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RAID AYOUB, Intel Corporation
RAJIB NATH and TAJANA SIMUNIC ROSING, University of California, San Diego

We introduce a Coordinated Management of Energy, Thermal, and Cooling (CoMETC) technique to minimize
cooling and memory energy of server machines. State-of-the-art solutions decouple the optimization of cooling
energy costs and energy consumption of CPU and memory subsystems. This results in suboptimal solutions
due to thermal dependencies between CPU and memory and the nonlinearity in energy costs of cooling. In
contrast, we develop a unified solution that integrates energy, thermal, and cooling management for CPU and
memory subsystems to maximize energy savings. CoMETC reduces the operational energy of the memory
by clustering active memory pages to a subset of memory modules while accounting for thermal and cooling
aspects. At the same time, CoMETC removes hotspots between and within the CPU sockets and reduces
the effects of thermal coupling with memory in order to minimize cooling energy costs. We design CoMETC
using a control-theoretic approach to guarantee meeting these objectives. We introduce a formal thermal and
cooling model to be used for online decisions inside CoMETC. Our experimental results show that CoMETC
achieves average cooling and memory energy savings of 58% compared to state-of-the-art techniques at a
performance overhead of less than 0.3%.
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1. INTRODUCTION

In recent years, server designers are striving to keep up with the unprecedented growth
in computational demand. It has become the norm in server machines to have multiple
CPU sockets and large DRAM memory to handle vast computations. The side effect
of using large numbers of computational resources is the increase in power density in
the system. High power dissipation elevates the operational costs of machines. It also
causes thermal hotspots that have substantial effects on reliability, performance, and
leakage power [Pedram and Nazarian 2006; Ajami et al. 2005]. Dissipating the excess
heat is a big challenge as it requires complex and energy-hungry cooling subsystems.
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Enhancing the energy proportionality of server machines requires improvement in
the energy efficiency of the subsystems, particularity those that are power hungry. Tra-
ditionally, the CPU is known to be the primary source of system power consumption.
This motivated designers over the years to enhance the energy efficiency of the CPU
subsystem. Less attention was given to energy optimization of the rest of the system,
which led to poor energy proportionality at the system level [Barroso and Holzle 2009].
The memory subsystem is the other major power-hungry component, as it consumes up
to 35% of total system energy and has poor energy proportionality [Barroso and Holzle
2007, 2009]. The capacity and bandwidth of the memory subsystem are typically
designed to handle worst-case scenarios. Applications may vary significantly in terms
of their memory access pattern and memory footprint. One solution to improving
energy proportionality is to activate a subset of the memory modules that are sufficient
to serve the application’s needs [Hai et al. 2005]. Such clustering, however, increases
the power density of the active memory modules which could cause thermal problems.

Efficient management of thermal problems is another growing challenge. Thermal
problems are not limited to CPU but also to memory, as both have high power density.
To manage the high temperature in a CPU subsystem, a number of core-level dynamic
thermal management (DTM) techniques have been proposed [Coskun et al. 2008; Yeo
et al. 2008; Ayoub and Rosing 2009; Ayoub et al. 2011]. The scope of these techniques
are limited to CPUs only and cannot mitigate thermal emergencies in memory. Lin et al.
[2007, 2008] propose solutions to mitigate thermal emergencies in the memory system
by throttling the throughput of memory to keep the temperature within the safe zone.
However, these solutions do not improve the energy proportionality in the memory sub-
system, as they do not consider minimizing the number of active DIMMs to just what
is needed. In addition, the cooling energy costs are not considered in these techniques.

The common approach for removing the excess of heat from servers is to incorporate
a fan subsystem. However, the operational costs of the fan is substantial, since the
power consumed by a fan is cubically related to the air-flow rate [Patterson 2008].
The fan system in high-end servers consumes as much as 80 W in 1U rack servers
and 240 W or more in 2U rack servers. Due to cost and area constraints, a common
set of fans is normally used to cool both the CPUs and memory.1 For such scenarios,
the inlet temperature of the components at the end of the air-flow path (downstream)
becomes a function of the temperature of the components located at the beginning of
the air-flow path (upstream) in addition to the server’s inlet temperature. Poor thermal
distribution deviates the cooling subsystem from the energy-efficient operating point.
These problems can be alleviated via thermal- and cooling-aware workload scheduling
in the system.

In this work, we present CoMETC, a Coordinated Management of Energy, Thermal,
and Cooling technique for servers which improves the Server Power Usage Efficiency
(SPUE). Providing an integrated solution is necessary due to the thermal dependencies
between the CPU and memory when both share the same cooling resources. CoMETC
maximizes energy efficiency in the machine by controlling the number of active memory
modules to just what is needed to provide sufficient storage capacity and bandwidth
while minimizing operational energy. CoMETC also schedules the workload between
the CPU sockets to create a balanced thermal distribution between them, not only to
minimize the thermal coupling effect but also to mitigate their thermal hotspots as
well. We developed a control-theoretic approach that controls memory page assign-
ment (memory clustering), socket-level scheduling, and fan speed to guarantee con-
vergence to the desired objectives. Finally, we show that applying CoMETC results in

1http://www.intel.com/products/server/motherboards/s5400sf/s5400sf-overview.htm.
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58% average energy reduction of (memory and cooling) subsystems at a negligible
performance overhead.

2. RELATED WORK

Energy and thermal management of memory and CPU subsystems is a vibrant area
of research. Research in this domain can be classified broadly into four main cate-
gories: CPU thermal management, power management of memory subsystem, thermal
management of memory subsystem, and cooling management.

CPU Thermal Management. In the past few years, several techniques have been pro-
posed to mitigate the temperature problems at the core level. These techniques can be
broadly classified into reactive and proactive techniques. Skadron et al. [2003] propose
two reactive DTM techniques that manage heat aggressively. The first technique is
based on dynamic voltage-frequency scaling, while the other uses pipeline throttling.
In Choi et al. [2007], Heo et al. [2003], and Donald and Martonosi [2006], propose activ-
ity migration to manage high temperature by moving computations across replicated
units when temperature reaches emergency levels. However, the reactive techniques
can cause high performance overhead, and they are not so effective in improving ther-
mal distribution across the chip. To overcome these problems, a class of proactive
thermal management techniques are suggested to manage thermal problems ahead of
time. Coskun et al. [2008] propose an autoregressive moving average (ARMA) model
that is based on the serial autocorrelation in the temperature time-series data. The
model is updated dynamically to adapt to possible workload changes. Although ARMA
is fairly accurate, it requires a training phase that may degrade performance. Ayoub
and Rosing [2009] suggest a new thermal predictor that is accurate and does not
require runtime adaptations. This predictor utilizes the bandlimited property in the
temperature signal. The authors implement this thermal predictor within a thermal
management technique. The reported results show an appreciable reduction in occur-
rence of thermal hotspots. However, the optimizations in these techniques are limited to
a single CPU socket, and they do not consider the cooling dynamics. Ayoub et al. [2011]
propose a hierarchical thermal management that optimizes temperature across and
within individual CPU sockets. This work accounts for cooling dynamics while manag-
ing temperature, which results in decent savings in cooling energy. Nevertheless, this
technique does not address the energy and thermal challenges in memory subsystems.

Power Management for Memory Subsystem. A number of techniques have been pro-
posed to reduce energy consumption in memory subsystems. Fan et al. [2001] optimize
for DRAM power by placing memory in a low power state during idle periods. This
approach is effective when there are frequent idle periods. Hai et al. [2005] mitigate
memory power by clustering heavily-accessed pages to a subset of the memory modules,
in particular, dual-in-line memory modules (DIMMs), and putting the rest of modules
in a self-refresh mode. However, such consolidation increases power density that can
cause thermal problems. These techniques do not address any thermal issues.

Thermal Management for Memory Subsystem. Thermal management techniques for
memory subsystems have been proposed recently. Lin et al. [2007] handle thermal
emergencies in memory by controlling memory throughput. The main drawback with
this approach is the associated performance overhead. Lin et al. [2009], manage high
temperature in memory by grouping the jobs so each group is mapped to a subset of
DIMMs, assuming that all jobs in a group can run simultaneously. Only one group of the
DIMMs is active at any point in time, while the rest stay inactive to cool down and save
energy. The authors assume the bandwidth of each thread is known in advance, which
is not a realistic assumption for general-purpose systems. Song et al. [2011] propose
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a thermal management technique for memory subsystems at the microarchitectural
level. However, this technique does not optimize for energy. All these techniques do not
optimize for cooling energy, which is significant.

Cooling Management. A set of cooling management techniques is proposed to remove
excess heat from the machines. In Wang et al. [2009] and Chiueh et al. [2000] propose
an optimized closed-loop fan control. Wang et al. [2009] suggest an optimal fan speed
algorithm for blade servers based on convex optimizations. As leakage depends on
temperature, Shin et al. [2009] propose a fan control mechanism that optimizes for
leakage power. A class of techniques is proposed to handle the cooling energy costs via
a better workload scheduling. Heath et al. [2006] implement a thermal-aware workload
balancing technique for server machines which uses component utilization as a proxy
for thermal stress. Tolia et al. [2009] proposed a cooling-aware workload management
technique to mitigate the energy costs in blade servers. A set of techniques has been
suggested to improve cooling efficiency in data centers [Tang et al. 2007; Schmidt et al.
2005; Wei et al. 2011]. Tang et al. [2007] and Schmidt et al. [2005] introduce workload
scheduling techniques to alleviate the air circulation problem around the racks of data
centers. Wei et al. [2011] propose a technique that manages the cooling rate based on
the utilization level of cooling zones. Nevertheless, these data center techniques are
not so effective for mitigating the temperature and cooling energy costs within server
machines. Patterson [2008] addresses the modeling of convective thermal resistance.

In this work, we make the following contributions.

—We introduce CoMETC, a novel approach that unifies the management of energy,
thermal, and cooling for CPU and memory subsystems using a control-theoretic
framework to deliver high energy savings and stability of control. To the best of our
knowledge, CoMETC is a first work that achieves these goals.

—We propose a new integrated thermal model for CPU and memory subsystems that
considers the cooling dynamics. We have validated our model using measurements
on a real machine.

—We report a detailed evaluation and discussion of our technique which delivers an
average energy savings of 58% at a performance overhead of less than 0.3%.

3. INTEGRATED THERMAL AND COOLING MODEL FOR CPU AND MEMORY

In this section, we focus on developing an integrated thermal and cooling model for
both CPU and memory which accounts for thermal dependency between them. We
then investigate the opportunities of energy savings in memory and the associated
thermal challenges.

Before we dive into details, we describe briefly the server we use to collect real-
life measurements. Figure 1(a) shows a photo of our server (Intel Quad-Core dual-
socket Xeon E5440), which is an illustrative example of a modern server. Each CPU is
associated with a separate set of fans, where each cools both the CPU and subset of
memory DIMMs, the CPU is placed close to the fan while the memory is downstream.
Having a common cooling creates a thermal dependency between the upstream and
downstream components that needs to be accounted for.

The memory subsystem in our server is shared among the CPU sockets where mem-
ory coherency is enforced by the hardware. This machine has two off-chip memory
controller, where each is connected to memory by two memory channels, each channel
is connected to four DIMM slots, as shown in Figure 1(b) (we use 4GB DDR2 DIMMs).
To measure the power of each DIMM, we add an extender that has current sensors
in the supply lines, where these sensors are connected to a data acquisition system.
Benchmarks from the SPEC2000 suite have been used as workloads. The CPU, memory,
and cooling specs are provided in a later table.
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Fig. 1. Intel dual-socket Xeon server.

3.1. Air-flow Cooling Background

In general, both thermals and cooling can be modeled based on the known duality
between electricity and temperature [Skadron et al. 2004]. Air cooling is commonly
modeled via a convective thermal resistance, where its value is a function of the air-flow
rate [Patterson 2008]. The value of this convective resistance, Rconv, can be computed as

Rconv ∝ 1
AV α

, (1)

where A is the effective area of the heat sink, V is the air-flow rate, and α is a factor
with a range of (0.8–1.0). For a given heat flow, the smaller the value of Rconv, the
lower the temperature of the component. To compute the cooling energy costs, we use
the results from Patterson [2008] to relate the fan speed, F, with the air-flow rate as
V ∝ F. The cooling costs for changing the air-flow rate from V1 to V2 can be computed
as [Patterson 2008; Shin et al. 2009]

P2

P1
=

(
V2

V1

)3

, (2)

where P1 and P2 represent the fan’s power dissipation at V1 and V2, respectively.
For a given system with multiple fans, the Pareto point of fan speed to save power
occurs when all fans spin at same speed due to the cubic relation between fan speed
and its power. This indicates that having the fans spin at the optimal point can save
significant energy.

3.2. System Thermal and Cooling Model

The inlet temperature of air flow to memory modules depends on the temperature of air
flow at the entry point to the upstream CPUs and the exerted heat from the CPUs to the
common air flow. However, the inlet temperature of air flow to the DIMMs may not be
uniform, as the temperatures of upstream CPUs vary depending on their workload. In
order to model the thermal dependency between CPUs and memory, we use dependent
heat sources which model the extra heat generated from the upstream CPUs. Figure 2
shows the unified thermal/cooling model of the CPU and memory. Definitions of CPU
and memory thermal model are discussed in Sections 3.2.1 and 3.2.2, respectively.
The dependent coupling heat source of the memory, qD, is proportional to the heat sink
temperature of the CPU, T C

ha, and inversely proportional to the case to ambient thermal
resistance of the downstream memory modules, RD

ca, as follows.

qD ∝ T C
ha

RD
ca

. (3)
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Fig. 2. Combined thermal model.

Increasing fan speed reduces the temperature of memory modules in two ways.
First, it brings down the temperature of the upstream CPU heat sink, which reduces
the coupling heat, qD. In addition, higher fan speed reduces the convective thermal
resistance of the memory modules, which further lowers the DIMMs temperature.

3.2.1. CPU Thermal Model. Figure 2 (left part) depicts the thermal model of the CPU
chip with a thermal package which is based on Ayoub et al. [2011] and Skadron et al.
[2004]. The thermal model of the CPU includes the die and the heat spreader. The
steady state heat transfer in the vertical direction of the die is modeled via a vertical
thermal resistance per component, RC

v . Similarly, the steady state lateral heat transfer
between the die’s components is modeled using lateral thermal resistances, RC

l . How-
ever, the lateral effect can be neglected at the core level [Heo et al. 2003]. The transient
thermal behavior is modeled by including a thermal capacitance per component. The
value of CC

j represents the thermal capacitance of the components in the die. The power
dissipation of each component is modeled as a heat source, PC

j . For heat spreader, RC
s

and CC
s refer to its associated thermal resistance and capacitance, respectively.

Heat sink is commonly used to enhance heat transfer between the CPU and the
ambient inside the server. The heat flow from the CPU case to local ambient is modeled
as a combination of conduction and convection heat transfers [Skadron et al. 2004].
The heat sink is assumed to be an isothermal conductive layer due to its high thermal
conductance [Skadron et al. 2004]. We use RC

hs to represent the value of the conductive
thermal resistance of the heat sink. The convective heat flow is modeled by a convective
resistance, RC

conv, which is connected in series with RC
hs, where their sum represents the

case to ambient thermal resistance, RC
ca (RC

ca = RC
hs + RC

conv). The component RC
ca is

connected in parallel with the thermal capacitance of the heat sink, CC
ca, which forms

a single node RC circuit. The value of RC
conv is calculated as a function of air flow using

Eq. (1). We use T C
j and T C

ca to represent the core junction to temperature and the case
to ambient temperature, respectively. The instantaneous value of the case to ambient
temperature, T C

ca(t), can be expressed as

dT C
ca(t)
dt

= −T C
ca(t)
τC

ca
+ PC(t)

CC
ca

, (4)

where, τC
ca is the heat sink time constant, τC

ca = RC
caCC

ca. The PC(t) represents the instan-
taneous total power dissipation in the CPU socket.

3.2.2. Memory Thermal and Cooling Model. The DRAM subsystem is organized as an array
of DIMMs (see Figure 1(b)), where each DIMM is composed of ranks, usually two, and
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Fig. 3. Memory power per DIMM. The number in front of the benchmark is the quantity of instances we
run.

each rank contains a number of memory chips (e.g., eight chips per rank). Each DRAM
chip stores data corresponding to a subset of predefined bits of the data word (e.g., the
first eight bits of a 64-bit data word maps to the first chip). This organization leads to
a uniform distribution in power across the DRAM chips that belong to the same rank.

Figure 2 (right side) shows the thermal model of a single DIMM with a heat spreader.
Superposition theory is used to simplify the RC network of the DRAM chips per rank
to a single RC node. In Figure 2, the heat source, PD

ri , represents the power dissipation
in rank i, RD

chip is the vertical thermal resistance of each chip, CD
chip is the thermal

capacitance of each chip, and T D
j is the junction temperature of a DRAM chip. The

number of DRAM chips in each rank and the number of ranks in each DIMM are
assumed to be N and nr, respectively.

The DIMMs are commonly equipped with a heat spreader to better dissipate their
temperature. The heat spreader is modeled as a single node RC circuit, as shown in Fig-
ure 2, due its small horizontal thermal resistance relative to convective resistance [Lin
et al. 2007, 2009]. The components CD

ca and RD
ca correspond to the thermal capacitance

and case to ambient thermal resistance of the heat spreader, respectively.
The transient behavior of the junction temperature is dominated by the heat spreader

temperature dynamics over the long run as the DRAM chip temperature reaches
steady-state quickly. This is because the time constant of the heat spreader (tens
of seconds, as we show in the results section) is orders of magnitude larger than the
DRAM chip die time constant (tens of milliseconds [Skadron et al. 2004]). We further
simplify the model by assuming the power dissipation across ranks is uniform, as the
memory controller applies interleaving by default to distribute the memory requests
across the DIMMs and their ranks uniformly. The junction temperature of a given rank
can be computed as

dT D
j (t)

dt
= −T D

j (t)

τ D
ca

+ γ

CD
ca

(
PD + qD

γ

)
, (5)

where γ = (1 + RD
j

RD
ca

), RD
j = RD

chip

Nnr
, PD represents the total operational power dissipated

in the DIMM, τ D
ca is the time constant of the heat spreader which equals CD

caRD
ca.

3.3. Memory Consolidation: Energy Savings and Thermal Challenges

Modern DRAM modules are not energy proportional, since the energy consumed to
process memory requests is only a fraction of the total module energy. This is because
the DRAM consumes energy to maintain the state of the stored information and to
provide adequate responsiveness. The DRAM energy can be saved by consolidating the
active memory pages of the workload into a smaller set of active DIMMs and placing
the rest in a self-refresh mode. However, we need to account for potential thermal
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Fig. 4. Performance reduction with memory consolidation.

problems while consolidating, since clustering active pages in a smaller set of DIMMs
elevates the power density.

We analyze the impact of consolidation on power per DIMM by running controlled
experiments on our server (refer to Figure 3). For the default configuration, we use a to-
tal of eight DIMMs with two DIMMs per memory channel to maximize bandwidth. We
emulate consolidation by using a configuration of four DIMMs, where each is connected
to a separate memory channel to ensure maximum bandwidth. In these experiment
we balance the workload across the dual CPU sockets. The default memory controller
implements interleaving to maximize bandwidth by evenly distributing memory ac-
cesses across all memory channels. The results show that we can achieve 16W savings
using consolidation. The memory power consumed in the default case is higher than
half of the power consumed in the configuration of four DIMMs, because a fraction of
the power is used to keep the DIMMs functional, which we call baseline power. Higher
savings are achieved for memory-intensive jobs (i.e., swim, equake, mcf ) compared to
CPU-intensive, (i.e., eon, gzip, perl, bzip2, gcc) as expected. On the other hand, the
consolidation caused the power density of the DIMMs to rise by up to 33%, which may
lead to potential temperature problems and higher cooling energy costs.

We now study the impact of consolidation on performance where we use data col-
lected from running experiments on our machine. For the default case, we assume a
configuration of eight DIMMs, where every two DIMMs are connected to a separate
memory channel. We examine the following configurations to emulate different degrees
of consolidation: (a) single DIMM, (b) two DIMMs where each is connected to a memory
channel that belongs to a separate memory controller, and (c) four DIMMs where each
is connected to a separate memory channel. Figure 4 shows the effect of consolidation
on performance compared to the default configuration. For the case of one- and two-
DIMMs consolidation, the performance degradation is noticeable, since only a fraction
of the bandwidth is utilized. However, when the memory bandwidth is fully utilized
(i.e., case of four DIMMs), the resultant performance approaches the default case. The
performance is slightly better in the default case compared to the that of four DIMMs
due to the reduction in bank conflicts, as we are adding more banks. Nevertheless, this
improvement is small since the number of pages (usually in the order of thousands or
more) is much larger than the number of banks (order of tens), thus little improvement
in temporal locality can be attained. The performance overhead of consolidation is ac-
ceptable when the memory bandwidth is fully utilized and the memory footprint of the
workload fits in the active DIMMs.

4. COMBINED ENERGY, THERMAL, AND COOLING MANAGEMENT

In this section, we discuss the details of CoMETC. Figure 5 illustrates the framework
of CoMETC, which consists of a formal multi-input multi-output (MIMO) controller,
actuators (memory page scheduler, CPU socket scheduler, fan speed actuator), and

ACM Transactions on Design Automation of Electronic Systems, Vol. 19, No. 1, Article 1, Pub. date: December 2013.



CoMETC 1:9

Fig. 5. Overview of the CoMETC framework.

sensors (temperature, power, and fan speed). Actuators translate the MIMO controller’s
decisions into proper actions on memory modules, CPU sockets, and fan. The controller
takes feedback signals from the sensors to ensure convergence. We design our scheme in
a unified fashion, since the temperature of memory is dependent upon the temperature
of CPU. Two independent thermal management units for CPU and memory lead to
inefficiencies. Formal control is used to guarantee efficiency and stability. The MIMO
controller is implemented in the operating system layer. We design the MIMO controller
using state-space control because it is robust and scalable [Franklin et al. 1990].

4.1. State-Space Control

We formulate a unified state-space model for memory and CPU subsystems. The vec-
tor of junction temperature of memory modules, TD

j , is defined as [T D
j1 (t), T D

j2 (t), . . . ,
T D

jnD
(t)]T , where nD is the number of DIMMs. The vector of heat sources in the DIMMs,

UD, is defined as [PD
1 (t) + qD

1 (t)
γ1

, PD
2 (t) + qD

2 (t)
γ2

, . . . , PD
nD

(t) + qD
nD

(t)
γnD

]T . Here, PD
i (t) and qD

i (t)
correspond to the DIMM power dissipation and heat coupling, respectively. The value

of γi is defined in Equation (5) as 1 + RD
ji

RD
cai

. In case of no thermal coupling, we set qD
i (t)

to zero, for 1 ≤ i ≤ nD.
Using Equation (5), we can express the thermal model for memory subsystem as

dTD
j (t)

dt
= YDTD

j (t) + ZDUD(t), (6)

where the temperature coefficient matrix, YD, and input coefficient matrix, ZD, are
defined as

YD =

⎡
⎢⎢⎢⎢⎢⎣

−1
τ D

ca1

0

. . .

0
−1
τ D

canD

⎤
⎥⎥⎥⎥⎥⎦ , ZD =

⎡
⎢⎢⎢⎢⎣

γ1

Cca1

0

. . .

0
γnD

CcanD

⎤
⎥⎥⎥⎥⎦ .

Similarly, we formulate the thermal model for a set of CPU sockets. The case to
ambient temperature vector of CPUs, TC

ca, is defined as [T C
ca1

(t), T C
ca2

(t), . . . , T C
canc

(t)]T ,
where nC is the number of CPU sockets. The vector for instantaneous power dissipation
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in the CPU sockets, PC , is defined as [PC
1 (t), PC

2 (t), . . . , PC
nC

(t)]T . Using Eq. (4), the CPU
socket thermal model becomes

dTC
ca(t)
dt

= YCTC
ca(t) + ZCPC(t), (7)

where the temperature coefficient matrix, YC , and input coefficient matrix, ZC , are
diagonal (Y C

ii = −1
τC

cai
and ZC

ii = 1
CC

cai
, for 1 ≤ i ≤ nC). The matrix YC is diagonal because

the heat transfer between the CPUs is set to zero, as it is negligible (i.e., virtually no
air flow passes across the CPUs, Figure 1(b)). The continuous linear systems given
in Eqs. (6) and (7) are discretized using the transformations given in Franklin et al.
[1990] as follows.

TD
j (k + 1) = �DTD

j (k) + �DUD(k), (8)

TC
ca(k + 1) = �CTC

ca(k) + �CPC(k), (9)

where the coefficients of this system are defined as follows

�D = eYD�t; (10)

�C = eYC�t; (11)

�D = ZD
∫ �t

0
eYDu du; (12)

�C = ZC
∫ �t

0
eYC u du. (13)

These coefficients are diagonal because they are functions of diagonal coefficients in
the continuous system. Substituting YD and ZD in Eqs. (10) and (12), we get

�D =

⎡
⎢⎢⎢⎣

e
− �t

τ D
ca1 0

. . .

0 e
− �t

τ D
canD

⎤
⎥⎥⎥⎦ ;

�D =

⎡
⎢⎢⎢⎢⎣

γ1
Cca1

(
∫ �t

0 e
− u

τ D
ca1 du) 0

.
. . .

0 γnD
CcanD

(
∫ �t

0 e
− u

τ D
canD du)

⎤
⎥⎥⎥⎥⎦ .

The integrals of �D have analytical solutions as �D
ii = (RD

cai
+ RD

ji )(1 − e
− �t

τ D
cai ), for

1 ≤ i ≤ nD. The matrices �C and �C can be computed in a similar way.
Next we formulate a unified state-space model for the system using Eqs. (8) and (9),

which yields [
TC

ca(k + 1)
TD

j (k + 1)

]
=

[
�C 0
�CD �D

] [
TC

ca(k)
TD

j (k)

]
+

[
�C 0
0 �D

] [
PC(k)
PD(k)

]
, (14)
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where PD(k) corresponds to the vector of the DIMM’s power consumption. The term
�CD represents the thermal coupling coefficient from CPU sockets to memory modules.

�CD
ij = λi j�

D
ii

RD
cai

+RD
ji

RC
conv j

RC
caj

, for 1 ≤ i ≤ nD and 1 ≤ j ≤ nC , where λi j represents the thermal

coupling factor between the DIMM i and the CPU j.

MIMO Controller. We use an MIMO controller as the primary management unit,
which is implemented in the operating system layer. With a final target of minimizing
the costs of cooling and memory energy, the MIMO controller takes all the important
decisions for the (a) number of active DIMMs, (b) workload assignment or scheduling
between CPU sockets, and (c) fan speed control that ensures convergence to the target
temperatures of both CPU and memory subsystems with minimal performance over-
head. The controller takes input using thermal and power sensors of CPU and memory,
in addition to readings of fan speed. These sensors are usually available in state-of-
the-art servers. As output, the MIMO controller provides a vector of desired power
distributions for CPU and memory, along with a temperature vector that is used to de-
termine fan speed. There are three actuators: CPU, memory, and fan. Actuators ensure
that fan speed, power of CPU, and memory are set according to the controller’s output.

The controller is designed based on the linear feedback control law [Franklin et al.
1990]. The control law is applied to the combined state-space model (Eq. (14)) which
yields

P(k) = −GT(k) + G0Tr(k), (15)

where G and G0 are the gain matrices with dimension n × n (n = nC + nD). The gain
matrices are computed in a way that ensure efficiency and stability, as discussed in the
subsequent paragraphs. The vector P(k) is the output of the controller which includes
the power consumption values of CPUs and memory modules that need to be enforced
by the actuators in the period between (k and k + 1). Fan speed is set by the fan
actuator based on the desired temperature distribution (temperature vector) specified
by the controller. This temperature vector can be calculated by substituting Eq. (15) in
Eq. (14), as

T(k + 1) = (� − �G)T(k) + �G0Tr(k), (16)

where � = [ �C 0
�C D �D ], � = [ �C 0

0 �D ], vector T(k) = [TC(k), TD(k)]T , represents the ther-
mal states of the system consisting of CPU, TC(k), and memory temperatures, TD(k).
The target temperature vector Tr(k) = [TC

r (k), TD
r ]T consists of the target CPU, TC

r (k),
and memory temperatures, TD

r . The elements of TD
r are the thermal emergency thresh-

olds of the memory modules. The components of TC
ri

(k) are calculated as follows

TC
ri

(k) = TC
cai

(k) + �T C
cai

(k) − δT C
thi

(k), (17)

where �T C
cai

(k) = �RC
cai

(k)
T C

cai
(k)

RC
cai

(k) . �RC
cai

(k) is the change in the CPU case to ambient

resistance, which relates to the difference between the current fan speed and the target
speed. The difference between the junction temperature to the threshold is represented
by δT C

thi
(k).

In general, the controller guarantees convergence to the desired target values, Tr(k),
if the eigenvalues of the controlled feedback system are within the unit circle [Franklin
et al. 1990]. One way to determine the feedback gain matrix, G, is to use the desired
eigenvalues as input and calculate G accordingly. To obtain the optimal gain matrix, we
can use the linear quadratic regulator (LQR) optimization [Franklin et al. 1990]. This
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method calculates the gain matrix in a way that minimizes the following cost function:

J =
∞∑

k=0

[TT (k)QT(k) + uT (k)Ru(k)], (18)

where u = −GT(k). Q and R are symmetric weight matrices of size n× n, and they are
specified by the designer. They are selected based on the importance of the states and
the energy of the control outputs, respectively. The LQR computations are done offline.
It takes around one second to compute a gain matrix for different fan speeds. The
gain matrix is stored as an array and accessed at runtime. The input gain matrix G0
is calculated using the standard reference input method described in Franklin et al.
[1990]. The controller interval is on the order of several seconds, since the thermal
time constant of the DIMMs and the CPUS is on the order of tens of seconds.

Design Overhead. Extracting the thermal model and designing the controller is a
one-time cost. Once the design is developed, it can be reused across the servers in the
deployment; the reuse makes this overhead acceptable. We rely on the capability of
our MIMO controller to handle any small deviations in the characteristics between the
machines [Franklin et al. 1990].

4.2. Actuators

At each controlling tick, k, the MIMO controller determines the set of operating power
values for the CPUs, memory modules, and fan speed for the next interval (k and
k + 1). The output of the controller is communicated to the actuators to execute the
controller requests. Each actuator operates independently, as the MIMO controller
already considers the thermal dependencies between the components.

Controller Convergence in the Face of Errors. The actuator’s goal is to minimize the
differences between the calculated power values provided by the controller and the cur-
rent measured ones. When the action of the actuator has some occasional errors, then
the controller can still ensure convergence. To validate our assumptions we assume a
state space model that is similar to the CPU and memory. We use a CPU model as an
illustrative example.

T C
ca(k + 1) = �T C

ca(k) + 	PC(k), (19)

where � and 	 are coefficients and PC is the input power of a given CPU. To control
this system, we use the state-space control that we have in Eq. (15). Let’s assume a
reference point to be 0 to simplify the analysis. The feedback control in this case can
be computed as PC(k) = −GT C

ca(k) + e(k). G is the gain and e(k) is the actuator average
error. The accumulated error in T C

ca(k) at k = n equals to
∑n

i=0 	e(i)υn−i, where υ is
the eigenvalue of the controller. Since the eigenvalue of the controller is less than 1,
the accumulated error converges to 0, which ensures convergence. The details of the
actuators implementation are given next.

CPU Actuator. The controller’s input to the CPU actuator is the vector �PC of
the desired change in power values in each of the CPUs for the interval between k
and k + 1. This vector is calculated by subtracting the CPUs power requested by the
controller from the CPU’s average power measured in the interval between k−1 and k.
The details of the CPU scheduler are given in Algorithm 1. The algorithm starts by
estimating the power consumed by the individual threads in each CPU via modeling
their core and last-level cache power, similar to what is proposed in Ayoub et al. [2011].
Subsequently, our algorithm traverses the workload and spreads the threads from the
hot CPU, starting with cooler threads to have a finer-grain control of the total power in
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ALGORITHM 1: Socket-Level Scheduling

Calculate �PC and the set of PC
thr for each CPU. Set Q as an empty queue;

for i in the set of hot CPUs do
for j in the set of threads in C PUi do

dest ⇐ index of the coolest CPU;
if (PC

thrj
≤ �PC

i ) and (PC
thrj

≤ |�PC
dest|);

then
if C PUdest has idle core then

Calculate cooling savings of migrating thread j to C PUdest;
else

Calculate cooling savings of swapping thread j with the coolest thread in
C PUdest;

end
if cooling savings > Smin then

Enqueue this migration event in Q;
Update �PC and threads assignment;

end
end

end
end
Execute all migration events in Q

each socket and to reduce the chance of errors. It moves from a hot C PUi a number of
threads with a total power that is less than or equal to �PC

i . A cool C PUdest receives
threads with a total power that is less than or equal to |�PC

dest|. Before each migration,
we evaluate the cooling energy savings to prevent ineffective scheduling decisions,
similar to Ayoub et al. [2011]. The cooling energy savings estimator calculates the
resultant temperature after the migration using our thermal model. Subsequently,
we translate the difference in maximum temperature into change in fan speed using
Equation (23), which we use in the fan actuator. Individual scheduling events are
allowed only when the predicted cooling savings are higher than a given threshold, Smin.

Memory Actuator. At the beginning of each interval, the controller provides a vector,
PD, of desired power dissipation per each DIMM. As a result, a DIMM may need to keep,
increase, or decrease its power dissipation accordingly. A page migration mechanism
is used as a proxy to control the active power of the DIMMs as required. When the
temperature is high and no active DIMMs can accept additional pages to reduce the
power density of the hot DIMMs, then we need to choose between activating a new
DIMM or spinning up the fan to cool down the DIMMs. We decide between these two
options based on the temperature reduction each choice can deliver under the same
energy budget. In the following sections, we study these scenarios.

(1) Increasing Fan Speed Versus Activating a New DIMM. Figure 6 shows that doubling
the number of DIMMs does not reduce the power per DIMM to half. This is due
to the baseline power, Pbase, component that is in the range of 3.5 W for memory
bound applications measured on 4GB DDR2 DIMMs (refer to Section 3.3). This
means that increasing fan speed may be a better option if it results in a lower
temperature at a power consumption of Pbase. Increasing fan speed reduces the
memory temperature by lowering the effect of thermal coupling and self heating of
the DIMMs, as it reduces the convective resistance of the CPU and memory. The
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Fig. 6. Power breakdown of memory DIMMs.

temperature reduction for the increase in fan power by Pbase is calculated as

�T f an = �F
(

λPC
act

dRC
conv(F)
dF

+ PD
act

dRD
conv(F)
dF

)
, (20)

where �F is the increase in fan speed of the hottest memory zone. PC
act and PD

act
represent the actual power consumption of CPU and the power of hottest DIMM
(located in the same CPU zone), respectively. When the actuator decides to activate
a new DIMM, it migrates pages from other DIMMs to the newly activated DIMM,
progressively starting from the application that has the highest memory access
rate. Using our thermal model, the temperature reduction for adding one more
DIMM can be computed as

�Tmem =
(
T D

jmax
− Pbase RD

ca − λT C
ha

)
nD

, (21)

where nD is the number of DIMMs after expansion and λ is the thermal coupling
factor between CPU and memory. The T D

jmax
is the maximum temperature of the

DIMMs that are located in the zone of the given CPU socket. The controller chooses
to activate a new DIMM only if the temperature reduction, |�Tmem|, is higher than
|�T f an| when a new DIMM is activated, as follows.

if(|�T f an| < |�Tmem|) ⇒ activate a new DIMM,

else ⇒ increase f an speed.
(22)

We optimize for page migration by exploiting the skew in the distribution of page
activity. Figures 7(a), 7(b), and 7(c) show the page access patterns for memory and
CPU bound applications, for each application, we give the access distribution for
half and full of the simulated interval. We use a microarchitectural simulator M5
[Binkert et al. 2006] to generate these statistics and simulate for a representative
period of 15 billion instructions of each benchmark. From these results, it can be
seen that the number of active memory pages (hot pages) is a small fraction of the
total pages in the application. When the actuator decides to migrate pages from
hot DIMMs, we migrate the active pages to mitigate temperature with a minimal
number of page migrations.

(2) Controlling DIMM’s Power by Page Migration. Power vector PD(k) specifies power
distribution of each DIMM over the next period. The power of a memory mod-
ule i needs to be reduced in the next interval when PD

i (k) < PD
measi

(k − 1), where
PD

measi
(k − 1) is the measured power of DIMMi in the previous interval. This power

reduction in DIMMi is achieved by migrating portion of its pages to other DIMMs.
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Fig. 7. Access pattern of memory pages.

This migration is performed by using the memory actuator. In contrast, the power
dissipation of a memory module, say DIMMi, may also need to be increased when
PD

i(k) > PD
measi

(k−1). Hence it requires migrating more pages to DIMMi from other
memory modules to match DIMMi ’s power with the desired value by the controller.

When all active memory modules can accept more pages, the controller starts
migrating from the most recently activated module so that it can be placed in a
low power mode when no active pages are left. When there are some hot DIMMs,
the controller tries to maximize performance by migrating pages to a memory
module only if it has lower memory access rate/power consumption than the av-
erage value. In this way, all the accesses are uniformly distributed among the
active memory modules. To minimize hot spots, the controller balances the number
of active DIMMs per CPU zone (CPU and its associated downstream DIMMs).
For example, the activation order of DIMMs shown in Figure 1(b) should be
Ai, Bi, Ci, Di, Ai+1, Bi+1, etc. The page migration continues until the access rate
of the newly activated DIMM becomes equal to that of already active DIMMs. The
overhead of migrating pages is acceptable since the temperature time constant is
over six orders of magnitude larger than the page migration time.

Fan Actuator. Fan speed is updated periodically based on the requested temperatures
from the controller, T(k + 1). Controlling the fan is used as a complementary measure
to the CPU and memory optimizations to minimize the remaining difference between
the current measured temperature and the controller’s requested temperature vector.

Let’s assume �TD > 0 and �TC > 0 are vectors of the temperature difference
between the current and target value of the controller for CPU and memory modules,
respectively. The actuator estimates the new fan speed, Fnew, based on the current fan
speed, Fcur, and highest requested change in fan speed due to memory, �F D, and due
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to CPU, �FC , as follows.

�F D = max

⎛
⎝ �T D

i

λPC
j

dRC
conv j

(F)

dF + PD
i

dRD
convi

(F)
dF

⎞
⎠ ; (23)

�FC = �T C
j

PC
j

dRC
conv j

(F)

dF

; (24)

Fnew = Fcur + max(�F D,�FC), (25)

where i represents the ith DIMM that is in the zone of processor j. The interval of
the fan actuator can be set to be equal to or less than the controller interval. Setting
the fan actuator interval to a smaller value helps provide more detailed control over
temperature. The desired temperature at the subintervals is computed based on the
slop of T(k) and T(k + 1).

5. EVALUATION

5.1. Methodology

We evaluate our approach using actual power traces (memory and CPU) collected from
our instrumented server. We feed these traces to an extended version of HotSpot simu-
lator [Skadron et al. 2004] to estimate the temperature of the CPU and memory subsys-
tems for a given cooling rate. We extended HotSpot with our unified thermal/cooling
model (refer to Figure 2). We estimate the CPU core, L2, and baseline power using
the method described in Ayoub et al. [2011]. The core and L2 power traces are used
to estimate the core and L2 temperatures, respectively, using HotSpot simulator and
Xeon processor layout. We include the baseline power of the CPU in the temperature
simulations.

We use the memory organization given in our Intel server (see Figure 1(b)). To save
energy, the memory controller put the DIMMs with dormant pages in a self-refresh
mode, while the rest of the modules remain active. The values of power consumption
during self-refresh and transition penalty are given in Table I. We generate the
page access statistics of the applications using the M5 microarchitectural simulator
[Binkert et al. 2006].

The simulation parameters of the fan and thermal package of both CPU and memory
DIMMs are listed in Table I. The cooling parameters for both CPU and memory are
calibrated using transient measurements similar to those used to generate Figures 9(a)
and 9(b).

The default fan control algorithm is modeled as a closed loop PI (proportional and
integral) controller, which is commonly used in modern systems. The fan controller sets
the fan speed in proportion to the difference to thermal threshold and the accumulated
temperature errors. We set the fan to trigger five degrees below the thermal threshold
of the chip (refer to Table I) to allow enough time to respond to thermal emergencies.
We use simulation instead of running our algorithms in a real system due to implemen-
tation constraints. The built-in fan control algorithm spins all fans at a single speed
that is required to mitigate the temperature of the hottest CPU or DIMM, which leads
to over-provisioning. This algorithm is implemented in a separate microcontroller that
we don’t have access to. As a results, not all the advantages of our algorithm can be
manifested using the built-in fan control algorithm.

We set the sampling interval for the MIMO controller to four seconds, this is a reason-
able assumption, since the temperature time constant of the CPU heat sink and DIMM
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Table I. Characteristics of CPU, Memory, and Cooling

CPU

CPU Xeon E5440
TDP 80W

CPU frequency 2.8GHz
Heat spreader thickness 1.5mm
Case to ambient thermal RC

ca = 0.141 + 1.23
V 0.923 ,

resistance in K/W V : air flow in CFM
Heat sink time constant at max air flow 25 seconds

Temperature threshold 90◦C [Patterson 2008]

DIMM

DIMM size 4GB
Max DRAM power/DIMM 10W
Case to ambient thermal RD

ca = 0.75 + 45
V 0.9

resistance in K/W V : air flow in CFM
Per chip thermal resistance in K/W RD

chip = 4.02

Heat spreader time constant at max air flow 70 seconds
Temperature, threshold 85◦C [Lin et al. 2007, 2009]

Self refresh power per DIMM 0.15W
Transition between active and self-refresh modes 11us [Hai et al. 2005]

Thermal coupling factor with CPU 0.65

Fan

Fan power per socket 29.4 W
Max air flow rate per socket 53.4 CFM

Fan steps 32
Fan sampling interval 1 second

Idle fan speed 10% of max speed

Table II. SPEC Benchmarks Characteristics

Benchmark IPC Power per DIMM (W) Characteristics

swim 0.55 4.65 Memory bound
equake 0.51 4.38 Memory bound

mcf 0.18 3.71 Memory bound
perl 2.18 1.21 CPU bound

bzip2 1.36 1.18 CPU bound
gcc 1.23 1.17 CPU bound
eon 1.33 0.79 CPU bound
gzip 1.16 0.92 CPU bound

heat spreader are on the order of tens of seconds. It should be noted that our technique
is not restricted to this interval and other intervals around this value can be used. The
sampling interval of the fan control is set to one second to allow for a fine-grain control
over temperature to ensure reliability. We also set the cooling savings threshold to a
conservative value of 10%. For core-level thermal management, we use our previously
proposed OS-level proactive thermal management [Ayoub and Rosing 2009].

For workload, we use a set of benchmarks that have a wide range of CPU and memory
activity to emulate real-life applications (see Table II). Each benchmark is executed till
completion, then repeated until a total execution time of 600 seconds is reached after
a warm-up period of 200 seconds. Table III gives the list of the workload combinations
that we use in this study. In these experiments, we run a representative workload that
has a mix of CPU and memory bound applications.

2http:www.micron.com/products/dram/.
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Table III. Workload Combinations for Multitier Algorithm

Workload Socket A Socket B Workload Socket A Socket B

WL1 equake + 2gzip 3bzip2 WL9 mcf + 2gcc perl + bzip2 + eon
WL2 2bzip2 + 2eon mcf + gcc + 2gzip WL10 3gzip 2perl + eon
WL3 equake + 2bzip2 2gzip + gcc WL11 2equake + gcc 2perl + equake
WL4 perl + eon + bzip2 2equake + gcc WL12 mcf + 2gcc 2gcc + 2perl
WL5 2gcc + perl swim + 2gcc WL13 gcc + 2perl equake + 2gcc
WL6 mcf mcf WL14 2mcf + gcc 2perl + mcf
WL7 gcc + 2gzip 2bzip2 + perl WL15 2swim + gcc 2perl + swim
WL8 perl + bzip2 + 2eon 2mcf + 2gcc

The CoMETC algorithm employes an MIMO control to manage workload scheduling
across CPU sockets, distribution of memory access between DIMMs, and controlling fan
speed. It also implements proactive thermal management at the core level to mitigate
temperature within sockets. We set the minimum number of active DIMMs to four to
utilize full memory bandwidth (refer to Figure 1(b)). We evaluate CoMETC against the
following policies.

Thermal Management of Core and Memory with PI Fan Control, CM+PI. This is
the default policy which implements state-of-the-art thermal management techniques
for CPU and memory. It employs proactive thermal management at the core level to
mitigate the temperature within individual sockets [Ayoub and Rosing 2009]. Memory
thermal problems are managed separately via throttling the memory access when the
temperature reaches the emergency threshold [Lin et al. 2007]. No memory clustering
is applied in this policy. The fan speed is controlled separately using the default PI
controller.

Joint Energy, Thermal, and Cooling Management JETC [Ayoub et al. 2012]. This
policy implements workload scheduling between sockets, memory clustering with a
tradeoff optimization between fan speed and memory clustering. This trade-off opti-
mization is similar in concept to what we use in CoMETC. However, it uses heuristics
instead of formal MIMO control for scheduling jobs between CPU sockets and man-
aging memory clustering. The fan speed is controlled separately using the default PI
control. The details of these heuristics can be found in Ayoub et al. [2012], which we
omit due to space limitation. For core-level thermal management, it employs the same
proactive thermal technique that is used in CoMETC.

No Fan-Memory Optimization, NFMO. This policy inherits the same properties of
CoMETC, except we disable the optimization that trades off between activating a new
DIMM and increasing fan speed. This policy is selected to study the impact of this
trade-off on savings.

No Memory Management, NMM. This policy is similar to CoMETC, except we pre-
clude the memory clustering optimization. The purpose of this policy is to isolate the
effect of memory clustering on savings.

5.2. Results

5.2.1. Evaluation of Thermal and Cooling Model. First, we evalutate the thermal and cool-
ing model.

Thermal Coupling. We start by addressing the thermal coupling between CPU and
memory using measurements collected from our machine. To do so, we collect the tem-
perature of the CPU heat sink via external thermal sensors and the maximum junction
temperature of the memory modules using the Intelligent Platform Management
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Fig. 8. Thermal coupling between CPU and memory.

Fig. 9. Transient temperature for CPU heat sink and DIMMs (referenced to idle temperature).

Interface (IPMI), both at the same time. In this experiment, we use four DIMMs,
each connected to a single channel, where every two DIMMs are placed behind one
CPU socket. We run swim (memory bound) alone for 300 seconds on a single socket
as a warmup. After this warm-up period, we continue running swim for another
800 seconds then add perl (CPU bound) and launch an additional perl at time
2,000 seconds, all to the same socket. The rationale behind running swim is to keep
the memory power at the same level during the experiment since it has almost a
flat power. During this experiment, we restart any finished jobs. Figure 8 shows the
temperatures of the memory and the CPU heat sink referenced to their respective
values at the end of the warm-up period. The results clearly show that a rise in the
heat sink temperature causes a rise in the memory temperature due to the extra heat
that is transferred from the CPU to memory.

CPU Thermal Model. Next, we validate the CPU thermal model using an experimen-
tal setup similar to that of Ayoub et al. [2011]. In this experiment, we insert an external
thermal sensor to the heat sink surface which measures the temperature from the heat
sink to the ambient, T C

ha. We run four instances of perl for 600 seconds followed by an ad-
ditional 600 seconds of idleness for cooling down. The fan speed is set to maximum using
the boost mode option to keep the time constant of the heat sink constant. Figure 9(a)
shows measured and modeled values of T C

ha. It can be seen from the results that there
is a strong match between the measurements and the model.

Memory Thermal Model. Now we validate our memory model using measurements
collected from the machine. We execute memory-intensive jobs, swim and mcf, and
collect the junction temperature of the DIMMs using IPMI. We validate the model for
two cases, four DIMMs and eight DIMMs configurations to assure that our model is
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Fig. 10. Total energy savings (memory + cooling) relative to the default policy in a system with eight
DIMMs.

not limited to a certain configuration. The four DIMMs and eight DIMMs are placed in
the memory slots following the order (A1, B1, C1, D1) and (A1, A2, B1, B2, C1, C2, D1, D2),
respectively (refer to Figure 1(b)). The fan speed is set to maximum using the boost
mode option to keep the time constant of the heat spreader of the memory modules
constant. Figure 9(b) shows the transient temperature of the measured and modeled
values for four and eight DIMMs configurations. The figure shows clearly that the
transient temperature of the memory modules is dominated by the thermal dynamics
of the heat spreader as it changes slowly (time constant ∼70 seconds). The results
clearly show a decent match between the actual and ideal model with an average error
of 0.27◦C relative to the real measurements.

5.2.2. Evaluation of the CoMETC Algorithm. Next, we evaluate the CoMETC algorithm
and compare it against other policies. In the following, we evaluate energy savings, fan
balancing, page-migration rate, stability, and overhead.

Energy Savings. First, we address the energy savings of CoMETC compared to other
policies. The savings results include the energy of the memory and cooling subsys-
tems. Figures 10(a) and 10(b) show the total energy savings for eight-DIMM configura-
tion with local server ambient temperatures of 45◦C and 35◦C, respectively. CoMETC
achieves energy savings reaching an average of 39.7% and 31.6% relative to the default
policy (CM + PI) for 45◦C and 35◦C, respectively. The results in Figure 10(a) clearly
show that CoMETC outperforms all other policies. For instance, the savings in the cases
of WL7 and WL10 are related to imbalance in the thermal distribution between the
two sockets, which raises cooling energy costs. The CoMETC algorithm outperforms
the default policy quite well, since it has the capability to balance the temperature
between the CPU sockets while the default is restricted to local thermal optimizations
within the individual sockets only. The policy NFMO performs equally well to CoMETC,
since it can balance the temperature between sockets and uses MIMO control that is
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Fig. 11. Ambient temperature sensitivity of energy savings and fan speed ratio with eight DIMMs.

similar to CoMETC. However, JETC delivers noticeably lower savings, albeit it has the
capability to balance the heat between sockets. JETC laas behind these policies since it
does not integrate fan control with workload scheduling and uses heuristics which can
not guarantee optimality. The policy NMM also as behind CoMETC since it does not
implement memory clustering to save on memory energy. The other important scenario
is when there are savings opportunities from CPU temperature imbalance and memory
clustering. Examples of this can be seen in the cases of WL4 and WL5. In these cases,
CoMETC is superior to all other policies, since it is the only one that can capture these
classes of savings efficiently.

Next, we present the combined energy savings of memory and cooling at a local
ambient temperature of 35◦C, shown in Figure 10(b). The savings in this case are dom-
inated by clustering the memory requests to a smaller set of DIMMs. Evidence of this
can be seen from the savings of the NMM policy, which is close to zero. The CoMETC
policy performs well since it is able to capture the savings opportunities from memory
clustering. These results also illustrate the advantages of the optimization that trades
off between activating a new DIMM versus speeding up the fan. This can be indicated
from the low savings of NFMO, since it does not perform this optimization. The JETC
policy performed close to CoMETC, because performing the memory clustering opti-
mization at low temperature does not require a highly optimized control, as thermal
problems are infrequent.

In Figure 11, we show the energy savings of CoMETC over the default policy as
a function of local ambient temperature. The savings between 35◦C and 40◦C come
primarily from clustering the memory accesses to a subset of the memory modules.
When the local ambient temperature increases, the savings become higher due to
balancing fan speed, as both memory and CPU experience more thermal issues. This
indicates that CoMETC provides better savings at higher local ambient temperatures.

In Figures 12(a) and 12(b), we study the benefits of increasing the number of DIMMs
to 16. The CoMETC algorithm is able to achieve higher savings compared to the default
policy, reaching an average of 58.2% and 55.6% for local ambient of 45◦C and 35◦C,
respectively. The savings of CoMETC increase when using 16 DIMMs, as compared to
the case of eight DIMMs since more DIMMs can transition to low-power modes. The
CoMETC algorithm outperforms the JETC policy for the case of the 16 DIMMs as well.
The results also show that the relative increase in savings with respect to the case of
eight DIMMs is higher in the case of 35◦C compared to that of 45◦C for CoMETC. This is
because the savings in the case of 35◦C are dominated by the memory subsystem, while
the memory contributes to only a fraction of savings in the case of 45◦C. In summary,
the results clearly show that performing thermal management in a holistic manner
leads to large energy savings.

We now study the breakdown in energy savings. Figure 13 depicts the energy sav-
ings breakdown between cooling and memory. Each bar in the graph is tagged as policy
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Fig. 12. Total energy savings (memory + cooling) relative to the default policy in a system with 16 DIMMs.

Fig. 13. Energy savings breakdown.

name, number of DIMMs, and local ambient temperature (e.g., CoMETC:8D:45C, which
corresponds to the CoMETC policy, eight DIMMs and 45◦C ambient). The CoMETC
outperforms JETC for 45◦C ambient in cooling savings, since CoMETC optimizes for
cooling better as the fan control speed is unified with the CPU scheduling and mem-
ory clustering within the MIMO control, whereas the cooling in JETC is controlled
separately via a PID control. On the other hand, the CoMETC policy achieved notice-
ably higher memory savings but slightly worse in cooling savings compared to NFMO
for 45◦C ambient. This is because NFMO does not account for the trade-off between
memory and fan energy. The savings in the case of 35◦C ambient come from memory
clustering only, as there is no potential savings from cooling due to the low temperature
in the system. The memory savings of CoMETC and JETC is comparable, while the
cooling savings is slightly on the negative side, at 35◦C ambient. The cooling savings
are marginally on the negative side, since these polices increase the fan speed slightly
to prevent activating new DIMMs while keeping the net savings positive. The sav-
ings from NFMO is noticeably lower since it does not take the advantage from this
optimization.
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Fig. 14. Fan speed ratio in a system with eight DIMMs.

Fan Balancing. Next we evaluate CoMETC for balancing the speed of fans in the
system. The optimal ratio of fan speed between two sockets is 1 (we call it the fan
speed ratio). Figure 14(a) shows the fan speed ratio for a system with eight DIMMs
and 45◦C local ambient temperature. In this case, the CoMETC policy is able to reduce
the standard deviation from the optimal fan speed ratio by 84% compared to the
CM + PI policy. The CM + PI policy performs poorly since it does not balance the
temperature between CPU sockets. The other polices (JETC, NFMO, NMM) perform
close to CoMETC as they implement socket-level thermal balancing. Although the
fan ratio for JETC is close to that for CoMETC, the actual savings of the CoMETC
is higher, for as it minimizes the absolute value of fan speeds, which translates into
higher savings, as we show in Figure 13. Figure 14(b) shows the fan speed ratio results
in a system with eight DIMMS and 35◦C ambient temperature. In this scenario, the
CoMETC policy achieved a reduction in standard deviation from the optimal target of
86% compared to CM + PI. Figure 11 shows sensitivity analysis of average fan speed
ratio as a function of local ambient temperature for CoMETC. The results clearly show
that CoMETC is able to keep the fan ratio close to 1.0 for the entire temperature range
between 35◦C and 45◦C.

In Figures 15(a), 15(b), and 15(c), we study the benefits of CoMETC on balancing
fan speeds for the illustrative set of workloads WL13, WL11, and WL15, respectively.
In these experiments, we run the workload for 200 seconds (with no core, socket, or
memory scheduling), then we initiate CoMETC and allow it to run for 600 seconds. We
select illustrative workloads which represent a mix of CPU and memory-intensive jobs
to evaluate CoMETC’s effect on CPU, memory, and thermal coupling. It is clear from
the results that CoMETC is able to converge and balance the fan speed in all cases.

Page Migration. Next, we quantify the page-migration rate which is another im-
portant factor in our design. Figure 16(a) depicts the rate of page migration with
eight-DIMM configuration and 45◦C ambient temperature. The data show that the
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Fig. 15. Fan speed transient response with CoMETC, eight DIMM, and 45◦C.

Fig. 16. Page-migration rate for a system with eight DIMMs.

average rate of page migrations of CoMETC is smaller than five pages/second. This
overhead is negligible in practice, since migrating a page takes only a few microsec-
onds. The NFMO policy has the highest page-migration rate since it does not optimize
between increasing fan speed versus activating a new DIMM; hence, it may activate
more DIMMs compared to CoMETC, which leads to higher migrations. The rate of page
migration of the JETC policy is comparable to that of CoMETC, since JETC optimizes
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Fig. 17. Thread migration rate between CPU sockets for a system with eight DIMMs.

for the trade-off between fan speed and memory clustering. The case of WL15 has the
highest migration rate, since the workload mix has three instances of swim (swim has
a wide set of hot pages). The page-migration rate for the case of eight DIMMs and
35◦C ambient temperature is shown in Figure 16(b). In this case, the migration rate
for CoMETC approaches zero, which causes virtually no overhead.

Thread Migrations between CPU Sockets. The other important metric we analyze is
the rate of thread migrations across CPU sockets. Figure 17(a) depicts the rate of thread
migrations between the two CPU sockets with eight-DIMM memory configuration
and 45◦C ambient temperature. The results show that the average rate of thread
migrations for CoMETC is about 0.005 thread/second, which is insignificant. The rate of
thread migrations of the CoMETC policy is noticeably smaller compared to JETC since
CoMETC implements a more stable control; an illustrative example can be seen in the
case of workload WL13. The scenario of workload WL6 triggers no thread migrations in
any of the policies, since both CPU sockets have balanced power dissipation (i.e., both
run similar workload). Figure 17(b) depicts the rate of thread migrations between the
two CPU sockets at a lower ambient temperature of 35◦C. The average rate of thread
migrations in this case is smaller compared to the case of 45◦C due to the reduction in
the occurrence of high temperature events.

Performance Overhead. Table IV shows the breakdown of the average performance
overhead for the policies studied in this work with eight-DIMM and 16-DIMM memory
organizations and 45◦C and 35◦C ambient temperatures. The data in this table in-
clude the overhead of CPU scheduling (i.e., thread migrations across and within CPU
sockets), page migrations, and execution throttling. We account for the OS and microar-
chitectural performance costs in the computation of these overheads. The migration
of a page from one DIMM to another involves a number of events which we account
for—the primary events are allocating a free page in the destination DIMM, copying
the content of the page from the source DIMM to the destination one, updating the
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Table IV. Performance Overhead (%)

Setup Overhead source CoMETC JETC NFMO NMM DTM-CM+PI
45◦C Schedule across CPU sockets 0.0001 0.0004 0.0001 0.0001 —

ambient Schedule within CPU sockets 0.0728 0.0548 0.0806 0.0886 0.0673
Page migration 0.0002 0.0002 0.0006 — —

8 DIMM Throttling 0.0019 0.0161 0.0021 0.0036 0.0022
35◦C Schedule across CPU sockets 0.0001 0.0003 0.0001 0.0001 —

ambient Schedule within CPU sockets 0.0157 0.0149 0.0192 0.0265 0.0200
Page migration 0.0000 0.0001 0.0007 — —

8 DIMM Throttling 0.0000 0.0001 0.0000 0.0323 0.0000
45◦C Schedule across CPU sockets 0.0001 0.0004 0.0001 0.0001 —

ambient Schedule within CPU sockets 0.0729 0.0557 0.0837 0.0994 0.0745
Page migration 0.0002 0.0002 0.0008 — —

16 DIMM Throttling 0.0019 0.0124 0.0022 0.0077 0.0043
35◦C Schedule across CPU sockets 0.0001 0.0003 0.0001 0.0000 —

ambient Schedule within CPU sockets 0.0156 0.0143 0.0212 0.0336 0.0231
Page migration 0.0000 0.0001 0.0014 — —

16 DIMM Throttling 0.0000 0.0001 0.0000 0.0000 0.0000

page table in the OS, invalidating the cache and TLB entries corresponding to the page
in the source DIMM, and releasing the memory page in the source DIMM. Regarding
thread migration between cores within the same CPU socket, we account for the fol-
lowing events: copy the state of the source thread to the destination core, write back
the dirty lines in the L1 cache to the last-level cache, and cold start execution. The
migration of a thread across two sockets incurs a higher overhead, since we need to
write back the dirty lines corresponding to the source thread in the L1 and last-level
cache to the memory, and account for a higher cold start overhead.

The average overhead of CoMETC at 45◦C is 0.225%, which is insignificant (includ-
ing memory clustering overhead of 0.15%). The performance overhead of CoMETC is
small, as it optimizes for CPU and memory scheduling and also exploits the slowness
in temperature change that enables lower scheduling frequency. The migration and
throttling performance overheads are lower for 35◦C ambient compared to 45◦C am-
bient due to infrequent thermal problems in the case of 35◦C ambient. The results in
Table IV show a negligible overhead of page migration for CoMETC in most cases due
to its associated small page-migration rate (e.g., five pages/sec for the case of eight
DIMMs and 45◦C ambient, refer to Figure 16(a)). The page-migrations overhead of
NFMO is higher than CoMETC, as NFMO does not optimize between activating a
new DIMM versus increasing fan speed, which may result in a higher page-migrations
rate. Regarding the CPU scheduling, the CoMETC policy does a good job in keeping
this overhead small, as shown in Table IV. The CoMETC overhead of thread migrations
between CPU sockets is insignificant in all cases, since the rate of thread migrations is
kept very small (refer to Figure 17). This small overhead is contributed to the stability
of the CoMETC controller and the long time constant of the heat sink. The results
also show that the overhead of thread migrations within the CPU sockets for CoMETC
is small, below 0.08% in all cases. The CoMETC and other policies incur a relatively
comparable overhead of thread migrations within the CPU sockets, since all employ
the same policy, as we discussed earlier. In summary, the overall scheduling overhead
of CoMETC is kept in a similar range of the default policy while providing substantial
energy savings (memory + cooling) of 58% over the default policy.

6. CONCLUSION

Prior research handled temperature and computing energy problems separately and
also did not consider cooling, resulting in suboptimal solutions. In this work, we develop
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CoMETC, a unified solution that integrates energy, thermal, and cooling management
decisions to maximize energy savings. As part of CoMETC, we have proposed a unified
thermal and cooling model for CPU and memory subsystems that is suitable for online
management. Our solution is based on a formal MIMO control to ensure efficiency and
stability. CoMETC reduces the operational energy of the memory by clustering memory
requests to a subset of memory modules while considering thermal and cooling metrics.
It also removes hot spots between and within the sockets and reduces the effects of
thermal coupling to minimize cooling costs. CoMETC also controls fan speed at the
same time to maximize savings and ensure stability. Our experimental results show
that CoMETC can deliver an average cooling and memory energy savings of 58%
compared to state-of-the-art techniques at a negligible performance overhead.
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