

ABSTRACT
This paper introduces a methodology for estimation of energy
consumption in peripherals such as audio and video devices.
Peripherals can be responsible for significant amount of the energy
consumption in current embedded systems. We introduce a cycle-
accurate energy simulator and profiler capable of simulating
peripheral devices. Our energy estimation tool for peripherals can be
useful for hardware and software energy optimization of multimedia
applications and device drivers. The simulator and profiler use
cycle-accurate energy and performance models for peripheral devices
with the cycle-accurate energy and performance models for
computing, storage and power devices created in previous work. We
also implemented I/O communication protocols such as polling, I/O
interrupts and direct memory access (DMA). Using our energy
simulator and estimator, we optimized an audio driver for an MP3
(MPEG-2 Layer 3) audio decoder application. Our optimization
results show 44% reduction in the total system energy consumption
for the MP3 audio decoder when optimized audio driver is used.

Categories and Subject Descriptors
C.4 [Computer System Organization]: Performance of
Systems – design studies, modeling techniques

General Terms
Performance, Design, Experimentation, Verification.

Keywords
Device drivers, audio, energy estimation, software
optimization

1. INTRODUCTION
Demand for more powerful embedded systems is increasing
everyday. This demand propels companies to create faster, smaller
and more capable products. With increasing speed and performance
requirements, energy consumption of the system also increases.
Increasing energy consumption requires more effort for heat
dissipation and also may require larger batteries for a portable

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’04, April 26-28, 2004, Boston, Massachusetts, USA
Copyright 2004 ACM 1-58113-853-9/04/0004...$5.00

system. While increasing the energy capacity of the system is one
approach to solve the problem, another approach is to optimize the
energy consumption of the system. A significant ratio of the energy
consumption for a state-of-the-art embedded system comes from
peripheral devices such as audio, video or network devices. Up to
now, energy optimization for peripheral devices has been done with
restricted methods. One method is to add up datasheet values for
each component. This method can give a rough estimate but cannot
show effects of software. Another method is using prototypes.
Prototypes can give exact energy and performance numbers, but the
cost of the prototype and time spent building the prototype is huge.
There are established tools for performance and energy simulations
of embedded systems but none of them includes energy simulation of
peripheral devices at the system level.

In this work we introduce a system level energy simulation and
profiling tool for peripheral devices in an embedded system. With
profiling, a software designer can discover which software routines
consume most of the power. Also, our tool is capable of simulating
two different types of protocols. These are polling and interrupt-
based communication. Furthermore, Direct Memory Access (DMA)
functionality is added for direct access between memory and
peripherals. Each peripheral device is defined with a number of
energy modes. For each mode an equivalent energy per cycle value
is calculated from the power and performance values given in the
manufacturer datasheets. Models introduced in a previous work
from [1] are used to create energy models for processor, memory and
power supply components of the system.

The rest of the paper is organized as follows. Section 2 gives an
overview of related work. Section 3 describes our methodology.
Section 4 presents the simulation results. Finally, we summarize our
findings in Section 5.

2. RELATED WORK
There are some commercial system level simulation CAD tools for
embedded systems [2][3][4][5], but all are limited to simulation of
execution time. For energy simulation, the Synopsys Power
Compiler [6] can be used for HDL designs but it is not practical for
system level simulation. SimOS [7] is a system level performance
simulation environment for both uniprocessor and multiprocessor
systems. SimOS can simulate a computer hardware system, which
can run a commercial operating system. However, SimOS does not
have any energy simulation capabilities.

Much of the work on energy-driven optimization only considers the
energy consumption of the processor alone [8][9][10][11]. In current
embedded systems, the processor accounts for a limited ratio of the

Energy Estimation of Peripheral Devices in
Embedded Systems

Ozgur Celebican
Center for Research on Embedded

Systems and Technology,
Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, GA, 30332-0250, USA

(1) 404 3851722

celebi@ece.gatech.edu

Tajana Simunic Rosing
Hewlett-Packard Labs

Palo Alto, CA, 94304-1126, USA
(1) 650 725 3647

tajana@stanford.edu

Vincent J. Mooney III
Center for Research on Embedded

Systems and Technology,
Electrical and Computer

Engineering
Georgia Institute of Technology
Atlanta, GA, 30332-0250, USA

(1) 404 3850437

mooney@ece.gatech.edu

total energy budget. Energy optimization of memory and
communication systems between processor and memory are
presented in [12][13][14][15]. SimplePower [16] and [1] present
cycle-accurate energy simulators consisting of processor and
memory modules but do not include peripheral devices. Peripheral
devices such as video and wireless links have a considerable impact
on energy consumption. This impact can be up to 60% of the total
system energy consumption for the wireless link [17].

Wang et al. [18] define an automation method for device driver
development in embedded systems. They define device driver
behaviors using event driven finite state machines, with constraints
and synthesis patterns. Their method optimizes device drivers for
high reliability, productivity, reusability and fast time-to-market.
There are no system level energy simulators that take peripherals into
account.

Our work introduces an energy-driven optimization methodology
using cycle-accurate energy simulation for peripheral devices.
Datasheets provided by component manufacturers are used to create
energy models for peripherals. Our cycle-accurate simulator enables
simulation of real applications such as MP3 audio playback or
MPEG video on cutting-edge embedded systems. Our work also
includes energy profiling. The energy profiler shows the energy
consumption in each software routine (e.g., device driver) by each
hardware component (e.g., memory) including peripherals. The
profiler can also be used to profile total system energy consumption.
In the next section we describe our methodology for energy
estimation.

3. SYSTEM MODEL
We can classify typical devices found in an embedded system into
five groups. These are computing, storage, power, interface and
peripheral devices. Figure 1 shows a sample embedded system
classified into these five groups. In our simulation tool we are going
to use this same classification. Energy models for computing,
memory and power supply devices are implemented in previous
work [1].

Figure 1. A typical embedded system and architecture
of the simulator

In this work, we incorporate our energy and performance models for
peripheral devices into ARMulator [19], which is a commercial
cycle-accurate performance simulator for ARM processors.
ARMulator itself is designed to accept such extra models provided
that they use proper ARMulator Application Program Interfaces
(APIs). Application software then can be cross-compiled with the
ARM compiler provided and can be loaded to the simulator to obtain
performance results. In our methodology, we add cycle-accurate
energy models for each device in a target embedded system such that
after performance simulation, energy consumption of individual
devices and the entire system can also be obtained. Energy models
introduced by [1] are used for processor, memory and power supply
units. A simple representation of our energy simulator architecture is
shown in Figure 1. In each cycle, ARMulator and external
performance models for devices send state information of the devices
plus address and data bus information to our energy simulator. Using
state, address and data bus information, the energy simulator
calculates energy consumption of each device in each cycle. In our
energy models the cycle frequency is equal to system data bus speed.
This is the maximum speed with which devices in the system such as
the processor and the memory can communicate. For the rest of the
paper we will refer to this as simulator cycle frequency. Each device
has a distinct clock frequency (at least at the interface, in the case of
an analog device, after the ADC). Energy consumed by busses
between devices is also calculated using bus capacitance and
switching activity; for each bus, this energy consumption value is
added to the energy consumption of the device which is driving the
bus. The energy consumption of the components in the power supply
devices such as battery and voltage converters are calculated using
their efficiency tables provided by the component manufacturers.
System energy for a particular cycle is calculated using Equation 1.

sPeripheralInterfacePowerStorageComputingCycle EEEEEE ++++= . (1)

Another function included in our simulator is an energy profiler.
ARMulator has a performance profiler, which we modify for energy
profiling. The energy profiler uses energy values found in our
energy simulator. To operate the profiler, a user must define two
distinct inputs before starting the energy simulator. One of these
inputs is the time difference between each profiler step in
microseconds. The second input decides which energy to profile. It
is possible to profile the system energy consumption or the energy
consumption of one of the devices in the system, namely, processor,
memory, interface, peripheral or power supply unit energy
consumption.

The processor can communicate with peripheral devices using one of
two distinct methods. One method is using special communication
instructions, and the other is memory-mapped communication. In
this work we focus on memory-mapped peripherals but our
methodology can also work with special processor instructions for
peripherals. For memory-mapped peripherals, communication can be
handled with two distinct protocols. These are polling-based and
interrupt-based protocols. In this paper we study the energy
advantages and disadvantages of both protocols. The Direct Memory
Access (DMA) method can be used to handle the communication
between memory and interface units. The processor stays in sleep
state while such an access is processing, and at the end the processor
is woken up by an interrupt. We also implement this type of
communication in our simulator.

We next show the sample peripheral devices implemented to
represent our methodology. These are a coprocessor as an I/O

Storage
(Memory)

Interface

Perip. 2
(video)

Computing
(CPU)

Perip. 1
(audio)

Power

Storage
(Memory)

Interface

Perip. 2
(video)

Computing
(CPU)

Perip. 1
(audio)

Power

controller and an audio module consisting of an audio interface and
an audio device.

3.1. I/O Controller
The I/O controller receives data from the processor and converts the
data to the format required by the peripheral device. The I/O
controller can be a coprocessor, an FPGA or an ASIC circuit
designed specifically for this task. Alternatively, in some systems
the processor itself handles the data conversion. The I/O controller
can also directly communicate with memory via DMA. A high-level
model of the I/O controller is shown in Figure 2. In this paper we
model an SA-1111 coprocessor as the I/O processor.

audio

video

DMA control

FIFO
 addr data

wlan

mux

Figure 1: An I/O controller model

In our model, the I/O coprocessor has a queue and communication
busses for communication with the processor, memory and peripheral
devices. Also in our model the I/O controller handles DMA control
for peripherals.

We create I/O controller energy models using datasheet values given
by the manufacturer. There are two power states for the I/O
controller, an active state and an idle state. The I/O processor is
active when there is data transfer to/from the I/O processor, or when
there is data stored in the I/O processor. If there is neither a data
transfer nor any stored data, the I/O processor enters the idle state.
An equivalent capacitance value for each state can be calculated
using the supply voltage and the state current values as shown in
Equation 2.

coproccoprocdd

statecoproc
statecoproc fV

I
C

*,

,
, = (2)

We can calculate in each system bus cycle the energy consumption
for each state of the I/O controller from its equivalent capacitance
value using Equation 3. Ncoproc is the ratio of the simulator cycle
frequency to the coprocessor clock frequency, fcoproc. By dividing the
energy result with Ncoproc in Equation 3, we distribute the energy
consumption during one coprocessor cycle evenly among every
simulator cycle; hence we find the energy consumption per one
simulator cycle.

coproc

coprocddstatecoproc
statecoproc N

VC
E

2
,,

,

*
= (3)

Distributing the energy consumption of one coprocessor cycle over
multiple simulator cycles is deviating from the strict definition of
cycle-accurate simulation because there is no guarantee that real

energy consumption in a coprocessor cycle is evenly distributed over
simulator cycles; unfortunately it is impossible to obtain the real
energy distribution in one coprocessor cycle from datasheet
information. Thus, we have to sacrifice some accuracy at particular
clock cycles due to the use of datasheet modeling. However, [1]
showed that macroscopic energy results (e.g., execution of thousands
of software assembly instructions) are nonetheless fairly accurate
(within 10% in [1]) when compared empirically with actual hardware
measurements. On the positive side, this deviation from exact cycle
accurate energy modeling is not an issue for the energy profiling of
the software because if a device is slow, it will slow down the
software routine using it too. The same issue will be seen in all low
frequency peripherals and will be handled in a similar way.

3.2. Audio Module
An audio module contains two devices, an audio interface device and
an audio device. The audio interface either converts digital data into
an analog voltage level or else converts an analog voltage level into
digital data. The audio device either creates sound from electrical
voltage or else creates electrical voltage from sound. Datasheet
values obtained from the audio interface and the audio device
manufacturers are used to create energy models.
For the audio interface, three operation modes are defined: standby,
digital to analog and analog to digital. An equivalent capacitance for
each mode is calculated using datasheet values of supply voltage and
mode current using equations similar to Equation 2. Energy per
system bus cycle for each mode in the audio interface is calculated
using Equation 4. Naudio is the ratio of the simulator cycle frequency
to the audio interface device clock frequency.

audio

audioddaudio
aud N

VC
E

2
.mod,

mod,

*
= (4)

The audio device, on the other hand can be a speaker, headphone or
microphone. We model all of these different types as a capacitance
and a resistance in parallel. Because of the low frequency threshold
for hearing in the human ear, the analog voltage level, which creates
the sound (or is created from the sound), is nearly constant for one
simulator cycle. We assume it is constant and voltage change occurs
just at the beginning of each simulator cycle. Equation 5 shows the
energy consumption per simulator cycle for the sound device. Rdev
and Cdev are the resistance and the capacitance parameters of the
sound device, fsimulator is the simulator cycle frequency, ∆V is the
voltage difference of the audio signal between current and previous
simulator cycles and Vsample is the voltage level for the current
simulation cycle. Equation 6 shows how to calculate Vsample.

VVC
fR

V
E sampledev

simulatordev

sample
dev ∆+= **

*

2

 (5)

In A/Ds and D/As analog voltage input or output value is linearly
proportional to the digital output or input. The maximum analog
voltage value is the equivalent to the digital value 2n where n is the
number of bits used to represent the data. (In some conventions there
will be an additional bit for the sign, but it is easy to convert such
techniques to the technique used here.) Equation 6 shows how to
calculate the analog voltage equivalent of any given digital dsample.

n
sampledd

sample

dV
V

2
*

= (6)

We also need to calculate energy consumption on the interconnect
between the I/O controller and the audio interface. This energy can
be calculated using capacitance of the interconnect, the voltage level
and the switching activity on the interconnect. The capacitance can
be calculated using the material properties of the hardware platform
if the length of the connection is known. Switching activity (Nswitch)
is obtained from the simulator on every cycle. Equation 7 shows the
resulting interconnect energy per audio sample.

switchddlineconnection NVCE ** 2= (7)

4. RESULTS
To experiment with our energy models we use an embedded system
model shown in Figure 3, consisting of one processor, a memory
system with three different types of memories, a coprocessor as an
I/O processor, an audio interface, a speaker and a headphone. This
model is derived from a Linux based development board
SmartBadge IV [20]. SmartBadge IV has an SA-1110 processor,
FLASH, SRAM and SDRAM for off-chip memory, an SA-1111
coprocessor and a UDA 1341 audio interface chip. Table 1 shows
the datasheet values used for energy models for the system
components in our experiment. Validation of the energy models used
in the simulator are done in [1] for CPU, memory and power supply
units. We plan to do the validation of the energy models used for
peripheral devices as a future work.

Figure 3: Simulated Embedded System

We use an MP3 audio decoder application to experiment with our
energy simulator. In this example our aim is not to suggest a new
energy optimization technique but to show how our energy simulator
can help a designer to optimize driver code more easily. Our test
input is a five second audio sample. Before testing the application
we also design an audio driver. Although it is possible to evaluate
operating system behavior on the simulator, we have not included
such behavior in our experiments.

We start our audio application testing by first designing an audio
driver. We base our initial design on the default audio device driver
that is part of the SmartBadge IV Linux distribution [21]. An audio
device driver controls the audio record and play operations. When
recording (playing) an audio sample, the device driver receives
(sends) data from (to) the peripheral using polling. Polling is done to
determine if the queue in the I/O controller is not empty (not full). If
it is not empty (not full) the processor reads (writes) data from the
queue. If the queue is empty (full), the processor continuously
checks the queue until there is some data (space) in the queue. This
continues until all samples are recorded (played).

Table 1: Datasheet information about components

Type Device Modes and datasheet values
active = 500mW @ 200MHz
idle = 85 mW @ 200MHz CPU SA-1110
sleep = 5 uA
active = 50mA @ 3.3V I/O

Controller SA-1111
sleep = 50 uA @ 3.3V
read = 18 mA @ 5 MHz Flash Mem. 28F800C3
standby = 7 uA
active = 50 mA @ 3V
standby = 2 mA @ 3V SRAM TC55V400FT–70
low standby = 0.5 uA @ 3V
active = 480mA @ 3.3V
standby = 120 mA @ 3.3V SDRAM KMM466S924T
idle = 20mA @ 3.3V
playback = 20mA @ 3V
record = 19.55mA @ 3V

Audio
CODEC UDA1341TS

standby = 10.05mA @ 3V
Sound
device

Speaker and
microphone

R= 5K C=25pF (including
termination resistor)

We tested our audio driver using a sample application. Our
application first records a 0.1 second audio clip with 48KHz audio
frequency. Then the same audio clip is played back. We average
effects of both functions by testing both the record and the playback
functions in the same application. The results from our simulator,
which are shown in Table 2, show that most of the device-driver
related system energy is wasted in continuous checking of the queue
status. Profiling shows that while 96% of the device-driver related
system energy is consumed during polling, only 3% of the device-
driver related system energy is used for the audio data transfer in the
driver. In addition, using the processor as a medium to transfer data
between the memory and the device creates extra bus switching. As
a result, we decided to redesign this device driver.

Table 2: Energy profile of polling based device driver
Routine Energy %

check_fifo 96.29
to_fifo 1.30

from_fifo 1.29
main 0.29
flsbuf 0.02

Our new device driver uses DMA to communicate between the
memory and the I/O controller. The processor goes to sleep while
data is exchanged between the audio device and the memory. In the
sleep mode all processor activities stop except the clock tree [22].
There is no useful computation performed in the CPU in this mode.
Code for waking from sleep is stored in RAM to enable fast wake up.
Interrupts are used to wake the processor when the data transfer is
finished or when the size limit for DMA access is reached. Our
simulation based profiling results shown in Table 3 show that nearly
all the device-driver related system energy is consumed for the actual
data transfer with DMA.

Table 3: Energy profile of DMA based device driver

Routine Energy %
dma_transfer 98.78

flsbuf 0.49
fprintf 0.11

freopen 0.06
fputc 0.04

We can use the results of our energy simulator in these experiments
to show the system energy saving between discussed audio drivers.
Table 4 shows the performance and the total system energy
consumption for both audio drivers. There is a 58% decrease in
device-driver energy consumption with the DMA-based audio driver
compared to the polling-based audio driver. As expected, there is
little change in the execution time.

Table 4: Performance and total energy consumption
Device driver Time(sec) System Energy(mJ)
DMA-based 0.2017 173.02

Polling-based 0.2011 411.19

Our tool is also capable of showing energy consumption distribution
for each device. The energy distribution for audio driver tests
mentioned above is shown in Table 5. The energy consumption of
the processor, the memory, the system bus and the coprocessor
decrease with the DMA-based driver because of the increased sleep
time for the processor, reduced number of instruction reads in the
memory, and reduced amount of data transfer activity on the bus
which also affects coprocessor pin power. The energy consumption
for the audio device, which is composed of the audio interface and a
microphone or a speaker, is nearly unchanged. The power source
modules (battery and DC/DC converter) spend less energy because of
the decrease in current amount demanded by the rest of the system.

To see how much the improvement in the energy consumption of the
audio driver affects energy consumption of a real application we
integrate our two audio drivers into an MP3 audio decoder
application. The total system energy consumption and energy
consumption of the individual components for MP3 decode with each
audio driver is shown in Table 6. Because of the decreased audio
driver energy consumption, total energy consumption of processor,
memory, system bus and power supply components (DC/DC
converter and battery) are also decreased for MP3 decode
implemented on our hardware (Figure 3). Our DMA-based audio
driver achieves a 44% reduction in the total system energy
consumption for an MP3 decoder. The percentage energy reduction
for the MP3 decoder is less than for the device-driver because the

energy consumption of the system and the components are the same
for both the polling-based and the DMA-based drivers when the
decoder is processing audio data.

Table 6: Energy consumption of MP3 decoder with different
audio drivers

Audio driver Polling-based DMA-based
 Energy (J) % Energy (J) %

% diff.

Proc. 2.59 18.43 0.86 10.95 66.74
Mem. 3.30 23.47 1.27 16.15 61.49

SA1111 1.06 7.55 0.93 11.81 12.44
Sys. Bus 0.02 0.16 0.01 0.19 36.18
Audio D. 3.25 23.09 3.25 41.33 -0.20
DC_DC 0.76 5.42 0.54 6.84 29.26

Battery loss 3.08 21.89 1.00 12.73 67.45
System 14.06 7.87 44.03

It is also desirable to show the distribution of energy consumption for
MP3 decode per software function. In this paper we try to observe
the effect of peripheral devices and their drivers, thus it is reasonable
to compare the energy consumption of an audio driver with the
remaining functions which are used to decode the MP3 data. As
shown in Table 7 for MP3 decode with a polling-based driver, 76%
of the total system energy consumption is spent in the audio driver.
For MP3 decode with a DMA-based driver, on the other hand, this
ratio drops to 57%.

Table 7: Energy profile of MP3 decoder with different
audio drivers

 Polling-based DMA-based
Device driver (%) 76.02 57.16

Data processing (%) 23.98 42.84

5. CONCLUSION AND FUTURE WORK
We presented an energy consumption estimation methodology for
peripheral devices such as audio devices in embedded systems. We
designed a cycle-accurate simulator and profiler for energy
consumption estimation of the peripherals. We also added a profiler,
which can be helpful during software optimization, to our simulator.
We tested our idea with memory-mapped I/O devices using both
polling and interrupts for communication. We further modeled DMA
type access to memory to enable direct communication between
memory and peripherals. The results of our simulations show that up
to 50-55% of the total system energy consumption can be spent in
peripheral devices. We also show that our tool can help optimize
energy consumption with an example MP3 decoder application. We
optimized the audio driver in the MP3 decoder and therefore, reduced
the total energy consumption of the MP3 decoder by 44%.

Future work will include adding video and wireless link device
models to the simulation system. Also, validation of the simulation
results will be done using SmartBadge IV. Finally, operation system
issues will also be addressed.

6. REFERENCES

[1] T. Simunic, L. Benini and G. De Micheli, "Cycle-Accurate

Simulation of Energy Consumption in Embedded Systems,"
Proceedings of the 36th Design Aautomation Conference,
pp. 867-872, June 1999.

Table 5: Energy consumption per module
 DMA-based Polling-based
 Energy (mJ) % Energy (mJ) % % diff.

Proc. 1.15 0.67 67.68 16.46 98.30
Mem. 22.61 13.06 100.66 24.48 77.56

SA1111 33.12 19.15 38.20 9.28 13.22
Sys. Bus 0.18 0.09 0.50 0.13 68.36
Audio D. 101.99 58.94 101.74 24.74 -0.24
DC_DC 12.67 7.33 21.24 5.17 40.31

Battery loss 1.33 0.76 81.18 19.74 98.38

[2] CoWare, HTTP:http://oradev.coware.com
[3] Mentor Graphics, HTTP: http://www.mentor.com/codesign/
[4] Synopsys, System-level design, HTTP:

http://www.synopsys.com/sps/sld.html
[5] Cadence, HTTP: http://www.cadence.com
[6] Synopsys, Power Compiler, HTTP:

http://www.synopsys.com/products/power/power.html
[7] SimOS, HTTP: http://simos.stanford.edu/
[8] V. Tiwari, S. Malik and A. Wolfe, “Power Analysis of

Embedded Software: a First Step Towards Software Power
Minimization,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, Vol. 2, Issue 4, pp. 437-445, 1994.

[9] A. Bona, M. Sami, D. Sciuto, C. Silvano, V. Zaccaria and R.
Zafalon, “Energy Estimation and Optimization of Embedded
VLIW Processors Based on Instruction Clustering,”
Proceedings of the 39th Design Automation Conference,
pp. 886-891, June 2000.

[10] J. T. Russell and M. F. Jacome, “Software Power Estimation
and Optimization for High Performance, 32-bit Embedded
Processors,” Proceedings of the Int. Conference on Computer
Design: VLSI in Computers and Processors (ICCD’98), pp. 328-
333, October 1998.

[11] V. Srinivasan, D. Brooks, M. Gschwind, P. Bose, V. Zyuban
and P. N. Strenski, P. G. Emma, “Optimizing Pipelines for
Power and Performance,” Proceedings of the 35th Annual
ACM/IEEE International Symposium on Microarchitecture,
pp. 333-344, November 2002.

[12] N. Vijaykrishnan, M. Kandemir, M. J. Irwin, H. S. Kim and W.
Ye, “Energy-driven Integrated Hardware-software
Optimizations Using SimplePower,” Proceedings of the 27th
Annual International Symposium on Computer Architecture,
pp. 95-106, June 2000.

[13] Erik Brockmeyer, Arnout Vandecappelle and Francky Catthoor,
“Systematic Cycle Budget Versus System Power Trade-off: A
New Perspective on System Exploration of Real-time Data-
dominated Applications,” Proceedings of the 2000 International
Symposium on Low Power Electronics and Design, pp. 137-142,
July 2000.

[14] Tao Li and Lizy Kurian John, “Run-time Modeling and
Estimation of Operating Power Consumption,” Proceedings of
the International Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS’03), pp. 160-171, June 2003.

[15] T. Simunic, L. Benini, G. De Micheli and M. Hans, “Source
Code Optimization and Profiling of Energy Consumption in
Embedded Systems,” Proceedings of the 13th International
Symposium on System Synthesis, pp 193-198, September 2000.

[16] W. Ye, N. Vijaykrishnan, M. Kandemir and M. J. Irwin, “The
Design and Use of SimplePower: A Cycle-Accurate Energy
Estimation Tool,” Proceedings of the 37th Design Automation
Conference, pp. 340-345, June 2000.

[17] A. Acquaviva, T. Simunic, V. Deolalikar and S. Roy, “Server
Controlled Power Management for Wireless Portable Devices,”
HP Labs Technical Report (HPL-2003-82), April 2003.

[18] S. Wang, S. Malik and A. Bergamaschi, “Modeling and
Integration of Peripheral Devices in Embedded Systems,”
Proceedings of the Design, Automation and Test in Europe
Conference, pp. 136-141, March 2003.

[19] Advanced RISC Machines Ltd. (ARM) ARM Software
Development Toolkit Version 2.11, 1996.

[20] SmartBadge 4, HTTP:
http://www.it.kth.se/~maguire/badge4.html

[21] SmartBadge 4 audio driver, HTTP:
http://www.it.kth.se/~maguire/badge4-audio.html

[22] Intel Strong ARM SA-1110 manual, HTTP:
http://www.intel.com/design/strong/manuals/278240.htm

