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Abstract—Energy storage plays a more important role than
ever before, due to the transition to smart grid along with higher
penetration of renewable resources. In this paper, we describe
our optimal nonlinear battery control algorithm that can handle
multiple batteries connected to the grid in a distributed and cost-
optimal fashion, while maintaining low complexity of O(N2). In
contrast to the state-of-the-art, we use a high accuracy nonlinear
battery model with 2% error. We present three distributed
solutions: 1) Circular negotiation ring, providing convergence
rates independent of number of batteries, 2) Mean circular
negotiation ring, converging very quickly for a low number of
batteries, 3) Bisection method has a convergence rate independent
of battery capacities. We compare our algorithm to the state-of-
the-art and show that we can decrease the utility cost of an actual
building by up to 50% compared to the batteryless case, by 30%
over the load-following heuristic and by 60% over a state-of-the-
art optimal control algorithm designed using a linear battery
model. For a constant load profile, optimal linear control incurs
costs higher by 150% for MPC and 250% for single trajectory
solutions, than our algorithm.

I. INTRODUCTION

Smart grid brings concepts of load automation and dis-
tributed generation. The current structure of the power grid
is designed to have generation handled by large centralized
generators and the consumption to be within predictable limits.
Small mismatches in generation and consumption are bal-
anced through multiple controllers and immediate changes are
damped by the inertia of a spinning mechanical generator [1].

On the load side, automation transforms the predictable,
average daily human behavior into a more complex function
due to load shifting, two-way communication, pricing mech-
anisms [2] and demand response [3]. Renewable distributed
generation brings new challenges with it. There are many
forecasting algorithms for wind [4] and solar [5] energy, but
errors are inevitable due to their highly varying nature.

Energy storage devices (ESDs) are used either as stand-
alone batteries [6] or indirectly as a part of Electrical Ve-
hicles (EVs), also known as Vehicle to Grid (V2G) [7].
The advantage of batteries is their flexibility to be used
as either load or generator at adjustable power levels. The
phase of the injected power can be adjusted to control the
reactive power [8]. The power output can be adjusted for
voltage stability [9]. Disadvantages of batteries include the
high capital costs and the nonlinear characteristics that makes
the profitability harder to predict [10].

In this work, we target the finite horizon optimal economic
dispatch problem of how multiple inherently nonlinear bat-
teries with nonlinear power and degradation characteristics
connected to the grid should be used and controlled, such that
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the aggregate electricity cost of a distribution circuit, such as
an energy sharing neighborhood or a microgrid, is minimized.
We obtain the optimal timeseries solution of each battery’s
power consumption to minimize the aggregate costs under
different electricity cost schemes. We consider both centralized
and distributed implementations. Our main contributions are:
1) We use a nonlinear battery model for lithium-ion batteries to
describe charging/discharging and degradation characteristics
and find a low-complexity optimal centralized solution for a
generalized cost function using dynamic programming. The
centralized solution is converted into distributed algorithms
without any loss of optimality. The region of convergence and
the convergence rates of the solutions are studied and verified.
2) We obtain 50% cost reduction compared to the batteryless
case and 30% improvement over the state-of-the-art battery
management technique of load-following. 3) We provide a
comparison with an optimal solution based on a linear battery
model, and show that if it were to be used on a realistic
nonlinear battery, it would deviate by up to 60% in terms
of cost reduction from the nonlinear optimal solution. For a
constant profile, we show that this deviation can be higher
than 150%. This is caused by the accumulation of model
errors in time, resulting in premature constraint violations. 4)
We provide a voltage stability study for a real neighborhood
circuit, where we show that we can decrease the maximum
voltage deviation by up to 45% using multiple batteries in the
neighborhood, improving stability.

II. RELATED WORK

Increased penetration of renewable resources with rapid
variations and increased usage of electric vehicles shifted
many studies towards energy storage systems and their control.
We divide the literature into battery control and modeling the
electrical behavior of different battery systems. There is a
growing gap between the more complex and accurate battery
models and, fast and optimal control strategies. Complex
battery models try to model every detail of internal battery
characteristics, making it practically impossible to implement
feasible large scale control algorithms. On the other hand, large
scale control algorithms oversimplify the battery models in
order to obtain optimal solutions for battery control problems.

A. Related Work on Battery Control

Batteries can smooth out the intermittent nature of the
renewable sources and decrease the peak power usage of the
system by charging at non-peak hours and discharging at
peak hours [11]. Different kinds of energy storage techniques
currently used in smart grid development is given in [12];
examples range from 34MW Sodium Sulfur down to 25kW
residential area batteries. For a good summary of current
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energy storage uses, see [13], [14], [15]. In [16], a price-
based energy management solution is proposed for a system
with photovoltaics (PV) and batteries minimizing the financial
loss. In [11], ramp rate control is proposed, which holds the
rate of change in PV power output within a stable boundary.
In [17], authors determine (dis)charging regimes for frequency
and voltage regulation based on a threshold.

In order to obtain the optimal solution, existing papers in
the literature focus on linearized battery models to simplify
the constraints of the optimization problem. In [18], extensive
work was done on the stability, peak shaving and capital
cost performances of batteries using a linear battery model
with quadratic programming (QP). The authors show for a
residential area with PV that batteries increase the integration
of PV, improve stability and simplify the over-voltage problem.
In [19], the authors look into the problem of coordinated
electric vehicle charging. The optimization problem is defined
using a linear battery model and a quadratic cost function, rep-
resenting the market balance and user discomfort. For further
information on electric vehicles, please see the survey [20].
In [21], the authors approach the battery control problem
from a DC microgrid perspective. The battery is modeled such
that the nonlinear connection between the battery voltage and
battery power is explicitly accurate. This connection is then
leveraged in a hardware implementation to control the voltage
levels at the utility substation transformer. A recent paper [22]
considers a residential neighborhood with PV and linearly
modeled batteries. The authors propose 4 different algorithms:
a heuristic, centralized model predictive control (MPC), a
decentralized MPC and a novel market maker distributed
MPC. In all cases, the objective is to flatten out the aggregated
power profile drawn from the grid.

B. Related Work on Battery Modeling

The simplest and most frequently used battery model is
linear, where the change in battery state of charge (SoC) is
a linear function of the battery’s terminal power consumption.
This is expressed in (1), where ηC < 1 is the battery efficiency
constant for charging and ηD = η−1C > 1 for discharging. SU
is the charge capacity of the battery.

State of Charge(t) = SoC(0)+
ηC,D
SU

t∫
t′=0

Battery Power(t′)dt′

(1)
However, it is shown in [23] that the linear model has high
errors for high discharge currents. Since renewable resources
are intermittent and have rapid variations, high currents are
frequent in grid related uses. There are many accurate and
complex battery models proposed in the literature. See [24] for
a comprehensive survey and [25] for an overview on different
levels of degradation models.

In [26], the authors introduce a circuit based model. The pa-
per introduces two degradation models based on temperature,
self discharge and capacity fading, along with the consumption
values. A Ph.D. thesis [27] models the battery (dis)charging
memory effects and degradation effects based on the internal
chemistry of lithium-ion batteries. Many different cycle testing

cases are required to create the detailed model. The Riso
Report [28] further discusses degradation effects based on
the battery’s consumption values in the form of analytic
functions. The model is based on the internal chemistry of
the battery. National Renewable Energy Laboratory (NREL)
has a report [29] that models the battery from the perspectives
of capacity degradation, depth of discharge memory effect
and nonlinear charging and discharging characteristics. All
properties are provided in the form of analytic functions
making it easier to include within mathematical optimization.
In [30], an analytic model is provided for degradation, includ-
ing temperature, depth of discharge and state of charge based
capacity fading. The authors use a linear SoC model along
with the degradation model to solve an economic dispatch
problem in [31]. In [32] the authors provide a state of charge
and depth of discharge based degradation model. This is
then used with a linear state of charge model to solve an
electric vehicle optimization problem. Effect of temperature is
neglected based on steady operating temperature conditions.

As opposed to analytics based model, there are also degra-
dation estimation methods based on the internal physics.
In [33], [34], [35] and [36], the unwanted chemical side
reactions inside a lithium ion battery are modeled to obtain
particle level aging estimation for very accurate degradation
modeling during design time. These include recoverable and
unrecoverable fading effects. In [37] a cell level optimization
is described based on 2D physics based model. However, for
larger scale and real time applications these models become
very complex.

As seen in previous works, modeling the battery is a tradeoff
between control quality and computational simplicity. We
consider two aspects of the battery; state of charge and state
of health (SoH). SoC defines the charge level of the battery.
SoH is the measure of battery’s charge holding capacity
degradation. SoH declines slowly from 1 (brand new) to
0 (completely dead). We could include internal chemical reac-
tions, physics and hysteresis effects to obtain a very accurate
complex battery model, but the solution complexity increases
by multiple orders of magnitude. In this work, we discard
the hysteresis effects to keep the computational complexity to
O(N2), but we retain the nonlinearity in SoC and SoH for our
battery model, with an error of only 2% compared to empirical
data (Section V).

The widely used linear model, shown in (1), defines a
linear SoC dependence that fails to represent the nonlinearity
at high discharge currents, known as the Peukert’s effect.
Previous works show that linear models ignoring this effect
can have an error as high as 43% [23]. Our SoC model,
based on [23][27][38], is shown in (2), which states that higher
discharge currents lead to an exponentially smaller effective
capacity (SoC). α is the Peukert exponent and describes the
exponential nonlinearity of the SoC relation.

SoC(t) = SoC(0) +
1

SU

t∫
t′=0

Battery Powerα(t′)dt′, α > 1 (2)

As an example, if the battery output power is doubled, the
amount of charge lost is increased by 2.2x for α = 1.15.
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Figure 1. System model overview and load aggregation

Solutions neglecting this effect can be misleadingly biased
towards the use of high discharge currents causing accumula-
tive control errors of more than 150% as shown in Section V.
From the SoH perspective, the linear battery model assumes no
degradation, keeping SoH= 1. A model without degradation
would neglect aging and loss in capital value of the battery
completely. Although degradation occurs slowly in time, the
effect is noticeable over longer intervals. The SoH model for
lithium-ion batteries used in this work is based on discharge
throughput degradation [28][29] and, temperature and state of
charge degradation [30][31], is shown in (3).

SoH(t) = SoH(0)

−

 t∫
t′=0

βeγ Batt. Pwr.(t′)−θdt′

− [φ1SoCavg(t) + φ2]

−

 t∫
t′=0

σ1e
−σ2(Tamb+σ3|Batt. Pwr.|)−1

dt′ + σ4(Tamb)

(3)

The first bracket expression states that the SoH degradation is
exponential with the discharge throughput and linearly related
to the discharge amount for a fixed time interval. β is the
exponential scale of degradation, γ is the linear modification
from discharge amount to Amperes-Hour (AH) discharge
throughput and θ is the inefficiency coefficient for converting
an amount of charge into actually stored charge. These param-
eters are device dependent and can be obtained from either
battery data sheets that provide depth of discharge and cycle
life results or from experimental results. More information on
this process is provided in [29]. The second bracket expression
is degradation due to the SoC level, modeled linearly in [30].
The coefficients in the original model have been converted
to the time resolution used in this work and are obtained
by fitting to the experimental measurements in [39]. The last
bracket expression is the degradation due to temperature. It
models the temperature change in the battery linearly through
a thermal resistance and adjusts the degradation with respect
to the current ambient temperature (Tamb). The coefficients
in the original model [31] have been combined into ambient
temperature dependent function of σ4 and constants of σ1, σ2
and σ3 for convenience in representation. These coefficients
are obtained by fitting to the experimental measurements
in [39]. Throughout this work, we have used lithium-iron-
phosphate battery chemistry for all model fits, case studies
and, accuracy, complexity and performance results. The pa-
rameters are α = 1.15, β = 25, γ = 0.017, θ = 19.9, σ1 =
1.4 × 10−4, σ2 = −75, σ3 = 0.1, φ1 = −10−3, φ2 = 10−8.
However, the underlying optimal control solution is valid

for different analytic battery models using the same control
solution. The main purpose of this work is not to advance the
literature on battery models, but rather provide a novel optimal
nonlinear control strategy capable of accounting for nonlinear
battery models to increase accuracy.

III. OPTIMAL CENTRALIZED NONLINEAR BATTERY
CONTROL

A. System Model

The main goal of this work is to solve the optimal economic
dispatch problem, where we solve for the power level of each
grid-connected battery at every time interval, such that the
resulting power profiles are cost-optimal in a finite horizon.
Our system model consists of a circuit with 3 types of devices:
loads, distributed generators and batteries. We aggregate all
consumption and generation values into a single time-series,
but leave batteries separate to study the effect of nonlinear
battery characteristics. We assume that the line-losses in our
aggregate model are constant, resulting in a mean absolute er-
ror of only 0.8% as shown in Section V. Aggregation is widely
used in the literature for battery control problems [17][19][22].
Note that a battery at a particular location can physically
consist of a battery bank, however we refer to them as batteries
for simplicity in notation throughout this work.

We begin our formulation by dividing time into discrete
intervals of equal length. Any variable xn,t represents the
quantity x for the nth battery at the tth time interval. load,
gen and bat represent consumption, generation and battery
consumption values, respectively. We jointly represent the
total load and generation as: pt =

∑
k loadk,t +

∑
m genm,t,

since they are not controllable. The overview of the system
is shown in Figure 1. Next, we define constraints to represent
the battery’s physical nature: 1) Power Limit: The discharge
and charge power of a battery is limited, thus the energy
consumption per interval is also bounded by Ln ≤ batn,t ≤
Un,∀n, t. 2) Charge Limit: SoC, is upper-limited by a value
depending on the health of the battery. A lower limit is also
enforced to avoid quick lifetime depletion, represented by
SLn ≤ SoCn,t ≤ SUn,∀n, t. Each battery model has three
state variables: energy consumption batn,t, state of charge
SoCn,t and state of health SoHn,t. Only batn,t is indepen-
dently controllable, whereas SoC and SoH dependent on the
energy consumption of the current interval and their previous
values, respectively. Our battery model uses the discrete time
forms of (2) and (3):

SoCn,t+1 = SoCn,t+ socn,t = SoCn,t+
1

SUn
(batn,t)αn (4)

SoHn,t+1 = SoHn,t + sohn,t

= SoHn,t − βne(γn|batn,t|−θn) − φn,1
SUn

(batn,t)αn

−φn,2 − σn,1e−σn,2(Tamb+σn,3|batn,t|)−1+σn,4(Tamb) (5)

In practice SoH is a very slowly varying property. Thus in our
solution, we update SoH only over long time intervals (24-
hours for simulations).
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Table I
KKT MULTIPLIER DEFINITIONS AND REGIONS

Description Condition
An,t Battery n is full at time t An,t > 0
Bn,t Bat. n is empty at time t Bn,t > 0
Xn,t Bat. n charges with max. power at t Xn,t > 0
Yn,t Bat. n discharges with max. power at t Yn,t > 0

B. Problem Formulation

We define two different cost factors: 1) a general memory-
less function, C, that depends on the total consumption of the
considered loads, generators and batteries (eg. the utility bill
of a microgrid) 2) the cost of degradation, which is the loss
in the invested capital value. We define Kn as the capital cost
of battery n, thus the degradation of the battery at the end of
t intervals is defined by: Degn,t = Kn (SoHn,0 − SoHn,t).
The optimization problem for a finite interval of T is:

min
∀b

∑
n

Degn,T +
T∑
t=1

C

(
pt +

∑
n

batn,t

)
s. t.

SLn ≤ SUn · SoCn,t ≤ SUn, Ln ≤ batn,t ≤ Un,∀n (6)

We solve this problem using its Lagrangian dual:

L =

T∑
t=1

C(pt +
∑
n

batn,t) +
∑
n

Kn (SoHn,0 − SoHn,T )

+
∑
n

T∑
t=1

An,t (SUnSoCn,t − SUn)

+
∑
n

T∑
t=1

Bn,t (SLn − SUnSoCn,t)

+
∑
n

T∑
t=1

Xn,t (batn,t − Un) + Yn,t (Ln − batn,t) (7)

The KKT multipliers defined for the constraints are ex-
plained in Table I, along with necessary conditions. Note
that constraint functions are convex and we assume C to be
also convex to satisfy Slater’s condition for strong duality.
Using Ct = C (pt +

∑
m batm,t), Zn,t = Yn,t − Xn,t and

λn,t = Bn,t −An,t, the optimal solution for any interval t is:

∂Ct
∂batn,t

= Zn,t +

T∑
t′=1

λn,t′SUn
∂SoCn,t′

∂batn,t
(8)

Two major implications arise from this expression: 1) The
equation is independent of past decisions and can be solved
using dynamic programming: starting at T and iteratively
solving back until t = 1. This property becomes the basis
of our low complexity solution explained later in this section;
2) The right hand side of (8) depends on a single battery, but
is equal to a function of the summation of all batteries. This
becomes the basis of our distributed solution in Section IV.

C. Centralized Solution

Dynamic programming is a high complexity and generalized
solution method. To mitigate its disadvantages, we use the
sparsity in our specific problem definition to obtain a new

low-complexity solution. We use C ′, soc′ and soh′ to denote
the derivatives of C, soc and soh in (4), and use them in (8):

C ′t = Zn,t + SUnsoc
′
n,t

T∑
t′=t+1

λn,t′ (9)

We define the right hand side of the equation as the individual
constraint function since it only involves the individual proper-
ties of a battery. Zn,t and λn,t variables dictate the state of the
battery. A negative Zn,t means the battery is at its discharge
power limit, whereas for a positive value the battery is at its
charging power limit. λn,t introduces three states: A negative
λn,t means that the battery is empty, a positive value means the
battery is full and λn,t = 0 means the battery is transitioning
from one state to another, thus transient. We normalize (9) by
soc′n,t and take a finite difference at time t to obtain λn,t:

λn,t =
C ′t−1 − Zn,t−1
SUnsoc′n,t−1

− C ′t − Zn,t
SUnsoc′n,t

,∀n, t (10)

Equation (10) dictates the state of every battery. For a transient
state (λ = 0), if the battery model were linear, the denominator
would be 1, resulting in a solution of constant cost profile,
whereas in our nonlinear solution, the cost per used charge
is kept constant. For a full state (λ > 0), the cost per used
charge should be decreasing and for an empty state (λ < 0),
increasing. Most importantly, this equality dictates that all
batteries must have the same state at the same time for the
optimal solution. We prove this by contradiction. Assume that
battery n is in a transient state, while battery m is full:

C ′t−1
SUnsoc′n,t−1

=
C ′t

SUnsoc′n,t
=

C ′t+1

SUnsoc′n,t+1

transient

C ′t−1
SUmsoc′m,t−1

>
C ′t

SUmsoc′m,t
>

C ′t+1

SUmsoc′m,t+1

full

The derivative soc′ is always positive since we cannot in-
crease/decrease the charge by discharging/charging. Thus the
sign of C ′ values must be the same. Furthermore, bm,t = 0
since the battery is full at interval t and soc′m,t = 0 as its result.
This means that the signs of C ′t−1 and C ′t+1 are opposite,
contradicting with the first equation, proving that they must
be either full or transient at the same time. Extension of the
proof for empty state and power limit cases follow similarly.
Note that this is not a requirement for the system to operate,
but rather the condition of optimal operation. Even though
our solution considers heterogeneous battery chemistries and
sizes, under real operating conditions, this requirement might
not be satisfied due to hidden constraints or model irregular-
ities, resulting in suboptimal operation. However, under our
stated assumptions, the provided solutions are guaranteed to
converge while satisfying this requirement. This concept has
a similar precedent applied at a smaller scale in every cell
of the battery [40] commonly used in battery management
systems. Furthermore, even though this solution appears to
neglect degradation at first, degradation is in fact inherently
present within the SUn capacity. As a battery degrades, SUn
decreases, resulting in the most degraded battery to be used
less and the least degraded one to be used more. To show this,
we created a scenario with two identical batteries, except the
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Figure 2. Long term degradation inherently present within the solution.
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Figure 3. Algorithm flowchart for the centralized solution.

degradation coefficient of one of them has been increased by
25x. The long term solution is shown in Figure 2. It can be
seen that the solution relies less on the fast degrading battery
and more on the normal battery as the capacity fades in time.

Since each battery enters the full/empty state at the same
time, the transient region (λ = 0) must ensure that the
accumulation of charge reaches full/empty state at the same
time as all batteries. The centralized solution directly follows
this concept. If a battery is empty/full, the next step can
either be charging/discharging or staying idle at the same
state. Once the battery controller leaves a full/empty state, the
optimal solution is obtained by λ = 0 until it reaches another
full/empty state. Since each full/empty state is dictated by the
KKT conditions, the solver must make sure that the end of a
transient period ends up in a full/empty state that satisfies the
KKT conditions. So, at the beginning of a full/empty state, the
solver assumes virtually that a transient period can start. The
transient period is calculated using (10) for all batteries at each
time step, until an empty or full state is reached. The solver
then checks whether the result satisfies the KKT conditions
in (10). If it does, the initial assumption of transient region
is correct and the transient region becomes the actual solution
for the next time step. If not, the batteries stay idle for a single
interval. This process is repeated until the horizon is reached.
The resulting computational complexity is O(N2), meaning
that the number of iterations required for the solution is upper-
limited by the square of the time horizon. Note that this is the
same complexity as a matrix multiplication. The flow chart of
the centralized solution is shown in Figure 3.

Since the solution is based on a finite horizon, it has
two methods of applicability in practice: 1) the algorithm is
executed once for a long horizon to get the optimal solution for
long term planning; 2) MPC, where the algorithm is executed
at each time interval based on the predicted horizon values
and dynamically updated at the next decision interval.

IV. OPTIMAL DISTRIBUTED NONLINEAR BATTERY
CONTROL

The centralized solution is easily convertible to a coordina-
tion based distributed solution by construction. The distributed
solution has multiple advantages over the centralized solution:
1) Computational complexity is reduced by an order of mag-
nitude. All steps performed by the centralized solution are
divided between all battery controllers in a fair manner; 2) No
initial system charting is required. Battery related information
is only used by the battery itself; 3) The cost coordinator,
possibly implemented by the utility company, can close its
cost model to the users. An energy sharing neighborhood or
microgrid can minimize its utility bill using this solution.

To formulate the distributed solution, we leverage the re-
quirement for the optimal solution: batteries must be in the
same state at the same time due to (10). This requires that
any transient region starts from an empty/full state and end
at another empty/full state synchronously across all batteries.
Even though this seems counter-intuitive from a heterogeneous
degradation point across batteries, the degradation is inherently
present within SUn in (10), resulting in a more degraded
battery to be used less. To achieve this condition, the charged
or discharged energy by each battery at each interval must
have the same effect on their total capacities:

γt , socn(batn,t) = socm(batm,t),∀n,m (11)

The ratio, γt, is a single value to be satisfied by all
batteries within an interval. We use this property to create
three distributed negotiation based solutions. All solutions use
steps similar to the centralized solution. At each interval,
if the batteries are at an empty/full state, they assume that
a transient region is possible. The battery power levels are
then computed using (10) and (11), until an empty or full
state is reached. The solution checks whether the sign of (10)
is satisfied at the end points. If it is, the solution uses the
assumed transient region, otherwise all batteries stay idle for
a single interval. All steps require consensus between the
batteries, where the power level of each battery must be solved
satisfying (10) and (11). We present three negotiation schemes
to solve (10), while automatically satisfying (11): 1) Circular
negotiation ring that has a convergence rate independent of the
number of batteries, 2) Mean circular negotiation ring, which
converges very quickly for a small number of batteries, 3)
Bisection method that has a convergence rate independent of
the battery capacities, providing an upper bound to all. All
solutions guarantee in a distributed way that all battery states
are synchronous with each other and are determined such
that (10) is solved in their respective regions of convergence.

A. Circular Negotiation Ring

Based on a circular communication pattern between the
batteries, this solution requires a fully connected graph with a
minimum node degree of 2. Since the batteries are connected
to the grid and the grid is a fully connected structure, this
requirement is satisfied under most circumstances. Each bat-
tery starts with an initial consumption guess (e.g. set to the
previous consumption value). At each negotiation step, every
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battery sends its consumption value and their current γn,t
ratio calculated using (11) to the next battery. The receiving
battery updates its own consumption based on γn,t such that
batn,t = soc−1n (γn−1,t). The result is concatenated to the
consumption values received from other batteries and sent to
the next battery. When the initializing battery receives the
results of the current iteration, it either calculates C ′t+1 by
itself if the cost function is known, or communicates with the
pricing node (e.g. the utility) for C ′t+1. The cost values are
used for the next guess value and the next iteration starts.

Convergence: The solution starts by using the γ ratio of the
previous battery to obtain its own consumption, given by:

batn+1,t = soc−1n+1 (socn(batn,t)) (12)

This chain equation has a closure at the initial node to calculate
cost and the whole system becomes a fixed point equation,
solvable by fixed point iteration:

bat1,t = C ′−1
(
bat1, soc−1n (soc1(bat1,t)) , . . .

)
(13)

We use the following theorem for region of convergence:
Theorem 4.1: Given a fixed point iteration, xt+1 = sys(xt),

where sys(x) is a continuous function, the solution converges
to a unique fixed point if sys(x) has bounded input [L,U ] and
maps it to the same bounded output [L,U ].

Proof 4.1: If sys(L) = L or sys(U) = U , then the fixed
point is found. Otherwise, sys(L)−L > 0 and sys(U)−U < 0
state that there must be a point satisfying the equation between
L and U , due to intermediate value theorem.
In our case, if C ′−1 is continuous and stays within the
bounds of the battery energy limits, the iteration converges.
We continue with Banach’s Fixed Point Theorem to bound
the convergence rate. We first define contraction mapping:

Theorem 4.2: Let T be a mapping from X → X , where X is
the input set in metric space. T is called a contraction mapping
if d(T (x), T (y)) ≤ kd(x, y) where x, y ∈ X and 0 ≤ k < 1.

Theorem 4.3: Let xn+1 = T (xn) be a fixed point iteration
and T a contraction mapping. Rate of convergence is bounded
by d(x∗, xn) ≤ kn

1−kd(x1, x0), where x∗ is the solution.
For our case the magnitude of the Jacobian is:

max
i

soc′i(bati,t)
soc′1(soc

−1
1 (soci(bati,t)))

' max
i

SUi
SU1

(14)

This means that the convergence rate is upper limited by the
maximum capacity ratio of any two batteries. The ratio of 1 is
obtained when any two batteries have the same capacity values
and the solution will diverge. But, as long as the batteries are
not the same, the iteration converges exponentially by the ratio
of their capacities independent of the number of batteries.

B. Mean Circular Negotiation Ring
Similar to the circular negotiation ring, this solution also

requires that each battery sends its consumption and γt ratio
to the next battery during every iteration cycle. The main dif-
ference is in the calculation of γt. Rather than using the γ ratio
of the previous battery directly to calculate its consumption,
an additional parameter of average γ, γm, from the previous
iteration is sent and used to determine the consumption:
bn,t = soc−1n (γm). The extra averaging enables an order of
magnitude faster convergence for a small number of batteries.

batLower batUpper Mean Circular 
Negotiation Ring

ᶕ = bat/SU

ᶕ = bat/SU

(batLower +  
batUpper)/2

Consumptions

Error = Cost(consumptions) - Individual(bat)

ᶕ = bat/SU

Negative PositiveNegative

Next iteration

Figure 4. The bisection method workflow illustration.

Convergence: Each battery uses the average γm value from
the previous iteration: batn,t = soc−1n (γm). After each battery
calculates its own consumption, the closure is achieved at
the initializing node to calculate the mean ratio for the next
iteration, γ′m, where N is the number of batteries:

γ′m =
1

N

N∑
n=1

socn,t =
soc1,t
N

+ γm
N − 1

N
(15)

Combining this expression with the consumption we obtain:

batn,t = soc−1n

(
soc(bat1,t)

N
+
N − 1

N
γm

)
(16)

The Jacobian is either dominated by SUn

NSU1
or N−1

N , de-
pending on the configurations. In the event of a large number
of batteries, the second term dominates and the convergence
rate slows down as the number of batteries increases. This is
a disadvantage compared to the previous algorithm, but for a
low number of batteries and the case of identical batteries, the
first term dominates and we have an order of magnitude faster
convergence than the first method. A region of divergence
exists for a small area, due to the discontinuous nature of:
soc′′(x) = α(α − 1)xα−2/SU for x < 0. This discontinuity
in the calculation of Rn, causes the negotiation to oscillate
around its neighborhood, defined by: λnαn(λn−loadn)α−1 ≤
1 ∩ λn ≤ loadn. Although this region corresponds to small
discharge powers of a few watts for typical configurations,
the Bisection method solves these problematic regions.

C. Bisection Method
This iteration scheme is a modification of the mean circular

negotiation ring method. The iteration is not determined by
a reevaluation of previous values, but by partitioning using
previous results, illustrated in Figure 4. The communication
among batteries remains unchanged, where the consumption
is calculated using γm. The difference is that the initial battery
does not compute the next iteration consumption directly using
the inverse of the cost function, but starts with the widest
consumption interval possible: the upper and lower power
limits. To satisfy optimal conditions, the individual constraint
function must be equal to the total cost function in (8). The
difference between them is considered the error in this case.
Due to the mean value theorem, the solution in the viable
region must have an error value of zero and its neighboring
points must have opposite signs. The bisection method uses
this knowledge to partition the valid consumption range into
smaller regions with opposite signs. Since the range is fixed,
the number of partitions and convergence rate are also fixed.
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Convergence: Since the batteries are power constrained, the
viable region can only be partitioned into finite subregions,
upper limiting the number of iterations. For an error tolerance
of δ, the number of iterations can be obtained as log2(U −
L)/δ. For example, a battery with power limits of ∓150W
converges in 8 iterations for a tolerance of 1W .

V. RESULTS

A. Experimental Setup
We consider multiple use-case scenarios to compare our

control algorithm. Our battery model is verified against NASA
battery prognostics repository in [39] for Lithium-ion batteries.
The repository contains various experiment scenarios and
physical measurements cycling batteries until their capacity
is reduced below the industry standard of 80% of their
original capacity. We simulated the same scenarios using our
model and compared our SoC and SoH estimates with the
measurements. These scenarios contain 3 different ambient
temperatures, 3 levels of output power and various levels of
depth of discharge. Our model captures the nonlinear SoC
behavior with less than 2% error and the nonlinear SoH
degradation with 1.6% error. In contrast to our model, linear
models in the literature don’t consider the nonlinearity of SoC
and ignore the degradation.

For comparison purposes we have selected the widely used
heuristic of load following and a recent algorithm in the
literature [22] that provides a linear optimal centralized and
two decentralized solutions. The linear algorithm in [22] is
used for both single trajectory calculation and MPC separately.
Load following algorithm discharges the battery as the inverse
of the load, such that their summation is constant. In all
cases except the voltage deviation studies, the load profile
is a residential building at the University of California, San
Diego (UCSD) that houses 350 students to showcase the
applicability of our solution for a single building. The profile
has a typical trend, where the peak occurs in the evening after
classes end and a smaller peak in the morning before classes
start. All algorithms have a solution horizon of 24 hours. MPC
solutions are recalculated every 15 minutes. The Bisection
Method form of our algorithm with a single trajectory is used
due to constant iteration performance, even though all forms
would have converged to the same optimal result.

The cost function is a combination of time of use pricing
and quadratic pricing. Time of use pricing is one of the most
widely used electricity tariff in residential buildings. We use
values from San Diego Gas and Electric (SDGE) residential
rates [41]. A quadratic pricing profile is widely used for
electrical stability based studies [22]. Note that our algorithm
is guaranteed to provide the optimal solution for any convex
cost function, including time of use and multi-tier functions.
The quadratic function is selected since the quadratic nature
punishes the user for high power values, incentivizes a flatter
profile and allows us to do a fair comparison with [22],
designed for quadratic pricing. The cost parameters were
obtained by fitting a quadratic polynomial to multi-tier SDGE
prices: 0.016 $/kWh2p2 + 0.096p $/kWh, where p is the
total energy consumption in a time step. Each time step is 15
minutes.

ODNBC with degradation ODNBC
Load Following with degradation Load Following
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Figure 5. Cost reduction in electricity bill for ODNBC and load following.

We analyzed two scenarios in MATLAB: 1) we study how
the number of batteries affect the total electricity cost, 2) how
the capacity of the batteries affect the total electricity cost.
In both studies, the degradation cost and electricity cost are
studied separately.

B. Effect of Battery Capacity on Cost Reduction

For the first case scenario we use a single battery and change
its capacity to obtain cost reduction sensitivity with respect
to the battery capacity. We compare our method with the no
battery case and load following heuristic. Two different cost
reduction values are studied: 1) decrease in electricity cost, 2)
decrease in electricity cost adjusted by the battery degradation.
To obtain the second metric, we add the degradation in the
battery capital as an additional cost for using the battery.
We set a linear dependence between the capital cost of the
battery and its capacity [42] as $500 per kWh capacity. The
cost reduction and the degradation effect results are given in
Figure 5. The figure shows that our algorithm, denoted as
ODNBC, outperforms load following by up to 30% and results
in a cost reduction of up to 50%. The degradation cost results
are slightly higher for ODNBC, because the optimal solution
requires the battery to be discharged over a longer time.

C. Effect of Number of Batteries on Cost Reduction

Our second case study is based on the same consumption
profile and cost function as in the previous study. In this
case, we hold the total capacity of multiple batteries constant
and change their individual capacities to understand the cost
reduction dependence on the number of batteries used. To
show the difference between the different solutions, a 24 hour
portion of the optimal solution for a single battery and 32
batteries with equal total capacities of 2000Wh is shown in
Figure 6. The results for cost reduction and degradation in
Figure 7 show that as the number of batteries increases, the
cost and degradation performance of the solution improves.
As the batteries get smaller, their power consumption and
the effect of nonlinearities also decrease, enabling a higher
effective total capacity, hence a higher cost reduction and
lower degradation.

D. Comparison with Linear Optimal Methods

We compare our algorithm against 3 algorithms from recent
state-of-the-art work in [22]. The centralized optimal algorithm
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Figure 6. 24 hour solution time series for single battery and 32 batteries.
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Figure 7. Effect of number of batteries on cost reduction and degradation.
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Figure 8. Percentage reduction in cost compared to the bateryless case.

uses QP to solve the system of batteries. The decentralized
algorithm uses QP for each battery to get a solution for its
local load separately. The optimality is not guaranteed and
deviates from the global optimum for batteries with different
characteristics. The third algorithm, a novel market maker
MPC is a coordinated solution, where the coordination is
achieved by a dynamic price. The optimality and convergence
are not guaranteed. All parameters for the algorithms were
obtained from [22], whereas the battery model was substituted
with our nonlinear model. The reduction in cost relative to the
no battery case is shown in Figure 8. The results show the
significant error between the linear optimal algorithm and our
nonlinear optimal solution. There are two factors: 1) negligible
linearization errors at each interval due to the nonlinearity
in the SoC function as given in (10); 2) accumulation of
linearization errors leading into a wrong decision making. The
accumulation of small errors in the memory of the battery
model causes it to change states prematurely. An example is
illustrated in Figure 9. During a discharge period, nonlinearity
causes the battery to discharge slightly less than the linear
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Figure 9. Example of linear model assumption leading to premature state
transition.
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Figure 10. Error of linear model solutions, compared to our optimal solution.

solution, causing it to last longer; whereas the linear solution
assumes that the battery will last longer according to its model,
causing premature transition to empty state.

To further study this error caused by nonlinearity, we
measure the error between the linear optimal solution and
our nonlinear optimal solution for a flat load profile. In this
case, we also add the MPC usage of the linear optimal
solution [22]. All results with different number of batteries
are shown in Figure 10. The percentage of error is calculated
by: 100%× (Costlinear −Costnonlinear)/Costnonlinear. The results
show that the linear solutions, single trajectory or MPC, have
significant errors. This shows that even though the linearization
error at each interval is small, their accumulation in time can
cause more than a 150% error for MPC and 250% for single
trajectory solution compared to the nonlinear solution. These
error values increase with increasing number of batteries.

E. Voltage Deviation Comparison

We compare our control algorithm to single trajectory and
MPC based linear optimal algorithms from the perspective
of circuit stability. We performed a voltage stability analysis
on a residential neighborhood to understand how the voltage
deviation is affected by the use of batteries. The electrical
circuit is taken from NREL, which represents a real neighbor-
hood in south Los Angeles, shown in Figure 11. There are
23 houses and their load profiles are created using HomeSim,
a residential energy simulator [43]. All homes contain daily
appliances, PV and 20% of them contain large loads such as
an EV or a pool pump. PV profiles are obtained from UCSD’s
rooftop PV measurements. EV profile is created using the
charging profile of a Nissan Leaf. All other appliance profiles
are created by HomeSim that schedules start and stop events
based on measured appliance statistics. Voltage stability is
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Table II
VOLTAGE DEVIATION REDUCTION RELATIVE TO DEVIATION LIMIT

N No Batt. ODNBC Lin. Opt. MPC Opt.
2 0 (6.9%) 28% (4.1%) 8% (6.0%) 16% (5.3%)
5 0 (6.9%) 30% (3.8%) 21% (5.8%) 19% (5.0%)
10 0 (6.9%) 45% (2.4%) 21% (5.8%) 24% (4.0%)

obtained through S2Sim [44], a smart grid simulator that calcu-
lates the power flow solution using OpenDSS [45]. The battery
locations are marked as B on Figure 11. The error introduced
due to the aggregation of loads and generation time-series
is also presented. Even though residential energy sharing is
not implemented currently in practice, there is an increasing
amount of research for energy sharing neighborhoods [46],
[47], [48]. Three cases with 2, 5 and 10 batteries are studied,
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Transformer 7

Transformer 8

H18 H19

H20

H21 H22

H23

B1 B2

B3 B4 B5

B6 B7 B8

B9 B10

Figure 11. Neighborhood circuit with battery locations

where each battery has a capacity of 500, 200 and 100Wh,
respectively, so that the total amount of battery capacity is the
same for all cases. The maximum absolute voltage deviation
observed at any terminal is shown in Figure 12, where we
focus on the afternoon hours as only those have significant
deviation. The widely accepted maximum allowed voltage de-
viation is 10%. Thus we use the following metric to emphasize
the voltage deviation difference relative to the maximum al-
lowed value: Relative Reduction = (MaxDeviationNo Battery −
MaxDeviation)/(10% Limit). At peak hours, our algorithm
achieves a relative voltage deviation reduction of up to 45%,
helping the voltage stability significantly. Table II shows the
relative voltage deviation reduction values for all cases, along
with their actual deviation values in parenthesis. The results
show that our algorithm has the highest reduction, lowest
voltage deviation and as the number of batteries increase, the
reduction improves even more, since more terminals contain
batteries as stabilizing active devices. Finally, we investigate
the error introduced by aggregating the loads. We look at
the total line losses of the same neighborhood scenario and
measure the mean absolute error compared to the actual
nonlinear power flow solution. The error is normalized by
the total consumption to provide a ratio of lost energy to

useful energy: 1
T

T∑
t=1
|Lossnonlinear(t)−Lossconstant(t)

Consumption(t) |. The result is

only 0.84% for our solution and 1.24% for the linear optimal
solution, justifying the use of aggregation.

VI. CONCLUSION

Energy storage systems enable the on-demand dispatch of
energy to compensate for generation and consumption volatil-
ity. Our optimal distributed battery control handles multiple
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Figure 12. Absolute voltage deviation profile comparison of all solutions.

batteries, with low computational complexity of O(N2). In
contrast to previous work, we use a higher accuracy nonlinear
battery model with only 2% error. We provide three iteration
mechanisms to implement the distributed optimal solution with
proven convergence regions and rates We show in a case study
that optimal algorithms designed for a linear battery model
induce an error of up to 60% in terms of cost reduction, due
to the nonlinear nature of the battery. For the case of a constant
load profile, we show that this error exceeds 150%.
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