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Abstract— Recent years have seen a growing interest in
the development of non-invasive devices capable of detecting
seizures which can be worn in everyday life. Such devices
must be lightweight and unobtrusive which severely limit their
on-board computing power and battery life. In this paper,
we propose a novel technique based on hyperdimensional
(HD) computing to detect epileptic seizures from 2-channel
surface EEG recordings. The proposed technique eliminates
the need for complicated feature extraction techniques required
in conventional ML algorithms. The HD algorithm is also
simple to implement and does not require expert knowledge
for architectural optimizations needed for approaches based on
neural networks. In addition, our proposed technique is light-
weight and meets the computation and memory constraints of
ultra-small devices. Experimental results on a publicly available
dataset indicates our approach improves the accuracy com-
pared to state-of-the-art techniques while consuming smaller
or comparable power.

I. INTRODUCTION

Epilepsy is a serious neurological condition affecting
over 65 million people worldwide [1]. Epilepsy is marked
by persistent seizures which vary substantially in sever-
ity and length: mild seizures may not even be noticeable
while severe seizures can be accompanied by memory loss
or convulsions which can cause injury [1]. Because the
symptoms of epilepsy vary considerably between patients,
doctors typically conduct a range of tests to characterize
symptoms prior to deciding on a course of treatment. Mea-
suring the frequency and duration of seizure events is an
important piece of information both in deciding on a course
of treatment and on evaluating treatment effectiveness [2].
Traditionally, these measurements have been gathered in
hospital settings through use of an electroencephelogram
(EEG) which records the electrical output of the brain and
can be used to detect patterns of abnormal electrical activity
characteristic of epileptic seizures. While such methods are
accurate, they are costly, requiring extended hospital stays
by patients and time-consuming analysis of EEG recordings
by neurologists. Accordingly, recent years have seen growing
interest in the development of non-invasive devices capable
of detecting seizures which can be worn in everyday life [3].

The development of such devices poses a significant
challenge both from a system design and signal process-
ing perspective. In order to be aesthetically appealing and
practical, devices must be lightweight and unobtrusive which
limits their on-board computing power and battery life. In
this setting, many state-of-the-art detection algorithms (for

instance [4]) may be infeasible due to excessive memory
and/or power requirements. Another option is to stream data
collected on the wearable device to a mobile computing
platform like a Raspberry-Pi which is capable of more
sophisticated computations [5]. Nonetheless, these devices
still face limitations in terms of battery life and computing
power and so optimizing the signal processing algorithm is
still desirable. In this work, we focus on the latter setting.

In addition, EEG readings collected in clinical settings are
typically gathered from electrodes distributed over the entire
surface of the skull. By contrast, a wearable device may
only be able to gather reading from one or two electrodes at
specific locations which may limit the ability of the system
to detect seizures characterized by activity in other areas of
the brain [3].

Hyperdimensional (HD) computing is a promising new
technique for addressing machine learning problems on
resource constrained devices. HD computing emerged from
models of human memory developed in the computational
neuroscience community [6] and embeds raw signal val-
ues into a (very) high dimensional vector space under a
random mapping. The high dimensional representations can
be combined using simple arithmetic operations to generate
composite representations for related samples of a signal
(e.g. classes) which can be used in learning algorithms. HD
computing is appealing from an algorithmic perspective as it
requires only primitive element-wise arithmetic operations
over vectors and can be efficiently trained using a sim-
ple perceptron style algorithm [7]. Additionally, in contrast
to classical signal-processing approaches that need hand-
designed features to be extracted from the signal (which may
fail to capture relevant information), HD can be applied on
raw signals. HD computing has gained significant popularity
in the hardware community in recent years as an energy
efficient alternative to classical machine learning algorithms
[7], [8], [9].

Recent work in [10], [11] applied HD computing to seizure
detection on full-channel intracranial EEG (iEEG) record-
ings and found that HD based methods were able to deliver
comparable or superior accuracy to approaches based on
state-of-the-art machine learning algorithms - support vector
machines and neural networks - while requiring less memory
and fewer training examples. However, the intracranial EEG
recordings used in these works require surgery to place
electrodes directly on the brain and provide access to [xx]



channels.
In this work, we present an algorithm for detection of

epileptic seizures from 2-channel surface EEG recordings
on lightweight embedded devices based on HD computing.
To the best of our knowledge we are the first to apply HD
computing to the problem of seizure detection using non-
invasive surface EEG recordings. We present an extensive
comparison of our approach against other methods, in partic-
ular a “state-of-the-art” algorithm based on a Convolutional
Neural Network (CNN) proposed in [12], and a recently
proposed algorithm for detection on a lightweight device
proposed in [3]. We find that our proposed method achieves
an average accuracy of 82.99%, which outperforms the CNN
by 6.43%, and random forest by 11.84%.

II. MATERIALS AND METHODS

A. EEG dataset and preprocessing

In this work, we follow the setup of [3] who recently
proposed a lightweight wearable device for seizure moni-
toring. Their device consists of a pair of eyeglasses with
EEG electrodes sitting at either temple. We emulate data
gathered from such a device using a publicly available dataset
collected by the Children’s Hospital of Boston and MIT [13].
The dataset consists of 22 subjects with medically resistant
seizures ranging in age from 1.5 to 22 years. As in [3], we
use data on the first ten patients for which data was gathered
in compliance with the acquisition specification outlined in
[14]. To be consistent with the device proposed in [3] we
consider only data from the F7T7 and F8T8 electrodes.
Overall, we observe a total of 55 seizures in the dataset. As is
common in biosignal processing, we partition the EEG signal
into non-overlapping windows of length w and treat each
window as a single “observation” when training algorithms.

B. Hyperdimensional Computing

Overview. HD computing is based on evidence from the
neuroscience community which suggests that the human
brain computes on high-dimensional randomized represen-
tations of data rather than scalar numerical values [6].
In this literature, the high dimensional space is typically
referred to a hyperspace - to emphasize its unusually high
dimensionality - and points in the hyperspace are referred
to as hypervectors. The dimension of the hyperspace is
denoted H and is typically over 5, 000. The elements of
hypervectors are typically either bits (e.g. 0,1) or integers.
Real and complex numbers are not inherently unsupported
but generally avoided for computational reasons.

Because of their high-dimensionality, any randomly cho-
sen pair of hypervectors will be nearly orthogonal with
high-probability. A useful consequence of this fact is that,
for any some collection of hypervectors p, q, v, the vector
represented by their superposition S = p + q + v is, with
high-probability, closer to p, q and v than any other randomly
chosen vector in the space. Thus, sets (e.g. examples corre-
sponding to a particular class) can be represented simply
by computing an element-wise sum over the individual
hypervectors.

Given a vector z we can test if z, or a similar pattern,
is contained in S simply by computing a suitable similarity
metric α = δ(z,S) and comparing α to some critical value.
The similarity metric is typically the dot-product or cosine
distance. It is straightforward to extend this general approach
to encode sequences of observations (e.g. a time-series) [15],
[6].

Development of an HD model consists of three stages:
encoding, training, and querying. Encoding refers to the
process of obtaining a high-dimensional representation from
a raw signal. Training refers to the process of agglomerating
training data into some predictive model, and querying refers
to the process of predicting a label for some new piece
of unlabeled data. Throughout this description we assume
the training data consists of a set of N labeled examples
{xi, yi}N−1i=0 where xi ∈ RD and yi ∈ {0, 1}, where D
denotes the dimensionality of the input data to the learning
algorithm

Encoding. The encoding step maps a window of the raw
signal in low-dimensional space to its high-dimensional
representation. In this work we use the general purpose
encoding method proposed in [7]. As this material is not
yet standard fare, we here briefly review the essentials.

Let x = {x0, x1, ..., xD} ∈ RD be a d-dimensional input
vector. In general, the input vector may be raw signal values
or features extracted from the signal. Our goal is to represent
this data as a vector h ∈ ZH where H � D and Z denotes
the integers.

We first quantize the support of each xi into Q bins.
We then generate “level-hypervectors” representing each
quantizer bin as follows. The level hypervector for the first
quantization bin l0 ∈ {±1}H is generated by randomly
sampling from the uniform distribution over {±1}H . The
level hypervector for the second bin l1 is generated by
randomly flipping b H

2Qc randomly chosen coordinates. For
example, if H = 10, 000 and Q = 100, then l0 and l1
will differ (in expectation) on 200 coordinates. Similarly,
l2 is generated by flipping b H

2Qc random coordinates of l1.
Thus, the expected similarity (dot-product) between l0 and lj
gradually decays to zero as j → Q. Intuitively, this ensures
that if two different data points are similar in the input
space, they are also similar (as measured by dot product)
in the high-dimensional space. We denote the set of all level
hypervectors L = {lj}Q−1j=0 .

In the case of EEG analysis, x represents a sequence of
EEG readings (e.g. a time-series), hence the sequential order-
ing of the xi ∈ x must be taken to ensure information about
the ordering of the xi is preserved in the high-dimensional
encoding. To do so, we use a permutation operation that
differentiates the temporal positions of features by assigning
a unique permutation for each index. Let q(xi) denote a
function which takes a coordinate xi ∈ x and returns
the level hypervector lj corresponding to the appropriate
quantization bin. Then encoding of a window x proceeds



as follows:

h =

D−1∑
i=0

q(xi) ∗ ρi (1)

where ∗ρi denotes left-rotation of q(xi) by i indices. That
is, for all xi ∈ x, the corresponding level hypervector is
decided, rotated left by i, and accumulated to realize h.

Training. Given encoded hypervectors, training an HD
model is extremely simple. As noted above, to generate a
single hypervector representing a class k – which we denote
ck – we need only sum the encoded windows corresponding
to that class. More formally, the class hypervector for class
k is obtained as follows:

ck =
∑

xi s.t. yi=k

enc(xi) (2)

Where “enc” is the encoding function described above. We
remark that HD training is advantageous as it does not
require complex optimization algorithms as in other con-
ventional machine learning techniques like SVMs or neural
networks.

Querying. Given a trained HD model, the ultimate goal is
typically to use the model to infer the label of a new data
point. Suppose xi is a new data point for which we do
not know the label. To predict a label, we simply encode
it to an HD representation using exactly the same procedure
as during training and compute the cosine similarity of the
resulting vector with each of the “class hypervectors” learned
during training and return the class which maximizes this
similarity. More formally, the class label for a query example
xq is computed as:

argmax
k∈1:K

〈enc(xq), ck〉
||enc(xi)||||ck||

(3)

where 〈?, ?〉 denotes the inner product.

III. EXPERIMENTAL RESULTS

In the following section we present an extensive series of
tests to evaluate the effectiveness of HD compute for seizure
detection on surface EEG. We focus primarily on comparing
the accuracy and energy efficiency of HD computing to other
widely used machine learning techniques.

A. Baseline Methods

While a multitude of algorithms for seizure detection have
been proposed in the literature, we here focus on a handful
of the most popular techniques, namely: K-nearest neighbors
(KNN), support vector machines (SVM), logistic regres-
sion, random forests (RF) and convolutional neural networks
(CNNs). For a thorough overview of existing approaches the
interested reader is referred to a recent survey in [16]. With
the exception of CNNs and HD, these algorithms all typically
require that features to be extracted from the signal prior
to training. As noted above, feature extraction for seizure
detection is itself a major topic of research and we here

limit ourselves to a handful of features commonly cited in
literature [16].

When considering methods which require feature extrac-
tion, we follow the analysis method outlined in [3] and pre-
process the signal with a wavelet decomposition and then
extract several different entropy features including sample,
permutation, Renyi, Shannon, and Tsallis entropies. We
remark that our results provide evidence that HD is more
robust to noise and eliminates the need for preprocessing on
the raw signal values.

In addition to the entropy features described above, we
also extract several features from the frequency domain
representation of the signal. For each signal window, we
compute the power spectral density using Welch’s method
[17] and extract the relative power in the five brain wave
frequency bins (δ : 0.5 − 4Hz, θ : 4 − 8Hz, α : 8 − 12Hz,
β : 12−30Hz and γ : 30−45Hz) as well as a low frequency
bin from 0 − 0.5Hz. These features are commonly held to
be medically relevant for detecting seizures [18].

Finally, as a baseline for the CNN, we consider the method
proposed in [12] which consists of a single convolution layer
with six 5×5 filters and ReLU activation. The conv layers are
followed by a 2×2 pooling layer and a fully connected layer.
The input of the CNN has a square (k×k×2) array, which we
obtain by reshaping the recorded EEG signals of the channel
in certain window lengths. We examined an exhaustive grid
of hyper parameters including different optimizers (Adadelta,
SGD, Adam), learning rates (e-1, e-3, e-5, e-7), batch sizes
(5, 10, 20, 32, 50), epochs (10, 25, 50, 75, 100) and window
sizes (e.g. k) (24×24, 32×32, 46×46, 64×64, representing
1, 2, 4, and 8 seconds). Similarly for the other ML tech-
niques, hyperparameters were set using grid search over a
validation set. Reported results are obtained from the model
yielding the best performance on the validation data.

We split the training and test datasets by 75%-25% ratios
of total continuous windows. We further reserve 25% of the
training data as a validation set for hyperparameter tuning.
We make sure adjacent windows are not distributed into both
training and test to avoid bias in our test set. We repeat
all experiments 100 times, re-sampling the train, test, and
validation sets on each iteration and report the median, 25th
and 75th percentiles of results on all trials.

B. Performance Evaluation

Sensitivity and specificity are standard metrics to evaluate
the performance of seizure detection algorithms [12], [3].
Sensitivity indicates the ratio of correctly detected positive
(ictal) labels to total positive labels, i.e., sensitivity = tp

tp+fn .
On the other hand, specificity denotes the detection perfor-
mance of false (interictal) labels, i.e., specificity = tn

tn+fp . We
define the overall performance of the model as the geometric
mean of sensitivity and specificity. The geometric mean
penalizes the performance if either sensitivity or specificity
is skewed: performance = (sensitivity× specificity)

1
2 .

Figure 1 compares the accuracy of our proposed HD-
based seizure detection with other ML techniques, partic-
ularly random forest of [3] and CNN [12] using 1-second
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Fig. 1. Comparing the sensitivity, specificity, and overall performance of
HD and baseline techniques on 1-second windows. Each bar represents 25th
to 75th percentile as well as the median (of 100 train/test experiments).
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Fig. 2. Impact of EEG window size on overall performance of the models.
Each bar shows the 25th to 75th percentile range.

EEG windows. The overall performance of HD surpasses
these methods, achieving an average performance of 81.69%,
which is by 5.13% and 10.54% better than that of CNN [12]
and random forest (RF) in the recent work [3], respectively.

Figure 2 shows the impact of increasing the EEG window
length on the overall performance of the models. Except
the CNN [12], the other techniques generally benefit from
increasing the window size as they can absorb more informa-
tion. Despite considerable hyperparameter tuning of the CNN
(see Section III-A), we find it outputs a constant 0 (or 1)
when large windows are used, which results in poor overall
performance. Using 4-second windows, the 25th, average,
and 75th percentiles of HD’s overall performance increases
to 78.02%, 82.57%, and 85.00%. Among the baseline mod-
els, CNN using 1-second windows still provides the highest
average performance of 76.56% (even compared to 4-second
windows of the other models). Thus, compared with this
‘best’ baseline, HD improves the average accuracy by 6.01%.

We also observed that HD’s accuracy improves up to
window sizes of six seconds (not shown in Figure 2) and
then degrades. This is because the amount of information
that a hypervector can retain saturates. Note that a window
size of six seconds has D = 6 × fs × 2 channels = 3, 072
input vector dimension which is significant compared to the
length of hypervectors H = 5, 000 we considered in our
experiments (as mentioned in Section II-B, H needs to be
much larger than D). Using 6-second windows, the average
accuracy of HD reaches 82.99% and surpasses the state-of-
the-art CNN [12] by 6.43%, and the random forest [3] by
11.84%. We attribute the difference in performance between
our work and [3] to a different methodology for partitioning
the data into train and test set and note that on some runs
we observe comparable (or superior) performance to their
results.
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Fig. 3. Power overhead of different techniques (with different window
lengths) compared to CNN.

Lastly, we find the performance of HD is comparable
with and without pre-processing of the signal to remove
noise. Remember that in our experiments we used raw
signals without any pre-processing such as signal denoising
or bandpass filter. To examine the effectiveness of HD against
noisy signals, we repeated our experiments by passing all
windows through a Butterworth bandpass filter in the range
[0:5−45Hz] before further processing. Using signal windows
of one to eight seconds, we observed that exploiting a
bandpass filter only improves the HD performance by 0.29%,
on average, indicating even in the presence of noise HD
could deliver the maximum accuracy. This suggests that HD
computing may help improve tolerance to underlying noise
in data.

C. Power Consumption and Execution Time

We implemented our proposed technique and the baseline
techniques using Python on Raspberry-Pi 3. We used Hioki
3334 power meter to measure the power consumption. We
realized the baseline light-weight CNN [12] consumes the
least power as it requires smallest amount of computation.
We thus normalized the power consumption of the other
techniques to CNN power. Figure 3 compares the power
consumption of different techniques for three different win-
dow sizes. Techniques based on feature extraction, i.e., KNN,
SVM, linear regression and random forest almost consume
the same amount of power (correlates with computations)
due to the complicated feature extraction step. The power
overhead of HD reduces as the window size increases. Note
that for larger window size, HD requires more computation.
However, the time between arrival of windows also increases
and on overall the device benefits more ratio of idle time.
With 4-second windows, HD only consumes 3.1% higher
power than CNN, and further decreases if 6-second windows
are used for HD (which we also showed that achieves the
highest accuracy).

As mentioned above, for the baseline techniques other
than CNN (i.e., KNN, SVM, regression and random forest)
the Raspberry-Pi CPU is fully (> 96%) occupied in the
entire duration of processing an EEG window. In this sense,
detecting a w-second window takes ∼2w seconds: w seconds
for receiving/recording the window, and ∼w seconds for pro-
cessing. Thus, although these techniques can benefit accuracy
improvement by increasing the window length, the detection
time will increase accordingly. For HD, the detection time



also depends on the number of input dimensions. However,
we observed that processing a w-second window takes less
than 0.1w. The system can therefore detect a seizure after
0.4 second, if 4-second windows are used. It also implies
that the HD implementation can be ported to ultra-light
devices with ∼ 0.1× computation capability of Raspberry-
Pi. Moreover, recent studies have shown that HD, thanks
to its bit-level and highly parallelizable operations, can
significantly benefit from Processing-in-Memory (PIM) and
FPGA hardware platforms. The PIM [19] and FPGA [20]
implementations of HD have demonstrated three orders of
magnitude speed-up and energy reduction compared to CPU
implementation, which indicates HD as an ultra low-power
yet high-speed approach for seizure detection.

IV. CONCLUSION

In this paper, we applied hyperdimensional (HD) comput-
ing to detect seizures from 2-channel surface EEG record-
ings. The proposed technique can be readily applied on
raw EEG signals without any feature extraction or domain
expertise. Our experiments using a publicly available dataset
collected by the Children’s Hospital of Boston and MIT
revealed HD achieves an average performance up to 82.99%,
which outperforms the recent work based on CNN by 6.43%,
and random forest by 11.84%. The accuracy can be further
improved by increasing the length of hypervectors, which
also allows to use larger signal window size to extract more
information. The proposed technique uses a small fraction
(∼10%) of the recording time for processing on Raspberry-
Pi, which indicates it can be easily ported to ultra-light
devices.
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