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Abstract Datacenters are one of the important global energy consumers and carbon
producers. However, their tight service level requirements prevent easy integration
with highly variable renewable energy sources. Short-term green energy prediction
can mitigate this variability. In this work, we first explore the existing short-term
solar and wind energy prediction methods, and then leverage prediction to allo-
cate and migrate workloads across geographically distributed datacenters to reduce
brown energy consumption costs. Unlike previous works, we also study the impact
of wide area networks (WAN) on datacenters, and investigate the use of green en-
ergy prediction to power WANs. Finally, we present two different studies connect-
ing datacenters and WANs: the case where datacenter operators own and manage
their WAN and the case where datacenters lease networks from WAN providers.
The results show that prediction enables up to 90% green energy utilization, a 3x
improvement over the existing methods. The cost minimization algorithm reduces
expenses by up to 16% and increases performance by 27% when migrating work-
loads across datacenters. Furthermore, the savings increase up to 30% compared
with no migration when servers are made energy-proportional. Finally, in the case
of leasing the WAN, energy proportionality in routers can in-crease the profit of
network providers by 1.6x.
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1 Introduction

As the demand for computing increases globally, the number of datacenters has
increased to meet the need. Recent studies indicate that the total power consumption
of all datacenters in the world has increased by 56% from 2005 to 2010 [25], with
associated global carbon emissions and an estimated annual growth rate of 11%.
Their energy needs are supplied mainly by non-renewable, or brown energy sources,
which are increasingly expensive as a result of availability and the introduction of
carbon emissions taxes [37]. Consequently, several datacenter operators have turned
to renewable energy to offset the energy cost.

The integration of renewable energy is complicated by the inherent variability
of its output. Output inconsistency typically leads to inefficiency due to lack of
availability or sub-optimal proportioning, which carries an associated financial cost.
These costs are mitigated in various ways: several datacenter owners, such as Emer-
son Networks, AISO.net, and Sonoma Mountain Data Center supplement their solar
arrays with utility power, and other datacenter owners, such as Baronyx Corpora-
tion and Other World Corporation, have been forced to augment their input power
with other forms of energy or through over-provisioning, respectively [19]. Previ-
ous investigation into the existing methods in datacenter green energy demonstrates
that variability results in low utilization, on average 54%, of the available renewable
energy [38].

A number of publications investigated the best strategy to manage renewable en-
ergy as a part of datacenter operation. The work in [19] reduces the peak datacenter
power with local renewable sources and power management algorithms. They in-
vestigate power capping, both of individual servers using dynamic frequency scal-
ing, and of server pools by reducing the number of machines utilized in each pool.
However, they have significant quality-of-service (QoS) violations when limiting
peak power. The study in [38] explores brown energy capping in datacenters, mo-
tivated by carbon limits in cities such as Kyoto. The authors leverage distributed
Internet services to schedule workloads based on electricity prices or green energy
availability. By defining workload distribution as a local optimization problem, the
authors demonstrated 35% lower brown energy consumption with a nominal (10%)
hit on service level agreement (SLA) violations. Similarly, [40] optimizes for energy
prices, to reduce overall energy consumption by distributing workloads to datacen-
ters with the lowest current energy prices. The insight is that renewable sources
such as solar energy are actually cheapest during the day, when workloads are at
the highest and utility sources are most expensive. Job migration is then modeled
as an optimization problem, and the authors identify a local minimum energy cost
among the available datacenters that still meets deadlines. The results demonstrate
that their algorithm performs within 5.7% of the optimum distribution, a signifi-
cant improvement over established greedy algorithms. The authors of [29] analyze
the opportunities and problems of using supply-following loads to match green en-
ergy availability. When green energy is insufficient, workloads are terminated or
suspended, restarting or resuming when availability returns. However, the results
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show very low green energy efficiency and a failure to meet required service-level
guarantees.

The above datacenter examples demonstrate the high cost and necessary precau-
tions needed to successfully use highly variable green energy, at the cost of efficient
utilization. However, an important means of reducing such variability remains over-
looked in datacenters: green energy prediction. In [6], we investigated the existing
methods in solar and wind energy prediction, developing prediction algorithms suit-
able for the datacenter domain. We implemented and evaluated our algorithms in a
case study, leveraging prediction to improve green energy utilization in datacenters
by 90%, a 3x improvement over the existing methods.

Previous publications concerned with energy costs primarily propose a follow
the sun cost-management strategy [19], [29], [32], [8], [33], [3] and generally ne-
glect the cost of wide area net-working (WAN) incurred by job migration between
datacenters. This assumption is reasonable for small datacenter networks that own
the WAN and incur low network costs. Consequently, related work has WANs used
to increase system performance via load balancing [51], [36], [34] or improve en-
ergy efficiency by migrating jobs [8], [33], [3]. However, these arguments are not
applicable for large WAN costs and datacenters that lease the network.

Datacenters lease the WAN by agreeing to pay a certain price for a fixed band-
width usage. However, as WAN usage increases, network owners [15], [5] offer
Bandwidth-on-Demand services, especially for r-datacenter applications [1]. Addi-
tionally, the WAN may take up to 40% of the total IT energy cost, and is expected
to continue growing as demand for distributed data processing continues to rise [17]
and as the server hardware becomes more energy efficient [11]. With the increasing
importance of managing energy consumption in the network, WAN providers can
charge users not just on the amount of bandwidth they use, but also the time of day
when they use it. For example, using the network in a peak hour may be more ex-
pensive than when it is idle, reflecting electricity market prices [50]. Additionally,
with the introduction of carbon taxes, WAN providers can also vary energy prices
depending on the energy source. Consequently, datacenters might be open to longer,
less expensive paths on the network. For example, a datacenter may request a path
that uses green energy to avoid paying extra carbon emission taxes, or a less-utilized
path to avoid extra utilization costs. Our work uniquely considers both the costs of
geographically distributed datacenters and the profits of the network provider. We
analyze different network cost functions, along with the analysis of new technolo-
gies that would allow using more energy proportional routers in the future.

In this chapter, we first evaluate the advantages of short-term green energy pre-
diction on the datacenter scale. We explore the existing in short-term solar and wind
energy prediction methods, applying each to real power traces to analyze the ac-
curacy. Using green energy prediction in local renewable energy sites and varying
brown energy prices, we propose an online job migration algorithm among datacen-
ters to reduce the overall cost of energy. While such job migration has been studied
extensively before, we uniquely consider network constraints such as availability,
link capacity and transfer delay at the same time. By including these constraints
in our framework, we model the impact of the network and create a more holis-
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tic multi-datacenter model. Additionally, we investigate the impact of two aspects
of datacenter operation typically overlooked in previous work: tiered power pric-
ing, which penalize the datacenter for exceeding certain level of power restrictions
with as much as 5x higher energy costs [28], and WAN leasing costs/cost models,
which leverage energy-aware routing. Both play a significant impact in datacenter
job scheduling, reflected in our results.

We also analyze the impact of new technologies in datacenter WAN, such as
energy-proportional routing, green energy aware routing, and analyze leasing vs.
owning the WAN. Our work is the first analyzing different WAN properties in a job
migration algorithm involving both mixed energy sources and prediction. We ob-
serve that green energy prediction helps significantly increase the efficiency of en-
ergy usage and enables network provisioning in a more cost effective way. Similarly,
we show that using a WAN to transfer workloads between datacenters increases the
performance of batch jobs up to 27% with our performance maximization algo-
rithm, and decreases the cost of energy by 30% compared to no data migration with
our cost minimization algorithm. Unlike previous works, we show the potential for
green energy to go beyond simply cost reduction to improving performance as well.
Our analysis of leasing WAN shows that network providers can increase profits by
charging datacenter owners by bandwidth, but datacenters can still benefit by us-
ing dynamic routing policies to decrease their energy costs. Furthermore, as servers
and routers become more energy proportional, we demonstrate increases in both
datacenter cost savings and network provider profits.

2 Green Energy Prediction and Datacenters

2.1 Solar energy prediction

Solar energy algorithms exploit the daily pattern of solar irradiance, a primary fac-
tor in determining power output. The simplest algorithms are based on exponen-
tial weighted moving average (EWMA) [23]. Several extensions to the EWMA al-
gorithm have been proposed, incorporating multiple days’ predictions to derive a
more representative average value in variable weather [12], [43]. Extended EWMA,
eEWMA, [12] uses previous days’ measurements to account for the error of each
slot. The weather-conditioned moving average (WCMA) algorithm [43] takes into
account the actual values from previous D days and the current day’s previous N
measurement slots. It averages the values for the predicted slot from previous days
and scales it with a GAP factor, which represents the correlation of the current day
against the previous days:

E(d,n+1) = α.E(d,n)+GAPk.(1−α).MD(d,n+1) (1)

where MD(d,n+ 1) represents the median of previous days’ values, and GAPk
represents the scaling of the current day against the previous days. The inclusion
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of both patterns from multiple previous days as well as the use of values from the
current day itself help WCMA provide a better pattern for the performance of solar
panels. The three algorithms discussed above are tested using real solar power traces
from the UCSD Microgrid. Absolute mean error is calculated against the measured
data, shown in Table 1. The optimal parameter values have been determined empir-
ically for each algorithm. The results demonstrate the importance of incorporating
recent data to reduce error. The WCMA algorithm provides a significant improve-
ment over EWMA and extended EWMA algorithms due to its highly adaptive na-
ture, and its effective use of the GAP factor to scale future intervals based on the
deviation from previous days.

Table 1 Solar Power Prediction Algorithm Comparison

Algorithm Absolute Mean Error (%)
Consistent Conditions Inconsistent Conditions Severely Inconsistent Conditions

EWMA 12.7 32.5 46.8
eEWMA 4.9 23.4 58.7
WCMA 4 9.6 18.3

2.2 Wind energy prediction

Wind prediction algorithms may use physical or statistical models. Physical models
use spatial equations for wind speed at the locations of each turbine, and then predict
wind power with theoretical or measured power curves [10]. Statistical models ag-
gregate measured or forecasted meteorological variables and develop a relationship
between the variables and the output power.

Several data-mining models have been used to predict the wind speed based on
the meteorological variables collected from SCADA data acquisition units at each
wind turbine [30]. The heuristics developed for wind speed prediction are then ap-
plied to wind power prediction, demonstrating 19.8% mean error for 10-minute-
ahead prediction. Nearest-neighbor tables (k-NN) algorithm reduces this error to
4.23% by mapping wind speed to wind power [31]. However, when forecasted wind
speed is used, the power prediction error grows to 27.83%.

Power curves, which describe the output power of wind turbines mapped against
wind speed, form the basis of many predictors [10], [16], [30]. The work presented
in [46] analyzes power curves and demonstrates their inaccuracy. Instead, the pa-
per uses a dynamic combination of several statistical predictors, most notably the
Auto-regressive Moving Average (ARMA) model with past wind power, speed and
direction as inputs. The results show a 50% reduction in power prediction error, with
ability to reduce error levels between prediction horizons of 2 to 45 hours.

The above algorithms pose difficulties in implementation: unlike the solar pre-
diction algorithms, which only require past power data, the wind prediction algo-
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rithms require various types of high-overhead input. Instead, we dramatically lower
the overhead with our new wind energy predictor: we construct weighted nearest-
neighbor tables based on the two most correlated variables contributing to wind
energy output: the wind speed and direction [6]. The weighted tables show prefer-
ence to the most recent results and allow the algorithm to adapt to gradual changes,
while the power curves, based on both wind speed and direction, provide versatility.
The algorithm to add a new entry to the table is in equation 2, where Pnew(v,d) is the
new power curve table entry for a given wind velocity v and direction d, Pold(v,d)
is the existing value, and Pobs(v,d, t) is the observed value at time t. Future interval
prediction is determined by equation 3.

Pnew(v,d) = α.Pobs(v,d, t)+(1−α).Pold(v,d) (2)

Ppred(v,d, t + k) = P(v(t + k),d(t + k)) (3)

The algorithms described above have been tested using real power data from a
Lake Benton, MN wind farm, and the meteorological data was provided by pub-
lished reports from the National Renewable Energy Laboratory (NREL). For better
comparison, we have all the predictors use the same inputs: wind speed and direc-
tion. We also include the commonly used baseline - persistence prediction, which
assumes that the future interval is the same as the current one.

Persistence has a high error at 137%, affected by the high variability of the wind
farm power. The data-mining algorithm’s error is at 84%, despite using the two
most-correlated variables. This can be attributed to the unreliability of using fore-
casted wind speed for a region as opposed to measured wind speeds at each turbine
level. The ARMA model performed better, at 63% error, but the accuracy is ham-
pered by the limited input data available. The wind-speed-based nearest-neighbor
predictor, the kNN algorithm, performed the best, with an error of 48%, which can
be attributed to the higher variance of the Lake Benton wind farm than the wind
farm in the original work. Our custom nearest-neighbor predictor, which uses both
wind speed and direction to develop a relationship with wind farm energy output,
has only 21% mean error as it is more adaptive to recent conditions and as a result
is 25% better than the next-best algorithm.

Table 2 Wind Power Prediction Algorithm Comparison

Algorithm Mean Error (%) Std. Dev. (%)
Persistence 137 340

Data-mining [30] 84 101
ARMA Model [46] 63 12
kNN Predictor [29] 48 32

Our NN predictor [6] 21 17
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3 Datacenter and WAN Models

Multiple datacenters increase the capacity, redundancy, and parallelism of compu-
tation, but a fast, reliable inter-datacenter network is essential to maintain perfor-
mance. Since large datacenters consume a lot of power, they usually undergo a tiered
power pricing. The tier level depends on the overprovisioned input power to avoid
high prices in-peak periods [28]. This can be seen as a power budget. In this work,
we also study the effects of different power tier levels and how these levels can affect
the job migration decisions and network utilization. To avoid power tier violations,
datacenters may deploy several techniques: CPU capping, virtual CPU management
and dynamic voltage and frequency scaling (DVFS), all of which incur performance
overhead. If the power goes beyond the tier level, it is charged at higher rates, which
can be 3x10x higher than the base cost [40], [3]. One way to remedy this problem
is to leverage a network of globally distributed datacenters along with renewable
energy prediction for peak power reduction. In the next subsections, we present our
datacenter and backbone network models, which we then use in our frameworks for
managing renewable-powered globally distributed datacenters and related WAN.

3.1 Backbone network model

Our network topology is a subset of the LBNL ESnet [2], containing 5 datacenters
and 12 routers in total, distributed over the USA (figure 1), where each link has a
predefined capacity from 10Gbps to 100Gbps. A portion of this capacity is normally
reserved for background traffic (10% in our experiments). When calculating the
network energy cost, we consider the router power and add a fixed offset for the link
power consumption. The power consumption of the router can be estimated using a
simple linear model [44] based on bandwidth utilization.

Current router’s idle power is very close to active power. In our previous work, we
investigate methods for designing more energy-proportional routers and construct

Fig. 1 Network Topology; squares=datacenters, circles = routers
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representative power proportionality models [2]. Figure 2 reflects our findings: the
non-proportional curve represents an actual state-of-the-art router [47], and the step
function depicts shutting down idle line cards. Smooth proportionality is a linear
correlation of the step function, while ideal proportionality reflects an idle router
with no power cost.

In our model, we account for the network transfer delay as an increase in the
total response time of a job. The state-of-the-art is Dijkstras Shortest Path Routing
(SPR). For comparison, we use our own Green Energy Aware Routing algorithm
(GEAR), which minimizes the amount of brown energy used [2]. GEAR is a power-
and performance-constrained dynamic routing algorithm that performs online path
computation and constructs virtual circuits [21]. We use different price models to
calculate the network lease costs including, fixed bandwidth (BW) cost, where cost
does not increase with utilization; and linear BW cost increase, which assumes that
cost of operation and revenue are proportional to usage. These two options represent
the different models that network operators might incorporate in their service level
agreements (SLAs). In the results section, we show how the total cost is affected by
these cost schemes.

3.2 Datacenter model

In order to represent a multi-datacenter network more accurately, each datacenter
is modeled separately based on actual measurements. Each includes computation
models to represent servers and how they interact with each other and the work-
loads they execute. For each datacenter in Figure 1, we implement a detailed model
designed to faithfully represent a fully populated set of datacenter containers. Each
container has 8 racks populated with 250W Intel Xeon Quad core machines [24].
We create and run multiple virtual machines using a Xen VM [18], and measure run-
time characteristics such as CPU, memory, and power consumption. We use these
measurements to construct our datacenter model for simulation.

Fig. 2 Router energy proportionality schemes
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The workload is divided into two representative categories: service and batch
jobs, both of which are run on our servers. We model the former with RUBiS [45]
and the latter with MapReduce [22]. Short-running service jobs have tight latency
constraints, and the longer-running batch jobs represent the background tasks (i.e.
indexing results or correlating data) and need to maintain a certain level of through-
put. Their inter-arrival time distributions are modeled with a lognormal distribution
based on measured values [6]. We model service and batch job arrival to the system
independently, and place them in separate local job queues. Each MapReduce job
consists of multiple tasks and multiple tasks are dispatched from an active job and
put in different servers.

Servers run the jobs assigned to them, and prioritize service jobs over batch jobs
because of their response time requirements. These requirements are indicators for
the quality of service (QoS) a datacenter has to maintain to ensure its profitability.
We also measure the interference of running different types of jobs simultaneously
on the same server. Since these jobs have different resource requirements, the in-
terference of one on the other might lead to performance degradation for either
job. In our experiments, we observe that service requests have negligible impact on
MapReduce jobs, but MapReduce jobs are detrimental to both service jobs and other
MapReduce jobs. In order to meet QoS of service jobs and maintain the through-
put hit of batch jobs to fewer than 10%, we limit the total number of simultaneous
MapReduce jobs on a single server. The baseline of this study is established in [6].

We calculate the server power consumption with a linear CPU-utilization based
equation [13] and scale the aggregate server power cost using power usage effective-
ness (PUE) metric, which is set to 1.15 [20], to find the total power of the datacenter
as a function of overheads related to cooling, powering, and other loads [7]. The de-
viation between our simulations and measurements is 3% for power consumption,
6% for service job QoS and 8% for MapReduce job performance.

4 Relocating Jobs to Improve Efficiency

4.1 Background

Multi-datacenter networks offer advantages for improving both performance and en-
ergy. As each datacenter is in a different location, its peak hours and energy prices
vary. A datacenter with high electricity prices may need to migrate work to an-
other datacenter with a lower price, incurring some performance and power cost
due to data migration. The live migration of virtual machines over high speed WAN
has made this idea feasible, as it offers fast transmission with limited performance
hit [14]. However, the migration costs through WAN need to be considered. For
example, WAN may be leased, with lease costs quantified per increment of data
transferred, and thus might be too high to justify frequent migration of jobs be-
tween datacenters [4]. Furthermore, datacenters often undergo a tiered power pric-
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ing scheme. The energy under a specific level may cost a fixed amount and this
fixed price changes depending on the location, so it is beneficial to run jobs in a
datacenter at a lower fixed price. Data migration should not increase the total power
consumption to more than the amount specified by the specific tier level. Otherwise,
extra power costs are calculated using higher prices, generally much higher than the
fixed price.

Table 3 Summary and comparison of the related work
Buchbinder 2011 [40] Qureshi 2009 [4] Mohsenian-Rad 2010 [39] Rao 2010 [33]

Goal Minimize
electricity bill

Minimize
electricity bill

Minimize carbon
footprint & job latency

Minimize
electricity bill

How Move jobs where
energy is cheaper

Move jobs where
energy is cheaper

Migrate jobs to different
locations depending on the goal

Move jobs where
energy is cheaper

Workload No specification No specification
Service requests

only
Service requests

only
Perf.

Constraints X X Latency of service requests
Latency of

service requests
Network

Cost Model
Fixed cost

per bandwidth
Fixed cost

per bandwidth X X

Routing X Distance based routing X X
Green
Energy X X

Local green energy,
carbon tax X

Network
Delay X X

Liu 2011 [51] Le 2010 [26] Aksanli 2011 - 12 [6], [2]

Goal Minimize brown
energy use

Minimize the total
cost of energy

Maximize batch job performance &
Minimize brown energy use

How Move jobs to
local green energy

Forward jobs
to datacenters

Move jobs where
utilization is low

Workload No specification
Different job types

(not explicitly specified) Mix of service and batch jobs

Perf.
Constraints X SLA of service requests

Latency of service requests
and throughput of batch jobs

Network
Cost Model X X X

Routing X X Static routing vs. energy aware
Green
Energy Local Green Energy

Grid green energy
carbon tax

Local green energy
with prediction

Network
Delay X X

Table 3 summarizes and compares the key state of the art contributions for man-
aging distributed datacenters in order to minimize an objective function, e.g. the
overall cost of energy. Buchbinder et al. [40], Qureshi et al. [4] and Rao et al. [33]
relocate jobs to where the energy is cheaper to minimize the energy cost. They do
not model different energy types; perform detailed workload performance analysis
and different routing options for both WAN providers and datacenters. Le et al. [26]
solves a similar problem including green energy in their model but they assume a
centralized dispatcher and do not analyze network latency or cost. Liu et al. [51]
and Mohsenian-Rad et al. [39] minimize the brown energy usage or carbon foot-
print. They either do not consider the variability of green energy or do not have
a network model. Aksanli et al. [2] solve a load-balancing problem by modeling
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network properties, but do not consider energy costs. As we can see from this anal-
ysis, previous studies do not consider all the important aspects of multi-datacenter
networks simultaneously in their models. As we show in this chapter, this can lead
to overestimated cost savings or overlooked performance implications due to not
considering both the requirements of different types of applications and WAN char-
acteristics.

In this chapter, we generalize the problem of migrating jobs among datacen-
ters to minimize the cost of energy and analyze the effects of using WAN for the
transfer. Our design considers both brown and locally generated green energy, and
variable energy market pricing. We simultaneously investigate energy proportion-
ality of routers and servers and tiered energy pricing, which are at best considered
individually in previous works. Additionally, we account for the latency and cost of
the WAN, the costs of leasing or owing the WAN, and the impact of different rout-
ing algorithms. Our work is also the first showing the potential of green energy to
improve performance in addition to addressing environmental concerns or reducing
energy costs.

4.2 Cost minimization and performance maximization algorithms

We now describe our cost minimization algorithm, which considers the properties
of both the datacenters and the backbone network simultaneously. Our algorithm
performs in discrete time steps of 30 minutes. Each datacenter has its own workload
distributions that represent different types of applications in a datacenter environ-
ment. The properties of these distributions are determined by applying statistical
analysis on real datacenter traces (section 3.2 outlines the distributions and section
5 presents the real workloads we use).

The goal of our algorithm is to determine which workloads we need to transfer
among different datacenters during each interval to minimize the energy cost. The
current algorithm assumes a centralized implementation for control for job migra-
tion decisions, though each datacenter generates its own workloads. We assume that
green energy is generated and used locally, and is prioritized over brown energy to
minimize the total cost, as green energy is a fixed, amortized cost. Thus, we trans-
fer workloads to datacenters which have available capacity and extra green energy.
Because of datacenters’ energy pricing scheme, energy in a particular location may
have a fixed, low cost up to a specified amount of peak power capacity. After this
level, energy becomes much more expensive. Therefore, our goals include maintain-
ing utilization in datacenters such that we do not increase the power consumption
further than the power tier levels.

Figure 3 illustrates our cost minimization algorithm. Each interval begins with
the calculation of the amount of energy required by each datacenter, incorporating
the previous and incoming load rates. The former represents the active jobs at a
given time, and the latter is determined by the statistical distributions of real ap-
plications. We estimate the green energy availability using prediction (section 2),
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obtain the current brown energy pricing, and check power restrictions. Based on
the energy need and green energy availability, each datacenter determines if it has
surplus green energy. The key assumption is that if brown energy has already been
within the lower price region, it makes sense to use it for running jobs, while green
energy can be used to both reduce power consumption and to run extra jobs which
otherwise might not be scheduled.

Then workloads are transferred from the datacenters with the highest need to
those with the highest available green energy. The workload that can be transferred
from a datacenter is determined by what is migrateable, while the workload that can
be transferred to a particular datacenter is limited by the amount of additional green
energy and WAN availability. This process continues until every datacenter is ana-
lyzed. If there are workloads remaining in any datacenters at the end, the algorithm
focuses on datacenters with the cheapest brown energy cost. It moves workloads
from the datacenters with higher energy costs to those with the cheapest brown en-
ergy. The amount of data that can be transferred is limited by receiving datacenter’s
peak power constraints and tiered power levels. If there are still unscheduled jobs
remaining at the end of this process, they are scheduled in datacenters where the
market electricity prices are the lowest.

We can also modify this iterative part of our algorithm to maximize the perfor-
mance of the workloads instead of minimizing the total cost of energy. In this case,
we transfer the jobs that are actively waiting in the execution queue to datacenters
with excess green energy availability. The iterative process of the cost minimization
algorithm is also valid here, but the migration depends only on green energy avail-

Fig. 3 High-level overview of the algorithm
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ability, i.e. jobs are not migrated to datacenters with cheaper brown energy prices
because extra brown energy would be required for these additional jobs. We denote
this process as performance maximization as it runs additional jobs with surplus
green energy.

At the end of this iterative process, we obtain a matrix representing workload
transfers among datacenters. This transfer matrix is then provided to the networking
algorithm, which calculates the paths to be used and the amount of bandwidth that
needed by each selected path. In our study, we analyze different path selection al-
gorithms, such as shortest path routing (SPR), green energy aware routing (GEAR),
and network lease based routing. A detailed description of SPR and GEAR imple-
mentations is in [2]. Network lease based routing selects the path with the least
per-bandwidth price in the case the WAN is leased. In our results, we analyze dif-
ferent network cost functions as well. If a selected path in the transfer matrix is
unavailable due to network limitations, the job is rescheduled with a limitation on
target datacenters.

Our algorithm is similar to those proposed in previous studies, but it minimizes
the cost of energy more comprehensively. This is because it has a more com-
plete view of datacenter energy costs, modeling both fixed energy costs under fixed
amounts and variable, higher tier energy prices. This helps us to calculate the energy
cost savings in a more accurate way. Secondly, it considers the side effects of the
WAN, analyzing both the performance implications of different routing algorithms
and additional leasing costs if necessary. This is key when multi-datacenter systems
lease the WAN. Job migration may not be feasible for those systems if the cost of
leasing the network is too high. Third, the green energy availability information is
enhanced by using prediction which can provide information 30-minute ahead and
thus help us allocate the workloads across multiple datacenters in a more effective
manner. Last but not the least; our algorithm is flexible in the sense that it can per-
form for both cost minimization and performance maximization purposes. Also, we
are the first to show that green energy can be used to maximize the performance
rather than just minimizing the total cost of energy of geographically distributed
multi-datacenter systems.

5 Methodology

We use an event-based simulation framework to analyze and compare the results
of our solution to the problems described above. The inputs to our simulator are
derived from measurements performed on our datacenter container (section 3.2) and
data obtained from industrial deployments. This section discusses how we construct
the simulation environment, including the datacenter loads, simulation parameters,
green energy availability, and brown energy prices.
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5.1 Datacenter load

We analyze real datacenter workload traces to accurately capture the characteristics.
We use a year of traffic data from Google Orkut and Search, reported in the Google
Transparency Report [20], to represent latency-centric service jobs and reproduce
the waveform in Figure 3 from MapReduce [49] workloads to model throughput-
oriented batch jobs. In Figure 4, we show a sample workload combination of these
jobs. We use this data to find the parameters of the statistical workload models fed
into our simulator (section 3.2), listed in Table 4. We also only migrate batch jobs
due to the tight response time constraints of service jobs.

Fig. 4 Sample datacenter load ratio with different job types

5.2 Green energy availability

In Figure 5, we show a subset of the green energy availability measurements. Solar
data is gathered from the UCSD Microgrid and wind data is obtained from a wind
farm in Lake Benton, MN, made available by the National Renewable Energy Labo-
ratory. The representative outputs for the other various locations in our experiments
(San Francisco, Chicago, etc.) are obtained by scaling and time-shifting the mea-
sured results from our available sources to published average availability data for
the target areas [41], [42].

5.3 Brown and green energy costs

Datacenters contract power from utilities to obtain competitive prices for their ex-
pected loads. This can be seen as a tiered pricing scheme. If a datacenter exceeds the
tiered amount in an interval, it is relegated to higher prices, sometimes even market
prices. We obtain sample fixed pricing for the midwest, the east and the west coasts
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Fig. 5 Solar and wind energy availability

[27]. Since market prices change over time, we use the California ISO [9] whole-
sale pricing database to obtain brown energy prices for various California locations,
and time-shift and scale those values for the other locations based on published av-
erages [48]. Figure 6 shows daily pricing values for brown energy in comparison
to fixed costs. The straight lines correspond to fix, under-tier prices and the others
show samples of variable, market prices which can be used to charge datacenters
that go over their tiered amounts.

Fig. 6 Daily brown and amortized green energy cost (¢/kWh)

Local green energy costs are typically amortized over the lifetime of an installa-
tion, incorporating the capital and the maintenance costs. This is represented by a
fixed offset to our cost model. We use data from [38] to obtain the capital and oper-
ational expenses of several solar and wind farms, amortized over their lifetimes, as
representative solar and wind costs per interval.



16 Baris Aksanli, Jagannathan Venkatesh, Inder Monga and Tajana Simunic Rosing

We list our simulation parameters in Table 4 and present our network topology
and green energy locations in Table 5. Green energy is scaled to 80% of peak data-
center and router energy needs.

Table 4 Network parameters used in simulation

Parameter Value Parameter Value
Mean Web Request Inter-arrival time per client 5 ms Average # tasks per MR job 70

Mean Web Request Service time 20 ms Avg. throughput level per MR job 0.35
Service Request SLA 150 ms Servers in a datacenter 1000

Mean MR Job Inter-arrival time 2 min Number of datacenters 5
Mean MR Task Service time 4 min Number of routers 12

Idle Server Power 212.5 W Idle Router Power 1381 W
Peak Server Power 312.5 W Peak Router Power 1781 W
Single link capacity 100 Gbps Average batch VM size 8 GB

Table 5 Available renewable energy type for each location

Location Node Type Location Node Type
Chicago DC + router Wind New York DC + router Wind
Atlanta DC + router Solar San Diego DC + router Solar
Kansas Router - El Paso Router Solar

Nashville Router Wind Cleveland Router Wind
San Francisco DC + router Solar & Wind Houston Router Solar

Denver Router - Washington DC Router -

6 Results

This section presents the simulation results for the base case of no migration, and the
workload migration policies for performance maximization and cost minimization.

6.1 No migration

In this scenario, each datacenter runs its own workload using only locally available
green energy. This is the baseline for our comparisons, as it represents the nominal
brown energy need and quantifies the performance of batch jobs without the over-
head of migration. A power tier level accounts for 85% of datacenter’s power needs,
while the rest, when needed, is provided at variable market prices. We allow ser-
vice and batch jobs to run on the same servers while ensuring that they meet quality
of service (QoS) requirements (service job QoSratio < 1), and find that the aver-
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age MapReduce job completion time is 22.8 min. Only 59% of the total green en-
ergy supply is consumed by datacenters locally, motivating the distributed policies
described previously. The next two sections quantify the impacts of performance
maximization and cost minimization policies.

6.2 Performance maximization using migration

In this algorithm, we leverage migration to complete more batch jobs than previ-
ously possible. Datacenters with high utilization transfer jobs to locations with low
utilization or where there is excess green energy, effectively completing more work
in the same amount of time.

Most MapReduce jobs (representative of batch jobs) complete within 30 min [6],
which becomes the threshold for both the green energy prediction interval and the
interval for checking datacenter utilization. At each interval, the controller retrieves
the resource usage and green energy profiles of each datacenter and optimizes the
system by initiating extra workloads in datacenters with green energy availability
while still meeting under-tier power constraints. It calculates the available transfer
slots between each end-point pair, and selects the tasks to be executed remotely
from each datacenter’s active batch jobs. Once the tasks finish execution in a remote
datacenter, the results are sent back to the original center. The key to this policy is
that waiting tasks are migrated, as opposed to active tasks, resulting in more jobs
executed overall (section 4).

Our simulation results show that the average completion time of MapReduce
jobs is 16.8 min, 27% faster than the baseline, with no performance hit for service
requests. Furthermore, since we are leveraging all available green energy for extra
workloads, the percentage of green energy used is 85%, significantly higher than
the baseline.

Figure 7 reports the total cost normalized against the no migration case with dif-
ferent tier levels specified as a percentage of the datacenter’s peak power capacities
and network lease options. Without tiered energy pricing (where all the consump-
tion is charged using market prices), we demonstrate a 25% increase in the total
energy cost. However, when we do include tiered energy pricing, we see more ac-
curate results, with a cost increase of only 12% for a 70% level, and a total cost
increase of 6% for an 85% level.

Since the WAN may not be owned by a datacenter, we also analyze the case
where the network is leased. In this case, a bandwidth-dependent cost is incurred.
Figure 7 shows the results of this analysis over different cost functions that net-work
providers use. For linear increase (section 3.2), we see that the network cost can be
up to 40% of the datacenter cost. This ratio increases with tiered energy pricing from
< 1% to 25%, since this pricing scheme reduces datacenter power consumption and
magnify the network cost.

For this policy, we also calculate the profit of network providers based on the
energy costs associated with the WAN. Table 6 shows the profit normalized against
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Fig. 7 Normalized performance maximization algorithm costs for datacenters and network

fixed bandwidth cost and non-energy proportional routers. Energy proportionality of
routers enables up to 37% more profit for network providers with ideal power curves
and 20% with step proportionality WAN router power curve. We also observe that
different power tier levels do not affect the savings of the network provider because
the migration is based only on green energy availability in other locations.

Table 6 Profit of network providers for performance maximization with different router energy
proportionality schemes

Network Cost Function Profit
Non-prop Step Smooth Ideal

Fixed Cost 1x 1.2x 1.2x 1.4x
Linear Increase 4.5x 6.7x 6.8x 6.9x

6.3 Cost minimization using migration

The main goal of the cost minimization policy is to maximize green energy usage
and then leverage as much as possible inexpensive brown energy. Also, we show
the impact of energy proportional servers to quantify the policy’s benefit in future
systems.

Unlike performance maximization, cost minimization does not transfer extra jobs,
and thus, does not obtain any performance improvement. Furthermore, the overhead
of network transfer decreases the performance of MapReduce jobs. We observe 23.8
min average job completion time for MapReduce jobs, 4.5% worse than the no
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migration case with green energy efficiency of 66%, a 7% improvement over no
migration, with no performance overhead for service jobs.

In Figure 8, we show the impact of energy proportionality and tiered energy
pricing to our model, normalized against the no migration case. We observe a 10%
decrease in total cost when tiered energy pricing is incorporated into the model.
Cost reduction grows to 15% when energy proportional servers are used. This shows
the potential of cost minimization method in the future when servers become more
energy proportional.

Fig. 8 Normalized cost minimization algorithm costs with different power tier levels and energy
proportionality

We also analyze how the total cost of datacenters changes if the network is leased.
Unlike the performance maximization policy, we prevent migration if the cost is
higher than the potential savings. Figure 9 shows the results of this analysis, and ad-
ditionally incorporates server energy proportionality. We use the same coefficients
for the network cost functions as in the previous case. Neglecting the cost of net-
work leasing can result in up to 15% error. The network costs are up to 17% of
the datacenter cost, which is significantly less than results we saw with the per-
formance maximization, where it is up to 40%. This is mainly because this policy
sacrifices a potential increase in performance if the cost of a data transfer outweighs
the cost savings. Figure 9 also shows how bandwidth utilization changes with differ-
ent power tier levels and network lease options. First, as network costs become more
dominant, bandwidth utilization decreases due to a growth in unfeasible data trans-
fers. As a result, if the lease cost is not modeled, the average band-width utilization
has up to 60% error. Introducing tiered power levels decreases network utilization
because they create a more balanced energy cost scheme across datacenters. Table 7



20 Baris Aksanli, Jagannathan Venkatesh, Inder Monga and Tajana Simunic Rosing

shows the normalized profit of the network providers. The cost minimization policy
inherently limits network profits, since it only allows financially profitable transfers.

Fig. 9 Normalized total cost and utilization for cost min. with different power tier levels and net-
work lease options using energy proportional servers

Table 7 Profit of network providers for cost. min. with different router energy prop. and with
server energy prop.

Network Cost Function
Profit

Non-prop Step Smooth Ideal
85% 70% 85% 70% 85% 70% 85% 70%

Fixed Cost 1x 1.2x 1.2x 1.4x 1.2x 1.4x 1.4x 1.6x
Linear Increase 2.2x 2.45x 3.26x 3.6x 3.4x 3.8x 3.5x 3.9x

6.4 Cost minimization using a green energy aware network

We now investigate the cost minimization policy incorporating green energy aware
routing (GEAR). Instead of simply selecting the shortest path between two datacen-
ters, GEAR chooses the path with the least brown energy need. As we only change
the network routing policy for this scenario, datacenter cost values are similar com-
pared to the previous case. An energy-aware network provides several benefits. Re-
ducing brown energy costs of the WAN improves overall networking costs for both
providers and datacenters. It also provides a viable alternative for datacenters, opting
for cheaper green energy at the cost of GEAR’s slightly increased network latency.
Also, as network elements become more energy proportional in the future, we ex-
pect the energy savings obtained by GEAR to be more prominent.
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Figure 10 compares SPR and GEAR in terms of router energy consumption and
network provider profit, using fixed cost per bandwidth. GEAR with energy pro-
portionality increases profits by 50% compared to the base case (non-proportional,
SPR), and provides profit for all proportionality schemes. Without energy propor-
tional routers, GEARs brown energy consumption is slightly lower than SPR (62%
vs. 65% of SPR) with a 3% increase in network delay as a result of occasionally
choosing a longer path, though with negligible overall effect on the job completion
time.

Fig. 10 Comparison between SPR and GEAR energy consumption of routers and network profit
with different energy proportionality schemes

7 Discussion

In this section, we first recap the most important results of the above case studies.
We then compare our methodology with previous work, and explore the lessons
learned with our analysis. Table 8 shows the comparison among the methods dis-
cussed in the previous sections. Our performance maximization algorithm uniquely
leverages both workload and green energy differences across distributed datacen-
ters to maximize both throughput (27% improvement) and green energy efficiency
(44% increase). We also demonstrate that the same variations in workloads and
green energy can be leveraged for cost minimization, where our algorithm utilizes
tiered energy pricing, and both migration and green energy aware routing. The re-
sults show up to 19% reduction in energy cost and 7% improvement in green energy
usage while meeting QoS of latency sensitive applications, and increasing job com-
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pletion time of batch jobs by only 4%. Additionally, the comprehensive and novel
aspects of our model provide a level of realistic simulation that previous models do
not exhibit to make a complete analysis.

Table 8 Comparison of different policies with respect to total cost, MapReduce performance and
green energy usage

Non-Energy Proportional Servers Energy Proportional Servers

Policy MapReduce Job
Completion Time

Power
Tier

Total
Energy Cost

Green Energy
Usage

Power
Tier

Total
Energy Cost

Green Energy
Usage

No
Mig. 22.8 min

- 1.22x
59%

- 0.99x
47%85% 1x 85% 0.85x

70% 1.10x 70% 0.92x

Perf.
Max. 16.8 min

- 1.25x
85%

- 1.03x
80%85% 1.06x 85% 1x

70% 1.12x 70% 1.05x

Cost
Min. 23.8 min

- 1.03x
66%

- 0.86x
60%85% 0.92x 85% 0.75x

70% 0.95x 70% 0.79x

Green Energy Prediction and Workload Migration Green energy prediction
mitigates the inefficiency caused by the variability of renewable sources. We fur-
ther improve inefficiency by matching our prediction horizon to the long-running
batch jobs. The result is better decision making, and as the results indicate, up to
26% improvement in green energy efficiency. Previous work [39], [27] only uses
green energy as a method to reduce carbon footprint, and deploy workload migra-
tion to improve performance considering load balancing and resource availability
[51]. In contrast, we show green energy can also be used to improve performance.
We initially propose the idea in [6] for a single datacenter, but now leverage predic-
tion and availability across a network to run extra batch jobs in remote locations.
We obtain 27% better batch job completion time compared to no migration with
only a 6%-12% increase in total energy cost. Our work is the first to demonstrate
the potential of green energy not only as a resource for environmental concerns,
but also a means of performance improvement. While cost minimization precludes
all potential migrations due to network costs, it still has 7% improvement in green
energy usage.

WAN Ownership and Leasing Related work assumes that WAN is part of the
datacenter network, or applies static bandwidth costs. However, the WAN may be
leased or owned, typically with bandwidth-dependent pricing. Our work is the first
to accurately consider such costs. Our first observation is that higher network cost
reduces the bandwidth utilization. Secondly, despite increasing network costs with
larger cost functions, datacenters can obtain 2-19% cost savings by checking the
financial feasibility of each potential migration. In contrast, when the datacenter
owns the network, disregarding the initial WAN cost, it achieves up to 22% cost
savings.
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Tiered Energy Pricing Previous work on minimizing total energy cost, [40], [33],
[49] uses grid pricing as either fixed or variable with load. Others [19] attempt to
limit datacenter peak load but do not consider how different power levels can af-
fect overall energy cost. Not modeling different cost regions for data center energy
consumption may not be correct due to large power consumption of the datacenters.
We demonstrate that proposed improvements might be overestimated by up to 20%
when accurate pricing is taken into account. Both of our algorithms inherently at-
tempt to remain below tiered power levels in order to avoid higher energy prices,
and only exceed those limits when inevitable, i.e. when all datacenters are over-
provisioned. Consequently, while our algorithms’ performance and cost benefits are
tempered by the incorporation of tiered energy pricing, we can still show up to 15%
cost savings.

Energy-Proportional Routing We investigate the future of datacenter commu-
nication, analyzing the impact of energy proportionality of routers on network
provider profit, which has not been explored before. We show that dynamic, green
energy aware routing (GEAR) policies can improve energy efficiency by reducing
brown energy consumption up to 65%. We quantify that energy proportionality can
increase the profit of network providers up to 35% and 57% with fixed and lin-
ear policies, respectively. The difference in profit between an implementable pro-
portionality scheme (i.e. step-function) and the ideal case is between 5-17% and
decreases with increasing network lease costs. The key observation is that router
energy-proportionality schemes can increase profits significantly if deployed, and
that GEAR can decrease network brown energy use up to 3x with energy propor-
tionality [2] with negligible performance impact.

Power-Proportional Computing for Future Systems Current datacenter hard-
ware is highly non-energy proportional, resulting in power-inefficient systems.
There has been recent work [35] on designing energy-proportional elements. Our
work quantifies the benefits of this trend in both major aspects of a datacenter net-
work: servers and network elements. We show the benefit of optimizing the compo-
nents individually and together into an ideal energy-proportional system, with up to
30% energy savings despite being limited by tiered energy pricing and network con-
tracts. Table 8 quantifies both the impact of such systems, and the continued benefit
of our algorithms in a power-proportional environment.

8 Conclusion

Energy efficiency and green energy usage in datacenters and their networks has
gained importance as their energy consumption, carbon emissions, and costs have
increased dramatically. Previous work leverages geographically separated datacen-
ters by migrating workloads over WAN, leveraging demand and price differences.
However, the work neglects several key cost and energy contributions: the finan-
cial network, and consequently, data migration costs, focusing solely on latency
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and QoS costs. Additionally, these publications assume a simpler, and ultimately
inaccurate, model for datacenter energy costs. To counteract this, we explore tiered
energy pricing for datacenters, network cost models and the costs of owning/leasing
a datacenter WAN. We then quantify the inaccuracy of conclusions (25-40% error)
drawn when these two are omitted. We solve the variability problem of green en-
ergy by using novel prediction algorithms, and subsequently develop algorithms for
energy management, focusing on 1) performance maximization, and 2) cost mini-
mization. With the performance maximization algorithm, we demonstrate the ability
to leverage green energy to actually improve workload throughput, rather than sim-
ply reducing the operational costs. We explore and quantify up to 22% cost savings
when realistic WAN costs are incorporated, and up to 65% reduction in network
costs when deploying Green Energy Aware Routing (GEAR). We further explore
the viability of our new algorithms in the face of emerging technologies in datacen-
ter infrastructure, showing continued benefit of both the performance maximization
and the cost minimization algorithms in the presence of energy proportional com-
puting and communication. Our results show that our performance maximization
improves batch job performance by 27% while meeting the QoS of services, and
that our cost minimization policy decreases overall energy cost by 16%, even when
tempered by realistic energy pricing schemes and networking contracts. In future
work, we will look to merge the two algorithms to create a balance between the
performance gains and cost reduction, for an optimal cost-performance for different
datacenter configurations.

9 Acknowledgment

This work was sponsored in part by the Multiscale Systems Center (MuSyC), Na-
tional Science Foundation (NSF) Project GreenLight, Energy Sciences Network
(ESnet), NSF ERC CIAN, NSF Variability Expedition, NSF Flash Gordon, CNS,
NSF IRNC TransLight/StarLight, Oracle, Microsoft and Google. We also want to
thank Chin Guok for his guidance on path computation algorithms.

References

1. Ajay Mahimkar, Angela Chiu, Robert Doverspike, Mark D. Feuer, Peter Magill, Emmanuil
Mavrogiorgis, Jorge Pastor, Sheryl L. Woodward, and Jennifer Yates. 2011. Bandwidth
on demand for inter-data center communication. In Proceedings of the 10th ACM Work-
shop on Hot Topics in Networks (HotNets-X). ACM, New York, NY, USA, Article 24.
DOI=10.1145/2070562.2070586

2. Aksanli, B.; Rosing, T.S.; Monga, I, ”Benefits of green energy and proportionality in high
speed wide area networks connecting data centers,” Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2012 , vol., no., pp.175,180, 12-16 March 2012 doi:
10.1109/DATE.2012.6176458



Title Suppressed Due to Excessive Length 25

3. Ananth Narayan Sankaranarayanan, Somsubhra Sharangi, and Alexandra Fedorova. 2011.
Global cost diversity aware dispatch algorithm for heterogeneous data centers. In Proceedings
of the 2nd ACM/SPEC International Conference on Performance engineering (ICPE ’11).
ACM, New York, NY, USA, 289-294. DOI=10.1145/1958746.1958787

4. Asfandyar Qureshi, Rick Weber, Hari Balakrishnan, John Guttag, and Bruce Maggs. 2009.
Cutting the electric bill for internet-scale systems. In Proceedings of the ACM SIGCOMM
2009 conference on Data communication (SIGCOMM ’09). ACM, New York, NY, USA,
123-134. DOI=10.1145/1592568.1592584

5. AT&T. 2007. http://www.att.com/gen/pressroom?pid=4800&cdvn=news&newsarticleid=24555.
6. Baris Aksanli, Jagannathan Venkatesh, Liuyi Zhang, and Tajana Rosing. 2011. Utilizing green

energy prediction to schedule mixed batch and service jobs in data centers. In Proceedings
of the 4th Workshop on Power-Aware Computing and Systems (HotPower ’11). ACM, New
York, NY, USA, , Article 5. DOI=10.1145/2039252.2039257

7. Barroso, L. A., & Hlzle, U. (2009). The datacenter as a computer: An introduction to the
design of warehouse-scale machines. Synthesis lectures on computer architecture, 4(1), 1-
108.

8. Bergler, B.; Preschern, C.; Reiter, A; Kraxberger, S., ”Cost-Effective Routing for a Greener
Internet,” Green Computing and Communications (GreenCom), 2010 IEEE/ACM Int’l Con-
ference on & Int’l Conference on Cyber, Physical and Social Computing (CPSCom) , vol.,
no., pp.276,283, 18-20 Dec. 2010 doi: 10.1109/GreenCom-CPSCom.2010.112

9. California ISO. (2012). Retrieved from OASIS: http://oasis.caiso.com/
10. Chow, C. W., Urquhart, B., Lave, M., Dominguez, A., Kleissl, J., Shields, J., & Washom, B.

2011. Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed.
Solar Energy, 85(11), 2881-2893.

11. Dennis Abts, Michael R. Marty, Philip M. Wells, Peter Klausler, and Hong Liu. 2010.
Energy proportional datacenter networks. In Proceedings of the 37th annual international
symposium on Computer architecture (ISCA ’10). ACM, New York, NY, USA, 338-347.
DOI=10.1145/1815961.1816004

12. Dondi, D., Zappi, P., & Rosing, T. (2010). A Scheduling Algorithm for High-Performance
Monitoring WSN with Hybrid Energy Harvester. ISLPED 2010.

13. Economou, D., Rivoire, S., Kozyrakis, C., & Ranganathan, P. (2006). Full-system power
analysis and modeling for server environments. International Symposium on Computer
Architecture-IEEE.

14. Franco Travostino, Paul Daspit, Leon Gommans, Chetan Jog, Cees de Laat, Joe Mambretti,
Inder Monga, Bas van Oudenaarde, Satish Raghunath, and Phil Yonghui Wang. 2006. Seam-
less live migration of virtual machines over the MAN/WAN. Future Gener. Comput. Syst. 22,
8 (October 2006), 901-907. DOI=10.1016/j.future.2006.03.007

15. Fratto, M. 2009. http://www.networkcomputing.com/data-center/229503323
16. Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., & Draxl, C. 2011. The State-

Of-The-Art in Short-Term Prediction of Wind Power: A Literature Overview, 2nd edition.
ANEMOS.plus.

17. Global Action Plan Report, An inefficient truth. 2007. http://www.globalactionplan.org.uk/
18. Gaurav Dhiman, Giacomo Marchetti, and Tajana Rosing. 2009. vGreen: a system for energy

efficient computing in virtualized environments. In Proceedings of the 2009 ACM/IEEE inter-
national symposium on Low power electronics and design (ISLPED ’09). ACM, New York,
NY, USA, 243-248. DOI=10.1145/1594233.1594292

19. Gmach, D.; Rolia, J.; Bash, C.; Yuan Chen; Christian, T.; Shah, A; Sharma, R.; Zhikui Wang,
”Capacity planning and power management to exploit sustainable energy,” Network and Ser-
vice Management (CNSM), 2010 International Conference on , vol., no., pp.96,103, 25-29
Oct. 2010 doi: 10.1109/CNSM.2010.5691329

20. Google. (n.d.). Retrieved from: http://www.google.com/transparencyreport/traffic/
21. Guok, C.P.; Robertson, D.W.; Chaniotakisy, E.; Thompson, M.R.; Johnston, W.; Tierney, B.,

”A User Driven Dynamic Circuit Network Implementation,” GLOBECOM Workshops, 2008
IEEE , vol., no., pp.1,5, Nov. 30 2008-Dec. 4 2008 doi: 10.1109/GLOCOMW.2008.ECP.14



26 Baris Aksanli, Jagannathan Venkatesh, Inder Monga and Tajana Simunic Rosing

22. Hadoop. (n.d.). Retrieved from: http://hadoop.apache.org/
23. Holt, C. C. 2004. Forecasting seasonals and trends by exponentially weighted moving aver-

ages. International Journal of Forecasting, 20(1), 5-10.
24. Intel. (n.d.). Retrieved from: www.intel.com/Xeon
25. Jonathan Koomey. 2011. Growth in Data center electricity use 2005 to 2010. Oakland, CA:

Analytics Press. August 1. http://www.analyticspress.com/datacenters.html
26. Kien Le; Bianchini, R.; Nguyen, T.D.; Bilgir, O.; Martonosi, M., ”Capping the brown energy

consumption of Internet services at low cost,” Green Computing Conference, 2010 Interna-
tional , vol., no., pp.3,14, 15-18 Aug. 2010 doi: 10.1109/GREENCOMP.2010.5598305

27. Kien Le, Ozlem Bilgir, Ricardo Bianchini, Margaret Martonosi, and Thu D. Nguyen. 2010.
Managing the cost, energy consumption, and carbon footprint of internet services. In Pro-
ceedings of the ACM SIGMETRICS international conference on Measurement and mod-
eling of computer systems (SIGMETRICS ’10). ACM, New York, NY, USA, 357-358.
DOI=10.1145/1811039.1811085

28. Kontorinis, V.; Zhang, L.E.; Aksanli, B.; Sampson, J.; Homayoun, H.; Pettis, E.; Tullsen,
D.M.; Simunic Rosing, T., ”Managing distributed UPS energy for effective power capping in
data centers,” Computer Architecture (ISCA), 2012 39th Annual International Symposium on
, vol., no., pp.488,499, 9-13 June 2012 doi: 10.1109/ISCA.2012.6237042

29. Krioukov, A., Goebel, C., Alspaugh, S., Chen, Y., Culler, D., and Katz, R. 2011. Integrating
Renewable Energy Using Data Analytics Systems: Challenges and Opportunities.

30. Kusiak, A., Zheng, H., & Song, Z. (2009). Wind farm power prediction: a datamining ap-
proach. Wind Energy, 12(3), 275-293.

31. Kusiak, A; Haiyang Zheng; Zhe Song, ”Short-Term Prediction of Wind Farm Power: A Data
Mining Approach,” Energy Conversion, IEEE Transactions on , vol.24, no.1, pp.125,136,
March 2009 doi: 10.1109/TEC.2008.2006552

32. Le, K., Bianchini, R., Martonosi, M., and Nguyen, T. D. 2009. Cost-and energy-aware load
distribution across data centers. Proceedings of HotPower, 1-5.

33. Lei Rao; Xue Liu; Le Xie; Wenyu Liu, ”Minimizing Electricity Cost: Optimization
of Distributed Internet Data Centers in a Multi-Electricity-Market Environment,” INFO-
COM, 2010 Proceedings IEEE , vol., no., pp.1,9, 14-19 March 2010 doi: 10.1109/INF-
COM.2010.5461933

34. Lei Rao, Xue Liu, Marija Ilic, and Jie Liu. 2010. MEC-IDC: joint load balancing and power
control for distributed Internet Data Centers. In Proceedings of the 1st ACM/IEEE Inter-
national Conference on Cyber-Physical Systems (ICCPS ’10). ACM, New York, NY, USA,
188-197. DOI=10.1145/1795194.1795220

35. Luiz Andre Barroso, Urs Holzle, ”The Case for Energy-Proportional Computing,” Computer,
vol. 40, no. 12, pp. 33-37, December, 2007

36. Mahendra Kutare, Greg Eisenhauer, Chengwei Wang, Karsten Schwan, Vanish Talwar, and
Matthew Wolf. 2010. Monalytics: online monitoring and analytics for managing large scale
data centers. In Proceedings of the 7th international conference on Autonomic computing
(ICAC ’10). ACM, New York, NY, USA, 141-150. DOI=10.1145/1809049.1809073

37. Mankoff, J.; Kravets, R.; Blevis, E., ”Some Computer Science Issues in Creating a Sustainable
World,” Computer , vol.41, no.8, pp.102,105, Aug. 2008 doi: 10.1109/MC.2008.307

38. Miller, R. 2011. Green Data Centers. Data Center Knowledge.
http://www.datacenterknowledge.com/archives/category/infrastructure/green-data-centers/

39. Mohsenian-Rad, A. H., & Leon-Garcia, A. (2010). Energy-information transmission tradeoff
in green cloud computing. Carbon, 100, 200.

40. Niv Buchbinder, Navendu Jain, and Ishai Menache. 2011. Online job-migration for reducing
the electricity bill in the cloud. In Proceedings of the 10th international IFIP TC 6 conference
on Networking - Volume Part I (NETWORKING’11), Jordi Domingo-Pascual, Pietro Man-
zoni, Ana Pont, Sergio Palazzo, and Caterina Scoglio (Eds.), Vol. Part I. Springer-Verlag,
Berlin, Heidelberg, 172-185.

41. NREL Solar Maps. (2012). Retrieved from NREL: Available:
http://www.nrel.gov/gis/solar.html



Title Suppressed Due to Excessive Length 27

42. NREL Wind Maps. (2012). Retrieved from NREL: Available:
http://www.nrel.gov/gis/wind.html

43. Piorno, J.R.; Bergonzini, C.; Atienza, D.; Rosing, T.S., ”Prediction and management in energy
harvested wireless sensor nodes,” Wireless Communication, Vehicular Technology, Informa-
tion Theory and Aerospace & Electronic Systems Technology, 2009. Wireless VITAE 2009.
1st International Conference on , vol., no., pp.6,10, 17-20 May 2009 doi: 10.1109/WIRE-
LESSVITAE.2009.5172412

44. Priya Mahadevan, Puneet Sharma, Sujata Banerjee, and Parthasarathy Ranganathan. 2009.
A Power Benchmarking Framework for Network Devices. In Proceedings of the 8th Inter-
national IFIP-TC 6 Networking Conference (NETWORKING ’09), Luigi Fratta, Henning
Schulzrinne, Yutaka Takahashi, and Otto Spaniol (Eds.). Springer-Verlag, Berlin, Heidelberg,
795-808.

45. RUBiS. (n.d.). Retrieved from http://rubis.ow2.org/
46. Sanchez, I. 2006. Short-term prediction of wind energy production. International Journal of

Forecasting, 22(1), 43-56.
47. Tucker, RodneyS.; Baliga, J.; Ayre, R.W.A; Hinton, K.; Sorin, W.V., ”Energy consumption

in IP networks,” Optical Communication, 2008. ECOC 2008. 34th European Conference on ,
vol., no., pp.1,1, 21-25 Sept. 2008 doi: 10.1109/ECOC.2008.4729202

48. U.S. Energy Information Administration. Electric Power Monthly. (n.d.). Retrieved from
http://www.eia.gov/electricity/monthly/

49. Yanpei Chen; Ganapathi, A; Griffith, R.; Katz, R., ”The Case for Evaluating MapReduce
Performance Using Workload Suites,” Modeling, Analysis & Simulation of Computer and
Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Symposium on ,
vol., no., pp.390,399, 25-27 July 2011 doi: 10.1109/MASCOTS.2011.12

50. Yanwei Zhang, Yefu Wang, and Xiaorui Wang. 2011. Capping the electricity cost of cloud-
scale data centers with impacts on power markets. In Proceedings of the 20th international
symposium on High performance distributed computing (HPDC ’11). ACM, New York, NY,
USA, 271-272. DOI=10.1145/1996130.1996170

51. Zhenhua Liu, Minghong Lin, Adam Wierman, Steven H. Low, and Lachlan L.H. Andrew.
2011. Greening geographical load balancing. In Proceedings of the ACM SIGMETRICS joint
international conference on Measurement and modeling of computer systems (SIGMETRICS
’11). ACM, New York, NY, USA, 233-244. DOI=10.1145/1993744.1993767


