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Committee in charge:

Tajana S̆imunić Rosing, Chair
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The dissertation of Ayşe Kıvılcım Coşkun is approved,

and it is acceptable in quality and form for publication

on microfilm and electronically:

Chair

University of California, San Diego

2009

iii



DEDICATION

To my parents and my sister.

iv



EPIGRAPH

For a successful technology,

reality must take precedence over public relations,

for nature cannot be fooled.

—Richard P. Feynman
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ABSTRACT OF THE DISSERTATION

Efficient Thermal Management for Multiprocessor Systems

by

Ayşe Kıvılcım Coşkun

Doctor of Philosophy in Computer Science and Engineering

University of California San Diego, 2009

Tajana S̆imunić Rosing, Chair

High temperatures and large thermal variations on the die create severe chal-

lenges in system reliability, performance, leakage power, and cooling costs. Designing for

worst-case thermal conditions is highly costly and time-consuming. Therefore, dynamic

thermal management methods are needed to maintain safe temperature levels during

execution. Conventional management techniques sacrifice performance to control tem-

perature and only consider the hot spots, neglecting the effects of thermal variations.

This thesis focuses on developing performance-efficient techniques to achieve safe and

balanced thermal profiles on multiprocessor system-on-chips (MPSoCs).

Modeling performance, temperature, and reliability of MPSoCs with high accu-

racy and reasonable simulation time is a challenge, because we need to keep track of

instruction-level activities and also simulate sufficiently long real-time execution to have

meaningful reliability estimates. The first contribution of this thesis is a fast simula-

tion framework, which evaluates reliability of runtime policies or design-time decisions

accurately in a matter of hours—whereas traditional architecture-level simulators would

have to run for days.

Job scheduling on an MPSoC has a significant impact on temperature and re-

liability. For systems with a priori known workloads, this thesis proposes a scheduling

optimization method which outperforms other static energy or temperature management

techniques in terms of reducing thermal hot spots and gradients. However, having an

accurate design-time workload estimate is not possible for most systems. This work in-

troduces dynamic techniques to address runtime variations in workload. The key aspects

of these dynamic techniques are low-performance impact and adaptation capability.

xvi



Reacting after thermal events occur reduces the efficiency of thermal manage-

ment policies. This thesis proposes a novel proactive management approach to address

this issue, and shows that utilizing a thermal forecast for temperature-aware scheduling

achieves significant gains in both temperature and performance. All the novel manage-

ment policies introduced in this thesis are evaluated using an experimental framework

based on real-life systems and workloads. In the experiments on an UltraSPARC T1 pro-

cessor, proactive thermal management achieves remarkable results with an average 60%

reduction in hot spot occurrences, 80% reduction in spatial gradients and 75% reduction

in thermal cycles in comparison to reactive thermal management, while also improving

performance.
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Chapter 1

Introduction

Power consumption of chips has increased substantially for the last few decades

to accommodate the rising performance demand. Higher power consumption combined

with smaller device dimensions increase power densities and on-chip temperatures. A

number of critical challenges arise due to high temperatures, including lower reliability,

higher cooling costs, and performance degradation. The difficulty of managing these

challenges, especially the prohibitively high cooling costs, have motivated the shift from

designing single-core highly-complex architectures to multicore chips that integrate sev-

eral simpler, lower power cores [38]. Today, advances in process technology enable man-

ufacturing complete multiprocessor SoCs including CPUs, memories and communication

architectures on a single die. The Sun UltraSPARC T1 [38] and the IBM Cell [35] are

examples of such multicore processors.

The hardware parallelism supplied by the multicore architectures enables achiev-

ing higher performance per Watt. However, the power density is still at a rising trend,

as we continue to shrink the feature sizes and improve the performance of our systems

at the cost of higher power consumption. In deep submicron process technologies, high

temperatures, process imperfections, and reduced voltage margins have already made

the systems much more vulnerable to failures. In addition, as we progress to designing

many-core systems, we manufacture larger chips which potentially have dramatically

higher temperature variations across the die. These variations add to the existing chal-

lenges caused by high temperatures, as they degrade system reliability, performance, and

cooling efficiency. Therefore, multicore systems still face a great amount of temperature-

induced problems.

1
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To address the need of efficient thermal management of multicore systems, this

thesis analyzes the effects of design-time and runtime decisions on temperature, and

develops techniques to manage temperature without a substantial effect on performance.

This introductory chapter provides an overview of the temperature-induced challenges

and the prior work in thermal management. It also highlights the contributions of the

thesis.

1.1 Temperature-Induced Challenges

One of the obvious results of high temperatures is higher cooling costs. This

increase is due to both the need for more expensive packaging solutions and to the cooling

energy consumed by the system fans that are supplying the air to cool the package.

Leakage power, which is a significant portion of total power for 65nm and below, is

exponentially related to temperature. High temperatures adversely affect performance

as well, as the effective operating speed of devices decreases with high temperatures.

Temperature also has a strong effect on system reliability. Hot spots exponen-

tially accelerate failure mechanisms such as electromigration, stress migration, and di-

electric breakdown, which cause permanent device failures [34]. In fact, a small difference

in the operating temperature (i.e., 10−15oC) can result in a 2X difference in the lifetime

of the devices [70].

Addressing thermal hot spots alone is not enough to improve reliability. Temporal

and spatial thermal gradients affect device reliability even at moderate temperatures [44].

The failure rate due to thermal cycling (i.e., temporal fluctuations in temperature) in-

creases with higher magnitude and frequency of the temperature cycles [34]. For example,

a 10oC increase in the magnitude of cycles can cause about 16X decrease in mean-time-

to-failure of metallic structures [34]. Thermal cycling causes accelerated package fatigue

and plastic deformations of materials, leading to permanent failures. Such cycles are

created either by low frequency power changes such as system power on/off cycles, or

by more frequent workload rate changes and power management decisions (e.g., putting

idle units in deep sleep mode) [52].

High spatial temperature gradients, which can easily occur on today’s large mul-

ticore SoCs, also cause performance and reliability degradation. In process technologies

below 0.13 µm, reliability issues arise due negative bias temperature instability (NBTI)

and hot carrier injection (HCI) effects, as the operating temperatures and electric fields
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reach high enough values to accelerate these mechanisms during device lifetime [39].

When the temperature gradient is large, the delay characteristics of devices may change

in a sufficiently different amount due to NBTI and HCI to cause the circuits to fail in

meeting timing constraints [39]. In addition, increasing temperature increases local re-

sistances, and as a result, elevates circuit delays and IR drop as well [55]. Global clock

networks are especially vulnerable to large spatial variations. Every 20 degrees increase

in temperature causes 5-6% increase in Elmore delay in interconnects. As a result, clock

skew problems become noticeable for spatial variations of even 15-20 degrees [1]. Another

important adverse effect of spatial gradients is lower cooling efficiency. As the cooling

infrastructure (i.e., heat sink and fans) needs to take care of the highest temperature on

the chip, large on-chip variations result in over-cooling and waste energy.

Initially, designers have addressed thermal challenges at design time to ensure

that the reliability, performance, and leakage power constraints are met. Temperature-

aware floorplanning (e.g., [54]) or improving the cooling infrastructure are examples

of offline techniques. However, due to the increase in power densities with each new

technology node and the high integration levels in systems, designing for worst-case has

become very costly and time consuming [11]. Therefore, designing for better-than-worst-

case conditions and implementing dynamic thermal management strategies to guarantee

safe temperatures at runtime have become a common practice.

Conventional dynamic thermal management methods maintain temperature be-

low critical values by slowing down or stalling the processor upon reaching a pre-

determined threshold temperature value (e.g., [59])—hence, such methods trade-off per-

formance for reliability. Well-known techniques for thermal management include fetch-

toggling [59], dynamic voltage/frequency scaling [59, 24], thread migration [29] or hy-

brid techniques that combine two or more of management methods to improve perfor-

mance [40].

1.2 Thesis Contributions

Prior thermal management work has focused on thermal hot spots, but the ef-

fects of thermal variations in time and space have not been considered. For example,

a dynamic power management (DPM) policy that turns off idle cores to save energy

can have conflicting goals with a thermal management policy that lowers and balances

the temperature. DPM without thermal constraints can create large cycles or gradi-
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ents due to the ultra-low power sleep modes it utilizes, and consequently can degrade

reliability—even though it may reduce the average temperature at the same time. There-

fore, developing policies to take care of both hot spots and variations while maintaining

desired performance and energy levels is an important challenge. This thesis focuses

on the design of performance-efficient thermal management techniques that prevent the

temperature-induced reliability and performance degradation as much as possible, as

opposed to only avoiding critically high temperatures.

Achieving performance-efficiency requires identifying the workload characteris-

tics at design time or at runtime and exploiting these characteristics to make intelli-

gent management decisions. For MPSoCs, workload scheduling has a substantial effect

on temperature. Thus, temperature-aware scheduling has the potential to overcome

temperature-induced challenges at a low performance cost. To this end, for systems

with known workloads (such as some embedded systems), this work introduces a job

scheduling optimization method that minimizes hot spots and gradients while maintain-

ing the timing requirements of the workload.

In most real-life systems, it is difficult to accurately estimate runtime workload

conditions during design. Workload varies at runtime, requiring dynamic management

methods to manage temperature. Multiprocessor systems provide several advantages for

dynamic management. First, MPSoCs are typically under-utilized for a significant por-

tion of their lifetime. Therefore, intelligent workload allocation and scheduling policies

can improve the thermal profile dynamically at a low performance cost in comparison to

slowing down or stalling execution. Second, many chips today contain a number of sen-

sors and counters that provide real-time information about the system dynamics (e.g.,

temperature, performance, etc.). The thermal management policies proposed in this

work utilize such information for tuning the runtime management policy to efficiently

fit the current workload conditions. We utilize these properties of MPSoCs to design

low-cost dynamic scheduling techniques that reduce and balance temperature.

Existing dynamic thermal management methods are reactive, that is, they take

action after a thermal emergency occurs. This work discusses a novel technique to

forecast temperature dynamics, and shows how this forecast can be utilized for proactive

management. Proactive temperature-aware job scheduling tracks the system dynamics

as collected by the sensors, learns these dynamics, estimates the near-future temperature,

and adjusts job scheduling in advance to mitigate thermal problems before they occur.
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This way, the system can operate at a much more desirable performance-temperature

trade-off point in comparison to reacting to thermal emergencies.

The contributions of this thesis are outlined as the following:

• It provides a simulation framework for analyzing the effects of runtime manage-

ment decisions (e.g., workload migration, power management, voltage/frequency

scaling, job scheduling) in multiprocessor systems with high accuracy and reason-

able simulation time. The details of this simulation framework are in Chapter 2.

• For systems with a known set of jobs, it proposes an optimization technique to

compute the static schedule for minimizing the hot spots and thermal gradients.

The optimization technique is able to reduce the frequency of hot spots by 35%,

spatial gradients by 85% and thermal cycles by 61% in comparison to the optimal

schedule for minimizing energy. This static scheduling method is discussed in

Chapter 3.

• As workload varies during execution for many real-life systems, this thesis in-

troduces two dynamic management techniques: (1) Adaptive-Random, which is

a temperature-aware scheduling policy that reduces the hot spots and thermal

gradients; and (2) Online Learning, which selects the best policy for the current

workload among a given set of thermal management and scheduling policies. Both

techniques have very-low runtime overhead and adaptation capability. Chapter 4

provides the details of these low-overhead dynamic management techniques.

• It shows that reactive thermal management strategies cannot effectively utilize the

performance capacity of multicore architectures, and proposes a proactive method

to learn the system dynamics and forecast thermal events before they occur. Us-

ing the thermal forecast, Proactive Temperature Balancing achieves a significantly

better temperature-performance trade-off in comparison to reactive thread migra-

tion or voltage/frequency scaling methods. The proactive management method is

discussed in Chapter 5.

• The experimental methodology to analyze and evaluate the proposed methods is

based on real-life systems and workloads. The dynamic job scheduling methods are

implemented on an UltraSPARC T1 processor [38]. In the experiments performed

on the UltraSPARC T1, proactive thermal management achieves 60% reduction
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in hot spot occurrences, 80% reduction in spatial gradients and 75% reduction in

thermal cycles on average in comparison to reactive thermal management, while

also improving performance.



Chapter 2

Temperature and Reliability

Simulation

Modeling temperature and the effects of temperature on reliability is essential

for simulation and analysis of thermal management policies. This chapter first provides

an overview of the related work in temperature and reliability modeling. Section 2.2

proposes a novel approach for accurate and fast temperature and reliability modeling

at architecture level for multiprocessor systems. We discuss the experimental method-

ology in Section 2.3. In Sections 2.4 and 2.5, we show how to use the novel simulation

framework for analyzing the effects of runtime management techniques on reliability,

performance, and energy.

2.1 Related Work

Traditionally, SoCs and thermal packages have been designed considering the

worst case temperature that can be reached during execution. As designing for the worst-

case is getting prohibitively expensive with every process technology, detailed thermal

modeling has become a requirement for both thermal and reliability management of

systems. Temperature and reliability modeling enables evaluating and implementing

both design-time and run-time temperature optimization methods. This way, we can

reduce the area and performance costs of cooling solutions.

Thermal modeling is typically accomplished by constructing an equivalent RC

network of the chip. Heat flow is analogous to the current passing through a thermal

7
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resistance in the RC network. The transient behavior of temperature is modeled by

means of the thermal capacitance. Compact thermal modeling tools, such as HotSpot,

address the need for detailed thermal analysis (e.g., [59]). HotSpot models the vertical

and horizontal thermal resistances and capacitances automatically for the given floorplan

and package information. It takes into account the lateral thermal diffusion on chip as

well. To speed-up the thermal modeling process, which is computationally costly, Atienza

et al. introduce an FPGA-based fast thermal emulation framework [3]. This framework

also constructs the RC network for the given chip, and the emulation platform can

reduce the simulation time considerably in comparison to simulation while maintaining

accuracy.

Few papers in the literature have taken reliability explicitly into account. Re-

liability management has been mostly addressed previously as a way of optimizing the

policies or architecture at design-time (e.g., [62]). The Reliability-Aware Microprocessor

(RAMP) provides a reliability model at the architecture level for temperature-induced

intrinsic hard failures [62]. RAMP analyzes the effects of application behavior on relia-

bility, and enables optimizing the architectural configuration and the voltage/frequency

setting at design time to meet the reliability target. Previous work also shows that ag-

gressive power management can adversely affect reliability due to fast thermal cycles,

and optimization methods that consider reliability constraints provide energy savings

while improving the MPSoC lifetime [52].

The SimPoint tool [57] addresses the problem of long simulation times, and it

provides clustering analysis to identify a few representative points that can be simulated

to predict the performance of the entire application. Biesbrouck et al. [5] use individual

program phase information (a complete phase trace) to guide multithreaded simulation.

This is accomplished by creating a Co-Phase Matrix, which represents the per-thread

performance for each potential combination of the single-threaded phase behaviors that

occur when multiple programs are run together.

Instead of summarizing the application behavior as in SimPoint, we need to cap-

ture the entire behavior to perform meaningful reliability analysis. The work presented

in this chapter uses SimPoint’s phase identification mechanism to capture a complete

phase trace as part of the simulation process. This phase-based framework is able to

simulate much longer periods of real-life execution in reasonable time frames.
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2.2 Phase-Based Reliability Simulation

Simultaneous modeling of performance and reliability presents new methodolog-

ical challenges that require tools and solutions radically different than traditional archi-

tectural investigation. This section describes the entire simulation infrastructure with a

specific focus on the two most novel aspects of the framework: long time-frame perfor-

mance estimation and the integrated reliability simulation.

To analyze runtime management techniques fairly, we need a fully integrated per-

formance, power, and thermal model of the entire chip multiprocessor. This is because

we are interested in evaluating management techniques that observe the temperature

and power characteristics of the processor, and make management decisions accordingly.

Also, we want to capture various types of effects that the architectural simulation pro-

vides; e.g., workload-dependent utilization of specific architectural structures and their

impact on power and temperature, the time-varying behavior of individual applications,

etc. However, thermal events that affect reliability, such as thermal cycles, happen over

larger time scales than architecture-level simulation. Architecture-level simulators typ-

ically evaluate system behavior at instruction-level and run a total of several hundred

million instructions. Interactive architecture-level simulation of the full benchmark is

not practical, as just a single detailed architecture-level simulation corresponding to sev-

eral minutes of real execution time requires weeks or months to complete. Therefore, we

introduce new performance modeling mechanisms, integrated with our power, thermal,

and reliability models, that allows accurate modeling of execution behavior over tens or

hundreds of seconds.

Our simulation framework is shown in Figure 2.1. The performance modeling

front-end combines a full-program phase profile with detailed architecture-level simula-

tion of every distinct program phase at all possible frequency settings, including both per-

formance and power characteristics. This characterization is gathered in a database that

can be later queried while the full MPSoC simulation progresses. This way, we can model

the effects of changing frequency, migrating jobs, etc., without further architecture-level

simulation. After scheduling decisions are made and the resulting performance and power

data are produced, we can model time-varying temperature effects across the entire chip.

The temperature curves are then fed into the reliability models, producing the expected

failure rates.
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Figure 2.1: Design Flow

2.2.1 Long-Term Performance Modeling

Our framework relies on two simplifying assumptions that are critical to making

this problem tractable. The first is that the time constants over which temperature varies

do not require us to fully capture cycle-by-cycle variances in the temperature portion

of the model. The instruction-level variations are captured in the performance model,

but only summarized in the latter stages. This allows us to replace the cycle-by-cycle

data with a stair-step graph, presenting performance and power behavior as constant at

the average values over individual intervals. Thus, we can capture the program behavior

with little loss of accuracy.

The second assumption is that the behavior of individual threads is separable.

This is accurate because we model systems with private L2 caches, which is a likely

architectural scenario in future systems [42]. At 16 cores and above, the interconnect

cost of a shared cache would be extremely high. This assumption has been demonstrated

to be accurate even on research that does not require this type of long simulation [41].

Even with the small core counts in current multicore systems, the AMD dual-core and

quad-core Opteron, the IBM Power6, and the coming Intel Nehalem processor all have

private L1 and L2 caches. For shared L2 caches, interactions between threads is higher

and system-level accuracy of the simulation framework is reduced.

A phase of an application is a segment of execution during which a measured

program metric is relatively stable. In our framework, we capture a complete phase

profile of each application, beginning to end. Then, using the performance simulator

integrated with the power modeling tool, and utilizing a finite number of simulation

samples for each phase, we reconstruct the power and execution properties of the com-

plete program. In fact, we do this for all voltage and frequency settings available, so

that we can reconstruct the complete program even in the face of an arbitrary number
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of voltage/frequency changes.

We use SimPoint [57] methodology to identify the various phases within the

applications and to characterize complete program execution. A program’s execution

is divided into intervals of 100 million instructions. Once we assign each interval to a

representative phase, we represent a program’s execution by a Phase-ID trace [5]. Thus,

at any instruction during a program’s execution, we use this file to determine the current

phase and to identify points of transition between phases. By running simulations at each

phase point in the performance simulator and composing performance/power statistics

with the Phase-ID trace, we create both a power and a performance trace.

We capture these program traces in a database which can be queried by the

Scheduling Manager (see Figure 2.1) at distinct intervals. Given a program start point,

an interval length in cycles, and a frequency setting, the query tool returns the aver-

age instructions per second (IPC) and power levels across the interval, and the point

the program reaches in execution at the end of the interval. Thus, at runtime, the

scheduling manager can make decisions about thread migration, thread stalling, or volt-

age/frequency changes, and query the database to model the precise effects.

2.2.2 Power Modeling

Power modeling requires coupling the execution traces obtained from the perfor-

mance simulator with a tool that computes the power consumption for each functional

unit. This coupling converts the performance parameters (e.g., cache accesses, branch

predictions, etc.) into estimates for transistor switching, and then the power model uti-

lizes these estimates for calculating the instantaneous power values. An example of such

power modeling tools is Wattch [12], which is also used in this work.

Transistors consume power when they switch output values, but they also leak

power even when they do not switch. The former is referred to as dynamic power, and

historically has been the dominant factor; however, as technology shrinks, leakage power

becomes increasingly important. We compute the leakage power of CPU cores based on

structure areas, temperature, and supply voltage. To account for the temperature and

voltage effects on leakage, we use the second-order polynomial model proposed by Su

et al. [66]. This model computes the change in leakage power for the given differential

temperature and voltage values, assuming a base leakage power density of 0.5W/mm2

at 383K [8]. We determine the coefficients in the polynomial model empirically to match



12

the normalized leakage values in [66].

2.2.3 Thread Management

We design a scheduling manager which enables the simulation of a large array

of thread management policies. The mechanisms available for managing temperature

include adjusting the frequency/voltage of a core (DVFS or DVS), putting an idle core

into a low-power sleep mode (DPM), migrating computation off of a hot core, and poli-

cies that stop activity on a hot core (i.e., clock- or fetch-gating). In each policy, the

scheduling manager makes a set of decisions after each scheduling interval, and it may

incorporate performance and thermal information from the prior interval. After making

those decisions for each thread and core, the scheduling manager then queries the per-

formance database to obtain the power and performance behavior of each core over the

next interval. Our simulation sampling intervals (i.e., 50 ms) are shorter than a schedul-

ing interval, so there would be multiple exchanges with the performance database before

another scheduling decision is made.

Since the scheduling manager keeps track of performance and power information,

it also has the responsibility of modeling complex phenomena such as the delay from

thread migrations. The model simulates the effects on power and performance for the

following phenomena: thread migration, DVFS, starting a new application on a core,

core sleep, and core wakeup. Our assumptions for several of the delays modeled are

presented in Table 2.1. We model two aspects of the cost of thread migration among

cores. We measure the software overhead in M5’s full system mode as the time for Linux

to migrate a thread from one core to another idle core and to start execution. This

thread migration takes less than 3.0 µs. We also attribute architecture overhead to cold

start effects in the branch predictor, caches, TLBs, etc. We measure cold start effects by

starting each benchmark at many different points in the program, and then computing

the average loss in performance. The average loss is 204 µs, but the loss varies wildly by

benchmark—i.e., from 2 to 740 µs. Note that cold start effects dominate the migration

penalty. To address the highly variable overhead, we model a distinct migration penalty

for each benchmark.
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Table 2.1: Delay and Power Model Assumptions
Parameter Model Value
Sampling Interval 50ms
Thread Migration Delay syscall delay + cold start effects
DVFS Delay syscall delay + 20E-6s
Wakeup Delay 25ms
Application Startup Delay syscall delay + cold start effects
Transition Power 10W
(to and from sleep states)

Table 2.2: HotSpot Parameters
Parameter Value
Die Thickness 0.1mm

Core Area 14.44mm2

L2 area (total of 2 banks) 10.56mm2

Convection Capacitance 140 J/K
Convection Resistance 0.1 K/W

2.2.4 Thermal Modeling

Automated thermal modeling requires power traces for each unit as input, in ad-

dition to the chip and package characteristics such as die thickness, heat sink convection

properties, etc. Therefore, we feed the detailed power trace derived by the combination

of the scheduling manager and the performance/power database into the thermal model.

We modify HotSpot’s [59] (block model) settings to model the thermal characteristics of

an 16-core die. We use the steady state temperature of each unit as the initial temper-

ature values. We summarize the HotSpot parameters in Table 2.2. We calculate the die

characteristics based on the trends reported for 65nm process technology [29].

2.2.5 Reliability Modeling

Once we generate a full thermal trace, we use this trace as input to our reliability

model. Our work targets temperature-induced reliability problems. The most commonly

studied temperature-induced intrinsic hard failure mechanisms are electromigration, time

dependent dielectric breakdown, and thermal cycling [34, 62].

Electromigration (EM) occurs in interconnects as a result of the momentum

transfer from electrons to ions that construct the interconnect lattice and leads to hard

failures such as opens and shorts in metal lines. The EM failure rate (λEM ), based on
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Black’s model, is given in Equation 2.1. In the equation, Ea is the activation energy, k

is the Boltzmann’s constant, T is the temperature, J and Jcrit are the current density

and the threshold current density, respectively, and A0 is a material dependent constant.

We represent the first half of the equation with the term λ0
EM , which can be considered

as a constant (an average technology/circuit dependent value).

λEM = A0(J − Jcrit)−ne(−Ea/kT ) = λ0
EMe(−Ea/kT ) (2.1)

Time dependent dielectric breakdown (TDDB) is a wear-out mechanism of

the gate dielectric, and failure occurs when a conductive path is formed in the dielectric.

TDDB is caused by the electric field and temperature, and the failure rate is defined in

Equation 2.2. Similar to the EM failure rate equation, we use λ0
TDDB to represent the

first half of the equation. Both EM and TDDB failure rates are exponentially dependent

on temperature.

λTDDB = A0e
γEoxe(−Ea/kT ) = λ0

TDDBe(−Ea/kT ) (2.2)

Thermal cycling (TC) is caused by the large difference in thermal expansion

coefficients of metallic and dielectric materials, and leads to cracks and other permanent

failures. The thermal cycling effect is modeled by the Coffin-Mason equation [34]. Slow

thermal cycles happen because of low frequency power changes such as power on/off

cycles. Fast cycles occur due to events such as power management decisions. Although

lower frequency cycles have generally received more attention, recent work shows that

thermal cycles due to power or workload variations can also degrade reliability [49, 52].

The failure rate due to thermal cycling is formulated as in Equation 2.3.

λTC = C0(∆T −∆To)−qf (2.3)

In this equation, ∆T is the temperature cycling range. The elastic portion of the

thermal cycle is shown as ∆To. Elastic thermal stress refers to reversible deformation

occurring during a cycle, and ∆To should be subtracted from the total strain range.

Typically, ∆To << ∆T [34], so the ∆To component can be dropped from the equation.
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C0 is a material dependent constant, q is the Coffin-Manson exponent, and f is the

frequency of thermal cycles. Note that the Coffin-Manson equation [34] computes the

number of cycles to failure. Therefore, the mean-time-to-failure (MTTF) in years is the

number of cycles multiplied by the period of the cycles.

Computing the frequency of cycles is not straightforward in a simulation of an

irregular, dynamic system. To resolve this problem, we observe the recent temperature

history on each core to compute ∆T and f . We set the initial length of the history

window to 5 seconds, and adjusted the length dynamically depending on how many

cycles are observed. For example, if no temperature cycles are observed in the last

interval, we increment the history window length to capture slower cycles. ∆T is the

temperature differential observed in the last interval. We set a higher band of 80% and

a lower band of 20% of the temperature range recorded in the last interval, and count

the number of times the temperature exceeds the higher band or goes below the lower

band, and use that to calculate the number of cycles in this period. In this way, we can

account for the contribution of cycles with varying temperature differentials and varying

periods.

For combining the failure rates, as in RAMP [62] we use the sum-of-failure-

rates model. This model assumes that all the individual failure rates are independent.

MTTF is 1/λ for constant failure rates; therefore, we average the failure rate observed

throughout the simulation and compute the corresponding average MTTF. The average

MTTF value reported for 65nm technology is 7 years [64].

For moderate temperatures at 65nm technology, Srinivasan, et al. [63] demon-

strate that the contribution of electromigration, dielectric breakdown, and cycling to the

overall failure rate are similar to each other. This allows us to calibrate the constants

in each failure equation (λ0
EM , λ0

TDDB, and C0) to give a system MTTF of 7 years at

nominal temperature. We use the same constants all throughout the experiments, which

means that the relative impact of different failure mechanisms might change depending

on the conditions. For example, if the temperature is high, then the effect of EM or

TDDB is higher than TC.

2.3 Methodology

This section describes other details of our simulation infrastructure that impact

the results shown in the following sections. These, in general, are details that are rela-
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Figure 2.2: Floorplan of the 16-Core CPU

tively independent of our framework described in this chapter, such as the specific tools

we use, processor core model, and the workload.

We use the M5 Simulator [6] for performance modeling. M5’s out-of-order execu-

tion model is based on SimpleScalar 3.0 [13], and provides a detailed model of an Alpha

21264 processor. Anticipating continued scaling of core counts, the CPU we model is a

16-core multiprocessor manufactured at 65nm. The floorplan for this CPU is provided

in Figure 2.2. Each core has out-of-order issue, a private data cache, instruction cache,

L2 cache, and memory channels. Each core possesses three voltage and frequency set-

tings for dynamic voltage/frequency scaling: 1.200V at 2.0GHz, 1.187V at 1.900GHz,

and 1.06V at 1.7GHz which represent DVFS settings of 100% (original), 95% (step-1),

and 85% (step-2), respectively. The architectural parameters of each core are depicted

in Table 2.3.

We utilize Wattch [12] for the dynamic power modeling of cores in our frame-

work. We integrate Wattch with M5 to provide dynamic and cycle accurate power

measurements for each application. We develop a power model for 65nm by scaling the

parameters within Wattch to match published power values for 65nm technology. The

variation in dynamic power range we observe matches the power distribution on a similar

core [31], on which the majority of applications (including SPEC) have less than 16%

power dissipation difference from the other applications.

The leakage model we use is found to match closely with measurements [66], and
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Table 2.3: Architectural Parameters
CPU Clock 2.0Ghz
ICache 64KB 2-way @1ns (2 cyc)
DCache 64KB 2-way @1ns (2 cyc)
L2Cache 2MB 8-way @10ns (20 cyc) (2 banks)
Memory Latency 100ns (200 cyc)
Branch Predictor 21264-style tournament predictor
Issue out-of-order
ROB 128 entry
Issue Width 4
Functional Units 4 IntAlu, 2 IntMult, 2 FPALU, 2 FPMultDiv
Physical Regs 128 Int, 128 FP
IQ entries 64
Vdd 1.2V
DVFS Settings 100%, 95%, 85%

the leakage values produced in our work are in line with expected values (i.e., 30–40%

of the total power consumption for 65nm).

To model power dissipation of L2 caches, we use CACTI [67] (an integrated

memory performance, area, leakage, and dynamic power model) and obtain the typical

power consumption of a memory block with the given size and properties, and then use

these values throughout the simulation.

To create representative workloads, we classify all SPEC2K benchmarks in terms

of their variability and memory boundedness. The distinction between CPU bound and

memory bound applications is particularly important in this study because it impacts

how performance scales as the frequency changes. We model both homogeneous and

heterogeneous workloads in terms of the applications’ CPU or memory boundedness.

As our execution model does not extend to parallel programs, the homogeneous work-

loads stand in for both homogeneous server-type workloads and parallel applications

with few stalls for communication. However, our homogeneous and heterogeneous multi-

programmed workloads best represent a server environment, where the average lifetime

of the processor can significantly affect overall costs.

We use the ratio of memory-bus transactions to instructions as a metric to clas-

sify applications as memory or CPU-bound, as suggested by Wu et al. [72]. We classify

applications along several other dimensions. By constructing our workloads from ap-

plications with different phase variability, power savings potential and CPU/memory

boundedness, we seek to represent a wide range of real world workloads.
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Table 2.4: Workload Characteristics

Wkload name Description Cores Benchmarks
Utilized

hom 16 cpu Homogen. 16 sixtrack*16
CPU Bound

hom 16 mem Homogen. 16 mcf*16
MEM Bound

het 16 cpu Hetero. 16 mesa*3, bzip2 program*3, crafty*2,
CPU Bound eon rushmeier*3, vortex1*2, sixtrack*3

het 16 mem Hetero. 16 mcf*4, art110*4, equake*3, gcc 166*3,
MEM Bound swim*2

het 16 mix Hetero. 16 mcf*2, mesa, art110, sixtrack*2, equake,
MIX bzip2 program, eon rushmeier*2, swim,

applu, twolf, crafty, apsi, lucas
het 12 cpu Hetero. 12 mesa*2, bzip2 program*3, crafty*2,

CPU Bound eon rushmeier*2, vortex1*1, sixtrack*2
het 14 cpu Hetero. 14 mesa*2, bzip2 program*3, crafty*2,

CPU Bound eon rushmeier*2, vortex1*2, sixtrack*3
het 12 mix Hetero. 12 mcf*2, mesa, art110, sixtrack*2, swim

MIX eon rushmeier*2, crafty, apsi, lucas
het 14 mix Hetero. 14 mcf*2, mesa, art110, sixtrack*2,

MIX eon rushmeier*2, swim, twolf,
crafty, apsi, lucas, equake

Table 2.4 describes each workload. We model workloads with 12–16 threads—

our CMP architecture is constructed to not have thermal issues when lightly loaded,

which is the expected behavior for the next few processor generations. We construct

both homogeneous and heterogeneous workloads, and CPU-bound, memory-bound, and

mixed workloads. The mixed workloads contain applications from both extremes, as well

as some in the middle of our categorization. In the time frames we model, several of the

applications complete execution. In those cases, we continually restart the application

at the beginning to get consistent behavior across the experiment.

A common performance metric on multicore platforms is a raw count of IPC.

However, this metric gives undeserved bias towards high-IPC threads as performance

may be increased by running more CPU bound threads. To circumvent this difficulty,

we use the Fair Speedup Metric (FS) [14, 61]. FS is computed by finding the harmonic

mean of each thread’s speed-up over a baseline policy of running the thread at the

highest frequency and voltage. Although some applications repeat multiple times during
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our simulations, we compute FS in such a way that the overall contribution of each

application is the same.

2.4 Design and Implementation of Runtime Management

Policies for Multicore Systems

The simulation infrastructure allows us to design and evaluate various job alloca-

tion and thermal management strategies. We divide these techniques into four categories:

(1) power management policies that change the power consumption of a core by putting

it into sleep or idle state, (2) policies that change what is running on a core via mi-

gration or scheduling, (3) policies that continue to execute the same thread but change

speed (via DVFS), and (4) hybrid policies that combine DVFS and scheduling. The

management policies evaluate the system characteristics at every scheduling period, and

make a decision accordingly. In all cases, the scheduling tick is set to every 200ms. The

threshold temperature for all the temperature-triggered policies is 85oC. The default

policy keeps the initial assignment of jobs to cores fixed, and no workload migration or

voltage/frequency scaling occurs on the fly.

2.4.1 Power Management Policies

Dynamic Power Management (DPM) is one of the techniques we investigate

to manage power. DPM puts cores in sleep state to save energy. We implement a fixed

timeout policy [37], which is one of the commonly used DPM policies. For each core,

the policy waits for a timeout period when the core is idle, and then turns off the core.

This is to ensure that we do not turn off cores for very short idle times, where turning

off the core would not amortize the cost of transitioning to and from the sleep state.

The time period to amortize the cost of going to sleep is called the breakeven time (tbe).

We assume a sleep state power value of 0.05W, and based on the active and idle power

dissipation values we compute the tbe to be around 200ms. A simple and effective way

to set the timeout period is ttimeout = tbe [37]. DPM can be integrated with any of the

other policies we discuss in this section for improving the energy savings.

Stop Go [24] runs each core at the default (highest) frequency and voltage set-

ting until a core reaches the thermal threshold. At this point, the core is stalled and the

clock is gated to reduce power consumption. If the core’s temperature goes below the
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temperature threshold in the next sampling interval, execution continues. We assume

that each core can be clock-gated individually.

2.4.2 Migration and Scheduling Policies

These techniques attempt to move computation off of hot cores either via migra-

tion or as a response to a thermal event (i.e., high temperature) as a matter of policy.

Migration sends jobs that have exceeded a thermal threshold to the coolest

core that has not been assigned a new thread during the current scheduling period. If

the coolest core selected is already running a job, we swap the jobs among the hot and

cool cores. This technique can be thought of as an extension of core-hopping or activity

migration techniques [26, 29] to the case of many cores and many threads.

Balance assigns jobs with the highest committed IPC during the last interval

(i.e., between the last two scheduling ticks) to cores that have the lowest temperature.

This scheduling idea represents a more proactive form of migration in which threads are

dynamically assigned to locations before thermal thresholds necessitate action.

Balance Location is similar to balance, but instead of assigning the threads

with the highest committed IPC to the coolest cores, it assigns them to cores that are

expected to be coolest based on location. The cores on the corner locations of the

floorplan are expected to be the coolest; the remaining cores on the sides are expected

to be the second coolest; and the cores in the center of the floorplan are hottest. This

is because the temperature of a core is a result not only of activity on that core, but

also on the activity of its neighbors: higher number of active neighbors results in hotter

cores. Figure 2.3 shows the strategy we use to assign 16 jobs (j1 to j16) to cores, where

the jobs have decreasing committed IPC (IPC1 > IPC2 > ... > IPC16). Whereas the

optimal allocation of threads to cores might diverge from the allocation shown in the

figure depending on the IPC difference among threads, this allocation generally results

in temperature characteristics close to the best allocation. With this scheme and 14

threads, for example, cores labeled j15 and j16 in this figure would always be idle.

2.4.3 Voltage/Frequency Scaling Policies

This set of techniques rely exclusively on dynamic voltage and frequency scaling

to control thermal dynamics, but they differ in how and when DVFS is applied.
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Figure 2.3: Thread Assignment Strategy for Balance Location

DVFS-Threshold (dvfs t) reduces voltage and frequency (V/f) one step at a

time when a core’s temperature exceeds a threshold. After reducing the V/f to the step-

1 (95%) setting, if the core is still above the threshold in the next scheduling interval,

dvfs t uses the step-2 (85%) setting. When a core’s temperature is below the threshold,

the V/f setting is increased, again one step at each scheduling interval.

DVFS-location (location dvfs) uses a fixed V/f setting for each core, and

there is no dynamic scaling at runtime. As the center cores tend to heat up more

quickly, the four cores in the center of the floorplan have the 85% setting. The corner

cores are typically the coolest cores, hence they use the 100% (original) V/f setting. The

rest of the cores (i.e., the eight remaining cores on the sides) have the 95% setting.

DVFS-Performance (dvfs perf) reduces the voltage and frequency dynami-

cally on a core depending on the memory boundedness of the current application phase.

Previous work shows that CPU-intensive tasks do not gain much in terms of energy

savings from running at low frequencies; and conversely, it is beneficial to run memory-

bound tasks at a lower frequency [23], as their performance is much more tolerant of

frequency scaling. DVFS-Performance seeks to reduce the overall chip temperature with

minimal performance cost by proactively scaling back those applications that are least

impacted.

To determine the memory-bound phases, we use a cycles-per-instruction (CPI)

based metric, µ, as defined by Dhiman et al. [23]. It compares the observed CPI with

a potential CPI we might have gotten without memory events. If the µ is near one, the

application is CPU-bound. If it is low, the application is memory-bound. Note that µ

can also take negative values. Analysis on our own application set confirms that this

metric tracks extremely well with performance degradation in the presence of DVFS.

If the µ observed in the last interval is less than -0.8, then we use the 85% setting,
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and we find less than 6% performance loss during those phases. If −0.8 < µ < 0.5, we

apply the 95% setting, which induces less than 5% loss in performance. For µ > 0.5,

we do not perform any V/f scaling. When µ > 0.5, if we used the 85% scaling for

CPU-bound applications, the performance loss would be in the range of 12–15%.

DVFS-Performance Threshold (dvfs perf t) behaves exactly like dvfs perf

unless a core reaches a thermal threshold. If the temperature exceeds the threshold on a

core, then the policy activates dvfs t to reduce the temperature on that core. After the

core’s temperature returns within threshold, we switch back to dvfs perf. This technique

is very successful if by proactively slowing a thread that is tolerant of frequency changes,

it can enable a nearby thread that is not so tolerant of frequency change to avoid a DVFS

slowdown.

2.4.4 Hybrid Techniques

In investigating the interaction of scheduling and DVFS policies, we employ Bal-

ance Location to represent the scheduling policies. It has useful properties in terms of

both reliability and performance. It does only enough migration to find the best location

for each thread, then only migrates when application characteristics change.

Balance Location & DVFS-Threshold works by initially using Balance Lo-

cation to assign potentially hotter threads to cooler locations on the die. If this technique

fails to keep a given core under the specified threshold, the core employs dvfs t until it

is under the thermal threshold.

Balance Location & DVFS Performance uses the Balance Location policy

to allocate jobs to cores, and runs dvfs perf t at the same time to decide on the V/f

settings of the cores.

Balance Location & DVFS-Location assigns the location V/f settings as

in the location dvfs policy to cores, and performs Balance Location for allocating the

threads. This tends to have the effect of assigning the most memory-bound threads in

the center zone, which runs at the 85% setting.

Balance Location uses IPC in assigning threads to locations. When combined

with DVFS, we must account for the V/f and its effect on the measured IPC. Thus, if a

core is running at a lower V/f setting, we scale the measured IPC based on the average

performance hit observed at that V/f level.
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2.5 Experimental Results

In this section we demonstrate that the framework proposed in this chapter

allows us to evaluate a large set of previously proposed and new scheduling algorithms,

in terms of performance, power, temperature, and processor lifetime (reliability). Such

a comprehensive evaluation would not have been possible with existing tools due to the

long simulation times of traditional architecture-level simulators. We show that having

a fully integrated framework, including a reliability model that accounts for all the

major causes of temperature-induced hard failures, sheds some new light on multicore

scheduling. The section starts with an evaluation of the accuracy of the simulation

framework, and continues with evaluating the policies discussed in Section 2.4.

2.5.1 Accuracy

The described methodology allows us to do full-program simulation with simple

look-ups of sampled simulation data. This sacrifices some accuracy. However, the rate

at which temperature changes is typically slow when compared to even complete phases,

so this technique actually sacrifices little accuracy. We validate our methodology by

comparing the results with direct M5/ Wattch power output. For each phase simulation

point of each SPEC benchmark, we run M5 and Wattch for 500ms of simulated execution

and gather power statistics every 500µs. We compare the power statistics of M5/Wattch

and our framework, and we see that our phase-based approach has 1.8% average error

overall. Table 2.5 shows the detailed results for the benchmarks. bzip2 with input set

program has the largest average error of 3.0%.

The low error margin in our power computation methodology translates to even

lower error in temperature computation because of the thermal time constants. To verify

the accuracy of our methodology in terms of the temperature response, we experiment

with bzip2, as it has the highest power error margin. Figure 2.4 shows one particular

(worst case) data point—the temperature trace for a core running bzip2 and then going

to sleep state, on a system running 12 bzip2 threads. The “M5/Wattch” thermal trace

corresponds to the detailed power trace sampled at 500µs, and the “phase” trace is the

thermal output of running the same workload and using our power computation method-

ology. We observe that the trace generated with our methodology closely matches the

trace sampled at a higher granularity. As bzip2 is one of the most power-variant appli-

cations, the rest of the benchmarks demonstrate even less difference. Because thermal



24

Table 2.5: Power Estimation Error of Our Framework Compared to M5/Wattch
Benchmark Average Error Benchmark Average Error
parser 0.023 facerec 0.022
applu 0.021 gcc 166 0.020
art110 0.016 fma3d 0.024
swim 0.018 mcf 0.011
galgel 0.015 gap 0.020
twolf 0.009 vpr route 0.017
mesa 0.027 ammp 0.015
lucas 0.009 bzip2 program 0.030
vortex1 0.018 equake 0.029
sixtrack 0.011 eon rushmeier 0.018
apsi 0.014 crafty 0.018

Overall: 0.018
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Figure 2.4: Comparison of Temperature Responses for bzip2 Using Two Simulation
Methodologies

cycling effects are insignificant unless the temperature variations are more than a few de-

grees, these results are more than accurate enough to capture both temperature-induced

and cycle-induced effects.

2.5.2 Evaluation of Runtime Policies

Section 2.4 has identified a wide assortment of thread management, power man-

agement, and DVFS policies. In evaluating these policies in various execution scenarios,

this section attempts to sort out the key issues facing the designer of a multicore thread

management policy, such as: (1) how to properly combine scheduling/migration policies,

DVFS policies, and DPM policies; (2) how to address peak temperature effects without

exacerbating thermal cycling; (3) whether to use reactive or proactive DVFS policies;

and (4) how to address thermal asymmetries in the chip multiprocessor.

We group the experiments in the following categories. We first look at full core
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utilization scenarios with a varying number of memory-bound and CPU-bound threads,

using the five 16-thread workloads from Table 2.4. For these experiments, threads are

initially placed on the cores randomly (i.e., with neither a clearly good or bad initial

allocation). Partial utilization results examines systems that are less than fully utilized,

with 12 or 14 jobs (i.e., 2 or 4 idle cores). We then take a deeper look at the con-

sequences of the initial allocation of idle cores. Finally, we investigate how reliability,

performance, and energy vary when the system has DPM capabilities, and which sched-

ulers best complement DPM to achieve the desired trade-offs for reliability, energy, and

performance.

We present the energy and performance of the policies in addition to reliability.

All results are normalized with respect to the default case of no thermal management

(i.e., all threads running full speed on the initially assigned cores), allowing us to evaluate

each policy on the same scale. In a real-life system, the default policy is typically coupled

with a back-up thermal management policy to ensure the chip does not exceed critical

temperatures. However, in this work, we do not integrate any thermal management

policy with the default policy to use the default case as a reference point especially for

performance.

Srinivasan et al. [64] report the average MTTF of the SPEC suite simulated for

65nm at 1.0V of supply voltage as 7 years, and our model is calibrated to the same

value. However, if the reliability model was re-calibrated to assume a shorter or longer

MTTF, the policies are expected to display similar trends, while the absolute numbers

would change depending on process technology, baseline MTTF, and the system being

modeled. Therefore, we show results based on the % change in MTTF values, rather

than absolute numbers.

Full Utilization:

We first analyze the workload allocation policies’ ability to improve thermal char-

acteristics for workloads fully utilizing the system. The results in Figure 2.5, which are

the average values for all the 16-thread workloads, indicate that Migration, Balance,

and Balance Location have little impact on reliability in this scenario—this is because

cores are fully utilized and most of the workloads are highly homogeneous. Therefore,

re-allocating workload does not change the temperature and reliability considerably.

In the one heterogeneous workload, the effect of workload allocation is still small.

In that case, the Balance and Balance Location policies each improve reliability by 4.4%
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Figure 2.5: Comparison of Workload Allocation Techniques

with minimal impact (less than 1%) on performance, energy, and average temperature.

Thus, in the absence of idle cores, these policies are less effective than the ones with

voltage and frequency scaling.

The Stop Go policy is notably different than the policies discussed above, as it has

the ability to cool a core even in the absence of idle cores. Stop Go improve the MTTF

by 65%, but with a hefty 52% decrease in performance and a 69% increase in energy

consumption. Average temperature of the processor is reduced by 8%. The Stop Go

policy is prone to creating large temperature variations due to switching among active

and idle states. However, the frequency of stalling/resuming execution is high enough

that the temperature variations are of a relatively low magnitude, and the reliability

of the core is dominated by the thermal hot spots only (i.e., no significant increase in

cycling-based failures).

Figure 2.6 shows the effect of the DVFS policies on reliability when the cores are

fully utilized. DVFS has a much more significant impact than the workload allocation

policies, due to its ability to reduce temperature even in the face of full utilization. In

particular, we find several key insights in these results. First, it is important to always

keep an eye on peak temperature. The dvfs perf policy, by selectively choosing which

threads to scale, sacrifices very little in performance, but does fall behind in MTTF in

comparison to other DVFS policies. This is because it does not utilize thermal feedback

from the system. The dvfs perf t policy reacts upon reaching a thermal threshold in

addition to performance-aware DVFS, and as a result loses some performance, but it has
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one of the lowest failure rates.

Second, we see significant benefits of proactive techniques over traditional reactive

techniques. It is interesting to note that the other DVFS policies beat dvfs t along all

axes. This result is particularly surprising on the performance front, because: (1) dvfs t

only scales when it has to upon reaching a threshold, and (2) the other DVFS policies

also behave the same as dvfs t upon reaching the threshold temperature. The reason

that other DVFS policies perform better is that proactively scaling a thread (whose

performance is tolerant to scaling) reduces the temperature in that area, and often

prevents other neighboring threads from reaching the threshold.

Third, we see that it is critical that our thread management policy understands

the inherent thermal asymmetry of the multicore system. The policy that provides the

best balance among all three metrics is location dvfs, with a failure rate that is half of

the baseline and a minimal performance loss (3.8% of default). To further investigate

the policies’ abilities to account for the asymmetries, we compare location dvfs with

homogeneous proactive scaling: all cores at 85% DVFS and all cores at 95% DVFS.

Among these DVFS techniques, location dvfs still demonstrate the best trade-off point.

The 95%-DVFS result improves performance over location dvfs by less than 1%, but

gives up 25% in processor lifetime. The 85%-DVFS increases reliability significantly, but

more than doubles the performance cost compared to location dvfs.

We examine the hybrid techniques in Figure 2.7. When we compare the hybrid

policies against the DVFS based policies, we see that DVFS-based policies are improved

little by combining them with job allocation policies. Again, this is due to the limited

gains from reorganizing running threads on a fully utilized system.

The result on a fully utilized system shows DVFS policies or hybrid strategies

have more substantial benefits in improving MTTF in comparison to workload allocation

policies. The location dvfs policy achieves the best trade-off among performance, relia-

bility, and energy due to its ability to consider the thermal asymmetries in the 16-core

system. Dynamic management techniques that take into account the thermal asymme-

tries in multicore chips are easily adapted to other sources of asymmetry, such as process

variations, as long as we can quantify the effects of such variations on the thermal and

power properties of each core.

Partial Utilization:

It is expected that most multicore systems will be utilized less than 100% most
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Figure 2.6: Comparison of DVFS-Based Techniques

Figure 2.7: Comparison of Hybrid Techniques

of the time. This is true for the CMPs in the server domain as well as in personal

computing. To evaluate the impact of scheduling mechanisms on reliability when some

cores are idle, we use the 12 and 14 thread workloads described in Table 2.4: a CPU-

bound and a mixed CPU-bound/memory-bound workload for each of the 12 and 14

thread cases. The results represent the average of the CPU-bound and mixed cases for

the 12 and 14 thread experiments. At the beginning of each simulation, we decide which

cores to leave idle by choosing the allocation with the lowest peak temperature. Once we

determined the active cores, we perform the initial placement of threads on these cores

randomly.

We first focus on the case with 14 active threads in Figure 2.8. Although this

utilization is close to the full utilization examples earlier, the impact on the reliability of

the various policies changes significantly. Policies with frequent workload re-allocation

(i.e., Balance, Migration) result in lower reliability with respect to the other policies.

The Balance policy assigns jobs to cores based on temperature rather than location

and often mistakes a core that is cool now for a core that will stay cool in the future.

Migration policies that focus heavily on current temperatures are prone to this type

of inefficiency in management. The Migration result has the same issue. Policies that

migrate more than necessary have two distinct reliability disadvantages over the other
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Figure 2.8: Effect of System Utilization (2 Idle Cores)

techniques. First, migrating too often will tend to thwart the DPM manager, which does

not put a core to sleep until it has been idle for awhile. This increases the time cores

spend running at hotter temperatures. Second, migration causes thermal cycling. This

is the dominant cause of the low MTTF results, as the power variations between idle

and active states start creating cycles of a noticeable magnitude.

The Stop Go policy achieves 1.25 times improvement in MTTF. However, this

comes at the cost of a drastic performance and energy cost. Although Stop Go can be

utilized effectively as a back-up policy for thermal emergencies to guarantee that temper-

ature does not exceed a given peak value, it is inefficient if used frequently. Interactions

between Stop Go and DPM are discussed later in this section.

Among the DVFS policies, dvfs perf achieves the best performance of less than

2% degradation, while location dvfs results in the longest system life time with a 69%

improvement. The hybrid policy Balance Location&location dvfs seems to provide the

best trade-off point among the policies as it achieves almost the same MTTF as loca-

tion dvfs with better performance and lower energy consumption. The reason the hybrid

scheduling policies still provide only small gains over DVFS policies alone is that we

start the experiments with an optimal placement of idle cores.

We expect that as technology scaling continues, the bandwidth for performing

voltage scaling will decrease due to the leakage power and transistor threshold voltage

limitations. Therefore, future systems are expected to count on other mechanisms for

managing power and temperature, such as workload scheduling.

Figure 2.10 shows the 12-core utilization results. Because chip temperatures are

lower overall, the magnitude of potential reliability gains is reduced. In fact, policies
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Figure 2.9: Contributions of Failure Mechanisms

that only react to thermal thresholds do not change the workload allocation or the V/f

setting in this scenario (e.g., Migration, dvfs t, etc.) and they give the same results as

the default policy, as the core temperatures do not exceed the threshold. Policies that

proactively look for opportunities can still improve processor lifetime significantly, and

even Balance Location provides small gains. Policies that proactively migrate based on

current temperature (Balance) make mistakes and create thermal cycling.

In Table 2.6 we show the number of migrations and number of V/f setting changes

per second for the policies to provide a more complete understanding of the runtime

behavior. The policies that are not listed do not utilize migrations or DVFS. The columns

marked as ALL, corner, center, and side refer to the average number across all cores,

across only the corner cores, center cores and side cores, respectively. The results are

with DPM, and for the CPU-bound heterogeneous workload with 14 threads (i.e., 2 idle

cores). Migration has a significantly higher number of thread movements in comparison

to other policies: almost 3 times more than Balance Location. The low migration count

of Balance Location is a result of its ability to match the performance characteristics of

applications with the thermal behavior of cores. Compared to Balance Location only,

combining Balance Location with DVFS increases the frequency of migrations, as the

temperature profile of the cores vary more when their V/f settings are dynamically

adjusted. Among the DVFS policies, dvfs perf has the lowest number of changes as it

only alters the V/f setting of applications tolerant to operating at a slower speed. Also,

dvfs perf t reduces the frequency of changes in comparison to dvfs t as it proactively

adjusts the V/f setting and triggers the thermal threshold fewer times.

Figure 2.9 presents a breakdown of the contribution of different failure types

to reliability to better explain the tension between the different failure mechanisms.
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Table 2.6: Number of Migrations and V/f Changes (per Second)
Migrations

ALL corner center side
balance 4.76 4.75 5.00 4.65
migration 7.66 8.36 5.00 8.66
balance loc 2.73 1.25 1.60 4.03
balance loc& dvfs t 3.65 3.85 2.10 4.33
balance loc& dvfs perf t 3.64 3.86 2.10 4.30
balance loc& loc dvfs 3.54 3.70 2.20 4.12

V/f Setting Changes
dvfs perf t 2.98 2.60 0.80 4.20
dvfs perf 0.83 1.40 0.00 1.00
dvfs t 3.40 3.60 0.40 4.80
balance loc& dvfs t 3.64 4.40 1.10 4.53
balance loc& dvfs perf t 3.58 4.00 2.00 4.20

This figure demonstrates the normalized average failure rate for our two best and two

worst policies (i.e., best/worst in terms of their average MTTF results), all integrated

with DPM. The workload for this experiment is the heterogeneous CPU-bound workload

with 12 threads. Recall that the failure rate is inversely proportional to MTTF. This

figure shows that Balance and Migration reduce the probability of failures due to electro-

migration (EM) and dielectric breakdown (TDDB). If we ignored the effect of thermal

cycles, we would conclude that reliability has increased. However, because of the num-

ber of thread migrations, they create large thermal cycles (TC). The location dvfs and

the hybrid Balance Location&location dvfs policies, on the other hand, reduce the failure

rates caused by thermal hot spots without introducing a significant amount of thermal

cycling failures. Note that in the default case, as there is no workload re-allocation,

temperature is stable and no cycles are observed.

On a single-threaded system such as the 16-core architecture we are using, when

there are any number of idle cores in the MPSoC, workload allocation is able to help

signifcantly with improving reliability at a lower performance cost in comparison to

DVFS policies. In fact, combining location dvfs and Balance Location into a hybrid

policy gives the best trade-off between performance and MTTF.

Effect of Initial Workload Allocation:

We also examine each policy’s ability to adapt to different initial workload map-

pings on the processor topology. For example, what happens when the initial mapping

of threads to cores is highly suboptimal? This could happen with a topology-ignorant
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Figure 2.10: Effect of System Utilization (4 Idle Cores)

Figure 2.11: (a) Cycles Caused by the Migration Policy; (b) Stable Thermal Profile of
Balance Location & location dvfs

scheduler (a likely scenario early on), or just because of jobs entering or leaving the

system. We examine several ways of performing the initial job allocation: best possible,

worst possible, and an in-order placement of jobs on cores.

The best case for 12 active threads, i.e., the case with the lowest peak temperature,

is leaving the center cores (5, 6, 9, 10) idle, and for 14 active threads when cores 6 and

9 are idle. The worst case occurs when the corner cores are idle. Specifically, the worst

case for a system with 12 active cores is leaving the cores 0, 3, 12, and 15 idle. Similarly,

when 14 cores are active, leaving two of the corner cores on the opposite sides idle,

such as cores 0 and 15, represent the worst assignment. The in-order initial assignment

allocates all available threads on the cores starting from core 0 ascending. This method

initially leaves cores 12–15 idle when 12 threads are active, and cores 14–15 idle with

14 threads are active. The in-order method attempts to model a naive scheduler that

assigns jobs to cores using a first-available strategy.

We observe notable differences in reliability among the policies in the initial allo-

cation experiments. For example, the policy dvfs perf t experiences a 15% reduction in

MTTF in comparison to the best allocation when either the worst or in-order idle core
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locations are used. This decrease in reliability is comparable to the default policy’s 20%

reduction in MTTF when using the in-order and worst case initial assignments. On the

other hand, when dvfs perf t is combined with Balance Location, we are able to achieve a

level of reliability to match that of the optimal initial placement. This indicates that one

of the major roles of the allocation policy is reassigning thread topologies to assist other

policies that set core voltage and frequency. Thus, in a real CMP system, it is critical to

combine a conservative migration technique (i.e., one which avoids unnecessary migra-

tions and does not create cycling) with DVFS techniques. In the absence of an intelligent

migration and scheduling policy, it is difficult to avoid detrimental configurations over

time.

Interactions with DPM:

The last set of results are for dynamic power management (DPM), which takes

advantage of prolonged core idleness to put the core into a sleep mode. The power

consumption of the core is greatly diminished in sleep state. Each of the policies pre-

sented in Section 2.4 can be integrated with dynamic power management, but some are

able to use DPM opportunities better. Taking a closer look at two extremes, we first

examine two policies, Migration and Balance Location&location dvfs for the het 12 mix

workload with 12 CPU and memory bound threads. Comparing the thermal traces for

Migration and Balance Location&location dvfs (Figure 2.11), the Migration policy suffers

significant thermal cycle variations. For Migration, we demonstrate the thermal cycles

observed on two cores due to frequent re-allocation of workloads. For the Balance Loca-

tion&location dvfs policy, we show all the cores’ thermal traces, and observe that each

core’s temperature is stable and lower than the threshold.

This stability along with a lower peak temperature results in significantly higher

reliability. Balance Location&location dvfs turns out to be the best policy when paired

with DPM, and it provides an increase in MTTF of 36% over Migration, while the per-

formance difference is only 1.5%. So we see that scheduling policies which effectively

manage thread locations and DPM policies can reduce processor temperatures and im-

prove reliability. DPM can also lead to greater thermal cycling which can counteract

some of the MTTF gains that result from the lower power levels of sleeping cores. The

adverse effect of DPM on reliability due to thermal cycles is also emphasized in previous

work [52]. Thus, when we include the effects of thermal cycling failures, we observe that

the traditional assumptions for developing management strategies are incomplete. The
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Figure 2.12: MTTF and Energy Effects of DPM

reliability effects of DPM should be considered while designing thermal management

policies.

Despite DPM’s possible impact on reliability, we do see (Figure 2.12) that even

in the face of this cycling phenomena, DPM is an overall win for all policies with the

exception of Balance. In this figure, we show the average results over heterogeneous CPU-

bound workloads. The Balance policy receives no benefit from using DPM, because its

proactive mechanism that keeps moving hot threads to colder cores. The result is that

no core is idle long enough to trigger the sleep mode. On the other end of the spectrum,

Migration and Balance Location show gains of 27% and 20% in MTTF on average. The

reliability improvement in DVFS-based techniques are less prominent and range between

4%–8% MTTF increase.

The policy Stop Go receives a large benefit in energy from using DPM mecha-

nisms, reducing power consumption by 27% in comparison to the no-DPM case. The

reason for this benefit is the frequent stall cycles that are utilized for saving energy. If

confronted with a design choice that requires the simplicity of Stop Go, DPM could help

regain much of the energy lost from the constant start and stop of individual cores.
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2.6 Summary

This chapter proposes a novel multiprocessor simulation framework that is able

to simulate thermal dynamics over far longer time periods than typical architectural

simulators at high accuracy. For example, an architecture-level simulator may take days

or weeks to simulate a few minutes of real execution time, whereas our framework is

able to provide accurate reliability and performance results within hours. Using this

framework, we have analyzed how job scheduling and power management policies affect

system lifetime, energy, and performance.

The results in this chapter provide several key insights that help us understand

the dynamics of single-chip multiprocessors and develop efficient management policies:

• Understanding thermal asymmetries, which are either due to the layout of the pro-

cessor or due to process variation, is an important component of effective thermal

management. Not considering this thermal disparity causes much unnecessary thread

movement because we cannot discern between a hot thread and a hot core. Under-

standing the thermal variance allows us to employ an asymmetric thermal policy that

accounts for and even exploits that asymmetry.

• Our most effective policy that employs voltage/frequency scaling (i.e., location dvfs),

as well as our best one that does not (i.e., Balance Location), both account for the

location asymmetry and reduce the number of thread movements. We have presented

new scheduling policies in Section 2.4, such as Balance Location & location dvfs, that

decrease the failure rate by a factor of two (over naive management), with a perfor-

mance cost of less than 4%.

• It is critical to consider thermal cycling effects in addition to peak temperature effects.

In Section 2.5, we see two policies that erroneously appear to increase lifetime when the

effect of thermal cycling is ignored. Thermal cycling is not a significant effect in a fully

utilized system, as the variance in power between running threads are not sufficiently

high to cause harmful effects. However, when cores are idle, it is important that we

manage the idle cores in a way that does not exacerbate thermal cycling. Considering

typical server workloads rarely fully utilize a system, this observation is critical.

• Conservative policies that minimize migration not only reduce thermal cycling, but also

maximize our ability to exploit sleep states via DPM. In addition, reducing migrations
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helps reducing the performance overhead due to cold start effects.

• Proactive techniques that apply DVFS to frequency-tolerant applications raise the

performance of the entire system. This is somewhat counter-intuitive, as the frequency-

tolerant applications are also the coolest applications. However, by lowering overall

temperatures chip-wide, proactive techniques allow the hot applications to run longer

without triggering thermal events.

The text of Chapter 2 is in part a reprint of the material from the paper, Ayse

K. Coskun, Richard Strong, Dean Tullsen and Tajana Rosing, “Evaluating the Impact of

Job Scheduling and Power Management on Processor Lifetime for Chip Multiprocessors”,

in Proceedings of SIGMETRICS/Performance 2009–Joint International Conference on

Measurement and Modeling of Computer Systems, 2009. The dissertation author was

the primary researcher and author, and the co-authors involved in the publication [22]

directed, supervised, and assisted in the research which forms the basis for that material.



Chapter 3

Static Temperature-Aware Job

Scheduling

Job scheduling has a significant impact on temperature and system reliability,

as discussed in Chapter 2. This chapter proposes a static (design-time) technique for

temperature-aware job allocation. This optimization technique is useful for two purposes:

(1) we can use it as a baseline for evaluating dynamic scheduling policies; (2) for systems

with a priori known workloads, such as some embedded systems, we can optimize the

job schedule to minimize the temperature-induced challenges.

The goal of our static task scheduling approach is minimizing the frequency of

thermal hot spots and large temperature gradients in order to increase system reliability

and ease the temperature related design challenges. In addition to our technique, we

formulate static scheduling for minimizing energy, balancing energy and minimizing the

thermal hot spots (i.e., without considering temperature gradients). This way, for the

first time, we provide a comparison of various optimal scheduling techniques in terms of

their efficiency in handling thermal problems.

3.1 Static Optimization for Minimizing Hot Spots and Gra-

dients

Our goal in static optimization is finding a task schedule for the MPSoC where the

deadline and dependence constraints of tasks are met, and the best possible temperature

profile is achieved throughout the execution. Achieving the best temperature profile

37
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Figure 3.1: Example Task Graph

corresponds to minimizing and balancing the temperature across the MPSoC as discussed

in Chapter 1. Addressing both the hot spots and gradients is our solution’s distinguishing

feature from the other energy and thermal based static scheduling strategies. Our method

utilizes integer linear programming (ILP), which is commonly used for solving scheduling

problems (e.g., [53]). Our ILP formulation guarantees to minimize the hot spots and

gradients for the given assumptions of task execution times, thermal estimates of tasks,

deadlines, and precedence constraints.

In our system model, we assume the MPSoC contains m processor units, PU =

PUp; p = 1, ...,m, and we model the applications using task graphs. In the graph G =

(T,E), each vertex represents a task (Ti ∈ T ), which is a function or collection of

functions to be performed. Each edge in the graph (Eij ∈ E) shows that task Tj is

dependent on Ti in order to perform computation. A simple example task graph is

shown in 3.1. We assume the deadlines (Di) and worst-case execution times (WCETi)

of tasks are known a priori.

We assume each PU has v discrete voltage settings V = Vk; k = 1, ..., v (in de-

creasing order). Each voltage setting (Vk) can be associated with a computation speed

fk in terms of cycles/second. Thus, the energy consumption for executing Ti at speed

fk can be expressed as eik = (gactive(fk) · ti), where gactive is the function for power

consumption and ti is the execution time of Ti. The power consumed during task exe-

cution is a monotonically increasing and convex function of the computation speed [74].

Assuming the tasks execute up to their WCET and WCETi is given as the execution

time in the default (highest) processor frequency, the WCET for Ti running at processor

speed fk is computed as: ti = WCETi · (f1/fk).

We provide the objective functions of all the ILPs we solve in this work in Ta-

ble 3.1. Minimizing and balancing the hot spots (Min-Th) reduces the thermal hot spots,
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but there is no consideration for spatial gradients. For energy balancing (Bal-En), the

ILP minimizes the maximum energy consumption for each core, which balances the en-

ergy profile on the system. The ILP for minimizing energy (Min-En) minimizes the

cumulative sum of all the active and idle state energy. The objective function of our

ILP (Min-Th&Sp) has two parts: 1) Minimizing and balancing the thermal hot spots (H

in Table 3.1); 2) Minimizing the spatial gradients (G). The first part of the objective

function minimizes the maximum time spent above the threshold for each core, which

balances the thermal hot spots across the chip. Consequently, it reduces the magni-

tude of temporal variations in temperature. However, it does not consider the spatial

gradients on the die.

Spatial gradients increase when several jobs are clustered in neighboring units,

while the rest of the units are idle. Contrarily, when the workload is spatially spread

out on the die, because of the effect of heat transfer from hot to cool cores, more even

temperature distributions are achieved. For example, a checkerboard arrangement of the

workload where each active core has an idle neighbor reduces the spatial gradients in

comparison to having all active cores on one half of the MPSoC and idles ones on the

other half. Therefore, reducing the high spatial differentials requires avoiding scheduling

jobs in neighboring cores at the same time. We call this situation overlap, where two

jobs are scheduled in next-door neighbors at the same time. Thus, in the second part

of the objective function (G in Table 3.1), we minimize the total overlap. We only

take into account side-by-side neighbors in our overlap computations, as it is shown

that heat sharing among neighbor units with adjoining sides have a significant effect on

temperature [59]. Minimizing the sum of H and G addresses both balancing thermal hot

spots and minimizing the spatial gradients.

Table 3.2 provides the complete formulation of the ILP for Min-Th&Sp, and the

variables used in the formulation are defined in Table 3.3. In the first part of objective

function, (H), we minimize the total time spent above a given threshold in order to elim-

inate the hot spots and balance temperature. We use “time spent over a temperature

threshold” (represented with qik) as a metric for profiling the thermal behavior of tasks,

and also as a metric for evaluating our ILP. This metric has also been used in previous

work as well [43]. Minimizing the average or peak temperature does not adequately

capture the temperature profiles. For example, a system that experiences 90oC tem-

perature for an hour is expected to have worse reliability than a system that has 90oC
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Table 3.2: ILP Formulation for Min-Th&Sp

Minimize H + G;
H = max{Qp; p = 1...m, for a system of m cores} where:
Qp =

∑
Ti∈T

{xip

∑
fk

(yikqik)}

G =
∑

p,r∈PU,p6=r

{npr{
∑

i,j∈T,i6=j

xipxjr[pijdij(τi − sj) + pjidji(τj − si)]}}

Subject to constraints:
(a) ∀Ti :

∑
p

xip = 1 Each task is assigned to only one PU

(b) ∀Ti :
∑
k

yik = 1 Each task runs at only one V/f level

(c) τi = si + ti Execution finish time for Ti

(d) si ≥ maxEji∈E{τj} Task precedence
(e) τi ≤ Di Deadlines for all sink nodes
(f) si ≥ τj ; if pji = 1 Precedence for tasks on the same core
(g) pij + pji = 1; If Ti and Tj are scheduled on the same

if xip = xjp = 1 core, either Ti precedes Tj , or vice versa

(i.e., same peak temperature) for a second. Or, two systems can have the same average

temperature but very different thermal profiles. Having a time-based metric addresses

such differences.

To compute the time spent above the threshold for each task (qik), we perform

thermal simulations. The temperature profile for a job depends on the allocation and

the floorplan of the MPSoC in addition to the individual power characteristics of the job.

Our ILP-based static optimization is designed for a relatively small-sized task graph with

long tasks. Therefore, temperature during a task’s execution is strongly affected by the

execution time of the task. We initially assume the time spent above the threshold for

each task is equal to the execution time (WCET) of the task (qik = WCETi). We solve

the ILP (Min-Th&Sp) for the given task graph, maintaining the deadlines and precedence

constraints among jobs. We next perform thermal simulation, and record the time spent

above the threshold temperature for each task. Afterwards, we insert these new qik

estimates in the ILP, and solve the ILP again to get the final scheduling results. We

set the threshold temperature to 85oC in our simulations, as 85oC is considered a high

temperature for many processors [58].

The iterative stage included in the method is for refining the per-task thermal
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Table 3.3: Variables Used in the ILP

xip: Set of 1-0 variables s.t.∗ xip = 1 iff Ti is assigned to PUp

qik: Time spent above threshold temperature while running Ti at fk

ti: WCET of Ti considering the voltage setting
si: Execution start time for Ti

τi: Execution finish time for Ti

pij : Set of 1-0 variables s.t. pij = 1 iff Ti starts before Tj

npr: Set of 1-0 variables s.t. npr = 1 iff p and r are adjacent cores
dij : Set of 1-0 variables s.t. dij = 1 iff τi ≥ sj

yik: Set of 1-0 variables s.t. yik = 1 iff Ti runs at speed fk

mij : Set of 1-0 variables s.t. mij = 1 iff Tj immediately follows Ti

* s.t.: such that

behavior estimates (i.e., qik values). Having accurate thermal estimates is essential for

achieving ILP results close to the optimal schedule. To verify the accuracy of the iterative

thermal estimation method, we perform simulations on 5 randomly generated task sets,

each set containing 10 tasks. First, we solve the ILP using the thermal estimates that are

obtained as described above. We then simulate the temperature response for the schedule

determined by the ILP, and record the time spent above the threshold. Iterating on this

loop several times (i.e., getting new qik estimates from thermal simulation, feeding them

into the ILP, and solving the ILP again with the new qik values), we observe that the

error in temperature estimation stays below 5%.

In the computation of the Qp component of H, yik is an integer variable that is

1 iff task Ti is scheduled to run at frequency fk, and qik is the thermal estimate for Ti

at frequency fk. The ILP formulation we provide here for Min-Th&Sp can be applied

to systems that have dynamic power management (DPM) or dynamic voltage scaling

(DVS). For the cases without power management or for DPM only, there is only one

voltage setting, so yi1 = 1. For DPM, the qik estimates should be derived through

simulations with DPM, as putting the cores into sleep state is expected to affect the

thermal behavior. For DVS cases, we assume that each task will run on a fixed frequency.

We then need to evaluate the thermal profile of each task for all frequency/voltage levels.

In the second part of the objective function of Min-Th&Sp (G in Table 3.2),

we compute the total overlap in the schedule. We use two additional variables while

formulating the overlap: npr is an integer variable which is equal to 1 only if cores p and

r are adjacent to each other in the floorplan; dij is an integer variable that is equal to

1 only if the completion time of Ti is greater than the start time of Tj . The x variables
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check if two tasks are scheduled on neighbor units. The product pij .dij is equal to 1 if Ti

precedes Tj and if Tj starts before Ti finishes. So, when pij · dij = 1, there is an overlap

of Ti and Tj . The difference ti − sj quantifies the duration of the overlap.

Table 3.2 also demonstrates the ILP constraints that guarantee the deadlines and

task precedence. The x integer variables defined in (a) assure that each task is assigned

to only one core, and (b) shows that each task runs at a fixed voltage setting. Constraint

(c) computes the finish time of tasks to guide the precedence and deadline constraints.

We use two sets of precedence constraints. The first set, (d), makes sure the dependences

between tasks are satisfied, so that a consumer task does not start before all its producer

tasks complete. In addition to this, if several tasks are scheduled on the same core, a

task can only start after the previously scheduled tasks are completed (f). We define the

p variables in (g) to help defining the constraints in (f). Constraint (e) ensures that all

tasks with deadlines finish before their deadlines.

We next provide the details for the other ILP formulations presented in Table 3.1,

and point out their differences with Min-Th&Sp.

Minimizing and balancing the thermal hot spots: Min-Th minimizes the

maximum time spent above threshold temperature for each core in order to minimize

and balance the thermal hot spots. In the ILP formulation for Min-Th, the second part

of the objective function is eliminated (i.e., G = 0) as this ILP does not consider spatial

gradients. The rest of the formulation is the same.

Energy balancing: The ILP formulation for Bal-En has the overlap set to zero

(G = 0), and the temperature variable qik in Min-Th&Sp is replaced with eik, which is

the energy per task for running Ti at frequency fk. yik is an integer variable that is 1 iff

Ti runs at frequency fk. Summing the expression eikyik computes the energy consumed

per task.

Minimizing energy: The ILP for Min-En is applicable to systems with DPM,

dynamic voltage scaling DVS or both. For systems with DPM only, the ILP is solved

for only the default frequency of the system. For DVS, the
∑

fk
eikyik term computes

the energy per task for the frequency level task Ti is assigned. In that case, the timing

parameters (e.g., ti, si, etc. in Table 3.3) are computed considering the voltage settings

of tasks.

While computing the total energy ENtotal, we consider the energy consumed

during all active and idle periods. In order to compute the length of idle time slots, we
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define an integer variable, mij , which is 1 iff task Ti starts before Tj , and there is no

other task whose start time is between si and sj . Minimizing the total energy involves

minimizing the energy consumption during idle time slots as well. Itotal is the energy

spent during all idle times, and the idle(y) function computes the energy for individual

idle time slots. For example, when we apply a fixed timeout DPM strategy which puts

cores into sleep state if the idle time is longer than a given timeout (ttimeout), the energy

during idle time slot S can be computed as below. Here, epenalty and tpenalty are the

energy and time overhead for switching into and out of the sleep state, respectively.

idle(S) = epenalty + eslp(S − tpenalty) if S ≥ ttimeout (3.1)

idle(S) = eidle · S if S < ttimeout (3.2)

3.1.1 Linearization

We have described the detailed formulations of the ILPs for Min-Th&Sp, Min-Th,

Min-En and Bal-En. These ILP formulations include multiple nonlinear equations. Solu-

tions to similar nonlinear problems have been presented in [51] and [74]. Such problems

can be solved by ILP solvers after linearization using standard techniques [10].

First, when two integer variables are multiplied, we introduce a third variable

instead of the product, and create additional constraints to define this variable. Assuming

variables xip and xjr are multiplied, we add a third 0-1 variable Xipjr in the formulation

with the following constraints:

xip + xjr −Xipjr ≤ 1 (3.3)

−xip − xjr + 2Xipjr ≤ 0 (3.4)

When multiplying binary (1-0) variables with integer values, such as (pij · si), we

use the following linearization, where D is a suitably large bound for the variables. We

define a new variable rij such that rij = pij · si. The following constraints satisfy the

multiplication:

rij −D · pij ≤ 0 (3.5)

−si + rij ≤ 0 (3.6)

si − rij + D · pij ≤ D (3.7)
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To linearize the step function introduced by the dij variables, we use Equa-

tion 3.8. The multiplications in this equation are linearized using the methods previously

discussed.

dij(τi − sj) + (1− dij)(−τi + sj) ≥ 0 (3.8)

Though converting the nonlinear problem to a linear one is possible through these

techniques, including integer variables in the formulation causes the problem size to grow

exponentially as the number of tasks increase. As a result, it may become impractical

to solve the scheduling problem for many tasks. Solving scheduling problems using LP-

relaxation and randomized rounding has been discussed in previous work (e.g., [69]). For

large task sets, ILPs can be solved using LP relaxation as an approximation method,

where the relaxation eliminates the integer variables and computes fractions instead.

These fractions are then converted back to integral values using randomized rounding.

For many NP-hard problems, randomized rounding is shown to yield the best approxi-

mation known by any polynomial time algorithm [69]. It should be noted that additional

techniques may be required to guarantee the feasibility of the solution of the approxima-

tion algorithm. Solving the ILP using an approximation algorithm is beyond the focus

of this work.

3.2 Experimental Methodology

Our experimental results are based on the UltraSPARC T1 processor [45], which

contains 8 cores and memory, communication and I/O units. This MPSoC has been

manufactured in 90 nm process technology. The processors are in-order execution cores

and have multithreading capability. In each core, 4 threads share an integer pipeline.

Every two cores share an L2-cache and the cores communicate through shared memory.

The power distribution among the units and relative sizes of each unit on the chip are

provided in Table 3.4. The power data are updated values for those reported in [45],

and they include the leakage estimates. UltraSPARC T1 (floorplan shown in [45]) runs

a multilevel queuing scheduler with basic load balancing capabilities as default.

We leverage Continuous System Telemetry Harness (CSTH)) [27] to gather de-

tailed workload characteristics of real applications. CSTH collects and analyzes real time
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Table 3.4: Power and Area Distributions of the Units
Component Type Power (%) Area (%)

Cores 65.27 37.66
Caches 25.50 50.69

Crossbar 6.01 5.84
Other 3.22 5.81

data from hardware sensors, (e.g., currents, voltages and temperatures) as well as soft-

ware variables (e.g., performance metrics, memory accesses, etc.). CSTH runs as a part

of the existing system software stack; therefore, the data processing does not introduce

additional overhead.

We need to have a power consumption trace for each unit on the die to perform

the thermal evaluation of the scheduling techniques. If we know when each unit is active

or idle, we can estimate the instantaneous power consumption using the average power

values. For SPARC cores, the peak power consumption is very close to the average power

values [45]. Therefore, for cores, our goal is to determine when each core is active.

We sample the utilization percentage for each hardware thread at every second

using mpstat [48]. mpstat provides the distribution of user, kernel and idle times. We

record the utilization traces for half an hour for each benchmark. To determine the

active/idle time slots of cores more accurately, we use the kernel probes in DTrace [48]

for recording the length of user and kernel threads. DTrace is a comprehensive dynamic

tracing framework for Solaris. It should be noted that the lengths of threads we measure

may not correspond to the overall execution time for a thread. For example, a thread

might run for several minutes, but due to context switches, the continuous execution

slices are of shorter length. Based on the length of the threads and the utilization traces

obtained using mpstat, we reconstruct the workload trace.

We use a set of benchmarks, which are grouped in four categories: 1) Web server,

2) Database applications, 3) Commonly used integer benchmarks, 4) Multimedia bench-

marks. For generating web server workload, we use SLAMD [60], which is a distributed

application for load generation. The number of clients and threads can be tuned, allow-

ing for simulating various workload intensity. We run SLAMD with one client, and 20

and 40 threads per client to achieve medium and high utilization ratios respectively.

To generate workload for database applications, we use MySQL, and test it with

a multithreaded benchmarking tool, sysbench, with various table sizes and number of
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Table 3.5: Workload Characteristics
Benchmark Core Thread L2 I L2 D FP Thermal

Util. Length Miss Miss inst. HS TC
(%) (ms)

Web-med 53.12 134 12.9 167.7 31.2 X X
Web-high 92.87 268 67.6 288.7 31.2 X
Database 17.75 268 6.5 102.3 5.9

Web & DB 75.12 536 21.5 115.3 24.1 X X
gcc 15.25 268 31.7 96.2 18.1
gzip 9 536 2 57 0.2

MPlayer 6.5 268 9.6 136 1
MPlayer 26.62 134 9.1 66.8 29.9 X
&Web

threads. Using sysbench we create a table with 1 million rows and 100 threads to

access the database. For servers, combination of web and database applications are

very commonly observed; therefore we include the Web&DB application in our benchmark

set as well. We also run compiler (gcc) and compression/decompression (gzip). For

the multimedia benchmarks, we run MPlayer (integer) with a 640x272 sample video

file. While simulating gcc and gzip, we run 6 simultaneous copies of the application to

increase the system utilization. While simulating MPlayer, we use 4 instances of the

video application for the same reason. We do not increase the number of applications

further as these applications tend to become I/O and memory bound.

We summarize the details for our benchmarks in Table 3.5. In the table, we

demonstrate the system utilization, which is averaged over all cores and throughout

the execution. We also provide the maximum thread lengths measured. We gather

additional information for each benchmark using cpustat, such as cache misses and

floating point instructions (See Table 3.5). We use these characteristics to model the

power consumption of the crossbar and floating point unit. We report the L2 cache

misses, as these give an idea about how frequently the crossbar is accessed. The memory

and floating point statistics are per 100K instructions. In the table we compare the

thermal profiles of the benchmarks as well. The “X” marks show the benchmarks that

have high percentage (over 25%) of hot spots (HS) and high-magnitude thermal cycles

(TC). The classification for spatial gradient profiles are similar to that of hot spots, so

we report only one of them here. The benchmarks without “X” are prone to hot spots
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and variations for a low to medium percentage of time.

We implement a simulator to fairly compare different scheduling techniques. In

our simulation, we take representative traces collected at runtime for each workload

category. For evaluating the static approaches, based on these traces, we design task

graphs consisting of 10 tasks for each benchmark that matched the utilization and task

length characteristics. We simulate task graphs with and without task dependences.

We solve the ILPs in our static method using lp solve [47], which is able to solve

an ILP for a set of 10 tasks in 2 hours. In the first step of the simulator, the scheduler

is given a list of jobs and their start times, which is provided by the ILP solution. The

scheduler then applies a fixed scheduling strategy based on the ILP results. Thus, the

performance overhead of this method during runtime is minimal.

In the next step of the simulator, power values are derived based on each unit’s

execution profile. Dynamic power management or voltage scaling is also applied at this

stage, depending on the policy simulated. For cores, we use average power values for

the active and idle states for UltraSPARC T1. In the average case, the ratio between

active and idle state power is 7.4. We estimate the dynamic power at the lower voltage

levels based on the relationship between power, frequency and voltage (i.e., P ∝ f ∗V 2).

We assume two built-in voltage/frequency settings in our simulations. To account for

the leakage power, we apply the second-order polynomial model proposed in [66]. This

model computes the change in leakage power for the given differential temperature and

voltage values. We determine the coefficients in the model empirically to match the

normalized leakage values in [66]. This second-order model is shown to match closely with

measurements. As we know the amount of leakage at the default voltage level for each

core, we scale it based on this model for each voltage level, taking both the temperature

and voltage change into consideration. We use a sleep state power of 0.02 Watts, which is

estimated based on sleep power of similar cores. For DPM, we implement a fixed timeout

policy [4] with timeout set to 100ms. In addition, we investigate a combined policy of

DPM and dynamic voltage scaling (DVS). The hybrid DPM/DVS policy selects the

lowest frequency possible for each task considering the deadline constraints, and shuts

down the cores based on the fixed timeout policy. For the crossbar, we use a simple

power model, where the power consumption scales according to how many cores are

active and their L2 access characteristics derived from traces in Table 3.5.

The next step is to obtain the temperature distributions using a thermal simu-
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lator. We utilize HotSpot version 4.2 [59] as the thermal modeling tool, and modify it

accordingly our MPSoC. The thermal package characterization is based on the package

properties of the UltraSPARC T1. We perform the thermal simulations using a sampling

interval of 10 ms, which provides a good precision. We initialize HotSpot simulations

with the steady state temperature values.

3.3 Experimental Results

This section compares various static optimization techniques by contrasting their

efficiency of reducing thermal hot spots, spatial gradients, and temporal fluctuations (i.e.,

thermal cycles). We show results for systems with DPM and DVS strategies to demon-

strate how the schedulers perform when the system has power management capabilities.

In addition to all the static optimization techniques discussed in this chapter, we also

show results for Dynamic Load Balancing (DLB), which is a commonly used policy in

multicore schedulers. DLB, in this implementation, sends workload to the least utilized

core at runtime to balance the load. It does not perform any thermal management.

The hot spot results show the percentage of time spent above 85oC, which is

considered a critical temperature for our system. The recommended maximum die tem-

peratures for Intel 1.5 GHz Pentium 4 processor and AMD 1.2 GHz Athlon processor are

72oC and 95oC, respectively [58]. The spatial gradient results summarize the percentage

of time gradients above 15oC are observed. Device delay is correlated with on-resistance,

which increases with temperature. Gradients of even 15− 20oC start causing clock skew

and delay issues [1]. The spatial gradient distribution is calculated by evaluating the

temperature difference between hottest and coolest cores at each sampling interval.

We report the temporal fluctuations of magnitude above 20oC for only the cases

with DPM and DVS/DPM, because going into sleep state causes large magnitude of

variations in temperature. We do not provide thermal cycling results for the the case

of no power management due to the lack of significant temporal variations (hence the

results are not available for this case in Table 3.6). The number of cycles to failure can be

approximated using Coffin-Manson model [34]. For example, if we compute the failure

rate for metallic structures, assuming the same frequency of cycles, when ∆T increases

from 10 to 20oC, failures happen 16 times more frequently. Thermal cycling results are

obtained by computing the ∆T over a sliding window and averaging the ∆T s of all cores.

We next provide an extensive comparison of the ILP based techniques. We refer



50

T
ab

le
3.

6:
Su

m
m

ar
y

of
E

xp
er

im
en

ta
l
R

es
ul

ts
T

he
rm

al
H

ot
Sp

ot
s(

%
>

85
o
C

)
T

he
rm

al
C

yc
le

s
(%

>
20

o
C

)
Sp

at
ia

l
G

ra
di

en
ts

(%
>

15
o
C

)
B

en
ch

m
ar

k
D

L
B

M
in

-E
n

M
in

-T
h&

Sp
D

L
B

M
in

-E
n

M
in

-T
h&

Sp
D

L
B

M
in

-E
n

M
in

-T
h&

Sp
N

o
P
ow

er
M

an
ag

em
en

t
A
V

G
21

.2
N

/A
4.

5
N

/A
N

/A
N

/A
9.

0
N

/A
0.

8
D

P
M

W
eb

-m
ed

27
.2

8.
5

7.
5

36
.6

21
.8

6.
5

17
.0

9.
4

2.
1

W
eb

-h
ig

h
47

.5
14

.8
12

.2
12

.2
7.

2
1.

9
28

.7
15

.7
1.

5
D

at
ab

as
e

9.
7

2.
8

0.
0

22
.3

10
.3

3.
0

6.
2

3.
6

1.
2

W
eb

&
D

B
38

.4
12

.0
10

.6
29

.5
15

.0
3.

5
23

.8
13

.1
1.

1
gc

c
7.

2
2.

5
0.

0
20

.3
12

.3
1.

9
4.

6
2.

5
0.

0
gz

ip
4.

4
1.

5
0.

0
12

.0
7.

3
1.

5
2.

8
1.

5
0.

0
M

P
la

ye
r

3.
0

1.
0

0.
0

9.
5

6.
0

1.
5

2.
6

1.
7

0.
0

M
P

la
ye

r&
W

eb
14

.4
4.

2
0.

1
29

.2
18

.2
3.

1
8.

7
4.

9
1.

2
A
V

G
19

.0
5.

9
3.

8
21

.5
12

.3
2.

9
11

.8
6.

6
0.

9
D

V
S

&
D

P
M

W
eb

-m
ed

20
.4

4.
8

5.
1

22
.0

10
.8

3.
5

13
.4

7.
5

1.
2

W
eb

-h
ig

h
33

.4
8.

0
8.

2
6.

8
3.

7
1.

0
17

.4
8.

7
1.

5
D

at
ab

as
e

7.
3

2.
1

0.
0

12
.9

5.
3

2.
1

4.
0

2.
3

1.
1

W
eb

&
D

B
26

.1
5.

8
6.

8
17

.1
7.

3
2.

7
15

.6
7.

9
1.

0
gc

c
5.

1
1.

5
0.

0
11

.4
6.

1
1.

9
4.

4
2.

3
0.

0
gz

ip
3.

4
0.

8
0.

0
7.

3
3.

8
1.

2
2.

3
1.

2
0.

0
M

P
la

ye
r

2.
2

0.
6

0.
0

5.
7

2.
9

0.
9

2.
6

1.
6

0.
0

M
P

la
ye

r&
W

eb
10

.8
2.

6
0.

1
17

.4
9.

2
2.

8
7.

2
4.

5
0.

7
A
V

G
13

.6
3.

3
2.

5
12

.6
6.

1
2.

0
8.

4
4.

5
0.

7



51

�

��

��

��

��

��

��

��

	�


�

���

��
��� ������ ������ ���������

�����������	
��


�	���

�	��	����

����	����

�����

Figure 3.2: Distribution of Thermal Hot Spots (with DPM)
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Figure 3.3: Distribution of Spatial Gradients (with DPM)

to our static approach as Min-Th&Sp. As discussed in Section 3.1 we formulate the

ILP for minimizing thermal hot spots (Min-Th), energy balancing (Bal-En) and energy

minimization (Min-En) to compare against our approach. To the best of our knowledge,

this is the first time in the literature static MPSoC scheduling techniques are compared

extensively to evaluate their thermal behavior.

We first show average results over all the benchmarks. Figure 3.2 demonstrates

the percentage of time spent at certain temperature intervals for the case with DPM.

The figure shows that Min-Th&Sp achieves a higher reduction of hot spots in comparison

to the other energy and temperature based ILPs. The reason for this is that, avoiding

clustering of workload in neighbor cores reduces the heating on the die, resulting in lower

temperatures.

Figure 3.3 shows the distribution of spatial gradients for the average case with
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Figure 3.4: Temporal Variations (with DPM)

DPM. In this plot, we can observe how Min-Th increases the percentage of high differen-

tials while reducing hot spots. While Min-Th reduces the high spatial differentials above

15oC, we observe a substantial increase in the spatial gradients above 10oC. In contrast,

our method achieves lower and more balanced temperature distribution in the die.

In Figure 3.4, we show how the magnitudes of thermal cycles vary with the

scheduling method. We demonstrate the average percentage of time the cores experience

temporal variations of certain magnitudes. As can be observed in the figure, Min-Th&Sp

reduces the thermal cycles of magnitude 20oC and higher significantly. The temporal

fluctuations above 15oC are reduced in comparison to other static techniques, except for

Min-En. The cycles above 15oC (total) occur 17.3% and 19.2% of the time for Min-Th&Sp

and Min-En, respectively. Our formulation targets reducing the frequency of highest

magnitude of hot spots and temperature variations, therefore such slight increases with

respect to Min-En are possible.

In the plots discussed above and also in Table 3.6, we observe that the Min-Th&Sp

technique successfully reduces hot spots as well as the spatial and temporal fluctuations.

Power management (see DPM and DVS&DPM results for Min-En in Table 3.6) reduces

the hot spots to some extent, but it cannot eliminate them effectively. Moreover, ap-

plying power management creates thermal cycles and larger spatial gradients due to the

considerable decrease of power in sleep state. For example, Bal-En has high magnitude

of cycles for 16% of the time (for DPM). Min-En reduces this percentage to about 7%.

This reduction is due to the decrease in high temperatures. Min-Th&Sp can further de-

crease the frequency of cycles to less than 3%. We also observe that combining DVS

with DPM reduces both high temperatures and temperature variations in comparison to
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Figure 3.5: Energy Savings with DPM and DVS&DPM

applying only DPM.

The temperature balancing approaches Min-Th and Min-Th&Sp achieve much

lower frequency of spatial gradients in comparison to energy-based techniques. For the

cases with DVS&DPM, Min-Th&Sp bounds the frequency of spatial gradients to below

1.5% for all benchmarks except Web-high, which has over 90% utilization and a consid-

erably high percentage of thermal hot spots.

Min-Th&Sp achieves more dramatic reductions in hot spots and gradients for

benchmarks with lower system utilization (e.g., gcc and gzip), since the optimization

method has more freedom to distribute the workload across the chip. As utilization

increases (e.g., Web & DB and Web-high), we observe an increasing percentage of hot

spots; however, the thermal cycles decrease as the system does not go into sleep state as

often.

In Figure 3.5, we show the energy savings of DLB and static optimization tech-

niques when they are integrated with DPM and DVS&DPM. The results are averaged

over all the workloads, and normalized with respect to running DLB without any power

management. As expected, Min-En achieves the highest savings: 18% with DPM, and

26% with DVS&DPM. Both Min-Th and Min-Th&Sp sacrifice energy savings for reduc-

ing hot spots. These two policies distribute workload more evenly among the cores in

comparison to other policies; hence, they reduce the amount of continuous idle time slots

that are utilized by DPM’s sleep modes. The average energy reduction achieved by our

technique, Min-Th&Sp, is 9.5% with DPM and 16% with DVS&DPM. Thus, we can still

reduce the energy consumption to a great extent while minimizing the hot spots and

gradients at the same time.

We have seen that our technique, Min-Th&Sp, outperforms other energy and

temperature based ILPs in terms of reducing both hot spots and temperature gradients.



54

Minimizing energy (Min-En) reduces the hot spots due to the decrease in power, and

manages to reduce gradients to some extent. However, by considering thermal profiles

of tasks and the location of cores on the chip, Min-Th&Sp can achieve lower and more

even temperature profiles.

3.4 Summary

In this chapter, we have proposed a static ILP-based job scheduling optimiza-

tion for MPSoCs. Static optimization sets a baseline for dynamic techniques, and it can

be utilized for systems with known workloads, such as some embedded systems. The

proposed static scheduler minimizes the hot spots, as well as the temporal and spa-

tial temperature variations, while meeting the timing and precedence constraints of the

workload. We also formulate ILPs for minimizing energy, balancing energy, and mini-

mizing hot spots (without considering gradients), and provide an extensive comparison.

We demonstrate that our static temperature-aware scheduling method outperforms the

other energy or temperature based optimal approaches in terms of reducing both hot

spots and gradients. For example, the ILP for minimizing energy achieves 18% energy

savings with dynamic power management (DPM). However, it cannot prevent hot spots

and causes larger thermal variations due to the ultra-low power sleep states. Our tech-

nique reduces the frequency of hot spots by 35%, spatial gradients by 85% and thermal

cycles by 61% in comparison to the ILP for minimizing energy. At the same time, we

still achieve close to 10% savings in energy.

The results of this chapter highlight the following important points:

• Energy management is not sufficient to achieve safe and stable temperature profiles,

even though techniques such as dynamic power management reduce the average

temperature. DPM prefers to cluster the workload to extend the idle time slots

and to utilize these longer idle periods for saving energy. Moreover, as DPM does

not consider the location of the cores on the die and does not try to spread out the

heat across the die, it can create spatial gradients.

• Putting cores into sleep state can potentially increase the thermal cycles and de-

grade reliability. Designing thermal management policies that address thermal

cycles is crucial for achieving high reliability while saving energy.
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• Temperature-aware optimization achieves dramatic reduction of hot spots and ther-

mal variations over dynamic load balancing, which is a commonly used technique

for multicore scheduling. The guidelines of the static optimization (i.e., balancing

the temperature and spreading out the heat dissipation across the die to reduce the

variations) should be considered while designing dynamic management policies.

The text of Chapter 3 is in part a reprint of the material from the paper, Ayse

K. Coskun, Tajana Simunic Rosing, Keith Whisnant and Kenny Gross, “Static and

Dynamic Temperature-Aware Scheduling for Multiprocessor SoCs”, in IEEE Transactions

on VLSI, September 2008. The dissertation author was the primary researcher and

author, and the co-authors involved in the publication [21] directed, supervised, and

assisted in the research which forms the basis for that material.



Chapter 4

Low-Overhead Dynamic

Temperature Management

Workload characteristics typically vary dynamically during execution, making

it hard to predict the workload during system design. Thus, dynamic management of

temperature is required to achieve higher system reliability and to reduce the design

challenges caused by hot spots and temperature variations. To avoid high performance

impact, temperature-aware scheduling has to be fast and easy to implement.

This chapter first presents OS-level temperature-aware scheduling with negligible

performance overhead. This technique, called Adaptive-Random, mitigates the thermal

hot spots and large temperature variations by taking into account the temperature mea-

surements of the MPSoC and adapting to changes. Current chips typically contain

several thermal sensors, and these sensors are read by an infrastructure such as the Con-

tinuous System Telemetry Harness (CSTH) [27] without introducing performance cost.

When combined with previously introduced reactive thermal management methods such

as thread migration [26] and voltage scaling [59], Adaptive-Random achieves even lower

and more stable thermal profiles while reducing the performance impact of such reactive

techniques significantly.

We observe that different power or thermal management policies are most ad-

vantageous for particular workload scenarios. For example, while Adaptive-Random is

successful in balancing temperature, it may not provide as much energy savings as a

DPM policy (that utilizes sleep modes for idle cores) for a system with low utilization.

On the other hand, DPM may accelerate thermal cycles for a system with highly variant

56
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workload. We propose using Online Learning for selecting the management policy with

the best fit to the current workload conditions by evaluating both the thermal impact

and performance of policies.

Both thermal management policies we introduce in this chapter are cost-effective

and can be easily implemented into existing schedulers at the OS level.

4.1 Dynamic Temperature-Aware Job Scheduling

Dynamic thermal management typically controls hot spots by keeping the tem-

perature below a critical threshold. Computation migration and fetch toggling are ex-

amples of such techniques [59]. Heat-and-Run performs temperature-aware thread as-

signment and migration for multicore multithreaded systems [26]. Kumar et al. propose

a hybrid method that coordinates clock gating and software thermal management tech-

niques [40]. The multicore thermal management method introduced in [24] combines

distributed DVS with process migration. These DVS or thread migration based tech-

niques typically come at a substantial performance cost. In [65], the authors propose

dynamic MPSoC temperature-aware scheduling methods that take core temperatures

into account while making decisions. Their technique is lower cost in comparison to

DVS or migration based techniques; however, temperature variations are not considered

during scheduling.

This section first discusses the multiprocessor schedulers in state-of-art operating

systems, and then provides the details of two previously introduced reactive thermal

management methods that are applicable to MPSoCs. Finally, we explain the proposed

low-overhead dynamic temperature-aware scheduling technique, Adaptive-Random.

4.1.1 State-of-the-Art Load Balancing Schedulers

Many modern OS schedulers are based on multilevel queuing, which mixes sev-

eral elements such as priority, round-robin and shortest-job-first scheduling principles.

For performance reasons, some amount of load balancing is commonly integrated in the

scheduler. In Linux 2.6, each processor in the multiprocessor system has a queue. A task

stays in a queue for cache affinity. Tasks are moved to different queues only when the load

is unbalanced (i.e., when length of a queue is less than one fourth of another). Solaris

migrates threads to other processors when a core becomes overloaded. The thread migra-
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tion in Solaris is performed based on giving priority to locality, following the assumption

that the threads on nearby cores share the same caches.

In this work, we implement a dynamic load balancing policy (DLB) where the

scheduler balances the workload by sending workload to the least busy processor at each

interval (as discussed in Chapter 3 previously). This dynamic load balancing strategy

is in principal similar to load balancing performed by operating systems such as Solaris,

which balances the workload in the processors’ queues at regular intervals.

4.1.2 Thermal Management Techniques for MPSoCs

Several techniques have been proposed in the literature to control the thermal

behavior of MPSoCs. Here we discuss two previously introduced methods for managing

temperature. Both of these techniques are reactive, that is they are activated only when

a critical temperature is reached.

Dynamic Thread Migration (DTM) is an MPSoC thermal management

method that migrates threads from hot processors to cooler ones. For minimizing the per-

formance impact of thread migration, Heat-and-Run proposed loading the cores as much

as possible and migrating workload when critical temperature values are observed [26].

In our implementation of this technique, we migrate the thread from the hot processor

to the coolest processor available at that moment. The threshold temperature for mi-

gration is set at 85oC, which is considered a high temperature for our system. Similar

temperature values are shown as critical for other CPUs as well [58].

Voltage Scaling for Thermal Management (VSTM) performs dynamic

voltage and frequency scaling when the temperature reaches the threshold [59]. This

technique lowers the temperature on the hot cores by reducing power consumption. In

our implementation, we assume two built-in voltage/frequency settings for each core.

Normally all jobs run at full speed (fmax). If a core reaches the critical temperature

(85oC), the frequency/voltage level of the particular core is reduced to the lower setting

(flow) until the current job terminates. In our experiments, we picked flow as two thirds

of fmax. Lower frequency settings can be used as well; however, this would increase the

performance cost.
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Figure 4.1: Effect of Temperature History

4.1.3 Low-Overhead Temperature Aware Scheduling

One of the goals when designing a dynamic temperature management policy is to

have minimal performance overhead. The policy proposed next, Adaptive-Random, has

negligible overhead in comparison to the existing decision-making process in OS-level

multiprocessor schedulers, and it can be implemented in the OS scheduler with minimal

changes.

Adaptive-Random updates probabilities of sending workload to cores at each in-

terval based on an analysis of the temperature history on the chip. Taking the history

into account provides the ability to allocate workload on units exposed to lower thermal

stress or that are on cooler parts of the MPSoC. For example, in Figure 4.1, we see

three cores with the same current temperature, but different histories. Assuming all

cores are idle, the if we were to make decisions on current temperature only, we would

not differentiate among these three cases. Adaptive-Random favors Core-1 due to the

lower temperature average in the history window. Core-1 is indeed a better choice than

the others, as the thermal history suggests Core-1 and its neighbors have been under

lower thermal stress. This way, Adaptive-Random achieves a better load distribution for

performance purposes.

In Adaptive-Random, the new probability value for each core is computed using

Equation 4.1 at each job arrival. In the equation, Pn is the new probability, Po is the

previous probability, and W is the weight. Pn values saturate at 0 and 1. In order to

evaluate the thermal stress on each core, W is computed at regular intervals using a

sliding window of temperature history. The thermal constant of our system is on the
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order a few hundred milliseconds, so we set the interval and sliding window lengths at 1

second in order to account for the rapid changes in temperature. As we compute only

Equation 4.1 at workload arrivals, the computation cost of our technique is negligible.

Moreover, we do not have to stall execution. Once the probabilities are updated, the

core to run the current job is selected through generating a random number.

Pn = Po ±W (4.1)

The probability values are decremented or incremented by Wdec or Winc, de-

pending on whether the temperature has risen above the threshold temperature (Tthr),

or dropped below a second threshold (Tlow) respectively. In our simulations we set Tthr

at 80oC. We use a threshold lower than 85oC to prevent hot spots before they occur. In

order to avoid allocating workload to cores that have temperatures slightly below 80oC,

we use a second threshold, Tlow, set to 75oC in our experiments. We do not increase

Pn unless in the last interval the core temperature has dropped below Tlow. Threshold

values lower than 75oC can introduce performance cost, as a number of cores would

be idle until their temperatures are below the threshold. Moreover, setting the second

threshold too low increases the temperature swing, which may accelerate the thermal

cycling. Increasing the threshold value closer to 80oC reduces its effect. For applying

our technique to different systems, different threshold values can be selected following

the same principles depending on the system and workload characteristics. There are

three cases we consider while adjusting probability values:

1. If there are processors that have exceeded Tthr in the past interval, their Pn values

are set to 0.

2. When the temperature of a core is between Tthr and Tlow, no action is taken.

3. For cores that are below the second threshold Tlow in the last interval, we increase

their Pn by Winc (see Eqn. 4.2). While calculating Winc, we evaluate Avthr, which

is the average temperature below Tthr divided by Tthr. This way, if a core is cooler

than another, its Winc is greater. We select the β value as 0.1 empirically. We

simulate β values between 0 and 0.5 at incrementation steps of 0.05, and select

the β with the best average case results for reducing hot spots and variations. For

different MPSoCs, similar studies can be carried out to select the best β value.
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Winc = β/Avthr (4.2)

This scheduling policy can be implemented on a real system easily with very low

overhead. Collecting the thermal data and computation of weights do not impose notice-

able performance impact. The random number generator can be implemented through

a linear-feedback shift register (LFSR), which often already exists on the chip for test

purposes. The rest of the computations (i.e., averages and ratios) are carried out in-

crementally throughout the execution. Another benefit of this policy is that it achieves

better load balancing than making decisions solely on instantaneous temperature. The

Adaptive-Random policy addresses the issues of maintaining a balanced and low tem-

perature profile as well as distributing the thermal stress to cores as evenly as possible

throughout system lifetime.

4.2 Thermal Management Using Online Learning

A number of strategies exist to manage temperature, reduce power consumption

or to perform task allocation in a temperature or power-aware manner. The policies pro-

posed in the literature have different optimization goals; thus, their advantages vary in

terms of saving power, achieving better temperature profiles or increasing performance.

For example, DPM can reduce the thermal hot spots while saving power. However, es-

pecially when there are frequent workload arrivals, it can significantly increase thermal

cycling (as discussed in Chapter 2). Migrating threads upon reaching a critical temper-

ature achieves significant reduction in hot spots. On the other hand, this strategy does

not balance the workload across the chip.

This section proposes a novel technique to adapt the thermal management policy

to the current workload characteristics. The online learning framework we use, which

is based on the switching experts problem introduced in [25], selects the best policy for

the current system dynamics among a given set of policies after a number of evaluation

steps.

In the switching experts problem, there are N expert policies. Also, a set of M

higher level experts, called specialists are defined. A specialist is a higher level policy that

determines which expert should run for the next interval. For example, one specialist

can choose to run DPM for all intervals, while another one can select a different expert
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depending on whether the system has high, medium or low utilization. The specialists

are evaluated regularly based on their impact on temperature and performance. The

specialist with the highest evaluation score is selected at every interval. We then apply

the expert policy determined by this selected specialist for the next interval.

Another method for selecting experts is using insomniac algorithms, where there

is a master algorithm that evaluates a given set of experts by comparing the performance

of each expert to that of the best expert—hence, such algorithms do not utilize specialists.

The online learning technique proposed in [23] for DVS is an example of insomniac

learning. However for thermal management, evaluating each expert at every interval is

infeasible. Temperature of a unit is dependent on the instant power consumption of that

unit, as well as the recent temperature history and the power consumption of neighboring

units. Therefore, evaluating each expert’s thermal behavior and performance accurately

would require running each expert on a separate system in parallel. This is obviously an

extremely inefficient approach. Thus, we utilize the specialist approach proposed for the

switching experts problem in [25]. Our algorithm evaluates a subset of active specialists

at each iteration.

The pseudo-code for our algorithm is provided in Table 4.1. In this technique,

at any given time, only one of the experts is active. The decision to switch to another

expert (or continue with the current one) is performed at every interval by the specialist

currently responsible for decision making. We maintain weight vectors for the specialists,

which get updated at every interval based on the observed loss. Loss is a non-negative

value demonstrating how well a policy performs in terms of the given objective. At every

decision point, the specialist with the highest weight factor is selected by the learning

algorithm. This way, our technique guarantees converging to the best available policy

for the current workload.

Table 4.1: Pseudo-Code for the Online Learning Algorithm

Initialize wi = 1/M for i = {1, 2, ...M}
Do for t = 1, 2, ..., U

1. Pick the specialist with the highest wi, and
run the expert policy determined by that specialist

2. Compute the loss function for the last interval (Lt)
3. Update the weights for the specialists associated

with the active expert:
wnew

i = wold
i e−n·Lt if active

wnew
i = wold

i otherwise
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Our Online Learning algorithm maintains a weight vector for all the M specialists,

w =< w1, w2, ...wM >. Each weight wi represents the suitability of the specialist to the

current workload characteristics. We initialize the wi values by assigning equal weights,

wi = 1/M . As shown in the pseudocode, the weights are updated based on Lt, the loss

observed during the last interval. At each iteration, we only update the weights of the

specialists that are associated with the active ground expert. For example, if the active

expert policy has been DPM for the last interval, we only update the weights of the

specialists that would have selected DPM for that interval.

Equation 4.3 shows the update function. We use an exponential function to

update the weights as in [30]. Lt is the total loss computed during the last interval

[t − 1, t) and n is the learning rate. Selection guidelines for n are explained in detail

in [30]. In our experiments, we set n = 0.75. As the new weight, wnew
i , depends on the

previous weight, wold
i , weight update equation contains the history of updates.

wnew
i = wold

i e−n·Lt (4.3)

The loss function takes both temperature and performance characteristics into

account. For evaluating the reliability impact of hot spots, observing only the peak or

average temperature does not provide a good intuition of the thermal behavior. For this

reason, we use the “time spent above temperature threshold” metric (tHS) to capture

the impact of hot spots. For thermal cycles, on each core we compute the percentage of

time that cycles larger than a given ∆T value are observed (tTC). Similarly, for spatial

gradients, we calculate the time during which large gradients occur (tSP ).

Table 4.2: Loss Function

Category Amount of Loss
Hot Spots tHS (if tHS > 0); 0 (ow∗) ∗otherwise
Thermal Cycles tTC (if tTC > 0); 0 (ow)
Spatial Gradients tSP (if tSP > 0); 0 (ow)
Performance (LAc − LAt) (if LAc > LAt); 0 (ow)

The components of the loss function are provided in Table 4.2. To compute

the total loss, we normalize each term and then sum all the terms. We use the “Load

Average” metric (i.e., LA in Table 4.2) to evaluate the performance cost. We do not use

metrics such as IPC or CPI since they are application dependent, and it is not possible

to set a threshold value to compute the performance loss. Load average is the sum of
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run queue length and number of jobs currently running. Therefore, if this number is low

(i.e., typically below 3 or 5, depending on the system), the response time of the system

is fast. If this number is getting higher, it means that the performance is getting worse.

LAc and LAt are the load average for the last interval and the threshold load average,

respectively.

Convergence Bound:

The conventional solutions to the switching experts problem require evaluating

each of the exponentially many specialists at every iteration (such as in [30], which is an

insomniac learning approach). Provided that U (number of iterations in the sequence)

and k (number of intervals) are known, if we could keep a weight for all possible exponen-

tially many specialists, the total loss with respect to the best specialist is upper bounded

by k lnN +(k− 1)ln(U/k) [25], where N is the number of experts. This bound is a very

tight bound for this problem; however, this algorithm is computationally very costly. The

switching experts framework proposed in [25] overcomes this problem by constructing

specialists for each expert and interval, and by evaluating only the active specialists at

each iteration. The bound achieved by the specialist algorithm is k(lnU +o(lnU)) larger

than the bound above. As N << U , this bound gives a convergence rate of O(k lnU/U).

4.3 Results

The experimental results in this chapter are based on the UltraSPARC T1 proces-

sor with characteristics discussed in Chapter 3. Power model, workload characteristics,

and thermal modeling framework have been explained in detail in Section 3.2. To eval-

uate the performance impact, we compute the average delay in the completion time of

jobs with respect to the baseline case of load balancing. In thread migration, we assume

each migration takes 200ms, according to the results provided in [9]. All the results

regarding the Adaptive-Random technique are averaged over a hundred runs in order to

obtain statistical convergence.

Figure 4.2 shows the effects of the dynamic techniques in reducing hot spots, and

also compares the performance cost. The left axis provides the average percentage of time

hot spots (over 85oC) are observed, for the case without DPM. We show the normalized

performance of each policy with respect to the baseline case of load balancing on the

right axis. While the aggressive reactive techniques (migration and voltage scaling)

achieve reduced percentage of hot spots, their performance cost is very high. When
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Figure 4.2: Comparison of Hot Spots and Performance Cost

these techniques are combined with Adaptive-Random, the hot spots can be further

reduced to below 1%, while at the same time the performance degradation is reduced

considerably, from 15% to below 7%.

We select a set of expert policies representative of recently proposed power and

thermal management approaches for Online Learning. This way we cover a variety of

trade-off points among temperature, performance and power. The Default policy is a

performance-oriented policy similar to schedulers in modern operating systems. It tries

to allocate threads to the same core they have run previously on to optimize memory

accesses. Load balancing is performed if there is congestion. Dynamic power man-

agement (DPM) turns off idle cores based on a fixed timeout strategy (with timeout

set to 200ms as in Chapter 3). DVS & DPM applies a dynamic voltage/frequency

scaling policy (with three available V/f settings) which reduces the V/f level depending

on the utilization observed on each core in the last interval—i.e., it selects the V/f setting

to fill in the idle slots as much as possible assuming a linear scaling of execution time

with frequency. Idle cores are then turned off using a fixed timeout policy as in DPM.

Migration moves threads from hot cores to cooler cores when a temperature threshold

is exceeded. DPM, DVS & DPM and Migration run together with the Default schedul-

ing policy. We also use the Adaptive-Random policy proposed in 4.1 as one of the

experts.

As it is practically impossible to maintain a set of specialists covering all possible
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segmentations of experts, we use a limited set of specialists. In addition to the special-

ists that run the same expert all the time (i.e., Default, DPM, DPM&DVS, Migration,

Adaptive-Random), we develop specialists that select an expert based on system char-

acteristics to provide faster convergence to the best available policy. These specialists

are:

• Utilization-based: We observe the average system utilization and select the expert based

on the following rules:

* High Util.: Migration

* Medium Util.: Adaptive-Random and DVS&DPM

* Low Util.: DPM

• Temperature-based: Based on the thermal profile observed in the last interval, we select

the policy for the next interval.

* Hot spots or variations: Adaptive-Random

* Otherwise: Default policy

For our workloads, the set of specialists described above has been sufficient to

match a wide range of workload scenarios. It is possible to add other specialists to the

Online Learning framework for different systems and workloads—especially if there is

the need to match the workload characteristics with different expert selection guidelines

than those utilized by our specialists.

The loss function has four components that address hot spots, cycles, spatial

gradients and performance. Figure 4.3-(a) shows how weighing these components in the

loss function changes the frequency each expert is selected. “All equal” assigns equal

weights to all components, “P-high” assigns a higher weight to the performance loss,

“P-low” assigns higher weight to temperature-related loss and “w/o gradients” compute

loss based only on hot spots and performance, without considering gradients. “P-high”

selects the policies with minimal performance cost more frequently than others, whereas

the “all equal” setting favors Adaptive-Random and Migration more often. DPM and

DVS&DPM are typically selected less often than other experts, as they create cycles. In

the “w/o gradients” setting, we see a significant increase in the frequencies of selecting

DPM and DVS&DPM. In the rest of our evaluation, we use the “all equal” loss function,

as we want to minimize all the temperature-induced problems at low performance cost.

In the experimental evaluation, the hot spot results demonstrate the percentage

of time spent above 85oC, which is considered a high temperature for our system. The
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Figure 4.3: (a) Effect of Loss Function on Expert Selection, (b) Evaluation of Expert
Strategies

spatial gradient results summarize the percentage of time that gradients above 15oC

occur.. The spatial distribution is calculated by evaluating the temperature difference

between hottest and coolest cores at each sampling interval. We report the temporal

fluctuations of magnitude above 20oC. ∆T values we report are computed over a sliding

window and averaged over all cores.

In Figure 4.3-(b), we demonstrate how each expert behaves in terms of handling

the thermal hot spots and temperature variations, and we compare their performance.

These results are averaged over the benchmarks in Table 3.5. We only show thermal

cycling results for the experts with DPM, as going into the sleep state causes cycles with

high magnitudes. We normalize all values to [0,1] for the sake of comparison. The figure

shows the strengths and weaknesses of each expert. For example, Migration reduces

the thermal hot spots more efficiently than other techniques, however it causes higher

performance cost. DPM decreases the hot spots and does not have high performance cost,

but it causes cycles and gradients.

We run sequences of the benchmarks in Table 3.5 to show how Online Learning

adapts to varying workload behavior. In our results the sequences are identified by

the numbers associated with each benchmark as shown in Table 4.3. For example,

the workload sequence A runs Web-med (1) followed by Web-high(2) and so on. In

Table 4.3, we compare the efficiency of the Online Learning (OL) technique against

running each expert alone. For workloads A, B and C, OL reduces the frequency hot
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Figure 4.4: (a) Thermal Cycles, (b) Spatial Gradients

spots more than all of the individual experts, as it can combine the advantages of different

experts over different execution intervals. For workload D, OL performs almost as good

as DPM&DVS. OL reduces the frequency of hot spots by about 20% on average in

comparison to DVS&DPM.

Table 4.3: Thermal Hot Spots

W.load Util Def. Migr. DPM DVS& Adapt OL
(%) DPM -Rand

A: 12784 50.8 18.6 11.4 16.9 8.9 13.2 6.5
B: 57843 28.2 8.4 4.2 6.4 2.3 5.4 2.1
C: 14214 69.8 27.8 18.1 21.3 14.9 19.2 9.7
D: 68253 32.3 10.3 5.7 8.0 2.7 6.4 2.9

Figures 4.4 (a) and (b) show how Online Learning compares to other methods in

terms of reducing temperature variations. Our method reduces the cycles dramatically—

i.e., 80% and 68% in comparison to DPM and DVS&DPM, respectively. OL is close

to Adaptive-Random in terms of reducing the spatial gradients. We cannot achieve

significant reduction of gradients in comparison to Adaptive-Random, because to reduce

the hot spots more effectively, our policy sometimes favors other policies.

Figure 4.5 compares the energy consumption and performance of Online Learning

with the expert policies running alone. Energy and performance results are normalized

with respect to the Default policy. DPM and DVS&DPM reduce the energy consumption

on average by 13% and 16%, respectively, in comparison to the Default policy. Online

Learning achieves close to 6% energy savings. As Migration and Adaptive-Random are

not integrated with DPM or DVS in these experiments, they do not reduce the energy

consumption. In fact, as Migration degrades performance, it slightly increases the overall

energy consumption with respect to the Default policy. We compute the performance

cost based on the average wait time of jobs on the system. The average wait time of jobs
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Figure 4.5: Energy and Performance Evaluation

is increased by 2.1 times for Migration, 1.3 times for DPM, and 3.2 times for DPM&DVS.

Adaptive-Random does not increase the wait time, and OL only increases it by 1.1 times.

Thus, while our technique effectively manages the temperature induced problems at low

performance cost, we can also save 6% energy on average.

4.4 Summary

This chapter has presented dynamic thermal management techniques with low

performance overhead. First, it has discussed Adaptive-Random, which modifies the

workload allocation policy based on the temperature history. Adaptive-Random is more

successful in eliminating hot spots than existing load balancing techniques, and also it

provides 50% and 90% reductions in temporal and spatial temperature variations, re-

spectively, with negligible impact on performance. In addition, we have demonstrated

that the performance overhead of reactive techniques such as thread migration and volt-

age scaling can be reduced dramatically when they are combined with the a scheduling

policy such as Adaptive-Random, while achieving lower and more stable temperatures.

We have also introduced an MPSoC temperature management technique that

utilizes Online Learning to adapt to dynamically changing workloads. Online Learn-

ing evaluates a set of “expert” management policies at runtime by taking both thermal

behavior and performance into account, and guarantees convergence to the most ben-

eficial policy for the desired performance-temperature trade-off. We have shown that

our technique reduces the hot spots, thermal cycles and gradients much more effectively

than running a single temperature or power aware policy. For example, a combined

DVS&DPM policy reduces the energy consumption by 16% on average, but creates large
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thermal variations and does not reduce the hot spots effectively. Online Learning re-

duces the frequency of hot spots by 20% on average in comparison to DVS&DPM, and

it is still able to achieve 6% energy savings. Also, Online Learning reduces the thermal

cycling frequency to below 5% and performs as good as Adaptive-Random in minimizing

the spatial gradients.

Important conclusions derived in this chapter are:

• As multicore systems get highly complex, management methods to adapt to run-

time conditions are required to be able to learn the dynamics and manage the

performance, reliability, and energy to meet the system- or workload-specific con-

straints.

• Dynamic temperature-aware scheduling that makes decisions based on temperature

feedback from the system has the ability to substantially reduce the hot spots and

thermal variations without a noticeable impact on performance.

• Temperature-aware scheduling is orthogonal to other power management or back-

up thermal management strategies. In other words, such workload scheduling

approaches can be integrated with other management methods to improve the

thermal behavior and performance simultaneously.

• The success of power/thermal management or scheduling policies varies depending

on how the policy fits the current workload executing on the system. As most

systems go through significant changes in workload patterns during execution, it is

highly advantageous to analyze the runtime conditions and select an appropriate

policy.

The text of Sections 4.1 and 4.3 are in part reprints of the material from the

papers, Ayse K. Coskun, Tajana Simunic Rosing and Keith Whisnant, “Temperature

Aware Task Scheduling in MPSoCs”, in Proceedings of Design Automation and Test in

Europe (DATE), 2007, and Ayse K. Coskun, Tajana Simunic Rosing, Keith Whisnant

and Kenny Gross, “Static and Dynamic Temperature-Aware Scheduling for Multiproces-

sor SoCs”, in IEEE Transactions on VLSI, September 2008. The dissertation author was

the primary researcher and author, and the co-authors involved in the publications [17]

and [21] directed, supervised, and assisted in the research which forms the basis for that

material.
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The text of Sections 4.2 and 4.3 are in part a reprint of the material from the

paper, Ayse K. Coskun, Tajana Simunic Rosing and Kenny Gross, “Temperature Man-

agement in Multiprocessor SoCs Using Online Learning”, in Proceedings of Design Au-

tomation Conference (DAC), 2008. The dissertation author was the primary researcher

and author, and the co-authors involved in the publication [19] directed, supervised, and

assisted in the research which forms the basis for that material.



Chapter 5

Proactive Temperature Balancing

Low-cost dynamic temperature-aware scheduling techniques substantially im-

prove the temperature profiles of MPSoCs. Even though such techniques reduce thermal

variations as well as hot spots more effectively in comparison to conventional thermal

or power management, they are still reactive in nature, and therefore take action only

after undesirable thermal profiles are observed. When we forecast temperature instead

of reacting to thermal events, the management policy is able to act before thermal emer-

gencies or imbalances occur. This way, we achieve lower and more stable temperatures

with better system performance in comparison to reactive techniques, as we avoid the

need to stall or slow down execution upon reaching a threshold temperature.

This chapter proposes a proactive thermal management method for MPSoCs

to prevent thermal problems before they occur at a negligible performance cost. In our

experiments, we have observed that workloads typically have self-correlation (i.e., current

workload behavior depends on the previous actions). As a result, temperature signal is

serial correlated as well. Moreover, due to thermal time constants, the temperature

changes slowly. Hence, within short time intervals the temperature behavior resembles a

stationary time-series signal. This observation enables accurate temperature estimation

by regressing on the previous measurements.

The proactive technique proposed in this chapter utilizes an autoregressive mov-

ing average (ARMA) model for estimating future temperature accurately based on past

temperature measurements. We introduce a novel job scheduling approach, Proactive

Temperature Balancing, which utilizes the thermal forecast for reducing the hot spots

and balancing the temperature among the cores. The ARMA model for prediction may

72
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Figure 5.1: Flow Chart of the Proposed Technique

need to be updated if the workload dynamics change substantially. Since the goal is

to proactively allocate workload, it is essential to detect such changes in workload and

temperature dynamics as early as possible, and adapt the ARMA model if necessary.

We use sequential probability ratio test (SPRT) to detect the changes in the time series

temperature data. SPRT provides the earliest possible detection of variations in time

series signals [71].

The chapter is organized as follows. In Section 5.1 we provide the details of the

ARMA predictor, and the online adaptation framework. We compare ARMA with other

predictors in Section 5.3. Section 5.4 demonstrates how to predict workload dynamics for

MPSoCs without thermal sensors. In Section 5.5, we explain all the thermal management

techniques studied in this chapter, including Proactive Temperature Balancing. Section

5.6 provides the experimental methodology and results, and Section 5.7 summarizes the

conclusions.

5.1 Temperature Prediction with Autoregressive Moving

Averaging (ARMA)

In this section we provide an overview of our proactive temperature manage-

ment approach, and explain the methodology for accurate temperature prediction at

runtime. Proactive management adjusts the workload distribution on an MPSoC using

the thermal forecast instead of reacting to thermal emergencies. In this way we reduce

the performance cost associated with stalling or slowing down the cores after reaching a

threshold.

Figure 5.1 provides an overview of our technique. We predict temperature tn
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steps into the future based on the temperature history observed through thermal sensors

using an autoregressive moving average (ARMA) model. The scheduler then allocates

the threads to cores to balance the temperature distribution across the die based on

the predicted temperatures. The ARMA model utilized for temperature forecasting is

derived based on a temperature trace representative of the thermal characteristics of

the current workload. During execution, the workload dynamics might change and the

ARMA model may no longer be able to predict accurately. To provide runtime adapta-

tion, we monitor the workload through temperature measurements, validate the ARMA

model and update the model if needed. The online adaptation method is explained in

Section 5.2.

ARMA model assumes the modeled process is a stationary stochastic process,

and that there is serial correlation in the data. In a stationary process the probability

distribution does not change over time, and the mean and variance of the signal are

stable. As workload characteristics are correlated during short time windows, and that

temperature changes slowly due to thermal time constants, we assume the underlying

data for the ARMA model is stationary. We adapt when the ARMA model no longer

fits the workload. Thus, the stationary assumption does not introduce inaccuracy.

yt +
p∑

i=1

(ai yt−i) = et +
q∑

i=1

(ci et−i) (5.1)

An ARMA(p,q) model is described by Equation 5.1. In the equation, yt is the

value of the series at time t (i.e., temperature at time t), ai is the lag-i autoregressive

coefficient, ci is the moving average coefficient and et is called the noise, error or the

residual. The residuals should be random in time (i.e., not autocorrelated), and normally

distributed. p and q represent the orders of the autoregressive (AR) and the moving

average (MA) parts of the model, respectively.

ARMA modeling has two steps: 1)Identification and Estimation, which consists

of specifying the order and computing the coefficients of the model (coefficients are

computed by software with little user interaction); 2) Checking the Model, where it is

ensured that the residuals of the model are random and the estimated parameters are

statistically significant.

Identification and Estimation:

During identification, we use an automated trial-and-error strategy. We start
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by fitting the training data with the simplest model, i.e., ARMA(1,0), measure the

“goodness-of-fit”, and increase the order of the model if the desired fit is not achieved.

At each iteration, to fit the data with the current order of ARMA model, coefficients

are computed using a least-squares fit. Other methods can be utilized for coefficient

estimation.

We use Final Prediction Error (FPE) [46] to evaluate the goodness-of-fit of the

models. Once the FPE is below a predetermined threshold, we halt the trial-and-error

loop. FPE is a function of the residuals and the number of estimated parameters. As

FPE takes the number of estimated parameters into account, it compensates for the

artificial improvement in fit that could come from increasing the order of the model.

The FPE is given in Equation 5.2, where V is the variance of model residuals, N is the

length of the time series, and n = p + q is the number of estimated parameters in the

model.

FPE =
1 + n/N

1− n/N
· V (5.2)

Checking the Model:

For checking that the model residuals are random, or uncorrelated in time, we

look at the autocorrelation function (ACF). Autocorrelation is the cross-correlation of a

signal with itself as a function of lag time, and is useful for finding repeating patterns in

a signal if there are any. If model residuals are random, the ACF of all residuals (except

for lag zero) should fluctuate close to zero. The residuals are assumed as random if the

ACF for the majority of the trace is in between the pre-determined confidence intervals.

As an example, we apply the ARMA prediction methodology to a sample tem-

perature trace. The trace is obtained through HotSpot [59] for a web server workload

running on a system with a thermal management policy that swaps workload among hot

and cold cores periodically, causing thermal cycles. We show a part of the trace in Fig-

ure 5.2, while the total length of the example trace is 200 samples long, sampled at every

100 ms. Using the first 150 samples of the data as the training set and FPE << 1, we

form an ARMA(5,0) model. It should be noted that, for most of the real-life workloads

we experiment with, much shorter training sets (i.e., 20-50 samples) are sufficient for

forming an ARMA model with the desired fit.

We save the last 50 samples of the data to test our prediction method. We use

the ARMA model to predict 5 steps (i.e., 500 ms) into the future. Figure 5.2 shows that
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Figure 5.2: Temperature Prediction
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Figure 5.3: Autocorrelation Function of the Residuals

the prediction matches the observed values closely. For temperature curves with less

temporal variation, designing an accurate ARMA predictor is even easier.

Figure 5.3 shows the ACF of the residuals for the model in Figure 5.2. Each

sample refers to a 100ms interval. The horizontal lines in the figure show the 95%

confidence intervals. In our automated methodology, we observe percentage of ACF

values within the 95% confidence interval. If most of the ACF values fall within the 95%

range, we declare that the residuals are random.

Computing the ARMA model has relatively low overhead. For example, in Mat-

lab, an ARMA(p,0) model with p ≤ 10 (no moving-average component) for a training

data set of 50 samples is computed in less than 150ms, and an ARMA(p,q) model up

to 5th order is computed in less than 300ms. The computation and the validation of

the model together takes between 250 and 500ms. Implementing the ARMA process in

C/C++ and optimizing the source code is expected to reduce the overhead significantly.

Note that even though each core’s ARMA model considers solely the tempera-

ture behavior of that particular core, the temperature trace of a core inherently takes

into account the thermal behavior of the neighbor cores. This is due to the fact that

temperature is not only dependent on the power consumption of a unit, but also on

the floorplan and the power/thermal characteristics of other units on the die. While
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it is possible to develop prediction techniques that consider a joint power/temperature

profile of a set of units for forecasting, in our experiments we observe that considering

each core’s thermal trace individually result in accurate predictions.

5.2 Runtime Adaptation

ARMA models are accurate predictors when the time series data are station-

ary. Since the workload dynamics vary at runtime, the temperature characteristics may

diverge from the training data used for forming the initial ARMA model. In order to

adapt to changes in the workload, we propose monitoring the temperature dynamics and

validating the ARMA model. When we determine the current workload deviates from

the initial assumptions used for forming the ARMA model, we update the model on the

fly.

We use Sequential Probability Ratio Test (SPRT) to detect changes over time in

statistical characteristics of the residual signals. SPRT test on the residuals provides the

earliest possible indication of anomalies [71], where as the anomaly in this case is defined

as the residuals drifting from their expected distribution. Instead of using a simple

threshold value for detection (e.g., setting a threshold for the standard deviation of the

prediction error), SPRT performs statistical hypothesis tests on the mean and variance

of the residuals. These tests are conducted on the basis of user specified false-alarm

and missed-alarm probabilities of the detection process, allowing the user to control the

likelihood of the missed detection of residual drifts or false alarms.

To perform online validation, we maintain a history window of temperature on

each core. The window length is empirically selected based on thermal time constants and

workload characteristics. To monitor the prediction capabilities of the model at runtime,

for each new data sample we compute the residual by differencing the predicted data

from the observed data. Our goal at runtime is to detect if there is a drift in residuals,

where a drift refers to the mean of residuals moving away from zero (Recall that for

an ARMA model with good prediction capabilities, the residuals should fluctuate close

to zero). Detecting the drift quickly is important for maintaining the accuracy of the

predictor, as such a drift shows that the model no longer fits the current temperature

dynamics.

Specifically, we declare a drift when the sequence of observed residuals appears to

be distributed about mean +M or −M instead of around 0, where M is our preassigned
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system disturbance magnitude. A typical value for M is (3 ∗
√

V ) [28], where V is the

variance of the residuals in the training data set.

R(t) = Ti(t)− Ti

′
(t) (5.3)

At time instant t, the residuals (R) can be computed by Equation 5.3, where

T
′
i (t) is the prediction and Ti(t) is the measurement. SPRT then decides between the

following two hypotheses:

1. H1: R(t) is drawn from a probability density function (pdf) with mean M and

variance σ2.

2. H2: R(t) is from a pdf with mean 0 and variance σ2.

In other words, we detect that there is a drift if SPRT decides on H1. If H1 or H2

is true, we wish to decide on the correct hypothesis with probability (1− β) or (1− α),

respectively, where α and β are false alarm and missed alarm probabilities. Small values

such as 0.01 or 0.001 are used for α and β.

LRN = ln
p[R(1), R(2), ..., R(N)/H1]
p[R(1), R(2), ..., R(N)/H2]

(5.4)

SPRT is applied to detect the drift (i.e., anomaly) in residuals by computing the

log likelihood ratio in Equation 5.4, where p(./H2) is the joint density function assuming

no fault, and p(./H1) is the joint density function assuming fault, and N is the number

of observations. If LRN ≥ B we accept H1, meaning that the residuals show significant

change from the assumptions; and if LRN ≤ A we accept H2. If one of the hypotheses is

accepted, the SPRT computation is restarted from the current sample. Otherwise (i.e.,

A < LRN < B) we continue the measurements. The bounds A and B are defined as in

Equation 5.5.

A = ln(
β

1− α
) B = ln(

1− β

α
) (5.5)

Following the derivation provided in [28], the value of SPRT can be represented

as shown in Equation 5.6, where M is the system disturbance magnitude as defined

previously, and σ2 is the variance of the residuals in the training set.
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Figure 5.4: Online Detection of Variations in Thermal Characteristics

SPRT =
M

σ2

N∑
i=1

(R(i)− M

2
) (5.6)

Note that M and σ2 values are computed at the beginning, and then fixed until

the ARMA model is updated. At runtime, during each sampling interval, the SPRT

equation effectively performs one addition and one multiplication. Because of the sim-

plicity of computation shown in Equation 5.6, the cost of computing SPRT after each

observation is very low (negligible in our measurements). Moreover, as shown in [71],

there is no other procedure that has the same error probabilities with shorter average

sampling time than SPRT. We have picked SPRT as the online monitoring tool in this

work due to both its guarantee for fast detection of changes and low computation over-

head.

In Figure 5.4, we demonstrate a case where the temperature dynamics change,

and the SPRT detects this change immediately (see t = 4.5s in the figure). A and

B correspond to the SPRT thresholds of ±6.9068 for α and β values of 0.001. When

SPRT >= 6.9068 (i.e., LRN ≥ B), we declare that the residuals have a drift from

the training data, initiating the computation of a new ARMA model. Recall that when

SPRT <= −6.9068 (i.e., LRN ≤ A) we accept the hypothesis that the mean of the

residuals is 0. In both cases, the SPRT computation is restarted.

We also compared SPRT detection with monitoring the standard deviation of the

residuals. The prediction capability of an ARMA model can be examined by computing

the standard deviation of the prediction error (i.e., difference between actual measure-

ments and predictions). If the dynamic characteristics of the temperature time series

can be well represented by the model, the standard deviation of the associated predic-

tion error should be relatively small. It is generally recommended to keep the standard
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Figure 5.5: Comparison of Predictors - Stable Temperature

deviation of prediction errors less than 10% of the standard deviation of the original sig-

nal. This condition implies that the ARMA model is able to capture more than 90% of

the underlying dynamics of the system. Using a 10% threshold, the standard deviation

method can quickly detect the change in temperature dynamics in the case of abrupt

changes such as in Figure 5.4. However, for gradual shift in thermal dynamics, it may

fail to capture the drift immediately. SPRT guarantees the fastest detection for the given

false and missed alarm probabilities.

5.3 Comparison with Other Predictors

In this section, we compare ARMA with various predictors in terms of their

prediction and adaptation capabilities, and their computation and hardware overhead.

5.3.1 Exponential Averaging

A well-known method for prediction is exponential moving averaging. In Fig-

ures 5.5 and 5.6, we compare ARMA prediction with exponential average prediction for

an execution slice of a highly utilized web server workload and the previous trace used in

Figure 5.2, respectively. The exponential average predictor estimates the current value

of the series as: yt = αTt−1 + (1 − α)yt−1, where yt is the predicted temperature (ex-

ponential average) at time t, Tt−1 is the measured temperature at time t-1, and α is a

constant (0 ≤ α ≤ 1). We take α = 0.9 in Figure 5.5 and α = {0.5, 0.9} in Figure 5.6.

When we have relatively stable temperature, exponential average predictor works

well, providing almost the same values as the ARMA predictor in Figure 5.5. However,

when there are rapid temperature changes, such as thermal cycling, exponential average

predictor performs poorly, such as in Figure 5.6. In addition, even though exponential

average predictors with α = 0.9 and α = 0.5 perform very similarly in the first example,
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Figure 5.6: Comparison of Predictors - Thermal Cycling

Figure 5.7: Predicting Further Ahead with Exponential Averaging

there is significant effect of the α value in the thermal cycling case, which would require

the user to determine α accordingly. Contrarily, ARMA predictor has an automated

process of forming the model with high accuracy. The overhead of evaluating the ARMA

or the exponential average model at runtime is very similar, as both models only compute

a polynomial equation for each sample.

The ideal number of steps to predict ahead depends on the system and workload

characteristics. In our experiments, we predict 500 ms (i.e., 5 steps) into the future,

as this prediction distance provides good results for our proactive thermal management

policies. However, for different system and workload characteristics, the preferred predic-

tion distance may vary. For example, for systems with less variant workload, predicting

further ahead and using a lower sampling rate for polling the temperature sensors would

be sufficient.

For the experiment in Figure 5.7, we increase the prediction distance to 10 and

20 steps to evaluate the accuracy of ARMA and exponential averaging predictors as a

function of the prediction distance. When the goal is forecasting several time steps into

the future, the prediction accuracy of exponential averaging degrades significantly. For
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Figure 5.8: Accuracy-Size Trade-Off for the History Predictor

this experiment, we use a 200 sample temperature trace for a CPU bound SPEC 2000

suite workload, where the temperature is changing within a 1.5oC range. The plot shows

the difference of error (in oC) in comparison to predicting 5 steps into the future with

the same predictor. While ARMA predictor’s accuracy is stable, the error margin of the

exponential predictor increases considerably when predicting ahead.

5.3.2 History Predictor

In Section 5.1, we show that it is possible to predict future temperature accu-

rately based on the previous thermal measurements. Following this insight, we built

a history predictor. A history predictor is similar to a global branch predictor, and it

consists of a shift register that tracks the last few observed values. The length of the

history is specified by shift register depth. At each sampling period, the register is up-

dated with the last measurement. This updated shift register content is used to index

a history table (HT). The HT holds several previously observed thermal patterns, with

their corresponding next value predictions based on previous experience. Shift register

index is associatively compared to the stored valid HT tags, and if a match is found, the

corresponding HT prediction is used as the final prediction. An invalid entry is kept for

each tag to track the ages of different HT tags for a least recently used (LRU) replace-

ment policy when the HT is full. A -1 entry denotes the corresponding tag contents and

prediction are not valid. This predictor is similar to the Global History Predictor used

for predicting power phases in [32]. When the shift register does not hit the history, the

predictor behaves like a last-value predictor, and assumes the future temperature value

will be the same as the last observed temperature.

One issue with the history predictor is the precision of temperature data. We

also perform experiments where we store temperature readings with one or two decimal

places. However, even for relatively stable temperature profiles, obtaining a reasonable
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percentage of hits on the HT has not been possible when we consider the decimal places.

In addition, even when we maintain one decimal digit, the required HT size for predicting

with high accuracy becomes considerably large (i.e., we would have to have new entries in

the table to accommodate even slight changes in the decimal digit). For this reason, for

the history predictor we round the temperature measurements to nearest integer values,

and only predict temperature in integers.

In Figures 5.8 (a) and (b), we show the accuracy for various history table (HT)

sizes and history lengths. In this experiment, we use the same temperature trace in

Figure 5.7, and predict 5 steps ahead. In (a), we compare the standard deviation of

error and mean error (in oC) for the prediction, where error is the difference of measured

trace and predictions. For this workload, we observe that increasing the history length

does not bring much benefit; however, increasing the table size reduces the magnitude of

errors. In (b), we demonstrate the correct prediction ratio (with respect to the integer

temperature trace) and the hit rate for the history table. While increasing the history

length reduces the hit rate as expected, the accuracy does not get affected by this. This

is due to the fact that for stable profiles, last value predictor compensates well when

the history predictor cannot predict. Note that, increasing the table size over 100 does

not bring additional benefits, which motivates using a small-size table to achieve enough

accuracy with lower hardware overhead.
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Figure 5.9: Comparison of ARMA and History Predictor

Figure 5.9 compares the ARMA predictor and the history predictor (HP with

HT size of 100 and history length of 5) for predicting 5 steps ahead (i.e., 500ms). We

observe that the ARMA captures the thermal dynamics almost exactly, while the history

predictor can predict the integer value of the temperature with reasonable accuracy. For

repeating patterns of workload, such as several applications being time-multiplexed on
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Figure 5.10: Comparison of ARMA and Recursive Least Squares Predictor

a core, and stable thermal profiles, the history predictor can predict with high accuracy

and does not require a training phase (except for the first time an application is run),

provided that the history table is large enough to maintain the entries associated with

all of the applications.

5.3.3 Recursive Least Squares

Another recently proposed temperature prediction method is using recursive least

squares [73]. In Figure 5.10, we compare the prediction accuracy of the least squares

(Lsq) approach with ARMA. We train both predictors with 50 samples of the temper-

ature data. While Lsq with the prediction distance of 5 (shown as Lsq-5) has similar

accuracy as ARMA (prediction distance=10), the accuracy of Lsq drops rapidly when

we increase the forecasting distance (tn) to 10 steps. This trend continues even more

dramatically for higher tn.

Note that both of the above methods can predict the data in the history window

they are trained with the desired degree of accuracy. If one keeps adding enough terms, it

is even possible to fit through every single observation in the history window. Typically

we would not want to do that; however, because usually there is random measurement

noise on the time series, and there is no value to learning the noise. Thus, the differen-

tiating point of least squares and ARMA arises when we are forecasting further into the

future. As we increase tn, least squares does significantly worse than ARMA. The reason

is that as soon as we predict more than a few time steps into the future, the term with

the biggest exponent in the least squares fitting function dominates and the prediction

accuracy degrades from that point on.

Another important advantage of ARMA in comparison to least squares is in over-

head. Recursive least squares method continuously updates the coefficients of the model
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as new data arrives (otherwise accuracy drops), whereas the SPRT support enables us to

update the model only when it is necessary. In addition, the length of the polynomial in

the least squares estimation needs to be set manually, which can unnecessarily increase

computation overhead if set to a larger value than needed. On the other hand, we use

an automated and fast trial-and-error strategy for automatically setting the number of

terms in the ARMA model.

5.4 Workload Prediction

The predictors discussed above utilize an on-chip telemetry infrastructure, which

provides temperature measurements at the desired granularity. In many systems we

may not have a thermal sensor for each core, or sensors may degrade and fail during

the system lifetime. In this section we discuss how to predict workload parameters for

applying a proactive management strategy for such cases.

We demonstrate prediction of two parameters: 1) Core utilization, 2) IPC of

committed instructions. Core utilization is a good measure of how busy the core is

and hence provides an insight for the power consumption, especially in multi-threaded

systems, where we may not have access to measuring per-thread IPC. For single threaded

systems, IPC tends to have a strong correlation with the power consumption. While such

performance metrics may not directly reflect the thermal behavior of cores, they still

provide an estimation of whether the power consumption is increasing or decreasing in the

near future. Therefore, forecast of future workload can be utilized to perform proactive

temperature management, assuming a correlation between high utilization/IPC and high

power consumption.

Figures 5.11 and 5.12 show traces of core utilization and committed IPC, re-

spectively, and the prediction results obtained by ARMA. The core utilization results

are collected for medium utilized web application on a multi-threaded system. The IPC

trace belongs to bzip running on a single-threaded architecture. Both predictors are

trained using 150 samples, and prediction is performed for the following 50 samples.

Note that the workload parameters may have short term spikes due to changing ap-

plication characteristics, while these do not typically get reflected in the temperature

response due to the thermal time constants. This is especially the case for core utiliza-

tion. To achieve more accurate prediction for core utilization, we applied a smoothing

function (i.e., moving averaging) to the workload traces. The smoothed-out utilization
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Figure 5.11: Prediction of Core Utilization
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Figure 5.12: Prediction of Committed IPC

and prediction signals are demonstrated with the subscripts sm in Figure 5.11. For the

original trace, the accuracy of utilization prediction is significantly lower than tempera-

ture prediction. The predictor is more accurate when the data is smoothed-out first.

Even though bzip is a highly IPC-variant benchmark, Figure 5.12 shows that

IPC can be predicted with high accuracy. Note that applications typically have different

phases of performance, and SPRT would detect such a change immediately. The sub-

stantial accuracy difference between predicting IPC and core utilization is mainly due to

the difference between observing a single-thread and observing multiple threads at the

same time. The core utilization results are collected on a multi-threaded system, where

the core is running a set of threads rather than a single application.

5.5 Proactive Job Allocation

This section discusses the details of all the management policies we implement for

evaluation, including our novel Proactive Temperature Balancing technique. We consider

both single-threaded and multi-threaded systems while studying thermal management
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policies. In the system model for the multi-threaded systems, each core is associated with

a dispatching queue, which holds the threads allocated to that core. This is the typical

abstraction used in modern multicore OS schedulers, which are based on multilevel

queuing. The dispatcher allocates the incoming threads to queues based on the current

policy.

Similar to previous chapters, the default policy we evaluate (default policy in

modern OSes such as Solaris) is Dynamic Load Balancing (DLB). DLB assigns an in-

coming thread to the core it ran previously, if the thread ran recently. If the thread has

not run recently, then the dispatcher assigns it to the core that has the lowest priority

thread in the queue. The dispatcher first tries to assign the thread based on locality

(e.g., if several cores are sharing a cache or on the same chip) if possible. If there is

significant imbalance among the queues at runtime, the threads are migrated to have

more balanced utilization.

Power Management:

Many current MPSoCs have power management capabilities to reduce the en-

ergy consumption. Even though the power management techniques do not directly ad-

dress temperature, they affect the thermal behavior significantly. We implement two

commonly used power management methods; Dynamic Power Management (DPM) and

Dynamic Voltage-Frequency Scaling (DVS). For DPM, we utilize a fixed timeout pol-

icy, which puts a core to sleep state if it has been idle longer than the timeout period. We

set the timeout as the breakeven time [37]. The DVS policy observes the core utilization

over a given length of recent history, and reduces the voltage/frequency proportionally

(using the discrete settings available).

Reactive Thermal Management:

Several reactive thermal management techniques have been proposed in the liter-

ature (e.g., [26]). In this work we implement some of the most commonly used methods.

Reactive Thread Migration (R-Mig) migrates the workload from a core if the

threshold temperature is exceeded to the coolest core available. In single threaded sys-

tems, this correspond to migrating the currently running job or swapping the jobs among

the hot and cool cores. In multi-threaded environment, the technique migrates the cur-

rent threads in the hot core’s dispatch queue to other cool cores, or swaps threads among

hot and cool cores.

Reactive DVS (R-DVS) reduces the voltage/ frequency (V/f) setting on a core if
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the threshold temperature is exceeded, similar to the frequency scaling approach in [59].

We assume three built-in V/f states in our experiments. The policy continues to reduce

the (V/f) level at every tick as long as the temperature is above the threshold. When

the temperature is below the critical threshold, then the V/f setting is increased.

Proactive Thermal Management:

The proactive methods utilize the temperature prediction introduced in Sec-

tion 5.1. The motivation behind proactive management is to avoid thermal emergencies

before they occur, and thus to minimize the adverse effects of hot spots and temperature

variations at lower performance cost.

In the workload allocation techniques we propose, we do not change the priority

assignment of the threads or the time slices allocated for each priority level. Our work

focuses on finding effective dispatching methods to reduce temperature induced problems

without affecting performance.

Proactive Thread Migration (P-Mig) moves workload from cores that are pro-

jected to be hot in the near future to cool cores. Proactive DVS reduces the V/f setting

on a core if the temperature is expected to exceed the critical threshold. These two

policies are the same as their reactive counterparts, except that they get triggered by

the temperature estimates instead of the current temperature.

Proactive Temperature Balancing (PTB) follows the principle of locality (i.e.,

allocating the threads on the same core they ran before) during initial assignment as in

the default policy. At every scheduler tick, if the temperatures of cores are predicted to

have imbalance in the next interval, threads waiting on the queues of potentially hotter

cores are moved to cooler cores. This way, the thermal hot spots can be avoided, and

the gradients are prevented by thermal balancing.

In a single-threaded system, we bound the number of migrations to avoid the

unnecessary performance cost. Migration of the jobs on all the hot cores can cause

thermal oscillations. We start performing migrations from the hottest core, and migrate

only if the workload on the hot core’s neighbors have not been migrated during the

current tick. Note that in a multi-threaded environment, threads waiting in the queue

are moved unless the threshold is already exceeded, so migration does not stall the

running thread. This is in contrast to moving the actively running threads in thread

migration policies discussed above. As the default load balancing policy already moves

the waiting threads if there is an imbalance among the queues, our technique does not
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introduce additional overhead. In Proactive Temperature Balancing for multi-threaded

systems, the number of threads to migrate is proportional to the spatial temperature

difference among the hot core and the cool core.

5.6 Results

This section evaluates the thermal management techniques discussed in the pre-

vious section. In the results, DLB is the default load balancing policy, R-Mig (P-Mig)

and R-DVS (P-DVS) refer to the reactive (proactive) migration and voltage scaling,

respectively, and PTB is our proactive temperature balancing policy (i.e., combined

with ARMA predictor). All predictors in this section predict 5 steps ahead (i.e., 500ms

assuming a 100ms sampling rate).

We show two sets of experimental results. The first set is based on the Ul-

traSPARC T1 processor [45]. In the second set of results, we use the phase-based

architecture-level simulation framework to simulate performance, power and tempera-

ture, and provide results on a hypothetical high-performance 16-core architecture man-

ufactured at 65nm.

The threshold temperature for the management policies is 85oC, which is consid-

ered a high temperature for our system. In this section, the hot spot results demonstrate

the percentage of “time spent above 85oC”. The spatial gradient results summarize the

percentage of time that gradients above 15oC occur. We report the temporal fluctuations

of magnitude above 20oC. ∆T values we report are computed over a sliding temperature

history window (i.e., maximum ∆T in the history window) and averaged over all cores.

5.6.1 UltraSPARC T1 Implementation

The first set of experimental results are based on the UltraSPARC T1 [45]. The

experimental flow consists of gathering workload traces, applying policies (scheduling,

DVS, etc.) on the given workload, computing the corresponding power traces, and

finally calculating the temperature response, as discussed in Section 3. We utilize the

same real-life workload demonstrated in Table 3.5.

The results marked as real implementation refer to our implementation of the

policies in Solaris, where we run the workload on the UltraSPARC T1 in real-time.

Some of our policies utilize temperature readings from all cores, and UltraSPARC T1

does not contain an individual sensor for each core. To obtain detailed thermal data
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in synchronization with the scheduling experiments, using a shared file we pipe the

utilization data collected from the target machine to another computer that is running

the thermal simulator. The utilization data is converted into the equivalent power trace

by the thermal simulator, the temperature results are computed for the next interval, and

then are passed back to the target system (which is running the thermal management

policies). A separate computer in the private network is assigned to run the thermal

simulator to avoid interfering with the workload dynamics on the target system. In the

real implementation, the core utilization statistics are passed to the thermal simulator

at every 1 second interval, and the thermal simulations are sampled at every 100 ms.

To implement thread migration, we utilize the existing migration routine in the OS

dispatcher, and include additional temperature-induced triggers accordingly.

The results marked as simulator are from our simulation infrastructure attached

to the power/thermal model, where we use the real-life workload traces again, but this

time implement the scheduling policies within the simulator that is a replica of the

multicore system model. Again, the temperature sampling rate is set at 100 ms.

First we provide the simulator results. Table 5.1 shows a detailed analysis of the

hot spots observed on the system for each workload, and also the average performance

results. We show the percentage of time spent above 85oC for all the workloads, and

the average results for the cases with no power management (No PM) and DPM. The

performance results shown in the table are normalized with respect to the default pol-

icy’s performance. We compute performance based on the average delay we observe in

the thread completion times. Reactive migration of workload or applying temperature

triggered DVS cannot eliminate all the hot spots, especially for workloads with medium

to high utilization level. Performing migration or DVS proactively achieves significantly

better results, while also reducing the performance cost. The cost is lower with the

proactive approaches as they maintain the temperature at lower levels, requiring fewer

overall number of migrations or shorter periods of DVS. Note that, once a temperature

threshold is reached, execution at the default speed is not allowed on a core until the

temperature is lowered. Also, when system is highly utilized, swapping threads may not

reduce the temperature sufficiently, and frequent threshold triggers may occur as new

threads arrive.

Our technique, PTB, achieves very similar results to proactive DVS while it

has much better performance. DPM reduces the thermal hot spots to some extent
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Figure 5.13: Energy Savings, Hot Spots, and Performance - with DPM (Simulator)

as it reduces the temperature when the system has idle time. Performing proactive

temperature management results in the best thermal profile among the techniques when

there is DPM; i.e., 83% reduction in hot spots in comparison to DLB.

We next look at how the energy savings obtained with DPM change depending

on the policy. Figure 5.13 shows the energy savings with respect to DLB without power

management. The plot also includes the percentage of hot spots and the performance of

each policy (hot spots and performance values are reported in Table 5.1 as well). Among

the workload allocation/migration policies, DLB has the highest savings in energy. R-

Mig, P-Mig, and PTB balance the workload more than DLB does to reduce thermal

problems. On the other hand, as DLB clusters the workload more than the migration

policies, it achieves longer continuous idle time slots and improves energy savings with

DPM. DLB achieves 13.6% savings on average across all the workloads, while P-Mig

and R-Mig reduce energy consumption by close to 12%. PTB performs dramatically

better than the other migration-based policies in terms of reducing the thermal problems,

while still obtaining 8.9% savings when combined with DPM. DVS policies considerably

increase the savings; e.g., 21.5% for P-DVS and 23.7% for R-DVS, when combined with

DPM. However, recall that DVS significantly increases the execution time. Thus, while

DVS reduces the energy consumption of the cores, due to prolonged activity of memories

and other components, the total energy consumption of the system may not benefit as

much from DVS. In addition, a significant portion of the total energy costs in current

servers is due to cooling costs, which we do not consider in this computation.

Figure 5.14 shows the average percentage of time we observe thermal cycles

above 20oC. We also plot the workload with the maximum thermal cycling, Web-med,

for comparison. We only consider the case with DPM for the thermal cycling results, as
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Figure 5.14: Temperature Cycles - with DPM (Simulator)

Figure 5.15: Spatial Gradients (Simulator)

putting cores to sleep state creates larger cycles. Our technique achieves very significant

reduction in thermal cycles, i.e., to around 1% in the average case, as it continuously

balances the workload among the cores according to their expected temperature. As

reactive techniques take action after reaching temperature thresholds, they cannot avoid

the temperature imbalance in time as well as our technique. P-DVS and PTB perform

very similarly; however it should be noted that the performance cost of PTB is less than

DVS.

Figure 5.15 shows the average percentage of time large spatial gradients above

15oC occurred while running the policies. DPM creates larger gradients due to the low

temperatures on the cores that go into the sleep state. Proactive temperature balancing

can almost eliminate large gradients by reducing their frequency to below 2% in average.

Proactive DVS is the second best policy for reducing the on-die variations.

To show the effect of runtime adaptation on the accuracy of our technique, we

run traces of different workloads sequentially and compute the temperature statistics.

As examples, in Table 5.2, we show the results for running the following combinations

of workload with the PTB policy: (A) Web-med followed by Web&DB, (B) Mplayer

followed by Web-med. We show the percentage of hot spots, cycles and gradients for

the individual workloads, and also for the combined workloads for the case with DPM.

We run equal lengths of each benchmark in the combined workloads. We see that the
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Table 5.2: Temperature Results for Combined Workloads (Simulator)
Hot Spots (%) Cycles(%) Gradients(%)

Web-med 2.6 4.5 4.4
Web&DB 4.6 2.9 5.7
Mplayer 0 0.1 0.9

(A) Web-med, Web&DB 3.7 3.7 5.0
(B) MPlayer, Web-med 1.3 2.2 2.7

percentage of hot spots and variations of the combined workload are close to the average

values of running the individual benchmarks. Thus, PTB can adapt to workload changes

without negatively affecting the thermal profile.

We next discuss results collected on the real implementation, where we implement

our technique in the Solaris task dispatcher running on an UltraSPARC T1 system. On

the real implementation, we simulate DPM effects on temperature using HotSpot as

with the simulator, and assume the transition overhead among active and sleep states

has negligible overhead. As the system does not have DVS capabilities, we simulate the

thermal behavior for the default policy (DLB), reactive and proactive migration, and

our policy (PTB), running the benchmark set described previously.

In Table 5.3, we show the distribution of hot spots, comparing various bench-

marks. The combination workloads (A) and (B) are described in Table 5.2 above. We

observe that PTB can reduce the hot spots by 60% in average in comparison to reac-

tive migration, and 20 to 30% with respect to proactive migration. Workloads with low

utilization, such as Mplayer, do not have a significant percentage of high temperatures.

However, for hotter benchmarks PTB achieves dramatic reduction in the occurrence of

hot spots.

Table 5.3: Hot Spots (Real Implementation)
no PM DPM

Workload DLB R-Mig P-Mig PTB DLB R-Mig P-Mig PTB
Web-med 25.7 14.3 6.2 4.8 19.5 12.4 4.8 3.9
Database 8.4 3.5 1.8 1.3 4.6 3.1 1.5 1.2
Web&DB 32.4 15.7 8.1 6.0 27.4 14.7 9.1 5.8
Mplayer 4.9 1.5 0.7 0.9 1.9 2.0 1.5 1.2

(A) 17.2 9.1 4.9 4.1 23.7 14.2 7.9 5.1
(B) 15.6 8.5 4.5 3.7 10.7 8.0 3.7 3.6
AVG 17.4 8.8 4.4 3.5 14.6 9.1 4.8 3.5
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Figure 5.16: Spatial Gradients (Real Implementation)

Figure 5.17: Thermal Cycles - with DPM (Real Implementation)

Figures 5.16 and 5.17 demonstrate the average frequency of spatial gradients and

thermal cycles on our real system implementation. These results agree with the simula-

tion results that, PTB reduces the thermal variations more effectively in comparison to

other proactive and reactive techniques.

As the real implementation on UltraSPARC T1 runs multi-threaded workloads,

we do not use an IPC-based performance metric. Evaluating the performance of multi-

threaded workloads using IPC is prone to inaccuracy [2]. This inaccuracy is due to

the assumption that instructions per program remains constant across all executions,

whereas the instruction path of multi-threaded workloads running on multiple processors

can vary substantially. Thus, to evaluate the performance of the various techniques we

implement, we use the “Load Average” metric, as in Chapter 4. Recall that as load

average grows, performance degrades.

Figure 5.18 demonstrates the performance values for the policies, normalized

relative to the default policy (i.e., DLB). Proactive temperature balancing is able to

achieve better thermal profiles than other policies with less performance cost. This

is because PTB first attempts to migrate the threads waiting in the dispatch queue,

as opposed to stalling and migrating actively running threads. For example, for the

workload Web-med, in the default case, the number of migrations of active threads is 0.004
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Figure 5.18: Normalized Performance (Real Implementation)

per 1000 instructions. Reactive migration (R-Mig) increases this number to 0.009/(1K

instructions). Proactive migration causes fewer number of migrations than R-Mig (0.008/

1K-instructions), as the temperature becomes more stable and the frequency of thermal

emergencies decrease. PTB reduces this number further to 0.0046, which is only slightly

higher than the default case. Note that, the number of migrations of threads that

are waiting in the queue are higher with PTB; however the performance cost of such

migrations are much lower.

Lastly, to show the effect of prediction accuracy on thermal behavior, we imple-

ment the proactive temperature balancing (PTB) using least squares prediction (LSQ)

and history predictor (HISTORY), and compare the results against performing PTB with

ARMA. Figure 5.19 compares the percentage of hot spots observed with all the predic-

tors. For this experiment, we ran the following benchmarks sequentially in the given

order: Web-medium, Web-high, Web&Database and Database. Each benchmark runs

for an equal amount of time. PTB with ARMA achieves a better thermal profile than

PTB with other predictors. This advantage is mainly a result of the longer adaptation

period of the history predictor and least squares predictor when the workload changes.

SPRT detects the change immediately and computes a new ARMA model, whereas the

other predictors go through a training period before starting accurate predictions.

5.6.2 Phase-Based Architecture-Level Simulator

To study the effect of reactive/ proactive thermal management strategies in larger

MPSoCs with higher performance cores, we use the phase-based architecture-level sim-

ulation framework discussed in Chapter 2 in addition to the results we collect on Ul-

traSPARC T1. Following the trend of integrating an increasing number of cores on a

single die, e.g., Sun’s 16-core Rock processor [68] and Intel’s Larrabee with up to 32

cores [56], the CPU we model is a homogeneous 16-core multiprocessor manufactured at
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Figure 5.19: Proactive Balancing Results for Various Predictors

Figure 5.20: Thermal Hot Spots (16-Core System)

65nm. The floorplan for this CPU is provided in Figure 2.2.

We use a subset of the SPEC-based workloads outlined previously in Table 2.4

for this set of experiments. The four benchmarks with 16 and 14 threads we utilize in

this section are shown in Table 5.4. These benchmarks have different intensity of CPU

and memory instructions to create representative traces for a wide range of real-world

applications.

Next, we provide results on how the policies affect the thermal behavior and

performance of the 16-core architecture. Figure 5.20 demonstrates the frequency of hot

spots for R-Mig, P-Mig, DVS and PTB. We use the single-threaded version of the policies

for this part of the experiments.

Unlike the multi-threaded simulations, in Figure 5.20 we see that DVS can reduce

the frequency of hot spots more effectively. However, this comes at a performance

cost, which we investigate later. On our 16-core architecture, we do not observe a

significant amount of large temperature variations. The reason is that our applications

highly utilized the system, unlike the multi-threaded benchmarks with much more variant
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Table 5.4: Workload Characteristics for the Architectural Simulator
Workload Benchmarks
1) 16-CPU mesa*3, bzip2 program*3, crafty*2, eon rushmeier*3,

vortex1*2, sixtrack*3
2) 16-MIX mcf*2, mesa, art110, sixtrack*2, equake, bzip2 program,

eon rushmeier*2, swim, applu, twolf, crafty, apsi, lucas
3) 14-CPU mesa*2, bzip2 program*3, crafty*2, eon rushmeier*2,

vortex1*2, sixtrack*3
4) 14-MIX mcf*2, mesa, art110, sixtrack*2, equake, eon rushmeier*2

swim, twolf, crafty, apsi, lucas

execution profile.

Next, we compare the performance of the temperature management techniques

on the 16-core architecture. As in Chapter 2, we use the Fair Speedup Metric (FS)

from [14] and [61]. Figure 5.21 provides the performance for each workload and policy,

as well as the average case for the 16-core architecture. PTB increases the performance

by over 3% in comparison to P-DVS and by over 5% in comparison to R-DVS. PTB

achieves the same performance as P-Mig, while reducing the hot spots, as described

earlier. Note that, on a single threaded system, the performance benefit of PTB over

P-Mig diminishes, as PTB is a policy that is specifically designed for optimizing multi-

threaded system performance.

Figure 5.21: Performance of Policies on the 16-Core Architecture

We also run simulations where the ARMA predictor is used for predicting IPC

(as described in Section 5.4) on the 16-core system. In this case, the proactive balancing

policy utilizes the IPC predictions (referred to as PTB IPC). In other words, prediction

of high IPC is considered equivalent to a forecast of high power consumption. Therefore,

the high-IPC threads are allocated to cooler locations. In the 16-core (4x4) MPSoC,

the corner cores are typically cooler than other cores on the sides, and the cores in

the center of the die are expected to be the hottest. How to order the cores in terms
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of their susceptibility to hot spots during scheduling has been discussed in Chapter 2.

Note that once the job with the highest IPC is allocated on one of the corner cores, the

second highest-IPC job will be allocated on the opposite corner (across the diagonal)

to minimize the possibility of hot spots—this way the policy avoids clustering the high

power applications on neighboring cores. Thus, as PTB IPC separates the high IPC jobs

from each other and places the lowest power jobs in the central region of the die, it is

effective in reducing the frequency of hot spots.

Figure 5.22 shows the thermal behavior achieved by PTB (temperature-based)

and PTB IPC. The two techniques result in very similar percentages of hot spots,

whereas PTB IPC has higher performance overhead due to more frequent migrations.

PTB IPC reacts to changes in IPC, which are not always reflected to the temperature

profile due to the thermal time constants. The results show that, for a single-threaded

system without temperature sensors, IPC is a reasonable metric to guide thermal man-

agement. Note that for other systems or workloads, PTB IPC may result in higher

percentage of hot spots as it does not consider the thermal interactions of neighboring

units or the recent thermal history.

Figure 5.22: Thermal Results for ARMA IPC Predictor

We observe that in single-threaded MPSoCs, DVS has better results than job

allocation policies (migration or balancing) in terms of reducing the hot spots. However,

considering the performance cost of DVS is higher, it would be beneficial to design hybrid

strategies combining DVS and job scheduling to achieve a more desirable temperature-

performance trade-off. It should also be noted that DVS requires hardware support for

the dynamic management of voltage, whereas the Proactive Temperature Balancing we

propose can be performed by only modifying the OS dispatching policy.
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Previously in this section we have seen that PTB accomplishes to reduce the

frequency of harmful temperature events as much as DVS, while resulting in only a slight

decrease in performance with respect to the default load balancing scheme. In multi-

threaded MPSoCs, proactive management brings significantly more benefits in reducing

hot spots and temperature variations in comparison to applying the equivalent policies

in single-threaded systems. This is due to the fact that multi-threaded environment

provides more opportunities for applying temperature-aware job allocation techniques

without hurting performance.

5.7 Summary

This chapter has presented a proactive temperature management approach for

multiprocessor system-on-chips (MPSoCs). The proposed management technique utilizes

autoregressive moving average (ARMA) modeling to accurately predict future tempera-

ture on each core based solely on the previous measurements. We continuously monitor

how well the ARMA model fits the current temperature using sequential probability

ratio test (SPRT), and update the model if necessary. SPRT guarantees to achieve the

fastest detection of changes in thermal dynamics. This way, the technique can adapt to

changing workload conditions.

The Proactive Temperature Balancing (PTB) method proposed in the chapter

utilizes the thermal forecast for dynamic allocation of threads, and reduces the thermal

hot spots and temperature gradients significantly at very low performance impact. This

technique does not require offline analysis or workload profiling, and achieves more ac-

curate predictions under dynamically variant workload in comparison to methods that

rely on offline analysis or longer training periods.

The chapter also has provided a detailed comparison of our ARMA/SPRT based

approach to other prediction methods (e.g., exponential moving average, history predic-

tor, and least squares predictor), as well as an experimental evaluation of both reactive

and proactive thermal management approaches on single- and multi-threaded MPSoCs.

In the UltraSPARC T1 experiments, we have observed that our technique achieves

60% reduction in hot spot occurrences, 80% reduction in spatial gradients, and 75% re-

duction in thermal cycles on average in comparison to reactive thermal management.

Proactive Temperature Balancing also results in better performance than the other mi-

gration and dynamic voltage/frequency scaling (DVS) policies. When integrated with
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dynamic power management (DPM), PTB has similar chip-level energy savings with

reactive thread migration and load balancing. Even though the DVS policies reduce

the energy consumption of the cores significantly (i.e., by 21% in comparison to the 9%

reduction of PTB), we expect results to be different for system-level energy. The reason

is that DVS considerably increases the execution time. Consequently, the total energy

consumption of the system may not benefit as much from DVS due to the prolonged

execution times of memories and other components.

The text of Chapter 5 is in part a reprint of the material from the papers, Ayse

K. Coskun, Tajana Simunic Rosing, and Kenny Gross, “Utilizing Predictors for Effi-

cient Thermal Management in Multiprocessor SoCs”, in IEEE Transactions on CAD,

2009, and Ayse K. Coskun, Tajana Simunic Rosing and Kenny Gross, “Proactive Tem-

perature Balancing for Low Cost Thermal Management in MPSoCs”, in Proceedings of

International Conference on Computer-Aided Design (ICCAD), 2008. The dissertation

author was the primary researcher and author, and the co-authors involved in the pub-

lications [20] and [15] directed, supervised, and assisted in the research which forms the

basis for that material.



Chapter 6

Summary and Future Work

Directions

As we enter the many-core era, where a single chip may have tens or hundreds of

cores, capability of analyzing and managing temperature, energy, reliability, and perfor-

mance at runtime will become even more important for finding the desirable operating

points. Temperature-induced challenges are already a major concern for current MP-

SoCs, and in many-core systems resolving these challenges at design time will not be

possible due to high cost and design complexity.

Conventional dynamic thermal management methods, such as thread migration

or clock-gating, sacrifice performance to handle thermal emergencies. In addition to dis-

rupting the performance when the demand to the system is the highest, such techniques

do not reduce and balance the temperature as much as possible, but rather guaran-

tee operating below a critical (unsafe) temperature value. However, reliability physics

shows that avoiding thermal variations is as important as eliminating thermal hot spots,

especially at the temperature ranges the current chips operate.

Most commercial multicore systems in the field today are not fully utilized for

the majority of their lifetime. “Free cycles” in the MPSoCs provide opportunities for

performance-efficient thermal management. On the other hand, having idle cycles can

increase the temporal and spatial thermal variations. Therefore, we need to design

management policies with a joint perspective on reliability, energy, and performance.

This thesis provides a framework for fast and accurate analysis of multicore

system reliability, and develops performance-efficient thermal management strategies.

102



103

This chapter summarizes the main contributions of this work and points out the future

research directions.

6.1 Fast Reliability Simulation Over Long Time Frames

An important step in designing efficient thermal management policies is to an-

alyze the effects of design-time and runtime decisions on reliability. Architecture-level

simulators are powerful tools to evaluate performance for new architectures or techniques.

However, such simulators are computationally demanding and they take a long time to

simulate full applications. For this reason, prior work has proposed techniques to select

representative phases of benchmarks for fast performance analysis [57]. However, for

meaningful temperature and reliability evaluation, we need to simulate full benchmarks,

include the possible idle time slots and workload changes in the simulation, and run the

simulation for real execution times equivalent to at least several minutes. Obviously,

achieving this with the conventional architecture-level simulators is prohibitively time

consuming, resulting in a simulation time of days or weeks at best.

This thesis proposes a novel simulation framework following the phase identi-

fication principle, but instead of selecting representative phases, we simulate complete

benchmarks and identify the power consumption and performance characteristics of each

phase. Then, this information for each target benchmark is stored in a database. When

we are simulating multicore management or scheduling policies, the simulator queries

the database with appropriate phase-IDs, collects the power and performance informa-

tion, and uses the power information to compute the temperature and reliability. We

show that our simulation framework is able to evaluate temperature and performance

accurately within reasonable simulation times—i.e., we can simulate minutes of real-time

execution in several hours, as opposed to architecture-level simulators that can take days

or weeks.

We use this framework to analyze a number of power management, thermal

management, and job scheduling policies in a multicore system. The results highlight

the following key conclusions: (1) It is critical to consider thermal variations in addition

to peak temperature effects to have a fair evaluation of the policies. (2) When some

of the cores are idle, which is the case in most multicore systems, it is important to

manage the idle cores without accelerating thermal cycling, which degrades reliability.

(3) Reducing the unnecessary thread movements through intelligent workload allocation
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is highly beneficial for improving both performance and reliability. (4) Understanding

the thermal asymmetries (e.g., due to layout) in a multicore system is necessary to

develop efficient management methods. Even in a homogeneous multicore system, all

cores are not equal in terms of their thermal behavior. (5) Proactive techniques that make

performance or temperature-aware management decisions without waiting for thermal

emergencies help with both reliability and performance. We utilize these guidelines in

designing efficient thermal management policies.

6.2 Performance-Efficient Thermal Management

A significant part of this thesis focuses on developing temperature-aware job

scheduling methods. For a system with a known set of jobs, this thesis formulates and

solves an integer linear program (ILP) that balances and minimizes the temperature on

chip as much as possible. The static solution can be used for embedded systems with

highly predictable workloads, and also for setting a baseline for dynamic management

methods.

In addition to the ILP that minimizes both hot spots and gradients, we also

implement other ILPs with various energy and thermal objectives for comparison. A

significant conclusion of this comparison is that optimizing for energy does not guaran-

tee effective management of hot spots and gradients. Contrarily, energy management

benefits from clustering workloads to achieve longer idle time slots that can be uti-

lized by switching to an ultra-low power saving mode, even though such an allocation is

likely to increase temperature and cause hot spots. Therefore, management policies with

temperature-specific objectives are needed to reduce the adverse affects of temperature.

In most systems workload varies at runtime, making it highly unlikely to suc-

cessfully optimize the job schedule at design-time. This thesis discusses how to manage

temperature dynamically with low-cost online techniques. An important feature of dy-

namic thermal management policies is to have adaptation capability to varying workload,

system, or environmental conditions. We achieve this by using real-time feedback from

the sensors available in the system for all the dynamic techniques we propose.

The thesis discusses two dynamic management solutions in particular: (1) Adaptive-

Random: This policy changes each core’s likeliness to receive workload based on the core’s

recent thermal history. It is able to balance the temperature, reducing both the hot

spots and thermal variations at negligible performance cost. (2) Online Learning: Ther-
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mal/power management policies have different strengths that makes them most efficient

for specific workload conditions. Online Learning enables us to select the best fitting

policy for the current workload by evaluating the thermal behavior and performance of

a given set of “expert” policies. We show that Adaptive-Random and Online Learning

can both significantly improve the thermal profile. Another important conclusion of our

work is that temperature-aware scheduling is orthogonal to other power management

or back-up thermal management strategies. In other words, workload scheduling ap-

proaches such as Adaptive-Random can be integrated with other management methods

to improve the thermal behavior and performance simultaneously.

Previously proposed dynamic thermal management strategies are generally re-

active in nature; that is, they take action after a thermal phenomenon occurs. A novel

contribution of this thesis is proactive thermal management. Instead of waiting for a

core to reach a critical temperature, we show that we can forecast temperature into the

near future, and use this forecast to prevent hot spots and variations proactively. We

use autoregressive moving average (ARMA) model for predicting temperature and show

that the predictions are highly accurate. The main principles behind ARMA are learn-

ing the time-series temperature signal, modeling it with a polynomial equation (using

an automated flow), and then predicting the future temperature using this model. If the

workload dynamics change, we detect the change using a likelihood ratio test, and form

a new predictor model to maintain the accuracy of the forecast.

Proactive Temperature Balancing (PTB) utilizes the forecast to balance the tem-

perature among the cores, or move threads away from cores getting hotter. In this way

we achieve a better thermal profile and also better performance, as we do not have to

take emergency actions such as stalling or slowing down execution. Our proactive man-

agement method does not require any offline analysis when forecasting or managing the

allocation of threads. The results achieved by PTB are remarkable. In the experiments

performed on the UltraSPARC T1, we have observed that our technique achieves 60%

reduction in hot spot occurrences, 80% reduction in spatial gradients and 75% reduction

in thermal cycles in average, in comparison to reactive thermal management, while also

improving performance. We also show how to predict workload for systems without

thermal sensors, and use the workload prediction instead of temperature for proactive

workload scheduling.

Learning the system and workload behavior at runtime and adapting the man-
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agement policy will be even more important for more complex many-core systems. When

the number of cores increase, such self-management capabilities will be critical to enable

the systems to meet the performance demands, while at the same time reducing energy

and keeping a balanced and low thermal profile. Similarly, proactive techniques that

analyze current and future conditions, and act without waiting for unwanted events will

ease the design of reliable systems.

6.3 Future Directions

6.3.1 Temperature Modeling and Management in 3D Systems

Technology scaling has caused the feature sizes to shrink continuously, whereas

interconnects, unlike transistors, have not followed the same trend. In the nanometer

era, a larger portion of the total chip capacitance comes from the interconnects. With

the introduction of vias and repeaters to compensate for the performance loss of the long

wires, the interconnect power consumption rises dramatically [36].

One solution to the rising power consumption in interconnects is 3D stacking [7],

which reduces the length of the communication lines through vertical integration of

circuit blocks. However, 3D stacking substantially increases power density and thermal

resistances due to the placement of computational units on top of each other. High power

densities are already a major concern in 2D circuits [3], and in 3D systems the problem

is even more severe [7, 50]. The 3D stacked systems exacerbate temperature-induced

problems, leading to degraded performance and reliability if not handled properly.

In 3D systems, chip cross-sectional power density increases with the number of

vertically stacked circuit layers [75]. 3D integration complicates the implementation of

dynamic thermal management techniques because of the heat transfer between vertically

adjacent units and the heterogeneous cooling efficiencies of different layers (e.g., the com-

ponents closer to the heat sink cool down easier than those further away). Therefore,

traditional 2D thermal management policies are not sufficient to optimize the tempera-

ture profile of multicore 3D systems.

Our recent work [18] evaluates existing thermal management policies for 2D chips

in terms of their thermal management capabilities in 3D systems. Based on the analysis,

we propose an extension of Adaptive-Random, called Adapt3D, which takes into account

the inherent imbalance in the cooling efficiencies of different layers as well as the location
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of the cores for temperature-aware job scheduling. Such location impact is significant

especially for 3D systems with more than two layers. Adapt3D provides a significant

reduction on the frequency of hot spots, spatial gradients and thermal cycles. In fact,

it achieves similar results to DVS in the optimization of thermal profiles, while the

performance cost is kept to a minimum. When combined with DVS, Adapt3D improves

the reduction of hot spots by an additional 20%-40% in comparison to performing only

DVS, and reduces the performance cost.

In a recent design space exploration of the cost and temperature of 3D sys-

tems [16], we show that as technology scaling continues to 45nm and below, it may not

be feasible to stack many layers in 3D systems with conventional cooling. This result

is due to both the expected increase in power density in new technology nodes and the

adverse thermal effects of stacking. 3D integration for many-core systems in 45nm and

below will likely require more efficient cooling infrastructures, such as liquid cooling. An

open research area in this field is to develop thermal modeling and management methods

for systems with such novel cooling infrastructures.

6.3.2 Managing Parallel Workloads in Multicore Architectures

With the design trend moving to many-core systems, the programming paradigm

also shifts to parallel applications to be able to exploit the benefits of multicore design

more effectively. This thesis has investigated both single- and multi-threaded applica-

tions, but parallel applications are beyond the focus of our work.

For parallel applications with limited inter-thread interactions, the proposed

methods would still be applicable. For example, recent research on multicore caching has

focused on reducing those interactions [33], and in the extreme, such techniques could

be configured to make the shared caches act as private caches. However, for any parallel

applications requiring a considerable amount of time devoted to synchronization, the

management policies would not be able to capture and effectively manage the parallel

program behavior.

Basic guidelines derived in this work will continue to be useful for designing

management approaches for parallel applications, such as: (1) Paying attention to the

thermal asymmetries of the MPSoC, (2) Reducing the number of unnecessary thread

movements, and (3) Applying adaptive and proactive techniques that can learn the sys-

tem/workload conditions and make intellectual decisions. One of the open areas in par-
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allel programming is analyzing which performance or design-related parameters (i.e., in

addition to physical variables such as temperature) would be relevant for understanding

the application behavior and for guiding the dynamic management policies.

The text of Section 6.3.1 is in part a reprint of the material from the paper, Ayse

K. Coskun, Tajana Simunic Rosing, Jose Ayala, David Atienza and Yusuf Leblebici,

“Dynamic Thermal Management in 3D Multicore Architectures”, in Proceedings of De-

sign Automation and Test in Europe (DATE), 2009. The dissertation author was the

primary researcher and author, and the co-authors involved in the publication [18] di-

rected, supervised, and assisted in the research which forms the basis for that material.

The text of Section 6.3.1 is in part a reprint of the material from the paper,

Ayse K. Coskun, Andrew B. Kahng and Tajana Simunic Rosing, “Temperature- and

Cost-Aware Design of 3D Multiprocessor Architectures”, in Proceedings of Euromicro

Conference on Digital System Design (DSD), 2009. The dissertation author was the pri-

mary researcher and author, and the co-authors involved in the publication [16] directed,

supervised, and assisted in the research which forms the basis for that material.
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