing policy for this scenario, data center cost values are

similar compared to the previous case. An energy-aware network provides several

benefits. Reducing brown energy costs of the WAN improves overall networking

costs for both providers and data centers. It also provides a viable alternative

for data centers, opting for cheaper green energy at the cost of GEAR’s slightly

increased network latency. Also, as network elements become more energy propor-

tional in the future, we expect the energy savings obtained by GEAR to be more

prominent.

Figure 4.6 compares SPR and GEAR in terms of router energy consump-

tion and network provider profit, using fixed cost per bandwidth. GEAR with

energy proportionality increases profits by 50% compared to the base case (non-

proportional, SPR), and provides profit for all proportionality schemes. Without

energy proportional routers, GEARs brown energy consumption is slightly lower

than SPR (62% vs. 65% of SPR) with a 3% increase in network delay as a result
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Figure 4.6: Comparison between SPR and GEAR energy consumption of routers

and network profit with different energy proportionality schemes

of occasionally choosing a longer path, though with negligible overall effect on the

job completion time.

4.5 Discussion

In this section, we first recap the most important results presented in chap-

ters 3 and 4. We then compare our methodology with previous work, and explore

the lessons learned with our analysis. Table 4.4 shows the comparison among

the methods discussed in the previous sections. Our performance maximization

algorithm uniquely leverages both workload and green energy differences across dis-

tributed data centers to maximize both throughput (27% improvement) and green

energy efficiency (44% increase). We also demonstrate that the same variations in

workloads and green energy can be leveraged for cost minimization, where our al-

gorithm utilizes tiered energy pricing, and both migration and green energy aware

routing. The results show up to 19% reduction in energy cost and 7% improve-

ment in green energy usage while meeting QoS of latency sensitive applications,
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and increasing job completion time of batch jobs by only 4%. Additionally, the

comprehensive and novel aspects of our model provide a level of realistic simulation

that previous models do not exhibit to make a complete analysis.

Green Energy Prediction and Workload Migration: Green energy

prediction mitigates the inefficiency caused by the variability of renewable sources.

We further improve inefficiency by matching our prediction horizon to the long-

running batch jobs. The result is better decision making, and as the results in-

dicate, up to 26% improvement in green energy efficiency. Previous work [91][80]

only uses green energy as a method to reduce carbon footprint, and deploy work-

load migration to improve performance considering load balancing and resource

availability [83]. In contrast, we show green energy can also be used to improve

performance. We initially propose the idea in chapter 2 for a single data center,

but now leverage prediction and availability across a network to run extra batch

jobs in remote locations. We obtain 27% better batch job completion time com-

pared to no migration with only a 6%-12% increase in total energy cost. Our work

is the first to demonstrate the potential of green energy not only as a resource

for environmental concerns, but also a means of performance improvement. While

cost minimization precludes all potential migrations due to network costs, it still

has 7% improvement in green energy usage.

WAN Ownership and Leasing: Related work assumes that WAN is part

of the data center network, or applies static bandwidth costs. However, the WAN

may be leased or owned, typically with bandwidth-dependent pricing. The work

in this chapter considers such costs. Our first observation is that higher network

cost reduces the bandwidth utilization. Secondly, despite increasing network costs

with larger cost functions, data centers can obtain 2-19% cost savings by checking

the financial feasibility of each potential migration. In contrast, when the data

center owns the network, disregarding the initial WAN cost, it achieves up to 22%

cost savings.

Tiered Energy Pricing: Previous studies on minimizing total energy

cost, [33][109] use grid pricing as either fixed or variable with load. Others [59]

attempt to limit data center peak load but do not consider how different power
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levels can affect overall energy cost. Not modeling different cost regions for data

center energy consumption may not be correct due to large power consumption

of the data centers. We demonstrate that proposed improvements might be over-

estimated by up to 20% when accurate pricing is taken into account. Both of

our algorithms inherently attempt to remain below tiered power levels in order

to avoid higher energy prices, and only exceed those limits when inevitable, i.e.

when all data centers are over-provisioned. Consequently, while our algorithms’

performance and cost benefits are tempered by the incorporation of tiered energy

pricing, we can still show up to 15% cost savings.

Energy-Proportional Routing: We investigate the future of data center

communication, analyzing the impact of energy proportionality of routers on net-

work provider profit. We show that dynamic, green energy aware routing (GEAR)

policies can improve energy efficiency by reducing brown energy consumption up

to 65%. We quantify that energy proportionality can increase the profit of net-

work providers up to 35% and 57% with fixed and linear policies, respectively.

The difference in profit between an implementable proportionality scheme (i.e.

step-function) and the ideal case is between 5-17% and decreases with increas-

ing network lease costs. The key observation is that router energy-proportionality

schemes can increase profits significantly if deployed, and that GEAR can decrease

network brown energy use up to 3x with energy proportionality (chapter 3) with

negligible performance impact.

Power-Proportional Computing for Future Systems: Current data

center hardware is highly non-energy proportional, resulting in power-inefficient

systems. There has been recent work [27] on designing energy-proportional ele-

ments. This chapter quantifies the benefits of this trend in both major aspects of

a data center network: servers and network elements.It shows the benefit of opti-

mizing the components individually and together into an ideal energy-proportional

system, with up to 30% energy savings despite being limited by tiered energy pric-

ing and network contracts. Table 4.4 quantifies both the impact of such systems,

and the continued benefit of our algorithms in a power-proportional environment.
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4.6 Conclusion

Energy efficiency and green energy usage in data centers and their networks

has gained importance as their energy consumption, carbon emissions, and costs

have increased dramatically. This chapter analyzes multiple data center systems

and develops two online job migration algorithms. It also explores tiered energy

pricing for data centers, network cost models and the costs of owning/leasing a data

center WAN. Green energy variability is addressed by prediction algorithms. The

performance maximization algorithm demonstrates the ability to leverage green

energy to improve workload throughput, rather than simply reducing the opera-

tional costs. The chapter further explores the viability of the two algorithms in the

face of emerging technologies in data center infrastructure, showing continued ben-

efit of both the performance maximization and the cost minimization algorithms

in the presence of energy proportional computing and communication.

Chapter 4 contains material from ”A Comprehensive Approach to Reduce

the Energy Cost of Network of Datacenters”, by Baris Aksanli, Jagannathan

Venkatesh, Tajana Rosing, and Inder Monga, which appears in Proceedings of

International Symposium on Computers and Communications (ISCC), 2013 [18].

The dissertation author was the primary investigator and author of this paper.

Chapter 4 contains material from ”Renewable Energy Prediction for Im-

proved Utilization and Efficiency in Datacenters and Backbone Networks”, by

Baris Aksanli, Jagannathan Venkatesh, Tajana Rosing, and Inder Monga, which

will appear in Computational Sustainability, Springer, 2015 [11]. The dissertation

author was the primary investigator and author of this paper.



Chapter 5

Efficient Peak Power Shaving in

Data Centers

Warehouse-scale data centers consume several megawatts and require care-

ful power provisioning to ensure that costly power infrastructure is utilized ef-

fectively [50]. The electricity bill of these data centers consists of two parts: 1)

electricity cost, 2) peak power cost. This chapter focuses on the second part of

the utility bill. The peak power cost is based on the maximum amount of power

drawn by the data center during the bill period. The rate of this cost can be high,

such as $12/kW [62]. Although data centers consume significant amount of power,

they reach their peak capacities rarely [50]. This leads to increased peak-to-average

power ratio, and thus, the peak power costs can contribute up to 50% of the utility

bill [62]. If data centers can reduce their peak-to-average ratios, they may decrease

their utility bill significantly.

Data centers often size their power infrastructure based on the expected

peak power to avoid costly overages. The basic problem with power provisioning

involves using as much power capacity as possible without exceeding a fixed power

budget. Although individual machines may consume peak power, entire clusters

of machines rarely operate at peak power simultaneously [50]. Several studies pro-

posed peak shaving (capping) to increase power utilization [63][97], while main-

taining power budgets and amortizing capital expenditures over more machines

[73].

63
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(a) with extra servers
(b) without extra servers

Figure 5.1: Sample peak power shaving with batteries

Although many mechanisms have been proposed for peak power shaving

in data centers (such as dynamic voltage and frequency scaling (DVFS) [50][88],

virtual machine power management [93], online job migration [33][109][131]), this

chapter focuses on battery based peak power shaving because 1) Batteries already

exist in data centers, 2) Batteries do not introduce the performance overhead

associated with meeting the power budget. This is especially critical during the

peak user demand. Battery-based peak shaving instead employs an uninterruptible

power supply (UPS) to power machines.

Figure 5.1 illustrates two different strategies for using peak power shaving.

The horizontal axes represent a 24-hour interval and the vertical axes show the

aggregate power consumption. In Figure 5.1a, the dotted horizontal line denotes

the contracted power for the data center. The lower curve indicates the power con-

sumption of a nominal size data center without peak shaving. A significant amount

of provisioned power is wasted during low activity periods, resulting in lower profit.

The upper curve adds extra servers and handles oversubscribed power with peak

shaving, so that the power utilization is higher. Peak shaving prevents the power

consumption from exceeding the contracted energy costs shown by the shaded re-

gion. The dashed line illustrates how much power the data center would consume

without peak shaving, which would then incur as much as 5x higher costs. Peak

shaving increases the revenues by adding more machines to service more users and

prevents utility-facing power consumption from exceeding the provisioned power



65

(a) Centralized batteries

(most common)

(b) Rack level distributed

batteries (Facebook)

(c) Server level distributed

batteries (Google)

Figure 5.2: Sample battery placement in data centers [73]

with no performance cost.

Figure 5.1b uses peak shaving just to decrease the level of contracted power

without increasing the number of servers. The upper horizontal line represents the

original peak power demand and the lower one shows the power cap. The difference

between the original power draw and the power cap corresponds to energy savings

as the data center can contract for less power. If the power demand is greater

than the power cap, the batteries provide energy. During low power demand, the

batteries recharge to regain energy in preparation for the next peak.

The most common battery placement is centralized, shown in Figure 5.2a.

If the data center uses a centralized UPS, the entire circuit is switched to battery

until the batteries exhaust their capacity or the peak subsides. This technique is

useful primarily with short pulses (a few minutes long) due to low battery capacity

[62]. Recent trends in data centers focused on distributed UPS architectures, where

individual machines [61] (shown in Figure 5.2c) or collection of racks [49] (shown in

Figure 5.2b) have their own UPS. This architecture shaves power more effectively

due to the finer granularity but only works for data centers willing to implement

the non-standard power architecture [73].

The main disadvantage of a centralized UPS design is the double AC-DC-

AC conversion, leading up to 35% energy loss. The distributed design can avoid

this double conversion by taking batteries next to the servers. Recently, DC power

distribution in data centers has been proposed as a solution to decrease the conver-

sion losses. This chapter analyzes the conversion losses of these different designs
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and quantify the effects the losses have on peak shaving capabilities.

Existing approaches discharge batteries in a ”boolean” fashion: the entire

data center power domain is fully disconnected from the utility power and supplied

from the UPS. As a result, batteries discharge at much higher currents than rated,

which lowers battery lifetime and raises the cost. This chapter first introduces an

accurate battery lifetime model and shows that without an accurate model, savings

estimations of the previous studies may not hold.

Distributed UPS design addresses this issue partly by providing the ability

to discharge only a subset of batteries in a data center at a time and by using

lithium iron phosphate (LFP) batteries which have both higher energy capacity

and 5x more charge/discharge cycles than lead-acid (LA) batteries. The individ-

ual batteries are directly connected to servers, but still operate in boolean mode,

leading to lowered battery lifetime and higher cost. Also, distributed batteries

require coordination to provide the best performance. Palasamudram et al. [97]

assume a centralized control mechanism and do not model the effects of coordina-

tion in their study. Kontorinis et al. [73] analyze the peak shaving performance of

control mechanisms placed at different levels of power hierarchy. They conclude

that the centralized controller for distributed batteries performs the best but do

not comment on the feasibility of this centralized solution for a large scale system.

In this chapter, we estimate that the response time of a centralized controller can

take up to multiple seconds which may be too long to meet the power thresholds.

We design a distributed battery control mechanisms that both address the latency

problem of the centralized controllers and still provide near-optimal peak power

shaving performance.

A key insight that we leverage in this chapter is that the ideal design should

have the minimum management overhead of the centralized UPS with the capabil-

ity to provide ”just enough” current to the data center, at a level that optimizes

the individual battery lifetime. This can be accomplished by an architecture where

the batteries do not power an entire entity, e.g. server, data center, but are allowed

meet the power demand partially. This chapter proposes a grid-tie inverter based

architecture that has this property.
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In summary, this chapter makes the following contributions.

1. We revisit the analyses for existing peak shaving designs using more realistic

battery models and find that the benefits of peak shaving may be overes-

timated by up to 3.35x with simplistic models, resulting in unacceptably

short peak power shaving times of only several minutes, for the centralized

lead-acid UPS designs.

2. We present a distributed battery control mechanism that achieves the battery

lifetime and power shaving performance within 3.3% and 6% of the best cen-

tralized solution with only 10% of its communication overhead. This power

shaving enables 23MWh/week energy shaving or 8760 additional servers

within the same power budget when scaled to a typical 10MW datacenter.

3. We propose a new peak power shaving architecture. We use a centralized

UPS architecture using grid-tie inverters to partially power loads (in con-

trast to previous boolean discharge), so that the battery capacity decreases

super-linearly with respect to discharge current [116], thus enabling the par-

tial discharge architecture to overcome the efficiency problems associated

with the state-of-the-art solutions. Our centralized grid-tie solution has 78%

longer battery lifetime and doubles the cost savings compared to the best

SoA distributed designs. Also, since the batteries are placed together, the

communication overhead is reduced by 4x.

This chapter first outlines the issues with the existing designs and quantifies

the relevant problems. It follows with a section demonstrating the battery model

which is used to estimate the physical conditions of a battery. Afterwards, we

first describe the distributed battery control solution and then present our grid-tie

based battery placement architecture. The chapter continues with the method-

ology section where it explains the experimental methodology used, i.e. how we

setup the experiments, along with any applicable parameters and cost models. The

results are organized to show 1) the effects of accurate battery model, 2) perfor-

mance of distributed battery control, 3) performance of the grid-tie based battery

placement architecture. We finalize the chapter with a conclusion chapter.
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5.1 Issues with the Existing Battery Placement

Architectures

5.1.1 Centralized vs. Distributed Designs

There are two main battery placement architectures: centralized and dis-

tributed. The centralized design uses batteries within the data center-level UPS

and does not require additional power equipment or infrastructure. In Figure 5.3,

we present different power delivery and battery placement options for data cen-

ters. We have PDU as the power distribution unit and UPS as the uninterruptible

power supply, VAC and VDC as the voltage values using AC and DC power op-

tions, respectively. A common power delivery hierarchy for this design using AC

distribution is shown in Figure 5.3a. When peak shaving occurs, the battery pow-

ers the entire data center, discharging the batteries at high rate. According to

Peukert’s Law, this drains battery capacity very quickly. Also, both the AC-DC-

AC double conversion in UPS and the losses on the power delivery path result in

up to 35% energy loss. These losses reduce both UPS efficiency and useful battery

capacity.

The distributed design co-locates the servers and batteries and eliminates

the DC-AC battery power conversion [73][97]. A sample design with is shown in

Figure 5.3b. Each server may be switched to battery independently. This leads

to finer grained control of the total battery output because only a fraction of the

servers are operating on battery at any given time. Together, conversion efficiency

and fine-grained control permit longer peak shaving than traditional centralized

designs.

In Figure 5.4, we compare the power shaving capabilities of the state-of-the-

art centralized and distributed designs during a fixed-magnitude spike in demand

without considering conversion losses. We assume each server has a 20Ah LA

battery in the distributed design because that is the maximum size that can fit

in a rack [73]. The centralized design has equivalent aggregate capacity to the

distributed batteries. In Figure 5.4a, the x-axis illustrates a range of peak server

power values. We assume a provisioned power of 255W per server. This value
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(a) State-of the art centralized power distribution

(b) AC power distribution with distributed batteries

(c) DC power distribution with distributed batteries

Figure 5.3: Different power delivery options with centralized and distributed

battery placements

limits the power consumption of the entire data center to 255 ∗ (Nservers), where

Nservers is the number of servers in the data center. The y-axis represents the

peak shaving duration corresponding to different peak power spikes. We illustrate

the fixed peak power magnitude and peak power threshold in Figure 5.4b. In

this figure, the power curve of a data center consists of two long pulses: the peak

pulse and the low pulse. The resulting power curve after peak shaving is mostly

linear, having the value of the provisioned power. We define the duration batteries

can sustain a specific peak pulse as the peak shaving duration. Figure 3-a has two

curves showing the peak shaving durations for both centralized [62] and distributed

[97] designs with different peak pulses. The former cannot scale its peak shaving

duration for lower magnitude peaks, whereas the latter can throttle the battery

energy. The latter reduces peak power even for higher peak spikes, outperforming

the centralized design by 5x when shaving 25% above provisioned power.
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(a) Peak shaving capabilities of different designs

(b) Illustration of fixed peak magnitude and peak shaving duration

Figure 5.4: Peak power shaving comparison of centralized vs. distributed designs
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Figure 5.5: Peak power shaving capabilities of the distributed design

5.1.2 Problems of the Distributed Design

Even though the distributed design achieves finer grained control, each

battery still needs to power the entire server with high discharge currents. The

existing distributed architectures do not account for the negative effects of high

discharging rate. Figure 5.5 shows the peak shaving capability of the distributed

design with and without a detailed battery model. The figure setup is the same as

in Figure 5.4a. The upper curve estimates peak shaving duration with a simplistic

battery model and the lower curve uses a more exact model, both outlined in the

next section. We see that the power shaving duration can be overestimated by up

to 62% without a detailed battery model.

The ability to discharge batteries independently is crucial in the distributed

design. However, since not all batteries are discharged at the same time, they may

have very different discharge patterns, depending on server load. This variation

results in capacity imbalances between them. Figure 5.6 represents this variation

one and two years after the batteries are deployed when selecting batteries ran-

domly each time battery power is needed. The outermost circle represents the

nominal battery capacity. The innermost circle corresponds to the end of the bat-

tery’s useful life. We consider a battery dead when it can use only 80% of its
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Figure 5.6: The maximum battery capacity with random battery selection

nominal capacity [103]. Each battery is denoted by a ray extending from the cen-

ter. The length of the ray indicates the battery capacity. The line between the

nominal and dead capacity indicates the ideal battery lifetime at each age. This

graph illustrates that remaining battery capacities significantly deviate from the

ideal. This deviation increases over time, resulting in early battery replacements,

increasing the battery related costs. We may reduce this variation by selecting

batteries more effectively. This requires coordination between the batteries, which

may have delays on the order of seconds depending on network congestion. Large

delays can lead to miscalculating the total available battery capacity, reducing the

peak shaving.

Previous studies on distributed batteries [73][97] assume a centralized con-

trol mechanism to obtain the best peak shaving performance with them. Palasamu-

dram et al. [97] do not actually model a controller but their solution depends on

the coordination among all the batteries, implying centralized control. Kontorinis

et al. [73] use controllers deployed at different levels of power hierarchy. Table

5.1 shows the different hierarchy levels used in that study and the corresponding

number of batteries each controller needs to manage. Table I also shows the best

peak shaving percentages obtained with each level of controller. Kontorinis et al.

conclude that a centralized control mechanism is required to get the best perfor-

mance of the distributed batteries. But, since the batteries are distributed to the

servers, the centralized control mechanism needs to use the data center intercon-

nect to manage the batteries. Kontorinis et al. do not analyze the effects of data

center interconnect delays.
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Table 5.1: Group sizes, equivalent hierarchy level and the best beak power shaving

performance for each group

Hierarchy Level Size of a Group Best Peak Power Shaving

Server 1 10%

Rack 20 12%

PDU 200 16%

Cluster 1000 19%

5.1.3 DC Power Delivery in Data Centers

Currently, data centers distribute AC power because it is easy to deliver

and transform. This requires multiple conversions in the power delivery hierarchy

(Figure 5.3a and 5.3b), such as AC-DC-AC conversions in a centralized UPS and

AC-DC conversion in the server power supply. These conversions reduce the effi-

ciency of the centralized battery output and the distributed battery input. The

former reduces the useful discharge time of the battery, and the latter leads to

longer recharges.

In contrast, DC power distribution has been proposed to improve energy

efficiency [104][53]. The AC utility input is converted to DC once within a central-

ized DC UPS. Delivery and transformation are handled using DC. The DC option

aids UPS-based peak shaving because it eliminates multiple AC-DC conversions,

and up to 35% energy loss on the power delivery path. Figure 5.3c shows a sample

DC power distribution system with distributed batteries. This design can reduce

the power distribution losses significantly compared to the AC distribution. We

quantify these savings in the results section of this chapter. Despite its advan-

tages, DC is not common, as it requires a new power infrastructure. It is a good

option for new data centers but impractical for existing ones as the entire power

distribution system must be redesigned.
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5.2 Detailed Battery Model

Peak shaving using batteries needs accurate estimates of battery’s physical

behavior. This section demonstrates how we calculate the useful battery capac-

ity over time and estimate its depth-of-discharge (DoD) along with its available

capacity after recharging and discharging. The available battery capacity at a

given time is defined as the state-of-charge (SoC) and reported as a percentage of

the maximum capacity. State-of-Health (SoH) quantifies the maximum deliverable

capacity of a battery over time as a percentage of its initial capacity.

There are several studies estimating battery SoC and SoH, especially for

mobile devices, e.g. [29][107]. In this section, we combine a few models to both

estimate the physical properties of the batteries and capture the negative effects of

high discharging currents. Coulomb counting method presented in [94] describes

the relation between DoD level and SoH. We take the model described in [45] to

capture the effects of high discharge currents on SoH. We also include Peukert’s

law which states that the effective capacity of a battery decays exponentially with

increasing discharging current [116]. The main benefit of this model is its simplicity

and ability to easily leverage it in a large scale installation as it requires only voltage

and current readings for all the calculations. We start describing our model by first

calculating released capacity during a discharge event:

Creleased = (∆t)Idischarge (5.1)

where ∆t is the length of the time interval and Idischarge is the discharge

current. Then, we compute the DoD as the released capacity over the effective

capacity:

DoD =
Creleased

Ceff

(5.2)

Ceff = CR(
CR

IdischargeH
)k−1SoH

100
(5.3)

where Ceff is the effective battery capacity when using Idischarge as the

discharging current and CR is the rated capacity. We use H to denote rated



75

Figure 5.7: Effective capacity of 20Ah LA and LFP batteries

discharge time in terms of hours and obtain its value from the data sheets, which

is generally 20 hours [116]. Peukert’s exponent is shown by k, which changes

depending on the battery type. For LA batteries, the typical value is around 1.15

whereas for LFP batteries it is 1.05 [66]. Effective capacity is also scaled with SoH

value to reflect the capacity loss as the battery is used. The DoD is subtracted

from the SoC at the end of each interval. When discharging ends, we save the

total DoD value during that discharge period, DoDfinal as (100− SoC)%.

Peukert’s law states the effective capacity of a battery decreases with higher

discharge current. Figure 5.7 shows this negative effect on 20Ah LA and LFP bat-

teries. The horizontal and vertical axes show the effective battery capacity and

discharging current respectively. The effective capacity of the LA battery decreases

faster due to its greater nonlinear behavior, represented by a larger Peukert expo-

nent. At 40A, corresponding to 2C rate for both of these batteries, the LA battery

loses 42% of its nominal capacity, but the LFP battery loses only 15%.

We update the battery SoH after a complete charge/discharge cycle [94].

This update depends on the battery chemistry, determining Peukert’s exponent,

Ceff and DoDfinal. The number of charge/discharge cycles decreases with deeper

discharges, represented by a larger DoDfinal value. We use a lookup table derived

from effective capacity graphs provided in commonly available battery data sheets;

similar to Figure 5.8 for each battery chemistry to define the effects of DoDfinal.

In Figure 5.8, the horizontal axis shows the DoD level for charge/discharge
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Figure 5.8: Cycle life of LA and LFP batteries rated at 20h [119][129]

at 20h discharge rate, which is defined as the current that drains the battery

in 20h. The vertical axis is on a log scale and illustrates the number of cycles

a battery can provide for a particular DoD level. As the battery is discharged

deeper in each cycle, the available number of charge/discharge cycles decreases

exponentially. LFP batteries provide 5x more cycle life compared to LA batteries

in average.

We normalize the effect of one cycle with DoDfinal value to calculate its

impact on the battery lifetime. The battery lifetime is defined as the interval in

which battery SoH is greater than a state of health value which determines when

the battery is dead, SoHdead. Battery manufacturers generally recommend 80% for

this value [103][111], i.e. the battery is considered dead if the maximum capacity it

can provide falls below 80% of its rated capacity. If the battery has CyclesDoDfinal

cycles with DoDfinal value, the battery SoH is updated as:

SoH = SoH − (100− SoHdead)
1

CyclesDoDfinal

CR

Ceff

(5.4)

This equation normalizes the effect of one cycle with DoDfinal over the

battery lifetime and penalizes high discharge currents.

Batteries generally include a battery management unit that both manages

and monitors the voltage and the current of the battery. This unit makes it prac-

tical to use our model as it requires only voltage and current measurements of the
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Table 5.2: Battery model validation

Battery Error

Li− ion5 4.35% ± 2.05%

Li− ion6 5.83% ± 3.60%

Li− ion7 3.84% ± 2.75%

battery. In contrast, the simple battery model used in existing studies [63][97] does

not calculate Ceff . They use nominal battery capacity, CR, to compute DoD. This

leads to up to 42% overestimated discharge duration and thus, overestimated peak

shaving capabilities. They also assume the same battery capacity over its lifetime

and do not consider the effects of decreasing SoH on Ceff , further increasing the

errors.

5.2.1 Battery Model Validation

We validate our model using the battery data available from the NASA

Ames Prognostics Data Repository [113]. The repository includes the measure-

ments of 2Ah Li-ion batteries charging and discharging at different currents and

temperatures. Each measurement has the complete charge/discharge profile of a

single battery until the end-of-life condition. We check our model using the results

of three batteries tested at room temperature. We compare the estimated SoH

value of each selected battery using our battery model against the measurement

points in the database. Table 5.2 shows that our model has 4.67% average error

compared to the measurements.

Next, we introduce distributed battery control mechanisms for the dis-

tributed battery architecture and our centralized battery placement design that

utilizes grid-tie inverters.
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5.3 Distributed Battery Control

The distributed architecture permits finer grained control than centralized

architectures because server batteries may be discharged independently. This pro-

cess requires intelligent selection of batteries during each power peak. In sec-

tion 5.1.2, we demonstrate that simple battery selection algorithms may distribute

power load unevenly and induce high variations in battery SoH. This variations

lead to premature battery replacements because capacity is reduced sooner than

expected. Therefore, in this section we introduce a mechanism that monitors bat-

tery health and selects batteries in a way that minimizes this variation for the

distributed battery design.

The distributed controller first estimates the number of batteries to dis-

charge during each peak power pulse as follows:

Nbatteries =

⌈
Pdemand − Pthreshold

VbatteryIdischarge

⌉
(5.5)

where d.e is the ceiling function, Pdemand is the peak power demand at a

given time, Pthreshold is the peak power threshold to be maintained, Vbattery is the

single battery voltage and Idischarge is the single battery discharging current. We

use 12V batteries [61] and set Idischarge to 23A. Since the servers use the battery

power without AC-DC conversion, the battery incurs no conversion losses in the

server. In our experiments, the measured server peak power is 350W and power

supply unit (PSU) efficiency is 80%. Therefore, the server actually uses 280W,

which corresponds to 23A discharging current.

An ideal controller for the distributed design should poll every server to

gather data on server power demand, battery SoC and SoH. This process requires

message exchanges through the data center network. However, the controller be-

comes subject to communication delays between the thousands of servers and large

background traffic. Previous work shows that the switch delay can increase by over

100x with excessive queuing in the switches [40].

Our method groups the batteries into multiple distributed controllers to

address the communication complexity. Table 5.3 lists the possible group sizes
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Table 5.3: Group sizes in data center power delivery hierarchy

Hierarchy Level Size of a group

Server 1

Rack 20-50 [62]

PDU 200 [73]

Cluster 1000 [73]

Data center Multiple clusters

and shows the corresponding level in the data center power hierarchy. The two

extremes represent fully localized control, at each individual server, and the data

center level, which is equivalent to fully centralized control. In between are rack

level, PDU, which consists of approximately 10 racks, and cluster level, which is

about the size of a typical data center container. We chose these hierarchy layers

as they correspond to the typical organization found in the data center’s power

hierarchy.

Each level of the controller implements one of the policies shown in Table

5.4 to select a battery. Random, Least-Recently-Used (LRU) and Max-SoH-local

policies make a local decision regarding which battery to use for peak power shav-

ing from their immediate group. Random policy selects a random battery from

available ones. LRU, also used in [73], always selects the next available battery

from its local list. Max-SoH-local chooses the available battery with the greatest

SoH value. We assume that the controllers do not know or predict the length of

the upcoming peak power pulse. Hence, selecting the battery with the greatest

SoH value is the best a controller can do because it minimizes the probability that

the selected battery empties during the peak power pulse. These policies result in

lower latency with smaller groups, but their knowledge about total power demand

and battery status is limited.

We implement three other Max-SoH policies to address this problem. They

are similar to Max-SoH-local, but controllers can communicate with other ones

during a decision process. The Max-SoH-global policy represents a centralized

controller and uses all data available in the system. Although this controller can
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Table 5.4: Policies to control distributed batteries

Policy Communication

Random Local

LRU (Iterative) [73] Local

Max-SoH-local Local

Max-SoH-global Global

Max-SoH-limited-communication 3 groups

Max-SoH-more-limited-communication 2 groups

make the best decision, it leads to large communication delays and becomes a single

point of failure. Max-SoH-limited and more-limited communication policies are

limited to two and one other groups. Each group’s partners are assigned statically

based on power and network infrastructure. We compare these policies with the

local ones to demonstrate the trade-off between the communication overhead and

power shaving, and battery lifetime performance.

Figure 5.9 shows the peak shaving and the battery selection process of a

single group when communicating with others. The number of sharing groups

depends on the policy. The controller first awaits power consumption and battery

data from its sharing groups. It next computes the peak power that can be shaved

by finding the number of batteries required and selects the batteries to use. Local

batteries discharge immediately. Remote batteries require explicit signals to their

controller. We use a timeout when waiting for the data from other groups to

avoid problems, including miscalculating the total available battery capacity. The

timeout may decrease the quality of selection since less data will be present.

5.4 Grid-tie Based Battery Placement

In previous sections, we show that previous designs do not capture the

effects of a binary battery discharge, which requires high discharging current. Fur-

thermore, the distributed design requires a centralized controller to obtain its peak

performance. The performance of this controller highly depends on the data center
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Figure 5.9: Battery selection with communication based policies

interconnect and can be negatively affected with increasing delay. Finer-grain con-

trol with the smaller batteries is a key to achieving good peak shaving results. This

section presents our battery-based peak power shaving architecture. Our design

places the batteries in a centralized location and connects their aggregate output

to the utility grid with a grid-tie inverter. Our model outperforms the distributed

design by exploiting the nonlinear nature of Peukert’s Law, despite additional DC-

AC conversion losses in the centralized UPS. It obtains improved battery lifetime

and requires significantly less communication overhead than the state-of-the-art

distributed designs.

Instead of decentralizing the batteries, we place them together and connect

the batteries to the main grid using a grid-tie inverter. A grid-tie inverter allows

any quantity of DC power to be converted into AC and fed into the grid in an effi-

cient way [44][105]. Figure 5.10 presents the layout of our design. The integration

of battery power to the system is controlled with two switches. When switch SA
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Figure 5.10: Grid-tie based battery placement design

is in mode ”1”, the data center operates normally, accepting any quantity of bat-

tery power output from the grid-tie, which is controlled by the switch SB. If it is

”OFF”, the grid is the only power supplier, i.e. we are under the power threshold.

If it is ”ON”, the batteries are active and shaving peak power. The batteries can

be recharged directly by the grid through a rectifier. SA is in mode ”2” only in

emergency cases, making sure that the only power supplier is the battery. The case

where SA is in mode ”2” and SB is ”ON” is not allowed because it just combines

the same battery output.

Even though the batteries are centralized, we still treat them as distributed

and enable them to individually charge/discharge. The fact that grid-tie inverter

allows any quantity of DC to be combined with AC makes it possible to adaptively

select the discharge current of the batteries. Instead of using batteries with high

current rates as in both state-of-the-art centralized and distributed designs, we

can increase the number of batteries being discharged and scale down the current.

In fact, this leads to finer grained control of the battery output compared to both

existing designs. Furthermore, having more batteries used simultaneously with

the same discharging current, we reduce the variation in battery discharge profiles.

Decreasing both this variation and discharging current helps increase the battery

lifetimes.

We place the batteries together and allow the discharging current to scale

down instead of being in a binary mode. We have a set, Φ, of discharge currents,

and we choose the smallest current from Φ that can sustain the peak demand with
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the available batteries. Based on this current, we compute the number of batteries

to use:

Id = minI∈Φ{I | IVbNb > (Pd − Pt) & Nb ≤ Na} (5.6)

Nb =

⌈
Pd − Pt

VbI

⌉
(5.7)

where Vb is the voltage of a single battery, Pd is the peak power demand, Pt

is the peak power threshold to sustain, Na is the number of available batteries, Nb

is the number of batteries required to discharge and Id is the selected discharging

current. These equations make sure that the minimum feasible discharging cur-

rent is selected over all the selected batteries by ensuring the number of selected

batteries is smaller than the number of available batteries. The set of available

batteries include all the batteries having SoC greater than 100 −DoDgoal, where

DoDgoal is a predetermined value between 1 and 100 to better control the battery

lifetime [73][97]. Larger DoDgoal values can shave bigger peak power pulses for a

longer duration but they lead to shorter average battery lifetime values. We refer

this process as the discrete current policy.

This policy may select a subset of batteries to discharge. During battery

selection, we choose the batteries available with the greatest SoH values. This

minimizes the probability that a battery breaks down during discharging and it is

the best a controller can do without any knowledge about the future power demand.

The advantage of our architecture is that since the batteries are placed centrally

they do not need to go through the data center network to coordinate for the

battery selection process. They can use a dedicated network for this coordination.

Thus, we can use a centralized controller with a much smaller expected latency.

Alternatively, we can use all the available batteries to discharge at the same

current. We define the number of the available batteries, i.e. the ones with SoC

greater than 100−DoDgoal, as Na. The discharging current, Id, becomes:

Id =

⌈
Pd − Pt

VbNa

⌉
(5.8)
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where Pd is the power demand, Pt is the peak power threshold and Vb is the

voltage of a single battery. Different than the previous policy, this policy does not

let any battery to be idle during a peak power pulse, i.e. a battery is either drained

or discharging. As a result, it does not have a predefined set of discharging currents

and it selects the discharging current on-the-fly based on the number of available

batteries. We refer this process as the all battery policy. Since it discharges all the

available batteries, there is no battery selection problem.

We use AC power delivery because it is most common in today’s data cen-

ters and existing systems can apply our design without new infrastructure cost.

Despite the power losses associated with the centralized placement, we still use

it because of its simplicity and low maintenance requirements. We address this

problem by adding 8% (see section 5.6.5 for more details) more batteries into our

architecture and compensating the additional capacity cost with elevated battery

life. Furthermore, our design can leverage a dedicated network to establish co-

ordination among the batteries, instead of being dependent on the data center

network, reducing the communication overhead.

We compare our grid-tie based design against SoA designs in Table 5.5 in

terms of the key architectural challenges we describe in section 5.1. Our design

leverages the useful properties of existing designs that are necessary to shave long

peaks. We add the ability to adjust the discharging current adaptively and a

detailed battery model to capture the effects of a high discharge current. Also, our

design can facilitate the locality of the batteries by using a dedicated network to

establish the communication, instead of using the data center network.

5.5 Methodology

This section demonstrates the methodology we use to evaluate distributed

battery control and grid-tie based battery placement architecture. It outlines the

experimental setup, such as power and workload models along with the simulation

environment. Furthermore, it also presents two cost models that are used by

different peak power shaving goals, 1) reducing the peak power level to obtain
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Table 5.5: Comparison between the grid-tie design and the state-of-the-art (SoA)

designs

SoA [62]

Centralized

SoA [73][97]

Distributed

Grid-tie

Design

Placement Centralized Distributed Centralized

Selective Battery

Discharge
X

Adaptive Current X X

Battery Model Simple Simple Detailed

Coordination

Medium
N/A

Data center

network

Dedicated

network

savings, 2) adding additional servers within the original peak power budget to

increase the revenue.

5.5.1 Power Measurements and Workloads Run

Same as in chapters 2, 3 and 4, we use measurements from our data center

container on campus to estimate the overall power cost for a larger scale data

center. Our container has 200 servers consisting of Nehalem, Xeon and Sun Fire

servers running Xen VM. We run a mix of commonly used benchmarks to measure

power and performance of service and batch jobs on our servers. We use RUBiS

[112] to model service-sensitive eBay-like workload with 90th percentile of response

times at 150ms, and Olio [23] to model social networking workloads with response

times ranging from 100ms up to multiple seconds, depending on the type of request

(e.g. text post vs. video upload). Multiple Hadoop [65] instances are run as batch

jobs. We measure performance at 10ms sampling rate and obtain power at 60Hz.

The measurements are used to create an event-based simulator that em-

beds the power information and the workload characteristics to simulate a larger

data center environment. We model each 8-core server with an M/M/8 queuing

model, and a linear CPU utilization based power estimate commonly used by oth-
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Table 5.6: Workload parameters

Workload
Average Time

Service Inter-arrival

Search [88] 50ms 42ms

Social Networking [23] 1sec 445ms

MapReduce [38] 2min 3.3min

Figure 5.11: Data center workload mixture

ers [50][88]. In chapter 2, we show that the average simulation error is well below

10% for all quantities of interest.

To understand the benefits of peak power shaving, we model the typical user

request load for a full data center. We use a year of publicly available traffic data

of two Google products, Orkut and Search, as reported in Google Transparency

Report [60]. A week’s worth of workload combinations based on the waveform

shown in Figure 3 of [38] where Social Networking and Search workloads represent

service jobs, and MapReduce is for batch jobs. Table 5.6 shows the workload

parameters, while Figure 5.11 compares each job’s contribution to the total data

center load. The maximum load ratio is around 80% with average of 45%.
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Figure 5.12: DoD level variation

5.5.2 Data center and Battery Simulation

We limit our data center simulation to a week because it is not computa-

tionally feasible over long periods due to fine event granularity. We extract the

power profile of the data center as well as the charge/discharge profile of the bat-

teries in the given time-frame and scale these profiles appropriately for longer time

intervals. We refer to this process as data center workload simulation. The main

goal of this pre-processing is to analyze the required DoD level and discharging

current profiles for the batteries.

Figure 5.12 shows the DoD level variation of the grid-tie design and the

distributed design with different level controllers over a week using LFP batteries

when DoDgoal is set to 60%. Both designs shave 15% of the peak power. The grid-

tie architecture is more consistent, followed by high level distributed controllers. In

these cases, the batteries use all the available capacity, because the battery power

is distributed evenly across the batteries. In contrast, the DoD value is distributed

between 20% and 60% approximately uniformly with a server level controller since

individual server power profiles vary and there is no coordination between them.

In Figure 5.13, we present the average discharging current profile of the distributed

and grid-tie design over a 3 day period from the same experiment described above.

The grid-tie design reduces the discharging current significantly without affecting

the amount of peak power shaved, and thus can decrease the negative effects of

high discharging current.
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(a) Distributed design (b) Grid-tie design

Figure 5.13: Avg. discharging current for the distributed design and grid-tie

design over a 3 day period, with LFP batteries

We include both LFP and LA batteries in our study and assume that the

battery capacity per server is 40Ah and 20Ah respectively with 12V nominal volt-

age. These capacity values are the maximum that can fit into a 2U server [73].

Each battery is allowed to discharge up to DoDgoal. We change the DoDgoal to

see how it impacts both average battery lifetime and peak power level that can be

sustained. Our battery model estimates the SoC and SoH of each battery. After

analyzing short-term battery usage profiles, we use our battery model and simulate

only charge/discharge cycles of the batteries. We run the simulation for several

years of simulation time to estimate the battery lifetime. We consider a battery

dead when its SoH goes below 80% [103][111]. We refer to this process as battery

simulation.

5.5.3 Cost Models

This section presents the cost models to quantify the benefits of the peak

power shaving. For each different model, we show the domains they are applicable

to, how they are calculated and specifically focus on how the battery cost affects

the overall cost.
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Co-location Rental (CLR) Cost Model

Co-location providers rent their data center equipment and space to retail

customers. This applies to companies that require a data center-like system but

do not want to build their own. A well-known example for a co-location renter

is content delivery networks (CDNs) [97]. These renters make long-term power

contracts with co-location providers and pay based on their provisioned power,

instead of their actual consumed power. As a result, decreasing their peak power

consumption immediately translates to savings (Figure 5.1b). Palasamudram et

al. [97] target this domain for their distributed battery-based peak shaving design

and calculate the total cost as:

Costtotal = cpPPtotal +
cb
L
BCtotal (5.9)

where cp is the unit power price, PPtotal is the total provisioned power, cb is

the unit battery price, BCtotal is the total battery capacity and L is the expected

battery lifetime. Then, they calculate the savings as:

Savings = 100× Costtotal(nobatteries)− Costtotal(batteries)
Costtotal(batteries)

(5.10)

where Costtotal(batteries) and Costtotal(nobatteries) represent total cost

with and without batteries, respectively. When calculating the total cost with-

out the batteries, we can just neglect the battery related parts of Equation 5.9.

The main purpose of peak shaving in this case is to reduce the provisioned power

level so that the co-location renters can contract for less power.

Total Cost of Ownership (TCO) Model

There are several companies that own their data centers, where they still

make power contracts based on their peak power consumption to reduce their

cost of energy. However, they achieve this peak value rarely and under-utilize the

provisioned power. A solution to this is to add more servers to the data center,

which improves the power utilization but also increases the peak power level. A
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peak shaving mechanism can ensure that the provisioned power level is not violated

with additional servers. In this case, the provisioned power level does not decrease

but both the provisioned power and the data center equipment can be used to host

more servers and thus TCO/server reduces. Also, assuming that each server brings

a constant amount of revenue, the total profit increases [73]. This also shows that

the savings is directly proportional to TCO/server reduction.

This analysis is made by collecting the depreciation and opex data from

the APCs commercial TCO calculator [24]. This model computes the TCO/server

by dividing it into multiple parts, calculating each part separately and analyzing

how each part changes with more servers within the same power budget. Table 5.7

summarizes the different components of TCO and shows the TCO breakdown for

different designs. More servers decrease the TCO/server and increase the profit

obtained from a server. We compare the TCO/server of each battery placement

design in our study with the TCO/server of a data center which does not use

batteries for peak shaving (base model). The part we are interested in TCO

partitioning is the UPS depreciation, accounting for the battery costs. If the

associated UPS depreciation cost is high, we can obtain negative savings compared

to the base model. Some reasons for high UPS depreciation include short average

battery lifetime (requires frequent replacements) or using an inappropriate battery

type for peak shaving (low energy density, short service time, etc.). Table 5.8 lists

the input values for both this model and CLR model.

Our grid-tie design requires more power distribution infrastructure than the

distributed design because we keep transmitting power throughout the data center,

even if the power is not drawn from the utility. For example, a 10MW data center

may have 1MW worth of additional servers due to peak shaving. In our case, the

extra power is provided from the UPS through the data center power infrastructure

to the servers. In the distributed case, this extra power is not provided through

the data center power infrastructure. Although all the servers are connected to

the main power infrastructure, during a peak pulse some of them may disconnect

themselves from the main power infrastructure and get power locally from the

on-board UPS. Therefore, the provisioned power infrastructure is sufficient. This



91

T
a
b
le

5
.7

:
T

C
O

/s
er

ve
r

b
re

ak
d
ow

n
fo

r
d
iff

er
en

t
d
es

ig
n
s.

T
h
e

co
m

p
on

en
ts

w
it

h
d
iff

er
en

t
tr

en
d
s

ar
e

h
ig

h
li
gh

te
d

T
C

O
C

o
m

p
o
n
e
n
t

w
/
o

p
e
a
k

sh
a
v
in

g

D
is

tr
ib

u
te

d
D

e
si

g
n

B
re

a
k
d
o
w

n
G

ri
d
-t

ie
D

e
si

g
n

T
C

O
/
se

rv
e
r

tr
e
n
d

w
it

h
m

o
re

se
rv

e
rs

B
a
tt

e
ry

M
o
d
e
l

T
C

O
/
se

rv
e
r

tr
e
n
d

w
it

h
m

o
re

se
rv

e
rs

B
re

a
k
-

d
o
w

n
S
im

p
le

D
e
ta

il
e
d

F
ac

il
it

y
sp

ac
e

d
ep

re
ci

at
io

n
$3

.4
0

D
ec

re
as

in
g

$2
.7

4
D

ec
re

as
in

g
$2

.7
2

U
P

S
d
ep

re
ci

at
io

n
$0

.1
3

C
on

st
an

t
$1

.6
7

$5
.0

0
C

on
st

an
t

$3
.3

3

P
ow

er
in

fr
as

tr
u
ct

u
re

d
ep

re
ci

at
io

n
$5

.9
4

D
ec

re
as

in
g

$4
.7

9
$4

.7
9

C
on

st
an

t
$5

.9
4

C
o
ol

in
g

in
fr

as
tr

u
ct

u
re

d
ep

re
ci

at
io

n
$2

.4
6

D
ec

re
as

in
g

$1
.9

8
D

ec
re

as
in

g
$1

.9
6

R
ac

k
s,

m
on

it
or

in
g,

in
st

al
la

ti
on

$8
.9

7
D

ec
re

as
in

g
$7

.2
3

D
ec

re
as

in
g

$7
.1

7

D
at

a
ce

n
te

r
op

ex
$7

.4
9

D
ec

re
as

in
g

$6
.0

4
D

ec
re

as
in

g
$5

.9
9

S
er

ve
r

d
ep

re
ci

at
io

n
$3

1.
25

C
on

st
an

t
$3

1.
25

C
on

st
an

t
$3

1.
25

S
er

ve
r

op
ex

$1
.5

6
C

on
st

an
t

$1
.5

6
C

on
st

an
t

$1
.5

6

P
U

E
ov

er
h
ea

d
$1

.9
4

C
on

st
an

t
$1

.9
4

C
on

st
an

t
$1

.9
4

U
ti

li
ty

m
on

th
ly

en
er

gy
co

st
$8

.7
1

C
on

st
an

t
$8

.7
1

C
on

st
an

t
$8

.7
1

U
ti

li
ty

m
on

th
ly

p
ow

er
co

st
$4

.2
0

D
ec

re
as

in
g

$3
.3

9
D

ec
re

as
in

g
$3

.3
6

T
ot

al
$7

6.
04

D
ec

re
as

in
g

$7
1.

30
$7

4.
63

D
ec

re
as

in
g

$7
3.

94



92

Table 5.8: Input parameters for the cost models

Input LA value LFP value

Battery unit price - rated with 20h $2/Ah [92] $5/Ah [25]

Per server capacity 20 Ah [73] 40 Ah [73]

Peukert’s exponent 1.15 [66] 1.05 [66]

Battery nominal voltage 12V [61]

Data center depreciation time 10 years [28]

Server depreciation time 4 years [28]

Utility energy price 4.7¢/kWh [35]

Utility power price 12$/kW [62]

means that our approach has constant power infrastructure depreciation, whereas

the distributed design decreases this depreciation with more servers. But, our

design does not require a custom PSU or power distribution, as opposed to the

DC architecture. This makes it practical for the existing data centers. The addi-

tional peak shaving opportunities with the grid-tie design outweigh the additional

infrastructure costs.

5.6 Results

This section first presents the accuracy results of the detailed battery model

and how it affects the savings obtained by battery-based peak power shaving using

state-of-the-art designs. It then shows the effectiveness of the distributed battery

control mechanism presented in section 5.3 and the grid-tie based battery place-

ment design shown in section 5.4.

5.6.1 Accuracy of the Detailed Battery Model

We start our evaluation by comparing the power capping capabilities of the

state-of-the-art (SoA) battery placement designs with both LA and LFP batteries.

The SoA centralized design adjusts the battery capacity to handle only emergency
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cases, which last only a few minutes. We assume that this design has a 3200 Ah

LA battery as proposed in [61][73] to support a single data center container. In

distributed case, each server has a dedicated 20Ah LA or 40Ah LFP battery, the

maximum possible given their volume, same as in [73]. These battery capacities are

adjusted to match previous work. In Table 5.9, we compute how long the batteries

can shave a fixed average peak power pulse per server with specified magnitude

where the data center power cap is defined at 255W/server. We first apply the

simplistic battery model used by recent existing studies. This model accounts only

for the total battery capacity and ignores the effects of high discharge currents and

nonlinear behavior of different battery types [97][62]. Table 5.9 shows that the cen-

tralized design can shave a peak for only 7 minutes whereas the distributed design

can successfully shave peaks of over 3 and 6 hours with LA and LFP batteries,

respectively.

Next, we use the detailed battery model presented in section 5.2 to account

for the battery type and the negative effects of high discharging currents. The peak

power shaving amount can be overestimated by 133% in the centralized design.

The discharging current in the distributed design is still high, but the rate of the

discharging current is lower relative to total battery capacity. This results in error

of 64% for LA batteries, and 14% for LFP. LFP’s error rate is up to 4.5x lower

than the LA’s because of its more linear discharge behavior. However, the error, a

result of an inaccurate model and interaction with physical devices the batteries, is

still significant to affect peak power shaving decisions, such as determining battery

design or the total needed capacity.

We use this detailed battery model with our long term battery simulation to

estimate the average lifetime of an LA and LFP battery when shaving peak power.

Table 5.10 compares our long-term battery lifetime estimates with previous work.

Neglecting the effects of high current results in high error: as much as 210% and

240% longer battery lifetime estimates leading to severely underestimated battery

costs and overstated cost savings due to peak shaving.
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5.6.2 Effects of Detailed Battery Model on Savings

Inaccuracies in battery lifetime estimation may lead to underestimated bat-

tery costs and overestimated cost savings. Table 5.11 and 5.12 show the CLR and

TCO/server savings, for both LA and LFP batteries with varying battery lifetime

values. We obtain 9.5% and 19% peak power capping with distributed LA and

LFP batteries, respectively. This peak shaving also enables 10.5% and 24% extra

servers to be deployed within the same power budget when using the TCO model.

We first use inexpensive batteries rated at low currents. In this case, CLR savings

are 2.8% and 6.4%; TCO/server savings are 0.9% and 1.86% for LA and LFP

batteries, respectively. If we do not capture the effects of high discharge current,

these savings are 6.4% and 15.15% for CLR model and 2.65% and 6.24% for the

TCO model. The savings are overestimated by up to 2.94x and 3.35x for LA and

LFP.

Next, we use batteries with larger rated currents: 10h, 5h and 1h [39],

that are also more expensive: 8, 10, 12$/Ah for LFP and 3, 4, 5$/Ah for LA.

The average LFP lifetime increases to 5, 6 and 8 years and 2, 2.5 and 3 years

for LA. Table 5.11 shows that CLR cost savings become 3.2%, 2.7%, 1% for LA

and 5.5%, 1.9%, -1.8% for LFP batteries with 10h, 5h and 1h rated batteries.

Similarly, Table 5.12 shows that TCO/server savings become 1.2%, 0.94%, 0.28%

for LA and 1.42%, -0.33% and -2.08% for LFP with 10h, 5h and 1h rated batteries

respectively. Although the battery lifetime values are closer to the low current

rated estimates, higher battery price overshadows the savings obtained by fewer

battery replacements.

5.6.3 Peak Shaving Efficiency of State-of-the-Art Designs

We continue our evaluation by comparing the peak shaving capabilities of

SoA battery placement designs. We also include our battery model to account

for the high discharge currents. Most data centers use a centralized LA battery,

powering the entire data center when it is active and not over=provisioned for

peak shaving. The capacity of this battery is adjusted to handle only emergency

cases, which last a few minutes. We assume that this design has 3200 Ah worth of



96

T
a
b
le

5
.1

1
:

C
L

R
co

st
sa

v
in

gs
fo

r
d
is

tr
ib

u
te

d
L

A
an

d
L

F
P

b
at

te
ri

es

L
A

-
d
is

tr
ib

u
te

d
d
e
si

g
n

L
F

P
-

d
is

tr
ib

u
te

d
d
e
si

g
n

C
o
st

$
2
/
A

h
$
3
/
A

h
$
4
/
A

h
$
5
/
A

h
C

o
st

$
5
/
A

h
$
8
/
A

h
$
1
0
/
A

h
$
1
2
/
A

h

L
if

e
ti

m
e

C
L

R
sa

v
in

g
s

(%
)

L
if

e
ti

m
e

C
L

R
sa

v
in

g
s

(%
)

1
0.

9
-3

.6
-8

.1
-1

2.
7

1
-2

5.
3

<
-5

0
<

-5
0

<
-5

0

2
5.

5
3.

2
0.

9
-1

.3
2

-2
.7

-1
6.

3
-2

5.
3

-3
4

3
6.

4
4.

6
2.

7
1

3
1.

8
-9

.4
-1

7
-2

4

4
8.

2
5.

9
4.

6
3.

2
4

6.
4

-1
.8

-7
.2

-1
3

7
N

ot
p

os
si

b
le

7
11

5.
5

1.
9

-1
.8

10
10

15
.5

12
.7

11
9.

1

T
a
b

le
5
.1

2
:

T
C

O
/s

er
ve

r
sa

v
in

gs
fo

r
d
is

tr
ib

u
te

d
L

A
an

d
L

F
P

b
at

te
ri

es

L
A

-
d
is

tr
ib

u
te

d
d
e
si

g
n

L
F

P
-

d
is

tr
ib

u
te

d
d
e
si

g
n

C
o
st

$
2
/
A

h
$
3
/
A

h
$
4
/
A

h
$
5
/
A

h
C

o
st

$
5
/
A

h
$
8
/
A

h
$
1
0
/
A

h
$
1
2
/
A

h

L
if

e
ti

m
e

T
C

O
/
se

rv
e
r

sa
v
in

g
s

(%
)

L
if

e
ti

m
e

C
L

R
sa

v
in

g
s

(%
)

1
0.

02
-2

.0
8

-4
.1

8
-6

.2
7

1
-1

3.
48

-2
6.

63
-3

5.
4

-4
4.

17

2
2.

21
1.

2
0.

2
-0

.8
1

2
-2

.5
2

-9
.1

-1
3.

48
-1

7.
87

3
2.

65
1.

86
1.

07
0.

28
3

-0
.3

3
-5

.5
9

-9
.1

-1
2.

61

4
3.

09
2.

52
1.

95
1.

38
4

1.
86

-2
.0

8
-4

.7
1

-7
.3

5

7
N

ot
p

os
si

b
le

7
4.

05
1.

42
-0

.3
3

-2
.0

8

10
10

6.
24

4.
93

4.
05

3.
18



97

Table 5.13: Centralized design peak shaving capabilities with different battery

types. Pthreshold is set to 255W/server

Peak Power per

Server (W) -

Shaving(%)

Power Shaving Duration (min)

Centralized -

LA not scaled

Centralized -

LA scaled

Centralized -

LFP scaled

300 - 15% 3.8 24.2 70.5

310 - 17.5% 3.7 23.3 68.1

320 - 20.3% 3.5 22.5 65.8

LA batteries [61][73]. Then, we compute the amount of time a battery can shave

a fixed peak pulse and how long it takes to fully recharge it during low demand.

Table 5.13 shows that the centralized design shaves the peak power for only 3-4

minutes when Pthreshold is set to 255W per server. It cannot sustain long peaks and

needs to apply other policies such as DVFS which have performance overhead.

To address this problem, we increase the capacity of the centralized battery

by 5x and obtain 6x longer peak shaving. LA batteries have large volume, so the

capacity cannot be scaled significantly. The increase in peak shaving duration is

more than 5x because the stress on discharging current rate decreases non-linearly

as a result of Peukert’s law [116]. In contrast, the recharging duration increases

almost linearly with scaling capacity. The peak shaving duration, despite increased

capacity, is still not sufficient enough to sustain peaks lasting hours. Another

option is to use LFP batteries with more energy density and less nonlinear battery

behavior. This can scale up the capacity further. We use a total capacity of 40K

Ah [73] and get up to 70 minutes of peak shaving at high cost. The peak shaving

benefits are insufficient to compensate for high battery costs. This analysis shows

that centralized battery design is not a good option for peak shaving when the

battery powers the entire data center in boolean fashion as in the state-of-the-art

work.

The distributed design allows battery power to be controlled in finer gran-

ularity by selectively discharging only a subset of all the batteries. We analyze the

power shaving duration of distributed LFP and LA batteries in Table 5.14. The
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Table 5.14: Peak shaving and battery recharging comparison of the distributed

design with different battery types and AC vs. DC power options. Pthreshold is set

to 255W/server

Peak Power per

Server (W) -

Shaving(%)

Power Shaving Duration (min)

Distributed -

LA with AC

Distributed -

LFP with AC

Distributed -

LFP with DC

300 - 15% 192.9 552.2 552.2

310 - 17.5% 157.1 451.1 451.1

320 - 20.3% 132.3 381.1 381.1

Low Power

per Server

(W)

Recharging Duration (h)

Distributed -

LA with AC

Distributed -

LFP with AC

Distributed -

LFP with DC

220 8.5 17 14.8

210 6.6 13.2 11.6

200 5.4 10.8 9.4

size of each LA and LFP battery is set to be 20Ah and 40Ah, respectively. These

are the maximum capacities that can fit in a 2U server [73]. Although the LFP

capacity is more than LA by 2x, it shaves a given peak for 3x longer because LFP

battery behavior is less nonlinear at high current, proving to be a better fit for the

distributed design. But, recharging all the batteries back to back takes more time

for LFP due to its larger capacity. Since batteries can selectively discharge, this is

not much of an issue.

Another important key challenge is to reduce the conversion losses that im-

pact the effective battery input/output. The distributed design puts the batteries

next to the servers and increases the effective battery capacity compared to the

centralized design. DC power delivery can be used to further eliminate the con-

version losses on the power path, reducing the input power required to recharge

the battery. We show the best and common efficiency values for the power infras-

tructure of both AC and DC options in Table 5.15. It also shows the amount of

energy wasted to recharge the batteries and battery output wasted before going
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into the servers.

The centralized design does not waste a lot of grid power but the battery

output loss is 15%, which further reduces its peak shaving duration. We see that

the distributed DC design obtains the best efficiency by having the smallest total

conversion losses. The AC counterpart provides similar battery output power but it

wastes the grid input 3x more than the DC design and results in longer discharges.

Table 5.14 also shows the comparison between AC and DC distributed options in

terms of effective discharge and recharge durations. Discharging capabilities are

the same but the DC design takes 14% shorter time to fully recharge, which makes

it a safer option as batteries get ready for the next peak earlier. Although the DC

option is more energy efficient, it is an unfeasible option for existing data centers

because its high cost to replace the power infrastructure.

5.6.4 Performance of the Distributed Battery Control

We next evaluate the performance of the communication based distributed

controllers, which increase the overall battery lifetime by balancing the power de-

mand across the batteries. We use 1000 40Ah LFP batteries with configurations

shown in Table 5.3, with policies described in Table 5.4. Tables 5.16 and 5.17

summarize the comparison between different policies and group sizes in terms of

peak shaving and average battery lifetime. To calculate the best peak power shav-

ing for each configuration we first use the workload distribution shown in Figure

5.11 to create the power profile of the data center over a week. We initially set a

power cap, e.g. 280W/server, and reduce it in each simulation experiment until we

cannot guarantee that cap. We then compute the power shaving percentage with

the amount of power shaved over the peak.

Table 5.16 shows energy savings per week due to various peak power shaving

strategies scaled to a data center of peak capacity 10MW, along with peak power

shaving percentages for each configuration based on the smallest power cap we can

guarantee. Googles 10MW, 45 container data center, with 40000 servers [61] is an

example of such a deployment. The best peak power shaving can be achieved with

a centralized controller as much as 19% of the peak power of the entire data center,
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Table 5.16: Amount of energy shaved for a 10MW data center per week in MWh

and % of power shaved compared to the peak

Policies
Data Center Partitioning

1

container

5

PDUs

10

PDUs

50

Racks

1000

servers

Local
30

(19%)

14.3

(16%)

11.2

(15%)

4.8

(12%)

2.5

(10%)

Max-SoH-

global

30

(19%)

30

(19%)

30

(19%)

30

(19%)

30

(19%)

Max-SoH-

lim.comm.

30

(19%)

23.1

(18%)

14.3

(16%)

6.6

(13%)

2.5

(10%)

Max-SoH-

more-lim.comm.

30

(19%)

18.1

(17%)

11.2

(15%)

4.8

(12%)

2.5

(10%)

equivalent to 30MWh/week of the 10MW data center, or 9380 more servers with

no additional peak power cost. Although we have the same total battery capacity

in all of the configurations, the power shaving capability decreases significantly

with lower level controllers because of their limited knowledge of the total power

demand. They shave up to 50% less power and 92% less energy compared to

the best solution. In contrast, we observe that our PDU level controllers with

communication can shave 18% of the peak power and 23MWh energy, within 6%

and 23% of the centralized solution.

Table 5.17 shows the average battery lifetime, normalized to the case with

the individual server level controllers. Local policies perform poorly regardless of

their battery selection algorithm as they are unaware of batteries in other groups.

Changing the group size does not affect performance of the local policies, except

for Max-SoH, which reduces to Max-SoH-global when there is only one group. The

centralized controller gives the best results, performing 2x better than the local

policies by processing the data from all the batteries. The performance of policies

with limited communication depends on the group size and communication span.

Increasing span with 5 PDU level controllers using limited communication by one
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Table 5.17: Normalized average battery lifetime

Policies
Data Center Partitioning

1

container

5

PDUs

10

PDUs

50

Racks

1000

servers

Local 1.02 1.03 1.04 1.04 1.00

LRU 1.07 1.07 1.07 1.07 1.00

Max-SoH-local 1.97 1.07 1.07 1.07 1.00

Max-SoH-global 1.97 1.97 1.97 1.97 1.97

Max-SoH-

lim. comm.
1.97 1.91 1.76 1.77 1.73

Max-SoH-

more-lim. comm.
1.97 1.59 1.59 1.51 1.48

group results in up to 20% longer battery lifetime, within 3.3% of the centralized

solution. Thus, our distributed controllers well approximate the performance of

the centralized controller in terms of both power shaving and battery lifetime,

showing that intelligent control and good characterization of data center’s physical

infrastructure can dramatically improve the overall system efficiency.

Communication Overhead Analysis

In this architecture, each group controller polls the servers in its group using

the data center network to collect server power consumption and battery statistics.

The controller then delivers the battery selection decision to the servers. Intra-rack

communication is extremely fast, but relaying messages through multiple switches

introduces far more delays. Assuming a common a fat-tree topology [72], we model

the links in the network with 10 Gbps capacity, which can transmit a 1K package

at 1us. We evaluate an ideal network, without queuing delay, a network with

normal level congestion where a single message transmission delay in a switch is

50us and a network with a high level congestion reaching 350us delay [40]. In this

experiment, container level models global communication.
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Figure 5.14: Communication overhead analysis for the distributed control mech-

anisms

Figure 5.14 shows the results of the communication analysis. The vertical

axes are on a log scale. The total delay increases exponentially with higher level

controllers because of the increasing number of out-of-rack communication signals,

going over several hops. Rack level controller gives the best results with only tens

of ms total delay even in the presence of high congestion. However, it has 32%

less power shaving and 11% shorter battery lifetime compared to the centralized

solution. In contrast, the container level controller may have seconds of delay,

100x more than the rack level in high congestion. With 5 PDU controllers there

is a 10x decrease in the total communication delay relative to the global solution

while being within 6% and 3.3% of the centralized controller in terms of peak power

shaving and battery lifetime. Clearly this is a great replacement for the centralized

control for peak power shaving with batteries.

5.6.5 Performance of the Grid-tie Design

We compare our grid-tie design with existing designs in terms of energy

efficiency, average battery lifetime, cost savings, and communication overhead.

As we place the batteries in a centralized location, we still lose 15% of battery
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output because of the conversion losses (see Table 5.15). However, batteries are

used at lower discharge current and have higher effective battery capacity. This

reduces the effects of the conversion losses. Instead of 15% performance difference,

we get an average of 8% performance loss compared to the distributed design as

shown in Table 5.18. We compensate for this performance loss by adding 8% more

battery capacity, which is feasible because we are not limited by rack size as in the

distributed design.

Table 5.19 shows the power shaving statistics of our grid-tie design and the

distributed design. We analyze our design with and without additional battery

capacity as well as with all battery and discrete current policies (see section 5.4).

The average battery lifetime does not change with additional battery capacity,

but the all battery policy results in longer average battery lifetime. The average

battery lifetime estimates are 5.4 and 2.2 years for LFP and LA respectively using

the discrete current policy. We obtain 6.4 and 2.5 years with the all battery policy.

The battery lifetime values are 60% and 78% higher compared to the distributed

design for LFP and LA batteries respectively since the discharging current can be

scaled down with our design so that the negative impact on the battery lifetime

is minimized. The all battery policy scales down the discharging current more by

using all available batteries and thus performs better than the discrete current

policy.

Our grid-tie design with 8% larger capacity obtains similar peak shaving

performance compared to the distributed design. It compensates the increased

battery costs with longer battery lifetime. Our design achieves up to 11% and

5.5% savings for LFP and LA batteries when renting from co-location providers.

These savings are 70% and 100% higher than the distributed design. Similarly, we

obtain up to 2.77% and 1.87% TCO/server savings using LFP and LA respectively.

These TCO/server savings correspond to up to $75K/month for a 10MW data

center [24]. The TCO savings are 48% and 107% higher than the savings of the

distributed design.
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Communication Overhead Analysis

The distributed design requires a centralized controller to get the best peak

shaving performance [97][73]. Since the batteries are distributed to the servers, this

controller communicates with the batteries through the data center interconnect.

High network usage leads to large signal delays to/from batteries. This can affect

the performance of the controller negatively by increasing the response time to a

peak pulse or transmitting outdated battery and server load information. The dis-

tributed design can also use multiple controllers placed at different levels of power

hierarchy, as shown in previous subsection. A decentralized control mechanism

may, however, significantly reduce the peak shaving capabilities. Our design can

isolate itself from the data center interconnect, achieving fast communication even

with high network congestion.

Figure 5.15 compares the total delay of our grid-tie design during a dis-

charge process with that of different controllers deployed in distributed design.

We analyze the worst-case scenario where the controller needs to poll each bat-

tery. The left vertical axis is on a log scale and shows the communication delay

whereas the right vertical axis presents the peak shaving percentage achieved by

each configuration. The data center interconnect assumptions are the same as in

the previous subsection. In this experiment, cluster level corresponds to centralized

communication for the distributed design. The low-level controllers have less total

delay compared to our design in the ideal network case, but as the network con-

gestion increases, our design performs better, except for the rack level controller,

which has 60% less peak shaving performance than our design. Our design has

similar peak shaving performance (1% better) compared to the centralized control

in distributed design. But, even in the ideal case of network, our design has around

20 ms total delay compared to 100 ms of the centralized control for the distributed

design. Even in this case, we obtain 4x less communication overhead, and this

difference increases exponentially as the network delay ramps up.
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Figure 5.15: Communication overhead analysis for the grid-tie design

5.7 Conclusion

Peak power shaving with batteries in data centers has gained significant

importance because of its ease of applicability and great performance. In this

chapter, we first identify the issues with the existing designs and address the key

challenges of architecting a cost and energy efficient battery-based peak shaving

design. We first use a detailed battery model to capture the negative effects of

high discharging currents. Our results indicates that not having a detailed bat-

tery model overestimates the battery lifetime up to 2.44x and leads to 3.35x error

in cost saving estimates. Second, we propose a distributed control mechanism to

manage the physical properties of the batteries. Our mechanism removes the single

point of failure of the traditional centralized control and reduces its communica-

tion overhead by 10x while being within 6% and 3.3% of its peak power shaving

and battery lifetime, respectively. This power shaving leads to 23.1 MWh energy

shaving when scaled to a typical 10MW data center. Third, we introduce a new

grid-tie based design which preserves the advantages of the existing designs, such

as individual control of the batteries, and eliminates the key drawbacks, such as

adaptively selecting the discharge current. It can use a fast, dedicated network to
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coordinate the batteries, reducing the communication overhead by 4x compared

to the distributed design. Our design achieves up to 78% longer battery lifetime

and doubles the savings compared to the state-of-the-art designs. This chapter

illustrates the benefits of correctly modeling and tracking the physical phenomena

(batteries). Thus, designing an appropriate infrastructure to manage the batteries

is critical for obtaining great results.

Chapter 5 contains material from ”Distributed Battery Control for Peak

Power Shaving in Data Centers”, by Baris Aksanli, Tajana Rosing and Eddie

Pettis, which appears in Proceedings of International Green Computing Conference

(IGCC), 2013 [16]. The dissertation author was the primary investigator and

author of this paper.

Chapter 5 contains material from ”Architecting Efficient Peak Power Shav-

ing Using Batteries in Data Centers”, by Baris Aksanli, Eddie Pettis, and Tajana

Rosing, which appears in Proceedings of International Symposium on Modeling,

Analysis and Simulation of Computer and Telecommunication Systems (MAS-

COTS), 2013 [13]. The dissertation author was the primary investigator and au-

thor of this paper.



Chapter 6

Data Centers & the Grid

The conventional, centralized electric grid has been evolving into a more

distributed structure with the increasing penetration of renewable energy sources,

wide usage of electric vehicles and increasing number of large-scale smart buildings.

These changes are making it harder for the grid to preserve its stability. The grid

has to maintain its supply/demand balance at any time to avoid voltage/frequency

deviations, which may harm the stability of the grid and hence prevent the grid

operations from being performed normally [12]. Utility companies employ ancillary

services, that help preserve the stability. These services include demand-response

(DR), spinning and non-spinning reserves and regulation services. DR is designed

to motivate customers to voluntarily reduce their energy consumption at times

of high overall demand or when the system reliability is endangered. Utilities

usually increase the price of electricity to incentivize their customers. Spinning

and non-spinning reserves provide electricity when the grid unexpectedly needs

more power on a very short notice. They include explicit contracts with electricity

providers and thus, need to promptly answer to the notifications from the utility.

Regulation service is used to correct short-term changes in electricity use that affect

the the power system stability. This chapter focuses on contract-based regulation

services, which are used to balance the demand and supply. For example, at a

time when there is high renewable energy generation, the utility might need higher

power demand from consumers. Similarly, it might request users to reduce their

consumption when the power generation is at a premium. When needed, the

109
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utility issues fine-grained command signals to the contracted loads, which then

adjust their power consumption accordingly.

Traditionally, utilities accept only generator sources to provide regulation

services. Recently, they have also allowed non-generator sources to participate [34].

These sources should have large consumption and some power flexibility to allow

adjustments. Power consumption of data centers is growing rapidly, up to 100MW

per individual site [42]. The data center’s ability to adjust the power consumption

at run time by employing techniques such as dynamic voltage-frequency scaling

(DVFS), virtual machine (VM) migration and peak power shaving make them a

good choice for regulation services. Peak power shaving decreases the peak power

level a data center achieves over a time, thus reduces its contribution to the monthly

utility bill.

While both DVFS and VM migration have some performance overhead,

some recently proposed battery-based peak shaving techniques [62][73][13] are ca-

pable of reducing the power consumption at no cost to performance. Significant

savings, of up to $75K/month for a 10MW data center, can be obtained when us-

ing batteries for peak power shaving. However, none of the existing battery-based

peak power shaving designs consider the feasibility of using the energy storage in

data centers to participate in the regulation markets. This is one key contribution

of this chapter.

There are a few recent studies that investigate the data center participa-

tion in the ancillary services market [10][37][55][126]. The savings a data center

can obtain depend on the type of the ancillary service provided and how much

capacity can be allocated towards providing that service. Wang et al. [126] model

a distributed set of data centers and explore DR. They use VM migration among

data centers to create flexibility in power consumption and send VMs to locations

with lower energy costs. Ghamkhari et al. [55] analyze the savings of a single

data center participating in voluntary load reduction. They increase the waiting

times of the workloads to reduce the consumption when necessary. Chen et al. [37]

specifically focuses on regulation service for data centers and explore the ability of

data centers to provide this service. They use dynamic power capping techniques
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to follow the signals of the utility and provide the service at the expense of per-

formance degradation. Aikema et al. [10] analyze a number of different ancillary

services for data centers, including DR, spinning reserves and regulation. However,

their analysis is also based on slowing down the workload. They assume that the

nominal data center consumption can be all considered as the regulation capacity,

which can result in dramatic performance penalties.

Existing methods result in performance degradation, which is a serious

concern for response-time critical workloads. They also do not consider peak power

costs. When providing regulation services, the utility is given the prerogative to

demand a change in the power consumption of the data center by as much as a

maximum amount specified in the contract over the given interval. This amount,

if not properly handled, may raise the peak power level of the data center, and

increase the utility bill. The data center should adjust its average power demand

and the regulation capacity to be allocated to ensure that the peak power costs do

not eliminate the savings from providing regulation services.

In this chapter, we propose a framework that analyzes the data center

participation in the regulation markets while also considering the peak power ob-

jectives. We use a battery-based peak power shaving design to avoid performance

penalty to workloads. We study two most common battery types, lead-acid (LA)

and lithium iron phosphate (LFP), as in chapter 5. Our framework consists of

two cases corresponding to different peak power assumptions for a data center.

We present a method for each case, which first analyzes if providing regulation

services is feasible and if so, shows how the regulation capacity should be adjusted

to maximize savings. Normal peak shaving takes place to limit peak power costs

if the data center chooses not to participate. We leverage the data from NY-

ISO and CAISO markets to demonstrate the effectiveness of our framework. Our

results show that for a 21MW data center, up to $480,000/year savings can be

obtained using our methods, corresponding to 1280 more servers operating, and

5.08% increase in data center profit percentage. Also, if peak power costs are not

considered when providing regulation services, its savings can be overestimated as

high as 385%.
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This chapter first gives background information on how participation in

regulation markets takes place. It analyzes how data centers can participate in

these markets in an effective way. The participation is analyzed in different cases to

consider all possible scenarios. It then presents results of the proposed framework

using realistic utility market dynamics.

6.1 Background

Providing regulation services requires the agreement of both the regulation

service provider, in our case data centers, and the independent system operator

(ISO), which provides the electricity to end-users. The data center determines the

capacity of the regulation service it is willing to provide based on the price bid

of the utility. Determining this service can take place in real-time, hour-ahead or

day-ahead markets, which all have different pricing schemes and requirements in

terms of how long the service should be provided.

In a given service interval, the regulation service provider should determine

its average power demand, Pave, and the regulation capacity, Creg, it can provision

in that interval, and give this information to the utility. By giving this information,

the regulation service provider agrees that the utility can issue fine grained signals

that can change the power consumption of the service provider to any value within

the interval [Pave − Creg, Pave + Creg]. Within this interval, the average power

demand of the service provider is Pave [37]. For data centers, Pave depends on the

resource utilization and it is typically around 50% [28] and Creg changes based

on the load flexibility [37]. Some previous studies, e.g. [10], incorrectly assume

that the power demand of a data center providing regulation service does not

change within the interval in which the service is provided. When power demand

is set to a value in [Pave −Creg, Pave] due to the utility feedback, one of the power

shaving methods can be used. For example, DVFS-based solutions [88] reduce

the peak at the expense of lower performance. Alternatively, batteries can be

used to shave power [62][73][13] to avoid performance impact at cost of additional

hardware. Utility may also demand the power be increased from Pave to a value in
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[Pave, Pave +Creg] to balance its larger energy supply and smaller demand. In this

case there may be a conflict between a need to keep peak power under a predefined

threshold due to electricity pricing vs. the need to respond to utility controls as a

part of the regulation services contract.

In this chapter, we assume that the data center already uses peak power

shaving methods to reduce the related costs in the monthly electricity bill. We

assume that the cost of electricity (¢/kWh) is constant for a given day. To avoid

the performance degradation of traditional power shaving methods, we leverage the

battery-based peak power shaving method described in section 5.4. This method

allows for very fine-grained battery output control, leads to smaller discharging

currents and longer battery lifetime, and has smaller communication overhead

compared to the other designs. Fast response times are needed to ensure that

the data center receives the best prices for the regulation services it provides [37].

We do not interfere with any of the jobs running and instead control the battery

output to track the differences between the actual and the targeted power demand.

As shown in chapter 5, in battery based peak power shaving, the data center

first determines a fixed peak power threshold, Pth, and then discharges the batteries

when the actual demand is over that threshold and recharges the batteries during

lower demand. The physical properties of the batteries influence the choice of this

threshold. Chapter 5 shows that if the batteries are discharged deeply or with high

discharging currents, their expected lifetime decreases. Hence, first a fixed limit

for battery depth-of-discharge (DoD) is found that is economically feasible, then

the peak power limit is estimated based on this DoD limit. Typical DoD limit

values are 20-40% for LA batteries and 60% for LFP batteries [73].

Figure 6.1 shows the power shaving process for a data center with 50,000

servers (21MW peak capacity) over 7 days, using 40Ah/server LFP batteries. The

y-axis shows the power consumption in MWs and the x-axis corresponds to time

in hours. The straight line is the nominal power demand of the data center, while

the dashed line shows the best case power demand of the data center from the

utility with 60% DoD goal. The dashed line shaves 20.5% of peak power compared

to the original peak, shown by the upper horizontal line. In this particular case,
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Figure 6.1: Sample battery-based peak power shaving demonstration of a 21MW

data center over 7 days

it is not possible to lower this threshold without allowing batteries to discharge

deeper. The difference between the original peak power level and the adjusted

peak power level corresponds to savings. Peak power level can be further reduced

but the battery DoD limit has to be increased. In that case, the expected battery

lifetime reduces and the battery replacement costs become larger than the peak

power shaving savings.

6.2 Data Centers Providing Regulation Services

This section gives a detailed feasibility analysis for the participation of

data centers in a regulation market. Data centers that leverage batteries to shave

peak power can respond to utility commands for regulation services by changing

the battery charge and discharge intervals, thus requiring only minor changes to

the already implemented battery control system. We analyze two different types

of data center operation where both peak power shaving and regulation service

controls are present. The first case does not alter the average data center power

demand, but increases the peak power threshold to match the allotted regulation

capacity. When participating in the regulation markets, we specifically show how

the decision mechanism should be designed to consider peak power costs. The

other solution does not change the fixed power threshold but create flexibility in
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data center power consumption by adjusting the access to the batteries. This is

the key point not to degrade workload performance. We show that this is essential

to obtaining savings in a conservative market, like CAISO, where peak power costs

are higher than the regulation prices.

6.2.1 Fixed Average Power

Careful control of data center batteries can ensure that the data center

can keep its average power equal to the peak power threshold, Pave = Pth. If the

regulation capacity is Creg, then the data center power consumption can be any

value in the interval [Pave−Creg, Pave +Creg] so the peak power of the data center

is set to Pth + Creg, instead of Pth. The savings from regulation services need to

be larger than the difference between the original and the elevated peak power

cost. The peak power cost is charged with the largest consumption over a month,

and thus, it increases with the maximum regulation capacity. Then the condition

becomes: Cregcr ≥ (Pth + Cregmax)cpp − Pthcpp, where cr is the hourly regulation

price in $/MW, Cregmax is the maximum regulation capacity over a month in MW,

cpp is the monthly peak power cost in $/MW, which is around $12,000/MW. The

above constraint is defined for an hourly interval, while the peak power cost is

charged on the monthly basis. We assume that the data center provides regulation

services in each interval over a month and average the monthly peak power costs

over all these intervals to obtain a lower bound of the average regulation price that

guarantees cost savings:

crave ≥
cpp

30× 24

Cregmax

cregave
(6.1)

where crave is the average monthly regulation price in $/MW and Cregave is

the average regulation capacity that can be provisioned over a month in MW. The

ratio Cregmax/cregave is the main determining factor of this lower bound. It ranges

between 2-5 depending on the peak power threshold, battery type and DoD limits.

The lower bound obtained of equation 6.1 can be unreachable in some markets,

e.g. CAISO [1], but feasible in others, e.g. NYISO [7].
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Equation 6.1 assumes that the regulation service should be provided in each

interval over the month with a price larger than crave to make up for the extra peak

power cost. A solution to this problem is to limit the Cregmax/Cregave ratio, thus

limiting the maximum regulation capacity so that the possibility of reaching a

very high peak power level is eliminated. In this case, the condition in equation

6.1 becomes:

crave ≥
cpp

30× 24
PAR (6.2)

where PAR (peak-to-average ratio) is the fixed Cregmax/Cregave ratio and

the maximum regulation capacity is limited by CregavePAR ,which prevents the

peak power from exceeding a predefined limit.

After setting a lower bound on the regulation price, the next step is to set

the regulation capacity, Creg. The upper bound of the power flexibility interval,

Pth +Creg, cannot be greater than the nominal data center power demand in that

interval, Pnom, when the batteries are discharging. Note that at this point, if

data center does not provide regulation services, the batteries discharge to reduce

the data center power demand from utility from Pnom to Pth. This adjusted con-

sumption can be increased by stopping some batteries discharging, up to Pnom. In

addition, the lower bound, Pth − Creg cannot be smaller than the actual demand

when the batteries are charging. Since the actual demand averages to Pth in an

interval, we can determine the regulation capacity in each interval, t, as:

Creg(t) =

 min(Pnom(t)− Pth, Cregmax), if Pnom(t) < Pth

min(Pth − Pnom(t), Ppeak − Pth, Cregmax), otherwise
(6.3)

Equation 6.3 ensures that the actual power demand stays within the accept-

able range and does not exceed Cregmax . Since the average power demand from the

utility stays the same as in the case where peak shaving is used without regulation

services, the expected battery lifetime does not change. While in this example

the peak power cost is a limiting factor for regulation services., in the following

cases we We next explore the possibility of providing regulation services without

changing the original peak power level.
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6.2.2 Varying Average Power

We analyze this option in two parts. First, we focus on intervals with

batteries discharging. Since the goal now is to provide regulation services without

increasing the original data center peak power, so the upper limit of the regulation

interval, Pave + Creg, should not exceed the peak power threshold, Pth. Thus,

the data center should reduce its average power demand further than Pth when

providing regulation services. Although the peak power cost of the data center

does not increase, the batteries may need to discharge deeper than the allowed DoD

limit to create the power flexibility required by the utility to provide regulation

services, thus decreasing the expected battery lifetime and increasing the battery

costs. We use the battery model described in section 5.2 to estimate the battery

costs. It models the effect of each charge/discharge cycle on the battery lifetime,

based on the DoD level and the discharging current in that cycle, and calculates

the cost of each cycle. This property allows us to get the cost difference of using

a battery with different DoD levels in a single cycle.

We first start our analysis by proving that in a discharging interval it is

not possible to reduce the average power consumption further than the original

best peak power threshold without violating the DoD limit requirement for some

batteries for only that interval. We assume that the total battery capacity consists

of a collection of smaller batteries.

Proof: Assume that we have the best peak level, Pbest with the DoD level,

D, where 0 ≤ D ≤ 100. Suppose that we can lower Pbest in the interval t1,where

Pnom(t1) ≤ Pbest without discharging any battery further than D in t1. Let us

denote the new peak power level in t1 as Pbestt1 , such that Pbestt1 < Pbest.Since we

do not discharge any battery further than D, there must be enough energy in some

batteries to provide the energy difference, Ediff = (Pbest − Pbestt1)|t1|, where |t1|
is the length of the interval t1. But, this energy should be restored back to the

batteries later to ensure that the only DoD violation happens in t1. There are two

situations we need to focus:

1. There is a collection of intervals {ti} where
∑

ti
(Pbest − Padj(ti))|ti| ≥ Ediff

where Padj(ti) < Pbest and ti > t1 for all i. Here Padj denotes the power
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demand after using batteries, i.e. the dashed line in Figure 6.1. This makes

sure that after the interval t1, there is enough energy slack in a collection

of some recharging intervals to store back Ediff so that it can safely be

distributed over all discharging intervals, rather than to be used only in t1.

Thus, Pbest is actually not the best peak power level with D, which is a

contradiction.

2. There is not any collection of intervals satisfying the above condition. Then,

since we need to charge the batteries back with Ediff to make sure that the

only DoD violation would be in t1, there has to be an interval, t2 > t1 in

which recharging the batteries violates the original peak power threshold, i.e.

Padj(t2) > Pbest. So, we cannot sustain the original peak, Pbest. �

We need to investigate the tradeoff between increasing the DoD limit in an

interval to provide regulation service and its savings. We use t for the interval

in which we analyze the feasibility of providing regulation services. Since we do

not want to increase the peak power threshold, Pth, the average power the data

center reports to the utility in the interval t, Pave(t), should be smaller than Pth.

Thus,Creg, can be at most Pth−Pave(t) and the savings become (Pth−Pave(t))cr(t)

where cr(t) is the regulation price in the interval t.

Some batteries may need to discharge further than the fixed DoD limit,

D, to account for the additional power demand in the interval t, Pth − Pave(t).

We distribute this additional demand to all batteries to minimize the extra DoD

and to limit their discharging current. We obtain the extra DoD in the interval t,

Dextra, as:

Pth − Pave(t)

NV Ceff

× |t| × 100 (6.4)

where N is the number of batteries, V is the single battery voltage and

Ceff is the effective battery capacity which is based on the discharging current and

Peukert exponent reflecting the physical properties of the battery, as described in

5.2. We distribute the required battery power to all batteries and discharge them

with the same current each time, and thus, assume that their expected lifetime is
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the same. Then, we calculate the cost of discharging all batteries up to DoD value

(D +Dextra, rather than D, in one cycle, as:

Costbatextra = NCRcbat(
1

lt(D +Dextra, Idextra)
− 1

lt(D, Id)
) (6.5)

where cbat is the unit battery cost in $/Ah, Idextra is the single battery

discharging current when providing regulation and Id is the original single battery

discharging current in the interval t. In equation 6.5, the crucial part is the function

lt(D, I) which calculates the expected battery lifetime (in cycles) when the battery

is used with D depth of discharge limit and I discharging current. This function

considers type-specific battery properties and penalizes higher DoD values and

discharging currents to reflect their negative effects on battery lifetime. More

details of lt() can be found in equation 5.4. In equation 6.5, we compute the cost

of using all batteries in one cycle with (D+Dextra, Idextra) and (D, Id) and take the

difference. Then, the main optimization goal becomes:

max(Pth − Pave(t))cr(t)− Costbatextra
s.t. Pave(t) < Pth (6.6)

0 < Dextra < 100−D

which maximizes the savings of regulation services. The constraints in the

other two equations ensure that Pave(t) does not violate peak power limits and

does not require that the energy battery provides is more than the total battery

capacity. In this case, the regulation price is limited by battery characteristics and

fixed DoD limits as they are the main inputs of battery lifetime calculation. In the

results section of this chapter, we show that current regulation prices in NYISO

and CAISO markets cannot compensate for the increased battery costs due to the

larger DoD.

Next, we focus on the intervals where the data center nominal power is less

than the peak power threshold. In hours between 0-3, 18-25 and 63-70 shown in

Figure 6.1 the difference between the nominal power and the peak power threshold

can provide the flexibility required by regulation services. We schedule the bat-
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tery recharge events to create this flexibility and still stay within the peak power

threshold. Thus, we select:

Creg =
Pth − Pnom(t)

2

Pave =
Pth + Pnom(t)

2
(6.7)

where Pnom(t) is the actual data center power demand in interval t. How-

ever, the data center cannot provide regulation services during all the intervals the

batteries recharge or are idle because it has to ensure that batteries have enough

energy stored before being discharged again. Thus, we need to determine which

subset of intervals where Pnom(t) < Pth should be selected to provide regulation

services:

max
I

∑
ti∈I

Pth − Pnom(ti)

2
cr(ti)

I ⊆ {t|Padj(t) < Pth} (6.8)

where Padj(t) is the adjusted power in interval t. The main goal is to select

a set of intervals that maximize the regulation savings. These intervals should be

a subset of the intervals with adjusted power less than the peak power threshold

to ensure that we do not work with the discharging intervals and only use intervals

with some flexibility. We shift the recharge events among these intervals, intervals

with high regulation price provides regulation services and the others make sure

that batteries have enough energy before the next peak event. Also, a recharge

interval should not be shifted forward beyond a discharge interval because that

recharge event might be necessary to prevent the peak in the relevant discharge

interval.

This part considers only with battery recharging intervals. Thus it does not

put any pressure on the battery DoD limits. Computation of regulation capacity

does not allow any peak power violations. However, its applicability might be

limited as the data center needs to select a subset of recharging intervals fitting
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the above restrictions. The availability of those intervals depends highly on the

fixed DoD limit. In the results section, we demonstrate that this method can

obtain savings even in a price conservative market as it does not increase peak

power costs or battery costs.

6.3 Evaluation

In this section, we evaluate the two methods described in the previous

section. The Fixed Average Power method does not change the average data center

power demand when providing regulation, but increases the peak power level. It

can be seen as a representative of the previous studies [10][37] as it does not change

the average power consumption in an interval, but it differs strictly from them as

it considers peak power management. Varying Average Power method does not

modify the peak power level but instead change the average power using the battery

charge and discharge events. A data center can use each method separately, and

decide which one is more cost-efficient based on its power demand profile, peak

power goals, the battery type used and the power market it participates in.

Next, we first describe our experimental setup, including data center and

battery settings. Then, we present the effectiveness of Fixed and Varying Average

Power methods for data center participation in regulation markets.

6.3.1 Methodology

We model a large data center with 50,000 Sun Fire servers, each at 175W

idle and 350W peak power, and use a linear, CPU-utilization based function to

compute the power consumption of a single server as in chapter 5. We also consider

non-server power consumption with the power usage efficiency (PUE) metric and

use 1.2 for this value, which corresponds to an energy efficient data center [28].

We use the same workload mixture introduced in Table 5.6 and Figure 5.11, and

scale the workload information for 50,000 servers. Then, we use an event-based

simulation platform with this workload information to extract the total data center

power demand profile.
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Table 6.1: Best peak shaving percentages with different DoD levels

DoD value 20% 40% 60% 80%

Best peak shaving % 15.4% 18.3% 20.6% 21.4%

Battery type LA LFP

We use battery-based peak power shaving to reduce the cost of peak power

in the monthly utility bill. The battery types we use in our work are LA and LFP

batteries, with capacity 40Ah per server as in chapter 5. Another reason we use

multiple types of batteries is that they have different levels of optimum DoD levels

for peak power shaving and in our evaluation, we show how different levels of DoD

levels affect the efficiency of regulation services. Table 6.1 shows the peak power

shaving percentage of the total data center peak power, obtained with different

DoD levels and appropriate battery types for each DoD level, using the workload

information from Figure 5.11. Peak power prices and battery properties are taken

from Table 5.8.

We target the day-ahead option in the regulation services market as it has

higher prices than the other ones. Data centers can estimate the expected load for

the day ahead, which can allow them to provision their resources as a function of

the regulation services in the day-ahead market [37]. We use pricing from NYISO

and CAISO to show the importance of the market data center participates in. We

get the NYISO numbers from previous studies [10] and CAISO ones from their

database [1]. Figure 6.2 shows the daily regulation prices in our evaluation.

6.3.2 Results: Fixed Average Power

In this section, we evaluate our first method that does not change the

average power demand of the data center, but instead increases the peak power

level to match the regulation capacity provided. However, these previous studies

do not account for peak power costs, which can affect the regulation capacity and

in turn, total savings. We estimate the total savings for different DoD levels and

PAR values with both NYISO and CAISO prices. The maximum PAR values
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Figure 6.2: Regulation prices

Table 6.2: Maximum PAR values for different DoD levels

DoD value 20% 40% 60% 80%

PAR value 2.2 3.3 4 4.1

that can be obtained with varying DoD limits are listed in Table 6.2.

Figure 6.3 shows the total savings of providing regulation services in CAISO

and NYISO markets. In both graphs, the x-axis corresponds to changing PAR

values and the y-axis shows the total savings in a month in thousand dollars.

The savings are calculated as the difference between the profit from providing

regulation services and the cost of increased peak power level. We select the

regulation capacity using different PAR values based on equation 6.3. Since the

average power consumption does not change compared to the no-regulation case,

there is no extra battery cost. We observe that the data center can obtain savings

for any PAR value in the NYISO market, whereas the CAISO prices do not lead

to any savings. The best PAR value is 2 in the NYISO market whereas it is 1 in

the CAISO market because limiting the peak power increase limits the additional

peak power costs and increases the savings. The best DoD value is 20% for the

NYISO and 60% for the CAISO markets. The maximum savings are $40,000 with

NYISO pricing, corresponding to 5% savings overall the electricity bill. These

savings can also be used to accommodate $1280 more servers within the same
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(a) with CAISO prices

(b) with NYISO prices

Figure 6.3: Total savings result with CAISO and NYISO prices

energy budget. The savings are always negative with CAISO pricing, which means

that the data center should not participate in the regulation market. This analysis

shows the necessity of investigating all the options, such as battery DoD level,

the market pricing dynamics and the maximum regulation capacity limit, when

providing regulation services along with meeting peak power shaving goals.

Table 6.3 shows the average error in savings if peak power costs are not

considered with different PAR values as was done in previous studies. We see that

the error is smaller with lower PAR values since PAR value limits the maximum

regulation capacity and its effects on the peak power cost. The error is up to 385%
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Table 6.3: Error percentages if peak power costs are not considered

Error Percentage

PAR value 1 2 3 4

NYISO 37% 52% 66% 79%

CAISO 182% 257% 324% 385

for the CAISO market and 80% for the NYISO one. It is much higher in CAISO

market as peak power costs are much larger than possible regulation savings due

to low prices.

6.3.3 Results: Varying Average Power

We first focus on the intervals where the batteries are discharging and as-

sume that the original peak power levels obtained with a given battery configura-

tion should not be increased to avoid high peak power costs. Thus, the flexibility

interval in which regulation services can be provided should be created under the

original best peak power threshold. As a result, batteries discharge further than

their allowed DoD limit to create this flexibility range. The best peak shaving

with LA and LFP batteries are obtained with 40% and 60% DoD at 17.2MW and

16.7MW respectively for our data center with 50,000 servers. The expected battery

lifetime values are 2.5 and 6.4 years for LA and LFP batteries respectively.

Table 6.4 shows how much the minimum regulation price should be for a

given regulation capacity to compensate for the increased cost of using batteries

with deeper discharges. We change the amount of regulation capacity to be pro-

vided and calculate the extra DoD level required by the batteries for each case.

This extra DoD leads to a higher cycle cost. We compute it by estimating the

battery lifetime if the battery is used with the extra DoD in each cycle. Lastly, we

calculate the minimum regulation prices in $/MW that makes up for the increased

cycle cost. Table 6.4 shows that the required minimum regulation prices are much

higher than the actual prices (both NYISO and CAISO) for both LA and LFP bat-

teries, and the minimum prices increase with increased regulation capacity. Thus,
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Table 6.4: Regulation price analysis for battery discharge intervals

Battery Life (yrs) Min. Reg. Price ($/W)

Creg (MW) Dextra LA LFP LA LFP

0.5 2.08 2.4 6.2 183 138

1 4.17 2.3 6 191 143

1.5 6.25 2.2 5.8 199 148

Table 6.5: Monthly savings using recharge shifting

DoD NYISO Savings ($) CAISO Savings ($)

40 33628 11312

60 14600 5132

we can conclude that this method is not feasible for data centers with peak power

shaving and battery lifetime limitations when providing regulation services with

the current market prices. This method can become feasible with lower battery

prices or less nonlinear battery behavior with higher DoD. Additionally, emergency

DR events, with high prices as much as $500/MW [10], might be a good target to

compensate for high battery costs.

Next, we investigate intervals when the batteries are idle or recharging.

We use the framework described in section 6.2.2 to obtain the intervals in which

regulation can be provided. Table 6.5 shows the monthly savings for both 40%

and 60% DoD levels, corresponding to the best peak shaving configurations for

LA and LFP batteries respectively, in both NYISO and CAISO markets. NYISO

savings are almost 3x higher than CAISO due to the higher regulation prices. An

important observation is that lower DoD limits lead to more than 2x in savings,

because there is more flexibility in the recharging intervals with a lower DoD limit.

This result does not have additional peak power costs as the peak power level does

not change. The advantage of this method is that it does not increase the original

peak power threshold (unlike Fixed Average Power method) and does not put extra

burden on the batteries (unlike the first part of this method). Also, it can obtain
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(a) NYISO

(b) CAISO

Figure 6.4: Recharge shifting for NYSIO and CAISO

savings in a more conservative market, i.e. CAISO, where Fixed Average Power

method cannot.

The core of this method is shifting the time of battery recharge. Figure

6.4 shows the recharge shifting for NYISO (6.4a) and CAISO (6.4b) prices for

a sample day where the DoD limit is set to 40%. In both graphs x-axis shows

the time in hours and y-axis is the power consumption in MW. The straight line

stands for the nominal consumption, the dashed line is the adjusted power con-

sumption using batteries without recharge shifting and dotted line represents the

consumption with recharge shifting. For both graphs, recharge shifting is visible

between hours 4-15 and 20-24. The way recharge occurs is different because of
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the pricing schemes. In 4-15 in the NYISO market, the data center first decreases

its adjusted power consumption until t=11.5hrs to create flexibility for regulation

services. Then in 11.5-15hrs, it increases the consumption to complete the battery

recharge. In contrast, when using CAISO prices, it stops battery recharging com-

pletely in 4-8.5hrs and then provide regulation services in 8.5-15.5hrs by recharging

the batteries. By shifting the recharge periods, the data center tries to provide

regulation services in the intervals with higher regulation prices. The data cen-

ter has the same recharge shifting events in both NYISO and CAISO markets in

20-24hrs due to same pricing trend in both markets.

In this section, we introduced two complementary methods for data centers

with peak power budgets to participate in regulation services markets. Fixed Av-

erage Power method keeps the original data center power demand the same and

thus may violate the peak power thresholds when providing regulation services.

Varying Average Power method creates the required flexibility in power demand

strictly under the peak power threshold at the expense of more aggressive battery

usage. The feasibility of these methods depends on the peak power thresholds,

battery properties and the regulation market dynamics. We calculate the savings

from these methods on top of already existing peak power shaving savings. We

observe that in markets with high regulation prices Fixed Average Power method

brings more savings whereas in price-conservative markets Varying Average Power

method is more beneficial. The advantages of our methods are that they consider

peak power budgets and do not lead to any workload performance degradation.

6.4 Conclusion

Electricity utilities present different options for both generator and non-

generator sources in the ancillary services market. Data centers can provide regu-

lation services in these markets with their high energy consumption and ability to

create flexibility in their demand profiles, and obtain additional savings. Existing

studies all degrade the workload performance to provide regulation services and

do not consider peak power costs which can affect the regulation capacity and re-
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sult in up to 385% overestimation in savings. Our solution adopts a battery-based

peak shaving method and has no performance impact on the workloads. It shows

two options to provide regulation services considering the peak power costs. We

see that increasing the peak power limits may be feasible in markets with high

regulation prices but in a more conservative market, the best practice is to provide

regulation services only in intervals when the batteries are recharging. Our meth-

ods can obtain $480,000/year savings, which can accommodate 1280 more servers

and increase the profit percentage by 5.08%.

Chapter 6 contains material from ”Providing Regulation Services and Man-

aging Data Center Peak Power Budgets”, by Baris Aksanli and Tajana Rosing,

which appears in Proceedings of Design Automation and Test in Europe (DATE),

2014 [15]. The dissertation author was the primary investigator and author of this

paper.



Chapter 7

Summary and Future Work

The number of data centers has been increasing over the last decade to meet

the rapidly-exploding computation demand. These warehouse-scale, compute-

oriented buildings host millions of servers globally, and constantly require high

amount of energy to maintain their operability. This high demand, in turn, trans-

lates into elevated electricity bills, which have become one of the largest compo-

nents of data center operational expenses. Additionally, increased cost of fossil-

based, brown energy and carbon emission penalties have forced data centers to

search for alternative energy sources. As a result, it has become extremely impor-

tant for data centers to be energy efficient, which also corresponds to cost savings.

7.1 Thesis Summary

This thesis proposes approaches to energy efficiency problem of data centers

from multiple dimensions that are complementary to each other. The proposed

methods can be applied either individually or together and they can dramatically

lower the utility bill, corresponding to millions of dollars of savings for large scale

data centers. The thesis first proposes mechanisms to efficiently integrate renew-

able energy to both data centers and the wide are networks connecting multiple

data centers. It makes use of a predictive approach that helps data centers reduce

their carbon footprint without any performance hits caused by the highly variable

nature of green energy sources. Second, it presents holistic cost minimization and

130
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performance maximization approaches for multiple data center systems which make

use of online job migration made possible by recent technological improvements.

These approaches both increase the renewable energy penetration and decrease

the overall energy cost significantly by identifying and modeling the key aspects

of multiple data center systems. The thesis also targets to reduce the peak power

level of data centers to decrease the utility bill. It presents battery-based peak

power aware solutions that minimize the deployment costs by optimizing for bat-

tery lifetime and enable data centers to effectively reduce their peak power levels

without an impact on job performance. Lastly, the thesis demonstrates how data

centers and the electric grid can collaborate in a mutually beneficial way, where

the data center can increase its profits and the utilities can maintain the health of

the electric grid. Next, we show how we increase the efficiency of data centers with

renewable energy, peak power management and collaborating with the electric grid

in detail. Finally, we provide some future research ideas.

7.1.1 Renewable Energy in Data Center Systems

Green energy usage in data centers systems has gained importance as their

energy consumption, carbon emissions, and costs have increased dramatically. Ex-

isting studies focus on using immediately available green energy to supplement

the non-renewable, or brown energy at the cost of canceling and rescheduling jobs

whenever the green energy availability is too low. This thesis first proposes an

adaptive data center job scheduler which utilizes short term prediction of solar

and wind energy production. This enables the data center to scale the number

of jobs to the expected energy availability, thus reducing the number of cancelled

jobs and improving green energy usage efficiency as compared to just utilizing the

immediately available green energy.

This thesis also investigates the importance of wide area networks to im-

prove the job performance in data center systems. We not only quantify the

performance benefits of leveraging the network to run more jobs, but also analyze

its energy impact. We compare the benefits of redesigning routers to be more

energy efficient to those obtained by leveraging locally available green energy as
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a complement to the brown energy supply. We design novel green energy aware

routing policies for wide area traffic and compare to state-of-the-art shortest path

routing algorithm. Our analysis indicate that using energy proportional routers

powered in part by green energy along with our new routing algorithm results in

significant improvement in per router energy efficiency with increased batch job

throughput due.

Previous work leverages geographically separated data centers by migrat-

ing workloads over WAN, leveraging demand and price differences. However, the

work neglects several key cost and energy contributions: the financial network,

and consequently, data migration costs, focusing solely on latency and quality of

service costs. Additionally, these studies assume a simpler, and ultimately in-

accurate, model for data center energy costs. This thesis explores tiered energy

pricing for data centers, network cost models and the costs of owning/leasing a

data center WAN. We develop algorithms for energy management, focusing on

1) performance maximization, and 2) cost minimization. With the performance

maximization algorithm, we demonstrate the ability to leverage green energy to

actually improve workload throughput, rather than simply reducing the opera-

tional costs. We further explore the viability of our new algorithms in the face of

emerging technologies in data center infrastructure, showing continued benefit of

both the performance maximization and the cost minimization algorithms in the

presence of energy proportional computing and communication.

7.1.2 Efficient Peak Power Shaving in Data Centers

Peak power shaving allows data center providers to keep their power demand

under a predetermined threshold. This operation may either directly correspond

to savings due to reduced peak power level or increase the computational capacity

without exceeding a given power budget. Recent studies show that data centers can

leverage the stored energy in batteries (or other energy storage devices) to achieve

lower peak power levels. Battery-based peak power shaving is extremely useful

since it does not interfere with workloads, resulting in no performance overhead.

The battery placement designs can vary across data centers. The most well-known
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designs are the traditional centralized design and the distributed design where the

total battery capacity is distributed across the servers or the racks.

This thesis first focuses on the distributed battery design and proposes a

novel distributed battery control design that has no performance impact, reduces

the peak power needs, and accurately estimates and maximizes the battery lifetime.

We demonstrate that models which do not take into account physical character-

istics of batteries can overestimate their lifetime and in turn, their savings. In

contrast, our design closely approximates the best centralized solution with an or-

der of magnitude smaller communication overhead. The thesis then demonstrates

an architecture where batteries provide only a fraction of the data center power,

exploiting nonlinear battery capacity properties to achieve longer battery life and

longer peak shaving durations. This architecture demonstrates that a centralized

UPS with partial discharge sufficiently reduces the cost so that double power con-

version losses are not a limiting factor, thus contradicting the recent trends in

warehouse-scale distributed UPS design. Our architecture almost doubles the bat-

tery lifetime with increased cost savings and significantly reduced communication

overhead due to central battery placement.

7.1.3 Data Centers in the Grid

Utilities have been using ancillary services to keep the electric grid safe and

operational. These services include regulation services, spinning and non-spinning

reserves, demand response, voluntary load reduction, etc. Utilities employ these

services mostly to eliminate the supply/demand imbalances. Traditionally, utilities

only allowed generator sources to participate in these ancillary services, such as

power plants, solar farms, wind turbines, etc. Recently, they have allowed non-

generator sources participation in these services as well. Data centers are good

candidates for participating in the ancillary services market due to their large

power consumption and flexibility that can be created with various energy/power

management mechanisms.

This thesis focuses on one such ancillary service for data centers, regulation

services. This is because the possible return of regulation providing is higher than



134

the other ancillary services, but it also requires more prompt response from data

centers to utility signals. On the other hand, the regulation participation contracts

are kept separate than the normal energy and peak power costs. Therefore, such a

participation by a data center should carefully be analyzed for savings. This thesis

develops a framework that explores the feasibility of data center participation in

the regulation services markets. It uses a battery-based design that can not only

help with providing ancillary services, but can also limit peak power costs with-

out any workload performance degradation. The proposed framework considers

energy costs, peak power costs, and regulation market dynamics simultaneously

and computes the regulation capacity that the data center should allocate for reg-

ulation service providing. Our results indicate that significant amount of savings

is possible with careful regulation capacity bidding.

7.2 Future Work Directions

7.2.1 Data Centers Causing Instabilities in the Grid

With the integration of highly distributed renewable energy sources and

large-scale smart buildings, the electricity grid becomes more prone to experience

instabilities due to unexpected fluctuations in energy consumption. As we show

in this thesis, data centers are good candidates to participate in the ancillary

services to help utilities maintain the operational environment of the electric grid.

This is because data centers are a type of smart building because of their innate

automation and the fact that their loads can be significantly controlled. Existing

studies focusing on this relation between data centers and the grid assume that

the data center can help the grid via ancillary services but do not consider how

data centers can lead to imbalances in the grid.

Due to their significant power demand, data centers may not only lead to

unstable regions in the grid circuit but also threaten other buildings in their sur-

roundings as well. To prevent this, data centers can tune their power management

techniques to account for possible instability events they may cause. However,

these instabilities also depend on the other buildings in the neighborhood. There-
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fore, a data center power control that considers grid instabilities requires two-way

communication between the data center and the utility. The utility constantly

monitors the power consumption of each building in the grid and based on these

values, it can anticipate an instability event along with its major cause. Then, it

has to respond to these instabilities and this can have severe impacts on a data

center, loss of power (leading to loss of service or violating SLAs), increasing op-

erational costs, etc. Thus, a data center can communicate with the utility to

minimize the instability events that it causes by adjusting its power consumption.

This adjustment may require a completely new power management mechanism or

a combination of existing methods.

7.2.2 Residential Energy Management

The focus of building energy consumption research has been on commer-

cial and industrial sectors, as they constitute a majority of energy consumption.

However, residential energy consumption constitutes 38% of the total energy con-

sumption in the US, with millions of individual customers [52]. The technolog-

ical improvements in the smart grid domain, such as smart metering, different

types of sensors (motion, occupancy), etc. enable residential energy consumption

to be monitored and tracked more effectively. This monitoring inevitably leads

to smarter control mechanism for the residential domain, including load shifting,

peak shaving, voltage regulation, energy arbitrage, etc. A good example of smart

residential control mechanisms is load shifting where the house demand is classified

as deferrable and non-deferrable, and the non-deferrable part is rescheduled based

on energy availability or cheaper energy prices [124].

Most of the control mechanisms mentioned above has a similar counterpart

in data center systems. Therefore, we can apply the data center power management

mechanisms to residential domain. However, residential houses require appropriate

automation techniques before these methods can be applied. For example, load

shifting with deferrable residential workloads needs the appliances in a house to be

automatically controlled. Similarly, peak power shaving and/or voltage regulation

with heating, ventilation and air conditioning (HVAC) units requires HVAC unit
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to be programmable and remotely controlled.

We will start our residential energy management research with cost-efficient

integration of energy storage devices into houses. Residential energy consumption

shows significant diurnal patterns that can be leveraged by energy storage devices.

Batteries can store energy from either local renewable sources or from the grid

when the electricity is cheaper, and provide it when the prices are higher. As

we show in chapter 5, battery performance and lifetime depends highly on how

these chemical devices are used. We initially develop a framework that considers

the physical properties of batteries, tests the feasibility of a battery deployment

and finds the best battery types and configurations for a particular residential

configuration [14]. Next step is to validate the outcomes our framework through

simulations that are informed by measurements, and show how much savings can

be obtained by using batteries in a residential house.

Other data center power management methods can also be mapped into the

residential domain, such as load shifting, peak power management, etc. Further-

more, single house analysis can be extended to a neighborhood with several houses,

where energy allocation becomes a more complex problem due to the heterogeneous

nature of different houses.

Chapter 7 contains material from ”Optimal Battery Configuration in a Res-

idential Home with Time-of-Use Pricing”, by Baris Aksanli and Tajana Rosing,

which appears in Proceedings of International Conference on Smart Grid Commu-

nications (SmartGridComm), 2013 [14]. The dissertation author was the primary

investigator and author of this paper.



Bibliography

[1] Caiso. http://oasis.caiso.com.

[2] Electric power monthly. http://www.eia.gov/electricity/monthly.

[3] Energy recommerce. http://www.mypvdata.com.

[4] National renewable energy laboratory. http://www.nrel.gov.

[5] National renewable energy laboratory: Solar resources.
http://www.nrel.gov/gis/solar.html.

[6] National renewable energy laboratory: Wind resource.
http://www.nrel.gov/rredc/wind resource.html.

[7] Nyiso. http://www.nyiso.com.

[8] California iso, retrieved from oasis. http://oasis.caiso.com, 2012.

[9] Dennis Abts, Michael R Marty, Philip M Wells, Peter Klausler, and Hong
Liu. Energy proportional datacenter networks. In ACM SIGARCH Computer
Architecture News, volume 38, pages 338–347. ACM, 2010.

[10] David Aikema, Rob Simmonds, and Hamidreza Zareipour. Data centres in
the ancillary services market. In Green Computing Conference (IGCC), 2012
International, pages 1–10. IEEE, 2012.

[11] B. Aksanli, J. Venkatesh, T. Rosing, and I. Monga. Renewable energy pre-
diction for improved utilization and efficiency in datacenters and backbone
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Santos-Boada, and Josep Solé-Pareta. Energy-aware rwa for wdm networks
with dual power sources. In Communications (ICC), 2011 IEEE Interna-
tional Conference on, pages 1–6. IEEE, 2011.

[111] Peng Rong and Massoud Pedram. An analytical model for predicting the
remaining battery capacity of lithium-ion batteries. Very Large Scale Inte-
gration (VLSI) Systems, IEEE Transactions on, 14(5):441–451, 2006.

[112] RUBiS. http://rubis.ow2.org.

[113] B Saha and K Goebel. Battery data set, nasa ames prognostics data reposi-
tory, 2007.

[114] Ismael Sanchez. Short-term prediction of wind energy production. Interna-
tional Journal of Forecasting, 22(1):43–56, 2006.

[115] Ananth Narayan Sankaranarayanan, Somsubhra Sharangi, and Alexandra
Fedorova. Global cost diversity aware dispatch algorithm for heterogeneous



147

data centers. In ACM SIGSOFT Software Engineering Notes, volume 36,
pages 289–294. ACM, 2011.

[116] SmartGauge. Peukert’s law equation and its explanation.
http://www.smartgauge.co.uk/peukert.html, 2011.

[117] Energy Star. Uninterruptible power supply energy efficiency values.
www.energystar.gov/index.cfm?c=specs.uninterruptible power supplies.

[118] Christopher Stewart and Kai Shen. Some joules are more precious than
others: Managing renewable energy in the datacenter. In Proceedings of the
Workshop on Power Aware Computing and Systems, 2009.

[119] Maciej Swierczynski, Remus Teodorescu, and Pedro Rodŕıguez Cortés. Life-
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