
 
 

  
ABSTRACT 
This paper introduces a methodology for estimation of energy 
consumption in peripherals such as audio and video devices.  
Peripherals can be responsible for significant amount of the energy 
consumption in current embedded systems.  We introduce a cycle-
accurate energy simulator and profiler capable of simulating 
peripheral devices.  Our energy estimation tool for peripherals can be 
useful for hardware and software energy optimization of multimedia 
applications and device drivers.  The simulator and profiler use 
cycle-accurate energy and performance models for peripheral devices 
with the cycle-accurate energy and performance models for 
computing, storage and power devices created in previous work.  We 
also implemented I/O communication protocols such as polling, I/O 
interrupts and direct memory access (DMA).  Using our energy 
simulator and estimator, we optimized an audio driver for an MP3 
(MPEG-2 Layer 3) audio decoder application.  Our optimization 
results show 44% reduction in the total system energy consumption 
for the MP3 audio decoder when optimized audio driver is used. 

Categories and Subject Descriptors 
C.4 [Computer System Organization]: Performance of 
Systems – design studies, modeling techniques 

General Terms 
Performance, Design, Experimentation, Verification. 

Keywords 
Device drivers, audio, energy estimation, software 
optimization 

1. INTRODUCTION 
Demand for more powerful embedded systems is increasing 
everyday.  This demand propels companies to create faster, smaller 
and more capable products.  With increasing speed and performance 
requirements, energy consumption of the system also increases.  
Increasing energy consumption requires more effort for heat 
dissipation and also may require larger batteries for a portable 
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system.  While increasing the energy capacity of the system is one 
approach to solve the problem, another approach is to optimize the 
energy consumption of the system.  A significant ratio of the energy 
consumption for a state-of-the-art embedded system comes from 
peripheral devices such as audio, video or network devices.  Up to 
now, energy optimization for peripheral devices has been done with 
restricted methods.  One method is to add up datasheet values for 
each component.  This method can give a rough estimate but cannot 
show effects of software.  Another method is using prototypes.  
Prototypes can give exact energy and performance numbers, but the 
cost of the prototype and time spent building the prototype is huge. 
There are established tools for performance and energy simulations 
of embedded systems but none of them includes energy simulation of 
peripheral devices at the system level. 
 
In this work we introduce a system level energy simulation and 
profiling tool for peripheral devices in an embedded system.  With 
profiling, a software designer can discover which software routines 
consume most of the power.  Also, our tool is capable of simulating 
two different types of protocols.  These are polling and interrupt-
based communication.  Furthermore, Direct Memory Access (DMA) 
functionality is added for direct access between memory and 
peripherals.  Each peripheral device is defined with a number of 
energy modes.  For each mode an equivalent energy per cycle value 
is calculated from the power and performance values given in the 
manufacturer datasheets.  Models introduced in a previous work 
from [1] are used to create energy models for processor, memory and 
power supply components of the system. 
   
The rest of the paper is organized as follows.  Section 2 gives an 
overview of related work.  Section 3 describes our methodology.  
Section 4 presents the simulation results.  Finally, we summarize our 
findings in Section 5. 

2. RELATED WORK 
There are some commercial system level simulation CAD tools for 
embedded systems [2][3][4][5], but all are limited to simulation of 
execution time.  For energy simulation, the Synopsys Power 
Compiler [6] can be used for HDL designs but it is not practical for 
system level simulation.  SimOS [7] is a system level performance 
simulation environment for both uniprocessor and multiprocessor 
systems.  SimOS can simulate a computer hardware system, which 
can run a commercial operating system.  However, SimOS does not 
have any energy simulation capabilities.  
  
Much of the work on energy-driven optimization only considers the 
energy consumption of the processor alone [8][9][10][11].  In current 
embedded systems, the processor accounts for a limited ratio of the 
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total energy budget.  Energy optimization of memory and 
communication systems between processor and memory are 
presented in [12][13][14][15]. SimplePower [16] and [1] present 
cycle-accurate energy simulators consisting of processor and 
memory modules but do not include peripheral devices.  Peripheral 
devices such as video and wireless links have a considerable impact 
on energy consumption.  This impact can be up to 60% of the total 
system energy consumption for the wireless link [17]. 
 
Wang et al. [18] define an automation method for device driver 
development in embedded systems.  They define device driver 
behaviors using event driven finite state machines, with constraints 
and synthesis patterns.  Their method optimizes device drivers for 
high reliability, productivity, reusability and fast time-to-market.  
There are no system level energy simulators that take peripherals into 
account. 
 
Our work introduces an energy-driven optimization methodology 
using cycle-accurate energy simulation for peripheral devices.  
Datasheets provided by component manufacturers are used to create 
energy models for peripherals.  Our cycle-accurate simulator enables 
simulation of real applications such as MP3 audio playback or 
MPEG video on cutting-edge embedded systems.  Our work also 
includes energy profiling.  The energy profiler shows the energy 
consumption in each software routine (e.g., device driver) by each 
hardware component (e.g., memory) including peripherals.  The 
profiler can also be used to profile total system energy consumption.  
In the next section we describe our methodology for energy 
estimation. 

3. SYSTEM MODEL 
We can classify typical devices found in an embedded system into 
five groups.  These are computing, storage, power, interface and 
peripheral devices.  Figure 1 shows a sample embedded system 
classified into these five groups.  In our simulation tool we are going 
to use this same classification.  Energy models for computing, 
memory and power supply devices are implemented in previous 
work [1]. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A typical embedded system and architecture 
of the simulator 

 

In this work, we incorporate our energy and performance models for 
peripheral devices into ARMulator [19], which is a commercial 
cycle-accurate performance simulator for ARM processors.  
ARMulator itself is designed to accept such extra models provided 
that they use proper ARMulator Application Program Interfaces 
(APIs).  Application software then can be cross-compiled with the 
ARM compiler provided and can be loaded to the simulator to obtain 
performance results.  In our methodology, we add cycle-accurate 
energy models for each device in a target embedded system such that 
after performance simulation, energy consumption of individual 
devices and the entire system can also be obtained.  Energy models 
introduced by [1] are used for processor, memory and power supply 
units.  A simple representation of our energy simulator architecture is 
shown in Figure 1.  In each cycle, ARMulator and external 
performance models for devices send state information of the devices 
plus address and data bus information to our energy simulator.  Using 
state, address and data bus information, the energy simulator 
calculates energy consumption of each device in each cycle.  In our 
energy models the cycle frequency is equal to system data bus speed.  
This is the maximum speed with which devices in the system such as 
the processor and the memory can communicate.  For the rest of the 
paper we will refer to this as simulator cycle frequency.  Each device 
has a distinct clock frequency (at least at the interface, in the case of 
an analog device, after the ADC).  Energy consumed by busses 
between devices is also calculated using bus capacitance and 
switching activity; for each bus, this energy consumption value is 
added to the energy consumption of the device which is driving the 
bus.  The energy consumption of the components in the power supply 
devices such as battery and voltage converters are calculated using 
their efficiency tables provided by the component manufacturers.  
System energy for a particular cycle is calculated using Equation 1. 
 

sPeripheralInterfacePowerStorageComputingCycle EEEEEE ++++= . (1)
 
Another function included in our simulator is an energy profiler.  
ARMulator has a performance profiler, which we modify for energy 
profiling.  The energy profiler uses energy values found in our 
energy simulator.  To operate the profiler, a user must define two 
distinct inputs before starting the energy simulator.  One of these 
inputs is the time difference between each profiler step in 
microseconds.  The second input decides which energy to profile.  It 
is possible to profile the system energy consumption or the energy 
consumption of one of the devices in the system, namely, processor, 
memory, interface, peripheral or power supply unit energy 
consumption. 
   
The processor can communicate with peripheral devices using one of 
two distinct methods.  One method is using special communication 
instructions, and the other is memory-mapped communication.  In 
this work we focus on memory-mapped peripherals but our 
methodology can also work with special processor instructions for 
peripherals.  For memory-mapped peripherals, communication can be 
handled with two distinct protocols.  These are polling-based and 
interrupt-based protocols.  In this paper we study the energy 
advantages and disadvantages of both protocols.  The Direct Memory 
Access (DMA) method can be used to handle the communication 
between memory and interface units.  The processor stays in sleep 
state while such an access is processing, and at the end the processor 
is woken up by an interrupt.  We also implement this type of 
communication in our simulator. 
 
We next show the sample peripheral devices implemented to 
represent our methodology.  These are a coprocessor as an I/O 

Storage 
(Memory)

Interface

Perip. 2 
(video)

Computing
(CPU)

Perip. 1
(audio)

Power

Storage 
(Memory)

Interface

Perip. 2 
(video)

Computing
(CPU)

Perip. 1
(audio)

Power



 
 
controller and an audio module consisting of an audio interface and 
an audio device.   

3.1. I/O Controller 
The I/O controller receives data from the processor and converts the 
data to the format required by the peripheral device.  The I/O 
controller can be a coprocessor, an FPGA or an ASIC circuit 
designed specifically for this task.  Alternatively, in some systems 
the processor itself handles the data conversion.  The I/O controller 
can also directly communicate with memory via DMA.  A high-level 
model of the I/O controller is shown in Figure 2.  In this paper we 
model an SA-1111 coprocessor as the I/O processor. 
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Figure 1: An I/O controller model 

 
In our model, the I/O coprocessor has a queue and communication 
busses for communication with the processor, memory and peripheral 
devices.  Also in our model the I/O controller handles DMA control 
for peripherals.  
 
We create I/O controller energy models using datasheet values given 
by the manufacturer.  There are two power states for the I/O 
controller, an active state and an idle state.  The I/O processor is 
active when there is data transfer to/from the I/O processor, or when 
there is data stored in the I/O processor.  If there is neither a data 
transfer nor any stored data, the I/O processor enters the idle state.  
An equivalent capacitance value for each state can be calculated 
using the supply voltage and the state current values as shown in 
Equation 2. 
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We can calculate in each system bus cycle the energy consumption 
for each state of the I/O controller from its equivalent capacitance 
value using Equation 3.  Ncoproc is the ratio of the simulator cycle 
frequency to the coprocessor clock frequency, fcoproc.  By dividing the 
energy result with Ncoproc in Equation 3, we distribute the energy 
consumption during one coprocessor cycle evenly among every 
simulator cycle; hence we find the energy consumption per one 
simulator cycle. 
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Distributing the energy consumption of one coprocessor cycle over 
multiple simulator cycles is deviating from the strict definition of 
cycle-accurate simulation because there is no guarantee that real 

energy consumption in a coprocessor cycle is evenly distributed over 
simulator cycles; unfortunately it is impossible to obtain the real 
energy distribution in one coprocessor cycle from datasheet 
information.  Thus, we have to sacrifice some accuracy at particular 
clock cycles due to the use of datasheet modeling.  However, [1] 
showed that macroscopic energy results (e.g., execution of thousands 
of software assembly instructions) are nonetheless fairly accurate 
(within 10% in [1]) when compared empirically with actual hardware 
measurements.  On the positive side, this deviation from exact cycle 
accurate energy modeling is not an issue for the energy profiling of 
the software because if a device is slow, it will slow down the 
software routine using it too.  The same issue will be seen in all low 
frequency peripherals and will be handled in a similar way. 

3.2. Audio Module 
An audio module contains two devices, an audio interface device and 
an audio device.  The audio interface either converts digital data into 
an analog voltage level or else converts an analog voltage level into 
digital data.  The audio device either creates sound from electrical 
voltage or else creates electrical voltage from sound.  Datasheet 
values obtained from the audio interface and the audio device 
manufacturers are used to create energy models. 
For the audio interface, three operation modes are defined: standby, 
digital to analog and analog to digital.  An equivalent capacitance for 
each mode is calculated using datasheet values of supply voltage and 
mode current using equations similar to Equation 2.  Energy per 
system bus cycle for each mode in the audio interface is calculated 
using Equation 4.  Naudio is the ratio of the simulator cycle frequency 
to the audio interface device clock frequency. 
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The audio device, on the other hand can be a speaker, headphone or 
microphone.  We model all of these different types as a capacitance 
and a resistance in parallel.  Because of the low frequency threshold 
for hearing in the human ear, the analog voltage level, which creates 
the sound (or is created from the sound), is nearly constant for one 
simulator cycle.  We assume it is constant and voltage change occurs 
just at the beginning of each simulator cycle.  Equation 5 shows the 
energy consumption per simulator cycle for the sound device.  Rdev 
and Cdev are the resistance and the capacitance parameters of the 
sound device, fsimulator is the simulator cycle frequency, ∆V is the 
voltage difference of the audio signal between current and previous 
simulator cycles and Vsample is the voltage level for the current 
simulation cycle.  Equation 6 shows how to calculate Vsample.  
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In A/Ds and D/As analog voltage input or output value is linearly 
proportional to the digital output or input.  The maximum analog 
voltage value is the equivalent to the digital value 2n where n is the 
number of bits used to represent the data.  (In some conventions there 
will be an additional bit for the sign, but it is easy to convert such 
techniques to the technique used here.)  Equation 6 shows how to 
calculate the analog voltage equivalent of any given digital dsample.  
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We also need to calculate energy consumption on the interconnect 
between the I/O controller and the audio interface.  This energy can 
be calculated using capacitance of the interconnect, the voltage level 
and the switching activity on the interconnect.  The capacitance can 
be calculated using the material properties of the hardware platform 
if the length of the connection is known.  Switching activity (Nswitch) 
is obtained from the simulator on every cycle.  Equation 7 shows the 
resulting interconnect energy per audio sample.  
  

switchddlineconnection NVCE ** 2=  (7) 
 

4. RESULTS 
To experiment with our energy models we use an embedded system 
model shown in Figure 3, consisting of one processor, a memory 
system with three different types of memories, a coprocessor as an 
I/O processor, an audio interface, a speaker and a headphone.  This 
model is derived from a Linux based development board 
SmartBadge IV [20].  SmartBadge IV has an SA-1110 processor, 
FLASH, SRAM and SDRAM for off-chip memory, an SA-1111 
coprocessor and a UDA 1341 audio interface chip.  Table 1 shows 
the datasheet values used for energy models for the system 
components in our experiment.  Validation of the energy models used 
in the simulator are done in [1] for CPU, memory and power supply 
units.  We plan to do the validation of the energy models used for 
peripheral devices as a future work. 

 
Figure 3: Simulated Embedded System 

 
 
We use an MP3 audio decoder application to experiment with our 
energy simulator.  In this example our aim is not to suggest a new 
energy optimization technique but to show how our energy simulator 
can help a designer to optimize driver code more easily.  Our test 
input is a five second audio sample.  Before testing the application 
we also design an audio driver.  Although it is possible to evaluate 
operating system behavior on the simulator, we have not included 
such behavior in our experiments.  
  
We start our audio application testing by first designing an audio 
driver.  We base our initial design on the default audio device driver 
that is part of the SmartBadge IV Linux distribution [21].  An audio 
device driver controls the audio record and play operations.  When 
recording (playing) an audio sample, the device driver receives 
(sends) data from (to) the peripheral using polling.  Polling is done to 
determine if the queue in the I/O controller is not empty (not full).  If 
it is not empty (not full) the processor reads (writes) data from the 
queue.  If the queue is empty (full), the processor continuously 
checks the queue until there is some data (space) in the queue.  This 
continues until all samples are recorded (played). 
 

 
Table 1: Datasheet information about components 

Type Device Modes and datasheet values 
active = 500mW @ 200MHz 
idle = 85 mW @ 200MHz CPU  SA-1110 
sleep = 5 uA 
active = 50mA @ 3.3V I/O 

Controller SA-1111 
sleep = 50 uA @ 3.3V 
read = 18 mA @ 5 MHz Flash Mem. 28F800C3 
standby = 7 uA 
active = 50 mA @ 3V 
standby = 2 mA @ 3V SRAM TC55V400FT–70 
low standby = 0.5 uA @ 3V 
active = 480mA @ 3.3V 
standby = 120 mA @ 3.3V SDRAM KMM466S924T 
idle = 20mA @ 3.3V 
playback = 20mA @ 3V 
record = 19.55mA @ 3V 

Audio 
CODEC UDA1341TS 

standby = 10.05mA @ 3V 
Sound 
device 

Speaker and 
microphone 

R= 5K   C=25pF (including  
termination resistor)  

 
 
We tested our audio driver using a sample application.  Our 
application first records a 0.1 second audio clip with 48KHz audio 
frequency.  Then the same audio clip is played back.  We average 
effects of both functions by testing both the record and the playback 
functions in the same application.  The results from our simulator, 
which are shown in Table 2, show that most of the device-driver 
related system energy is wasted in continuous checking of the queue 
status.  Profiling shows that while 96% of the device-driver related 
system energy is consumed during polling, only 3% of the device-
driver related system energy is used for the audio data transfer in the 
driver.  In addition, using the processor as a medium to transfer data 
between the memory and the device creates extra bus switching.  As 
a result, we decided to redesign this device driver. 
 

Table 2: Energy profile of polling based device driver 
Routine Energy % 

check_fifo 96.29 
to_fifo 1.30 

from_fifo 1.29 
main 0.29 
flsbuf 0.02  

 
Our new device driver uses DMA to communicate between the 
memory and the I/O controller.  The processor goes to sleep while 
data is exchanged between the audio device and the memory.  In the 
sleep mode all processor activities stop except the clock tree [22].  
There is no useful computation performed in the CPU in this mode.  
Code for waking from sleep is stored in RAM to enable fast wake up.  
Interrupts are used to wake the processor when the data transfer is 
finished or when the size limit for DMA access is reached.  Our 
simulation based profiling results shown in Table 3 show that nearly 
all the device-driver related system energy is consumed for the actual 
data transfer with DMA. 
 
 
 



 
 
 

Table 3: Energy profile of DMA based device driver 

Routine Energy % 
dma_transfer 98.78 

flsbuf 0.49 
fprintf 0.11 

freopen 0.06 
fputc 0.04  

 
We can use the results of our energy simulator in these experiments 
to show the system energy saving between discussed audio drivers.  
Table 4 shows the performance and the total system energy 
consumption for both audio drivers.  There is a 58% decrease in 
device-driver energy consumption with the DMA-based audio driver 
compared to the polling-based audio driver.  As expected, there is 
little change in the execution time.  
 

Table 4: Performance and total energy consumption 
Device driver Time(sec) System Energy(mJ) 
DMA-based 0.2017 173.02 

Polling-based 0.2011 411.19  
  
Our tool is also capable of showing energy consumption distribution 
for each device.  The energy distribution for audio driver tests 
mentioned above is shown in Table 5.  The energy consumption of 
the processor, the memory, the system bus and the coprocessor 
decrease with the DMA-based driver because of the increased sleep 
time for the processor, reduced number of instruction reads in the 
memory, and reduced amount of data transfer activity on the bus 
which also affects coprocessor pin power.  The energy consumption 
for the audio device, which is composed of the audio interface and a 
microphone or a speaker, is nearly unchanged.  The power source 
modules (battery and DC/DC converter) spend less energy because of 
the decrease in current amount demanded by the rest of the system. 
 

 
To see how much the improvement in the energy consumption of the 
audio driver affects energy consumption of a real application we 
integrate our two audio drivers into an MP3 audio decoder 
application.  The total system energy consumption and energy 
consumption of the individual components for MP3 decode with each 
audio driver is shown in Table 6.  Because of the decreased audio 
driver energy consumption, total energy consumption of processor, 
memory, system bus and power supply components (DC/DC 
converter and battery) are also decreased for MP3 decode 
implemented on our hardware (Figure 3).  Our DMA-based audio 
driver achieves a 44% reduction in the total system energy 
consumption for an MP3 decoder.  The percentage energy reduction 
for the MP3 decoder is less than for the device-driver because the 

energy consumption of the system and the components are the same 
for both the polling-based and the DMA-based drivers when the 
decoder is processing audio data.  
  

Table 6: Energy consumption of MP3 decoder with different 
audio drivers 

Audio driver Polling-based DMA-based 
 Energy (J) % Energy (J) % 

% diff. 

Proc. 2.59 18.43 0.86 10.95 66.74 
Mem. 3.30 23.47 1.27 16.15 61.49 

SA1111 1.06 7.55 0.93 11.81 12.44 
Sys. Bus 0.02 0.16 0.01 0.19 36.18 
Audio D. 3.25 23.09 3.25 41.33 -0.20 
DC_DC 0.76 5.42 0.54 6.84 29.26 

Battery loss 3.08 21.89 1.00 12.73 67.45 
System 14.06  7.87  44.03  

 
It is also desirable to show the distribution of energy consumption for 
MP3 decode per software function.  In this paper we try to observe 
the effect of peripheral devices and their drivers, thus it is reasonable 
to compare the energy consumption of an audio driver with the 
remaining functions which are used to decode the MP3 data.  As 
shown in Table 7 for MP3 decode with a polling-based driver, 76% 
of the total system energy consumption is spent in the audio driver.  
For MP3 decode with a DMA-based driver, on the other hand, this 
ratio drops to 57%. 
 

Table 7: Energy profile of MP3 decoder with different 
audio drivers 

 Polling-based DMA-based 
Device driver (%) 76.02 57.16 

Data processing (%) 23.98 42.84  

5. CONCLUSION AND FUTURE WORK 
We presented an energy consumption estimation methodology for 
peripheral devices such as audio devices in embedded systems.  We 
designed a cycle-accurate simulator and profiler for energy 
consumption estimation of the peripherals.  We also added a profiler, 
which can be helpful during software optimization, to our simulator.  
We tested our idea with memory-mapped I/O devices using both 
polling and interrupts for communication.  We further modeled DMA 
type access to memory to enable direct communication between 
memory and peripherals.  The results of our simulations show that up 
to 50-55% of the total system energy consumption can be spent in 
peripheral devices.  We also show that our tool can help optimize 
energy consumption with an example MP3 decoder application.  We 
optimized the audio driver in the MP3 decoder and therefore, reduced 
the total energy consumption of the MP3 decoder by 44%. 
 
Future work will include adding video and wireless link device 
models to the simulation system.  Also, validation of the simulation 
results will be done using SmartBadge IV.  Finally, operation system 
issues will also be addressed. 
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