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Abstract—With the increasing penetration of renewable en-
ergy resources within the Smart Grid, solar forecasting has
become an important problem for hour-ahead and day-ahead
planning. Within this work, we analyze the Analog Forecast
method family, which uses past observations to improve the
forecast product. We first show that the frequently used euclidean
distance metric has drawbacks and leads to poor performance
relatively. In this paper, we introduce a new method, TESLA
forecasting, which is very fast and light, and we show through
case studies that we can beat the persistence method, a state of
the art comparison method, by up-to 50% in terms of root mean
square error to give an accurate forecasting result. An extension
is also provided to improve the forecast accuracy by decreasing
the forecast horizon.

I. INTRODUCTION

History repeats itself. Weather is a continuous, data-
intensive, multidimensional, dynamic and chaotic process,
and these properties make weather forecasting a formidable
challenge. With the increasing percentage of renewable energy
penetration within the Smart Grid, forecasting the weather
accurately gained even more importance. Even now, a group
of Smart Grid control algorithms, battery optimization solu-
tions [1], day ahead energy market negotiations and residential
energy management systems [2] already rely on the availability
of an accurate forecast. High errors in generation forecasts
have the danger of disturbing the supply-demand stability
within the Smart Grid, which will have to be compensated
by expensive generators or in the worst case may even lead to
frequency drop and instabilities.

Weather forecasts provide critical information about future
weather. There are a wide range of techniques involved in
weather forecasting from basic approaches to highly complex
computerized models [3]. It is difficult to obtain an accurate
result from the weather and solar predictions. Accurate fore-
casting of solar irradiance is essential for the efficient oper-
ation of solar thermal power plants, energy markets, and the
widespread implementation of solar photovoltaic technology.
Numerical weather prediction (NWP) is generally the most
accurate tool for forecasting solar irradiation several hours in
advance [4]. The techniques used in solar forecasting can be
categorized as dynamical and empirical methods. Furthermore,
NWPs provide another alternative to a national or global
scale ground based monitoring network [5]. NWP models
provide a comprehensive and physically-based state-of-the-art
description of the atmosphere and its interactions with the
Earth surface [6]. But, these methods are very computation
intensive and require both time and computation resources.

In order to enhance the forecast accuracy, there are refining
techniques [7].

Most weather prediction systems use a combination of
empirical and dynamical techniques. However, a little attention
has been paid to the use of artificial neural networks (ANN) in
weather forecasting [3], [8]. Since the late 1990s ANNs have
seen increased application in the field of solar forecasting [5].

ANNs provide a methodology for solving many types of
non-linear problems which are difficult to solve by traditional
techniques [9]. Furthermore, ANN modeling offers improved
non-linear approximation performance and provides an alter-
native approach to physical modeling for irradiance data when
enough historical data is available.

History repeats itself. Another family of methods is the
analog method family. It relies on this fact that tomorrow has
already happened in the past. In [10], the authors also show
that the different applications of analog method usage in their
study. They used different types of k-methods in their studies,
which gives a good idea on the accuracy and the errors of
the methods. In addition to this Hacker [11] also compares
the different types of analogue approaches in their studies by
indicating the inclusion of model diversity showing an im-
provement in terms of reliability and the statistical consistency
in an analogue method approach study. Analog methods have
been applied and tested for forecasting increasingly. Abdel-
Aal shows the effect of using different training sets to train a
network system [12].

In this work, we analyze the fundamental pieces of the
analog forecast method family and show that the distance,
which describes the similarity between two analogues is very
important for a good forecast. First, we propose an extension to
the euclidean distance based analog method, then generalize
the idea to construct a new method called Taylor Expanded
Solar Analog (TESLA) forecasting. We show through case
studies that we can even beat the persistence method by up-
to 50% in terms of solar irradiance root mean square error
(RMSE).

The rest of this paper is organized as follows. Section II
analyzes the most commonly used Euclidean distance and
shows why the forecast will not perform well with this metric
and proposes an extension to improve it. Section III describes
the working principle of our algorithm TESLA. Section IV
shows that our algorithm performs very well compared to the
state-of-the-art methods on case studies.



II. METHODOLOGY

Before we begin with the proposed method, we start by
explaining the motivation for searching for a better forecast-
ing algorithm by going over the drawbacks of some of the
algorithms frequently used in the literature.

A. Euclidean Distance Analog Method

The analog forecasting method relies upon the fact that
the history consists of recurrences. In other words, the future
may have already happened in the past. In order to establish
a connection between the future and the past, we first need
a rough forecast product of the future and a distance of this
forecast to the multiple forecast points in the past. This metric
will describe how much the forecasted day is similar to the
days that have happened in the past.

The forecasts produced in the past are grouped under the
name of ensembles. Each ensemble has also an observation
associated with it, which is the solar irradiance observed
at the time of the ensemble, measured by weather stations.
The euclidean distance analog method simply measures the
euclidean distance between the forecast and each ensemble and
weighs the observations inversely proportional to the distance.
We can write this algebraically. First, we need to define the
variable names that are going to be used throughout this paper.

ei,j : The forecast product has multiple outputs, typ-
ically forecasting the states of the weather like
temperature at various atmosphere heights, rel-
ative humidity or wind speeds. This variable is
the jth variable output of the ith hourly forecast
ensemble.

oi: The observed/measured solar irradiance associ-
ated with the ith forecast ensemble.

fk,j : The f variable defines the rough forecast of the
desired future, thus this variable defines the jth
variable output of the kth hour future forecast
product.

Figure 1 shows an example construction to clarify the
concept and the timing of the variables.

Time

Ensembles e1 . . . eN

Observations o1 . . . oN
Now

f1 . . . fM

Fig. 1. An example timeline showing the construction of the Analog
Forecasting method family.

Using the defined variables, we can define the euclidean
distance method algebraically. The euclidean distance in an
Nj dimension universe is defined as:

d(x, y) =

√√√√ Nj∑
j=1

(xj − yj)2 (1)

Applying this distance to our ith ensemble and kth fore-

cast:

di,k =

√√√√ Nj∑
j=1

(ei,j − fk,j)2 (2)

The analog forecast output can be defined by weighing the
observations inversely proportional to the distance:

ak =

Ni∑
i=1

oi
di,k

Ni∑
i=1

1

di,k

(3)

Note that this method has its drawbacks. First of all, the
method relies on the fact that if the distance of two forecast
products is small then their observations should be close to
each other, in other words they will be similar days in terms
of weather.

To check how well the euclidean distance metric performs,
we have constructed an ensemble set of 16343 hours (roughly
15 months). The set is obtained from NOMADS, North
American Mesoscale (NAM) [13] forecast data, which consists
of 36 hour daily forecasts. We have selected 38 variables
from the forecasts for distance calculation. We have sorted
all ensembles and corresponding observations in ascending
order of observations. Then we calculated the distance of
all ensembles to three selected ensembles, 2000, 10000 and
13000 corresponding to a night and two mid day indices. The
resulting plots are given in Figure 2.

In the ideal case, we would expect the ensembles close
to the selected ensembles to have a small distance, since
their observations are close. As the indices go far from the
selected ensembles, the distance metric should increase since
the similarity between observations will be lost completely.
The figure shows that the real case is very far from the
expected ideal case. There is a big band of noise in the figures,
furthermore the expected increase in distance is not observed
around the selected indices. This non-ideality of the distance
metric causes a big problem on the accuracy of the forecasts,
as will be shown in the performance section.

Another drawback of this method is that it uses a linear
combination of the variables to calculate the distance metric,
but in reality this may not be the case. We would only have a
linear approximation of the ideal distance.

A final remark on the method is that the weight of each
parameter on the distance metric is assumed to be the same,
creating a perfect hyper-sphere. Different parameters may have
different weighted effects on the distance, creating a hyper-
ellipse rather than a hyper-sphere. The application of this idea
is explained in the next section as an extension to the euclidean
distance method.

B. Weighted Euclidean Distance Analog Method

In the previous section, we have shown that the distance
metric to measure the similarities between ensembles is not
a completely reliable metric. In this section, we propose
an extension to the euclidean distance analog method by
introducing linear weights to incorporate different effects of
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Fig. 2. The euclidean distance of all sorted ensembles to the Ensemble 2000 (blue), Ensemble 10000 (green) and Ensemble 13000 (red).

forecast variables into the distance metric. We can show this
algebraically as:

dWi,k :=

√√√√ Nj∑
j=1

wj (ei,j − fk,j)2 (4)

This new parameter introduces the problem of determining its
value. In order to find the optimal weight values, we need
to train the system with known outcomes and optimize the
system to best fit the expected outcomes. In order to formulate
the optimization problem, we need to introduce two more
variables.

tk,j : We use a set of ensembles and their associated
observations to train the system weights. This
variable defines the jth parameter of the kth

training ensemble.
γk: This variable defines the observation associated

with the kth training ensemble.

Given that we have our training ensembles and their associated
observations, we can define our optimization problem. The
main objective is to maximize the accuracy of our forecasts.
We define the accuracy of multiple forecasts as the Root Mean
Square Error (RMSE). The RMSE for the training ensembles
is given in the following equation.

RMSE =

√√√√√√√√ 1

Nk

Nk∑
k=1


Ni∑
i=1

oi
dWTi,k

Ni∑
i=1

1

dWTi,k

− γk


2

(5)

where

dWTi,k :=

√√√√ Nj∑
j=1

wj (ei,j − tk,j)2 (6)

This equation is optimized using the Optimization Toolbox in
MATLAB. Using 14000 training hours we have obtained the
optimal weights and tested our new distance metric on the
example ensembles from the previous section. The distances
are shown in Figure 3.

It can be clearly seen that the introduction of parameter
weights has improved the shapes of the distance metrics to
the expected ideal case. For Ensemble 13000, it can be seen
that the distance to the closer points is small compared to
the farther ensembles, constructing the convex shape that was
desired. Although the general trends of the distances have
improved, there is still too much noise in the system that will
lead to errors if not handled. In the performance section, we
will show that the weighted distance method performs better
than its uniform counterpart. Next, we will define even a better
solution, the main method presented in this paper, in the next
section.

III. TESLA: TAYLOR EXPANDED SOLAR ANALOG
FORECASTING

In the previous section, we have shown that the distance
metric showing the similarity between ensembles has problems
and needs improvement, because the similarity is the heart of
the analog forecasting method family. A second observation
that we made in the previous section is that the similarity is
calculated as a linear combination of the parameters, which in
real life may not be the case. To better address these problems,
we have changed our perspective fundamentally. Instead of
using a distance metric, we introduce a new similarity metric.
This metric is constructed as a function of two vectors, repre-
senting the two ensembles that we are comparing for similarity
and outputs a similarity value. This can be formulated as:

si,k = S(ei, fk) (7)

We aren’t assuming anything regarding how this similarity
function should be. Instead, we write the Taylor Expansion
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Fig. 3. The weighted euclidean distance of all sorted ensembles to the Ensemble 2000 (blue), Ensemble 10000 (green) and Ensemble 13000 (red).

of the similarity function around (0,0).

S(x,y) = S(0,0) +

Nj∑
j=1

∂xj
S(0,0)xj +

Nj∑
j=1

∂yj
S(0,0)yj

+
1

2!

Nj∑
j1=1

Nj∑
j2=1

∂xj1,xj2
S(0,0)xj1xj2

+

Nj∑
j1=1

Nj∑
j2=1

∂xj1,yj2
S(0,0)xj1yj2

+
1

2!

Nj∑
j1=1

Nj∑
j2=1

∂yj1,yj2
S(0,0)yj1yj2 + . . .

Note that within this expansion, we don’t know any of the
expansion constants. We can denote the unknowns as ai, such
that;

a1 = S(0,0), a2,j = ∂xj
S(0,0), a3,j∂yj

S(0,0), . . .

This expression can be represented in matrix form. Rep-
resenting all the unknown constants as the A vector and
concatenating the variables into a single vector ψ, the equality
becomes:

S(x,y) = AT · ψ (8)

We need to find a way to obtain the A parameters. We again
use a forecast set for training purposes.

The similarity between an ensemble and a training forecast
can be found as:

S(ei, tk) := si,k = AT · ψ(ei, tk)T = AT · ψi,k (9)

Concatenating the similarity metrics for all ensembles horizon-
tally:

S(e, tk) := sk = AT · (ψ1,k · · · ψNi,k) := AT ·Bk (10)

Using the similarity metric, we define our analog forecast
result as:

ak =

Ni∑
i=1

oisi,k = sk · o = AT ·Bk · o (11)

The final step is to define a vector Mk = Bk · o and con-
catenating the vectors horizontally for all k values, converting
it into a matrix M. The forecast result vector is then simply
found as:

a = AT ·M (12)

We want in the ideal case a = γ to have an error-free forecast.
In most cases the rank of M matrix is less than the size
of the training set, Nt. This means that we have an under-
defined system of equations. Since we are trying to minimize
the RMSE, we can solve this system by Least Mean Squares
Estimation (LMSE) to get the Taylor Expansion parameters.

After an initial training, the system will have learned the
Taylor Expansion terms and use them to calculate the similarity
metrics and give the TESLA Forecast result. Note that, this
method is already a super-set of both euclidean distance
methods explained in the previous section. Furthermore, if the
order of the Taylor Expansion is selected more than 1, the non-
linear effects are also being added into the forecast, providing
a better forecast.

Before moving into the performance section, an extension
is provided in the next section to further improve the forecast
results by trading off accuracy with the forecast horizon.

A. TESLA Forecasting with Moving Horizon Feedback Exten-
sion

TESLA method in the previous section uses a training
dataset to determine its Taylor Expansion terms. Any new
ensemble or observations during normal operation is not used,
where it could have been used as an additional feedback
parameter to increase the performance of the future forecasts.

An extension idea to TESLA is to use the N observations
prior to the current forecast ensemble, as additional parameters
to the ensemble parameters. Although it will be shown that
the increased number of parameters by adding additional
observations improves the performance, the trade-off that we
are sacrificing is the forecast horizon. The forecast horizon of
the TESLA method is upper-limited by the forecast horizon
of the ensembles, denoted hereby by H . At any point in
time, the closest observation that we have is the previous



interval. The forecast interval that we are going to add our
latest observation as an additional parameter, will also limit
our forecast horizon. In other words, if we define the time
between our latest observation and the forecast interval that
we are going to add the observation to as the delay, denoted
as D, our forecast horizon decreases to D. For an ensemble
at t, N observations from time (t −D) to (t −D − N + 1)
are added as the N additional parameters.. These concepts are
described in Figure 4.

Time

Now

Now-1

Now-2

HDD-1

Fig. 4. For a selected delay D, the closest N observations are used as
additional parameters for the Dth forecast. The selected window is moved
step-by-step and added to the previous forecast parameters.

The smaller the value of D, the better performance we
will have. This extension allows the user to determine its
own forecast horizon, D, according to the error requirements.
Furthermore, we can also run this method H times and varying
the delay from 1 to H . By selecting the last forecast at each
run, we would both get the improvement without sacrificing
the forecast horizon.

IV. PERFORMANCE

In order to test the performance of our solution, we have
performed multiple case studies. This section describes the
datasets that we have used and compares the performance of
TESLA method with different methods from the literature.

A. Datasets

To construct our ensemble, training dataset and comparison
datasets, we have used the 12 km, hourly NAM forecasts
from September 2010 to January 2012, accounting for more
than 15 months. The working site has been selected as San
Diego, particularly the University of California, San Diego
campus. The observation information has been used from Solar
Anywhere data [14].

The NAM forecast has a 36 hour forecast horizon. We
have extracted 38 parameters to be used within the ensembles.
The parameters are Global Horizontal Irradiance, Planetary
Boundary Layer height, surface heat flux, latent heat flux,
total columnar cloud cover, dew point, surface temperature and
pressure. In addition, the height, temperature, relative humid-
ity, x and y components of wind speed have been used for
barometric heights of 925, 850, 700, 500 and 200hPa, which
correspond to the heights contours with the given pressure
values, constituting the 38 parameters in each ensemble, that
are believed to have an effect on the solar forecast result
physically.

B. Weighted Euclidean Distance Performance

In order to test the performance of the weighted euclidean
distance method, we have selected various sizes for our train-
ing set to understand its impact on the forecast performance.
The error is calculated as the difference between the forecast
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Fig. 5. RMSE(W/m2) comparison of weighted Euclidean distance forecast
and other various methods with increasing training size. The 3-parameters are
the highest correlation parameters with the observation. 38 parameter distance
definitely has a poor performance as expected from Section II.

product and the real solar irradiance observed on that hour
shown in these equations:

RMSE =

√√√√ 1

N

N∑
i=1

(forecasti − observationi)2

We have selected a separated training set and comparison
set. This means that the weights are determined through the
training set and then the error metrics are calculated over the
non-overlapping comparison set. The size of the comparison
set is selected as 8300 hours.

The results are compared to the NAM and 24 hour persis-
tence forecast results. The RMSE results are shown in Figure 5.
It can be clearly seen that the euclidean distance with 38
parameters performs the worst as expected from Section II.
The three parameters are selected as the highest correlation
parameters of the ensembles with the observations, which
performs very close to the weighted euclidean distance case.
All methods still need improvement as they are much worse
compared to the 24 hour persistence forecast method.

C. TESLA Forecasting Performance

We have compared TESLA against three methods. The first
method is one of the state of the art methods, the analog
method using Delle-Monache [15] distance as the similarity
metric. The second method is also another state of the art
method, the Persistence Forecast method. We have compared
against both 24 hour and 1 hour persistence methods. Note that
the forecast horizon of the 1 hour persistence is 1 hour. The
third method for comparison is the unmodified NAM forecast.
In order to make the comparison under same conditions, the
36-hour horizon of NAM forecasts are cropped to 24 hours.

Two cases are considered to test the performance of
TESLA. The first case uses a training size of 450 days. The
size of the overlapping comparison set is varied from 20 to
460 days. The second case uses two completely separate sets
for comparison and training/ensemble. 267 days are used for
comparison. The training set size is varied from 20 to 200
days. The TESLA forecast parameters are selected as: First
and second order Taylor expansion and First order Taylor
expansion with the Moving Horizon Feedback extension with
24 previous observations: D = 24, D = 1 and delay varied



from 1 to 24 hours and best forecasts are combined for 24
hour forecast horizon.

The results of the first case is shown in Figure 6. The figure
shows that all TESLA methods have a better RMSE than the
NAM and 24 persistence method. The second order expansion
and all extension results have lower RMSEs than the Delle-
Monache and 1 hour persistence methods. When the forecast
horizon is decreased to 1 hour ahead, we can have RMSEs as
low as 50W/m2.
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Fig. 6. Comparison of multiple methods with TESLA. The initial decrease
of RMSE is due to the fact that training size also increases with comparison
set size and at least 60-80 days are required to settle training.

The second case results are shown in Figure 7. TESLA
requires training to construct its expansion constants. The
figure shows that in order to get a good forecast, we require
60-80 days of training data. When enough training is used,
TESLA performs very close to the 1 hour persistence, while
maintaining the 24 hour horizon. If the horizon is decreased
to 1 hour ahead, TESLA performs 25% better than the 1
hour persistence method and 50% better than the 24 hour
persistence.
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Fig. 7. Comparison of methods with TESLA under different training sizes. A
minimum number of 60-80 days of training is required to get normal results.

D. Computational Complexity

TESLA computation consists of two stages, the initial
training and the actual computation. Training stage, using least
squares estimation has a complexity of O(C2N), where C is
the number of parameters and N is the training size in our case.
This stage is only performed once. The actual forecasting is a
matrix multiplication with a linear complexity of O(C).

V. CONCLUSION

Stability and load/supply are two of the most important
aspects in SmartGrids. A group of grid control algorithms, day
ahead negotiation markets, home automation systems require
an accurate input of solar forecasting. In this paper, we have
developed a new method called TESLA forecasting, which
can do a 1 year forecast calculation in seconds. With case
studies, we have shown that our method has a better RMSE
than the state of the art forecast method. Furthermore, we have
provided a Moving Horizon Feedback extension to give the
ability to change the forecast horizon to obtain even more
accurate results.
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