
Utilizing Predictors for Efficient Thermal
Management

in Multiprocessor SoCs
Ayse Kivilcim Coskun† Tajana Simunic Rosing† Kenny C. Gross‡
†University of California, San Diego ‡Sun Microsystems, San Diego

Abstract

Conventional thermal management techniques are reactive in nature; that is, they take action after temperature reaches a
predetermined threshold value. Such approaches do not always minimize and balance the temperature on the chip, and furthermore,
control temperature at a noticeable performance cost. In this work, we investigate how to use predictors for forecasting future
temperature and workload dynamics, and propose proactive thermal management techniques for multiprocessor system-on-chips
(MPSoCs). The predictors we study include autoregressive moving average (ARMA) modeling and look-up table based predictors.
We implement several reactive and predictive thermal management techniques, and provide extensive evaluations on an UltraSPARC
T1 system as well as on an architecture-level simulator. By means of dynamic prediction, proactive methods can achieve
significantly better thermal profiles in comparison to their reactive counterparts, and the performance cost associated with dynamic
thermal management can be mostly avoided.



1

Utilizing Predictors for Efficient Thermal
Management

in Multiprocessor SoCs

I. INTRODUCTION

Chip power consumption is expected to increase with each
new generation of computers while the geometries continue
to shrink, causing higher power densities, thermal hot spots
and large temperature variations on the die. Multiprocessor
system-on-chips (MPSoCs) have enabled the designers to
reduce the complexity and power consumption of CPU cores
as MPSoCs’ inherent thread level parallelism can achieve
higher performance per Watt. However, as the performance
demands grow, the number of cores integrated on a single die
increase. In this work, we show that by performing thermal
management and job allocation on an MPSoC proactively,
thermal emergencies and temperature induced problems can
be avoided. The proactive thermal management techniques
we propose utilize predictors for forecasting the thermal or
workload dynamics on cores, and based on the predictions,
they are able to act on thermal hot spots and temperature
variations ahead of time.

High temperatures and large temperature variations cause
a number of challenges for MPSoCs. Cooling costs continue
to increase following the trend in power density. In addition
to thermal hot spots, spatial thermal gradients on the die
affect the cooling cost as large gradients decrease cooling
efficiency. As leakage is exponentially related to temperature,
increasing temperatures increase leakage power. Temperature
also has a negative impact on performance since the operating
speed of devices decreases with high temperatures. Finally,
thermal hot spots and large temporal and spatial temperature
gradients adversely affect reliability. Failure mechanisms such
as electromigration, stress migration, and dielectric break-
down, which cause permanent device failures, are exponen-
tially dependent on temperature [15]. Large spatial temperature
gradients accelerate the parametric reliability problems caused
by negative bias temperature instability (NBTI) and hot car-
rier injection (HCI) [17]. Temporal temperature fluctuations,
i.e. high magnitude and frequency of thermal cycles, cause
package fatigue and plastic deformations [15].

Previously proposed thermal management techniques typ-
ically focus on maintaining the temperature below critical
levels. Methods such as clock gating and temperature-triggered
frequency scaling [29] prevent hot spots when they are trig-
gered by a temperature threshold. Obviously, such techniques
come at a performance cost. In multiprocessor domain, tech-
niques such as thread migration and applying PID control for
keeping the temperature stable [8] have been introduced to
achieve a safe die temperature at a reduced performance im-
pact. Still, such techniques are reactive in nature; that is, they

take action after temperature reaches a pre-determined level.
Furthermore, conventional dynamic thermal management tech-
niques do not focus on balancing the temperature, and as a
result, they can create large spatial variations in temperature
or thermal cycles. Especially in systems with dynamic power
management (DPM) that turn off cores, reliability degradation
can be accelerated because of the cycles created by workload
rate changes and power management decisions [25]. Even
though some dynamic temperature aware MPSoC scheduling
techniques (e.g. [7]) are able to reduce thermal variations as
well as hot spots in comparison to conventional thermal or
power management, such techniques are reactive as well, and
can be significantly improved by the dynamic forecasting of
system behavior.

In this work, we design and evaluate proactive thermal
management methods for MPSoCs to prevent thermal prob-
lems at negligible performance cost. In our experiments, we
have seen that as the workload goes through stationary phases,
temperature can be estimated accurately by regressing the pre-
vious measurements. Thus, we utilize autoregressive moving
average (ARMA) modeling for estimating future temperature
accurately based on temperature measurements. We compare
ARMA predictor against other predictors (such as exponential
averaging, recursive least squares [39] and history predictor)
in terms of their forecasting accuracy. To address systems
without temperature sensors, we utilize predictors to estimate
future workload dynamics such as core utilization and IPC,
and demonstrate the differences with temperature prediction.

Since our goal is to proactively allocate workload, it is
essential to detect the changes in workload and temperature
dynamics as early as possible, and adapt the ARMA model
if necessary. For detecting these changes at runtime, we use
sequential probability ratio test (SPRT), which provides the
earliest possible detection of variations in time series sig-
nals [37]. Early detection of variations enable us to update the
ARMA model for the current thermal dynamics immediately,
and avoid inaccuracy.

Through utilizing the forecast for temperature or workload
dynamics, the proactive temperature balancing technique we
propose allocates incoming jobs to cores to minimize and
balance the temperature on the die. To illustrate the advantages
of our technique, we design and evaluate several reactive and
predictive thermal management strategies for MPSoCS. We
have performed experiments both on an UltraSPARC T1 [20],
and also on an architecture-level simulator. We use real life
workloads as measured by the Continuous System Telemetry
Harness (CSTH) [10]. Proactive thermal management reduces
the frequency of hot spots and large gradients significantly in



comparison to reactive thermal management strategies, while
minimizing the impact on performance.

To summarize, the contributions of this work are:
• We demonstrate how to use various predictors (ARMA,

history predictor and exponential averaging) to forecast
future temperature and workload dynamics, and provide
an extensive comparison of their prediction accuracy,
overhead and adaptation capabilities.

• We utilize sequential probability ratio test (SPRT) to
monitor temperature dynamics at runtime and adapt the
ARMA predictor if the workload dynamics vary. We
show that SPRT provides the fastest detection of changes
in time series data.

• We propose a new proactive job allocation policy, which
balances the workload among cores in an MPSoC based
on the predicted temperature. The amount of balancing is
proportional to the spatial temperature difference between
cores, and we bound the number of thread re-allocations
to reduce the performance overhead. In comparison to the
state-of-art allocation methods used in modern OSes, our
technique’s performance overhead is negligible.

• We evaluate our proactive thermal management policy on
an UltraSPARC T1 system and also on an architecture
level simulator.

We start with a discussion of the related work in Section II.
In Section III-A we provide the details of the ARMA based
prediction method, and the online adaptation framework. We
compare the ARMA predictor with other prediction methods
in Section IV. Section V demonstrates how we can uti-
lize online forecasting for predicting workload dynamics for
systems without a sufficient number of thermal sensors. In
Section VI, we explain all the thermal management techniques
we study in this work, including our proactive MPSoC thermal
management technique. Section VII provides the experimental
methodology and results, and we conclude in Section VIII.

II. RELATED WORK

In this section, we briefly discuss the techniques for multi-
core scheduling and thermal management. We also briefly in-
vestigate previous work on energy management, as the energy
consumption affects the temperature significantly. In multi-
core systems, optimizing power-aware scheduling with timing
and performance constraints introduces high complexity, as
multicore scheduling is an NP-complete problem. A power
management strategy for mission critical systems containing
heterogeneous devices is proposed in [21]. A static schedul-
ing method optimizing concurrent communication and task
scheduling for heterogeneous network-on-chips is proposed
in [12]. Rong et al. utilize integer linear programming for
finding the optimal voltage schedule and task ordering for a
system with a single core and peripheral devices [24]. In [26],
MPSoC scheduling problem is solved with the objectives of
minimizing the data transfer on the bus and guaranteeing
deadlines for the average case. Minimizing energy on MPSoCs
using DVS has been formulated using a two-phase framework
in [40]. In [23], load balancing is combined with low power
scheduling to reduce temperature in VLIW processors.

As power-aware policies are not always sufficient to prevent
temperature induced problems, thermal modeling and man-
agement methods have been proposed. HotSpot [29] is an
automated thermal model, which calculates transient temper-
ature response given the physical characteristics and power
consumption of units on the die. A fast thermal emulation
framework for FPGAs is introduced in [3], which reduces
the simulation time considerably while maintaining accuracy.
Static methods for thermal and reliability management are
based on thermal characterization at design time. Including
temperature as a constraint in the co-synthesis framework
and in task allocation for platform-based system design is
introduced in [13]. RAMP [32] provides a reliability model
at architecture level for temperature related failures, and
optimizes the architectural configuration and power/thermal
management policies for reliable design. In [25], it is shown
that aggressive power management can adversely affect re-
liability due to fast thermal cycles, and the authors propose
an optimization method for MPSoCs that saves power while
meeting reliability constraints. A HW-SW emulation frame-
work for reliability analysis is proposed in [2], a reliability-
aware register assignment policy is introduced as a case study.

Dynamic thermal management controls over-heating by
keeping the temperature below a critical threshold. Compu-
tation migration and fetch toggling are examples of such
techniques [29]. Heat-and-Run performs temperature-aware
thread assignment and migration for multicore multithreaded
systems [9]. Kumar et al. propose a hybrid method that coor-
dinates clock gating and software thermal management tech-
niques such as temperature-aware priority management [18].
The multicore thermal management method introduced in [8]
combines distributed DVS with process migration. In [33], dy-
namic MPSoC temperature-aware scheduling methods, which
take core temperatures into account while making decisions,
are proposed. The temperature-aware task scheduling method
proposed in [7] achieves better thermal profiles than conven-
tional thermal management techniques without introducing a
noticeable impact on performance.

Our goal in this work is to introduce a proactive temper-
ature management method for MPSoCs, which can adapt to
dynamic changes in system behavior. The key difference from
reactive management is that, as opposed to taking action after
temperature reaches a certain level, our technique estimates the
hot spots and temperature variations in advance, and modifies
the job allocation to minimize temperature’s adverse effects.
For systems without temperature measurement hardware, we
show how to predict workload dynamics and how to utilize
proactive management for such cases. We also provide a
comprehensive comparison of various reactive and proactive
thermal management techniques in not only simulation but
also on a real system implementation. In comparison to
other prediction methods using history tables (as in [14]),
our ARMA-based predictor can achieve much faster response
to changing dynamics and also significantly increases the
accuracy of predictions. The automated method we introduce
for adaptation and predictor model computation provides a
quicker and more robust prediction framework with respect to
performing a recursive least squares fit as proposed in [39].



�

�����������	
���	����	�
�����	�������	

���������	������	

��������	����	�����	
�����������	

������	�����	��	�������� 	

�����������	��	����	����������	���
	���	���	�����	

��
�������

�����������!�"���	����������	��	#����	

Fig. 1. Flow Chart of the Proposed Technique

III. PREDICTION WITH AUTOREGRESSIVE MOVING
AVERAGE (ARMA) MODELS

A. ARMA Predictors

In this section, we provide an overview of our proactive
temperature management approach, and explain the method-
ology for accurate temperature prediction at runtime. Proactive
management adjusts the workload distribution on an MPSoC
using the predictions. This way, we prevent thermal problems
before they occur, as opposed to reacting to hot spots and vari-
ations after they appear on the system. Hence, we can reduce
the temperature induced problems much more effectively at
negligible performance cost.

Figure 1 provides an overview of our technique. Based on
the temperature observed through thermal sensors, we predict
temperature tn steps into the future using an autoregressive
moving average (ARMA) model. Utilizing these predictions,
the scheduler then allocates the threads to cores to balance
the temperature distribution across the die. The ARMA model
utilized for temperature forecasting is derived based on a
temperature trace representative of the thermal characteristics
of the current workload. During execution, the workload dy-
namics might change and the ARMA model may no longer be
able to predict accurately. To provide runtime adaptation, we
monitor the workload through the temperature measurements,
validate the ARMA model and update the model if needed.
The online adaptation method is explained in Section III-B.

Autoregressive moving average (ARMA) models are math-
ematical models of autocorrelation in a time series. They are
widely used in many fields for understanding the physical
system or forecasting the behavior of a time series from past
values alone. In our work, we use ARMA models to predict
future temperature of cores using the observed temperature
values in the past. ARMA model assumes the modeled process
is a stationary stochastic process, and that there is serial
correlation in the data. In a stationary process, the probability
distribution does not change over time, and the mean and
variance are stable. Based on the observation that workload
characteristics are correlated during short time windows, and
that temperature changes slowly due to thermal time constants,
we assume the underlying data for the ARMA model is
stationary. We adapt the model when the ARMA model no
longer fits the workload. Thus, the stationary assumption does
not introduce inaccuracy.

An ARMA model is described by Equation 1. In the
equation, yt is the value of the series at time t (i.e., temperature
at time t), ai is the lag-i autoregressive coefficient, ci is the

moving average coefficient and et is called the noise, error
or the residual. The residuals are assumed to be random in
time (i.e. not autocorrelated), and normally distributed. p and q
represent the orders of the autoregressive (AR) and the moving
average (MA) parts of the model, respectively. For example,
a first order ARMA model is written as: yt + (a1 yt−1) =
et + (c1 et−1).

yt +

p∑

i=1

(ai yt−i) = et +

q∑

i=1

(ci et−i) (1)

ARMA modeling has the following steps: 1)Identification,
which consists of specifying the order of the model; 2)
Estimation, which is computing the coefficients of the model
(generally performed by software with little user interaction);
3) Checking the Model, where it is ensured that the residuals
of the model are random, and that the estimated parameters
are statistically significant.
Identification and Estimation:

During identification, we use an automated trial-and-error
strategy. We start by fitting the training data with the simplest
model, i.e. ARMA(1,0), measure the “goodness-of-fit”, and
increase the order of the model if the desired fit is not achieved.
At each iteration, for fitting the data with the current order
of ARMA model, coefficients are computed using a least-
squares fit. Other methods could also be utilized for coefficient
estimation.

We use Final Prediction Error (FPE) to evaluate the
goodness-of-fit of the models. Once the FPE is below a
predetermined threshold, we halt the trial-and-error loop. FPE
is a function of the residuals and the number of estimated
parameters. As FPE takes the number of estimated parameters
into account, it compensates for the artificial improvement in
fit that could come from increasing the order of the model. The
FPE is given in Equation 2, where V is the variance of model
residuals, N is the length of the time series, and n = p + q is
the number of estimated parameters in the model.

FPE =
1 + n/N

1 − n/N
· V (2)

Checking the Model:
For checking that the model residuals are random, or

uncorrelated in time, we look at the autocorrelation function
(ACF). Autocorrelation is the cross-correlation of a signal with
itself, and is useful for finding repeating patterns in a signal
if there are any. If model residuals are random, the ACF of
all residuals (except for lag zero) should fluctuate close to
zero. The residuals are assumed as random if the ACF for
the majority of the trace is in between the pre-determined
confidence intervals.

As an example, we have applied the ARMA prediction
methodology to a sample temperature trace. The trace is
obtained through HotSpot [29] for a web server workload
running on a system with a thermal management policy that
swaps workload among hot and cold cores periodically, caus-
ing thermal cycles. We show a part of the trace in in Figure 2,
while the total length of the example trace is 200 samples long,
sampled at every 100 ms. Using the first 150 samples of the



Fig. 2. Temperature Prediction

Fig. 3. Autocorrelation Function of the Residuals

data, we formed ARMA models with FPE << 1. It should
be noted that much shorter training sets (i.e., 20-50 samples)
are sufficient for forming an ARMA model with the desired
fit for most real-life workload traces we experiment with.

We saved the last 50 samples of the data to test our
prediction method. We used the ARMA model to predict 5
steps (i.e. 500 ms) into the future. The prediction results
are demonstrated in Figure 2. The prediction matches the
observed values closely. For temperature curves with less
temporal variation, designing an accurate ARMA predictor is
even easier.

Figure 3 shows the ACF of the residuals for the model in
Figure 2. The ACF of residuals fluctuate around zero, showing
that the residuals of the model are random. The horizontal
lines in the figure show the 95% confidence intervals. In our
automated methodology, we observe percentage of ACF values
within the 95% confidence interval. If most of the ACF values
fall within the 95% range, we declare that the residuals are
random.

Computing the ARMA model has relatively low overhead.
For example, in Matlab, an ARMA(p,0) model with no
moving-average component can be computed in less than
150ms, and an ARMA(p,q) model up to 5th order can be com-
puted in less than 300ms. The computation and the validation
of the model together takes between 250 and 500ms. Note that
implementing the ARMA process in C/C++ and optimizing the
source code would significantly reduce the overhead.

B. Online Adaptation

ARMA models are accurate predictors when the time series
data are stationary. Since the workload dynamics vary at
runtime, the temperature characteristics may diverge from
the training data we used for forming the initial ARMA
model. In order to adapt to changes in the workload, we
propose monitoring the temperature dynamics and validating
the ARMA model. When we determine the current workload
deviates from the initial assumptions used for forming the
ARMA model, we update the model on the fly.

We use Sequential Probability Ratio Test (SPRT) to detect
changes over time in statistical characteristics of the residual
signals. SPRT test on the residuals provides the earliest possi-
ble indication of anomalies [37], where as the anomaly in this
case is defined as the residuals drifting from their expected
distribution. Instead of using a simple threshold value for
detection (e.g., setting a threshold for the standard deviation
of the prediction error), SPRT performs statistical hypothesis
tests on the mean and variance of the residuals. These tests
are conducted on the basis of user specified false-alarm and
missed-alarm probabilities of the detection process, allowing
the user to control the likelihood of the missed detection of
residual drifts or false alarms.

To perform online validation, we maintain a history window
of temperature on each core. The window length is empiri-
cally selected based on thermal time constants and workload
characteristics. To monitor the prediction capabilities of the
model at runtime, for each new data sample we compute the
residual by differencing the predicted data from the observed
data. Our goal at runtime is to detect if there is a drift in
residuals, where a drift refers to the mean of residuals moving
away from zero (Recall that for an ARMA model with good
prediction capabilities, the residuals should fluctuate close to
zero). Detecting the drift quickly is important for maintaining
the accuracy of the predictor, as such a drift shows that the
model no longer fits the current temperature dynamics.

Specifically, we declare a drift when the sequence of ob-
served residuals appears to be distributed about mean +M
or −M instead of around 0, where M is our preassigned
system disturbance magnitude. A typical value for M would
be (3 ∗

√
V ), where V is the variance of the residuals in the

training data set.
At time instant t, let us define the residuals by Equation 3,

where T
′

i
(t) is the prediction and Ti(t) is the actual measure-

ment.

R(t) = Ti(t) − Ti

′

(t) (3)

SPRT enables us to decide between the following two
hypothesis:

1) H1: R(t) is drawn from a probability density function
(pdf) with mean M and variance σ2.

2) H2: R(t) is drawn from a pdf with mean 0 and variance
σ2.

In other words, we detect that there is a drift if SPRT decides
on H1. If H1 or H2 is true, we wish to decide on the correct
hypothesis with probability (1 − β) or (1 − α), respectively,
where α and β are false alarm and missed alarm probabilities.
Small values such as 0.01 or 0.001 are used for α and β.

SPRT is applied to detect the drift (i.e. anomaly) in residuals
by computing the log likelihood ratio in Equation 4.

LRN = ln
p[R(1), R(2), ..., R(N)/H1]

p[R(1), R(2), ..., R(N)/H2]
(4)

where p(./H2) is the joint density function assuming no
fault, and p(./H1) is the joint density function assuming fault,
and N is the number of observations. If LRN ≥ B we accept



Fig. 4. Online Detection of Variations in Thermal Characteristics

H1, meaning that the residuals show significant change from
the assumptions; and if LRN ≤ A we accept H2. If one of
the hypothesis is accepted, the SPRT computation is restarted
from the current sample. Otherwise (i.e. A < LRN < B) we
continue the measurements. The bounds A and B are defined
as in Equation 5.

A = ln(
β

1 − α
) B = ln(

1 − β)

α
) (5)

Following the derivation provided in [11], the value of
SPRT can be represented as in Equation 6, and the bounds
demonstrated in Equation 5 to make decisions. In the equation,
M is the system disturbance magnitude as defined previously,
and σ2 is the variance of the residuals in the training set.

SPRT =
M

σ2

N∑

i=1

(R(i) −
M

2
) (6)

Note that M and σ2 values are computed at the beginning,
and then fixed until the ARMA model is updated. So at
runtime, during each sampling interval, the SPRT equation
effectively performs one addition and one multiplication. Be-
cause of the simplicity of computation shown in Equation 6,
the cost of computing SPRT after each observation is very low
(negligible in our measurements). Moreover, as shown in [37],
there is no other procedure that has the same error probabilities
with shorter average sampling time than SPRT. Thus, we have
picked SPRT as the online monitoring tool in this work due
to both its guarantee for fast detection of changes and low
computation overhead.

In Figure 4, we demonstrate a case where the temperature
dynamics change, and the SPRT detects this change imme-
diately (see t = 4.5s in the figure). A and B correspond to
the SPRT thresholds of ±6.9068 for α and β values of 0.001.
When SPRT >= 6.9068 (i.e., LRN ≥ B), we declare that
the residuals have a drift from the training data, initiating the
computation of a new ARMA model.

We also compared SPRT detection to monitoring the stan-
dard deviation of the residuals. The prediction capability of
an ARMA model can be examined by computing the standard
deviation of the prediction error (i.e. difference between actual
measurements and predictions). If the dynamic characteristics
of the temperature time series can be well represented by the
model, the standard deviation of the associated prediction error
should be relatively small. It is generally recommended to keep

� ��� ��� ��� ��� ��� ��� ��� 	��
	�

	�
�

	�

	�
�

	�

	�
�

��
����

�
�


�
�
��
��
��
��
�
�

�

�

��
�


�������

����
���


Fig. 5. Comparison of Predictors - Stable Temperature

� � �� �� �� ��
��

��

��

��

��

��

��

��

	
��
��

�
�
�
�
�
�

��
��
��
�
�

�

�

��
�����

����
��������

����
��������


��


Fig. 6. Comparison of Predictors - Thermal Cycling

the standard deviation of prediction errors less than 10% of
the standard deviation of the original signal. This condition
implies that the ARMA model is able to capture more than
90% of the underlying dynamics of the system. Using a 10%
threshold, the standard deviation method can quickly detect the
change in temperature dynamics in the case of abrupt changes
such as in Figure 4. However, for gradual shift in thermal
dynamics, it may fail to capture the drift immediately. SPRT
guarantees the fastest detection for the given false and missed
alarm probabilities.

IV. COMPARING PREDICTORS

In this section, we compare ARMA with various predictors
in terms of their prediction and adaptation capabilities, and
their computation and hardware overhead.

A. Exponential Averaging

In Figures 5 and 6, we compare ARMA prediction with
exponential average prediction. The exponential average pre-
dictor estimates the current value of the series as: yt =
αTt−1 + (1 − α)yt−1, where yt is the predicted temperature
(i.e. exponential average) at time t, Tt−1 is the measured
temperature at time t-1, and α is a constant (0 ≤ α ≤ 1).
In these comparisons, we used α = 0.9 and α = 0.5.

When the change in temperature is slow and we have
relatively stable temperature, exponential average predictor
works well, providing almost the same values as the ARMA
predictor in Figure 5. However, when there are rapid temper-
ature changes, such as thermal cycling, exponential average
predictor performs poorly, such as in Figure 6. In addition,
even though exponential average predictors with α = 0.9 and
α = 0.5 perform very similarly in the first example, there is
significant effect of the α value in the thermal cycling case,
which would require the user to determine α accordingly.
Contrarily, ARMA predictor has an automated process of



Fig. 7. Predicting Further Ahead with Exponential Averaging

forming the model with high accuracy. The overheads of
evaluating the ARMA or the exponential average model at
runtime are very similar, as both models only compute a
polynomial equation for each sample.

Another disadvantage of the exponential predictor is that,
when the goal is forecasting several time steps into the future,
the prediction accuracy degrades significantly. In Figure 7,
we demonstrate how the accuracy of ARMA compares to
exponential averaging for forecasting 10 and 20 time steps
ahead. For this experiment, we used a 200 sample temperature
trace for a CPU bound SPEC 2000 suite workload. In this
trace temperature was changing within a 1.5oC range. The
plot shows the difference of error (in oC) in comparison to that
predictor’s error when predicting 5 steps into the future. While
ARMA predictor’s accuracy is stable, the error margin of the
exponential predictor decreases significantly when predicting
ahead.

B. History Predictor

In Section III, we showed that it is possible to predict future
temperature accurately based on the previous thermal measure-
ments. Following this insight, we built a history predictor. A
history predictor is similar to a global branch predictor, and
it consists of a shift register that tracks the last few observed
values. The length of the history is specified by shift register
depth. At each sampling period, the register is updated with the
last measurement. This updated shift register content is used
to index a history table (HT). The HT holds several previously
observed thermal patterns, with their corresponding next value
predictions based on previous experience. Shift register index
is associatively compared to the stored valid HT tags, and if a
match is found, the corresponding HT prediction is used as the
final prediction. An invalid entry is kept for each tag to track
the ages of different HT tags for a least recently used (LRU)
replacement policy when the HT is full. A -1 entry denotes
the corresponding tag contents and prediction are not valid.
This predictor is similar to the Global History Predictor used
for predicting power phases in [14]. When the shift register
does not hit the history, the predictor behaves like a last-value
predictor, and assumes the future temperature value will be
the same as the last observed temperature.

One issue with the history predictor is regarding the decimal
places of the temperature. We have performed experiments

� ��� ��� ��� ��� ���
��

����

��

����

��

����

��

����

	
��
��

�
�
�
�
�
�

��
��
��
�
�

�

�

�����������������

��
�����

 !� 

Fig. 9. Comparison of ARMA and History Predictor

where we stored temperature readings with one or two dec-
imal places. However, even for relatively stable temperature
profiles, obtaining a reasonable percentage of hits on the HT
was not possible when we considered the decimal places.
In addition, even when we maintain one decimal digit, the
required HT size for predicting with high accuracy becomes
significantly large (i.e., we would have to have new entries in
the table to accommodate even slight changes in the decimal
digit). For this reason, for the history predictor we round the
temperature measurements to nearest integer values, and only
predict temperature in integers.

In Figures 8 a and b, we show the accuracy for various
history table (HT) sizes and history lengths. In this experi-
ment, we have used the same temperature trace we used for
Figure 7, and predicted 5 steps ahead. In (a), we compare
the standard deviation of error and mean error (in oC) for
the prediction, where error is the difference of measured trace
and predictions. For this workload, we observe that increasing
the history length does not bring much benefit; however,
increasing the table size reduces the magnitude of errors. In
(b), we demonstrate the correct prediction ratio (with respect
to the integer temperature trace) and the hit rate for the history
table. While increasing the history length reduces the hit rate
as expected, the accuracy does not get affected by this. This
is due to the fact that for stable profiles, last value predictor
compensates well when the history predictor cannot predict.
Another outcome to note is that, increasing the table size
over 100 does not bring additional benefits, which motivates
using a small-size table to achieve enough accuracy with lower
hardware overhead.

Figure 9 compares the ARMA predictor and the history
predictor (HP with HT size of 100 and history length of 5)
for predicting 5 steps (i.e., 500ms). For repeating patterns of
workload, such as several applications being time-multiplexed
on a core, and stable thermal profiles, the history predictor
can predict with high accuracy and does not require a training
phase (except for the first time an application is run), provided
that the history table is large enough to maintain the entries
associated with all of the applications.

C. Recursive Least Squares

Another temperature prediction method recently utilized
in [39] is using recursive least squares. In Figure 10, we
compare the prediction accuracy of the least square approach
versus the ARMA predictor. We trained both predictors with
50 samples of the temperature data, and started the predictions



Fig. 8. Accuracy-Size Trade-Off for the History Predictor

� �� �� �� �� ��� ��� ��� ��� ���
��

��

��

��

��

�	

��

�


��
����

�
�


�
�
��
��
��
��
�
�

�

�


�������

��
�

����


������

������

Fig. 10. Comparison of ARMA and Recursive Least Squares Predictor

afterwards. As we observe in the figure, while the least square
predictor can predict with similar accuracy for the prediction
distance of 5 (shown as Lsq-5), the accuracy drops rapidly
when we increase the time window we are forecasting into
the future (tn) to 10 steps. This trend continues even more
dramatically as the forecasting distance is increased.

Note that both of the above methods can predict the data
in the history window they are trained with with any desired
degree of accuracy. If one keeps adding enough terms, it is
even possible to fit through every single observation in the
history window. Typically we would not want to do that,
however, because typically there is random measurement noise
on the time series, and there is no value to learning the noise.
Thus, the differentiating point of least squares and ARMA
arises when we are forecasting further into the future. As
we increase tn, least squares does significantly worse than
ARMA. The reason is that as soon as you predict more than
a few time steps into the future, the term with the biggest
exponent in the least squares fitting function dominates and
the prediction accuracy degrades from that point onwards.

Another important advantage of ARMA in comparison to
least squares is in overhead. Recursive least squares method
continuously updates the coefficients of the model as new data
arrives (otherwise accuracy drops), whereas the SPRT support
enables us to update the model only when it is necessary.
In addition, the length of the polynomial in the least squares
estimation needs to be set manually, which can unnecessarily
increase computation overhead if set to a larger value than
needed. On the other hand, we use an automated and fast
trial-and-error strategy for automatically setting the number
of terms in the ARMA model.

V. WORKLOAD PREDICTION

The predictors discussed previously assume a telemetry
infrastructure on the chip, which provides temperature mea-
surements at the desired granularity. In a number of systems,
we may not have a thermal sensor for each core, or sensors
may degrade and fail during the system lifetime. To apply a
proactive management strategy for such cases, in this section
we discuss how the workload parameters can be predicted.

For workload prediction, we demonstrate prediction of
two parameters: 1) Core utilization, 2) IPC of committed
instructions. Core utilization is a good measure of how busy
the core is and hence provides an insight for the power
consumption, especially in multi-threaded systems, where we
may not have access to measuring per-thread IPC. For single
threaded systems, IPC tends to have a strong correlation with
the power consumption.

In Figures 11 and 12, we show traces of core utilization
and committed IPC, respectively, and the prediction results
obtained by ARMA. The core utilization results are collected
for medium utilized web application on a multithreaded sys-
tem, the IPC trace belongs to bzip running on a single-
threaded architecture. Both predictors were trained using 150
samples, and prediction was performed for the following 50
samples. One issue to note is that, the workload parameters
may have short term spikes due to changing application
characteristics, while these do not typically get reflected in the
temperature response due to the thermal time constants. This
is especially the case for core utilization. To achieve more
accurate prediction for core utilization, we applied a smooth-
ing function (i.e. moving averaging) to the workload traces
before performing prediction. The smoothed-out utilization
and prediction signals are demonstrated with the subscripts
sm in Figure 11. We observe that the accuracy of prediction
is significantly lower than temperature prediction. However,
when the data is smoothed-out first, the predictor works more
accurately.

Even though bzip is a highly IPC-variant benchmark, Fig-
ure 12 shows that IPC can be predicted quite accurately. Note
that applications typically have different phases of perfor-
mance, and SPRT would detect such a change immediately.
The substantial accuracy difference between predicting IPC
and core utilization is mainly due to the difference between
observing a single-thread and observing multiple threads at
the same time. The core utilization results are collected on
a multi-threaded system, where the core is running a set of
threads rather than a single application.



��� ��� ��� ��� ��� ��� ��� ��� ��� ���
��

��

��

��

��

��

	
��
��
�

�
�
��
��
��

��


��
�
�
��
�
�

�

�

���������
��

��
�����
��

���������

��
�����

Fig. 11. Prediction of Core Utilization

��� ��� ��� ��� ��� ��� ��� ��� ��� ���
�	�

�	


�	�

�	�

�

�	�

�	


�	�

��
�����

�
�




��
��
�
��
�
�

�

�

���������


�������

Fig. 12. Prediction of Committed IPC

VI. PROACTIVE TEMPERATURE MANAGEMENT

We perform an extensive study of various thermal man-
agement techniques for MPSoCs, and propose a proactive
temperature-aware job allocation technique. In this section,
we discuss the details of all the techniques we implemented.
We consider both single-threaded and multi-threaded systems
while studying thermal management policies. In the system
model for the multithreaded systems, each core is associated
with a dispatching queue, which holds the threads allocated to
that core. This is the typical abstraction used in modern mul-
ticore OS schedulers, which are based on multilevel queuing.
The dispatcher allocates the incoming threads to queues based
on the current policy. Many temperature management methods
rely on dynamic temperature information acquired from the
system, so we assume temperature readings are available for
each core through thermal sensors. The management policies
observe the system characteristics at regular intervals (i.e.
ticks) to make decisions.

The default policy we evaluate (i.e. default policy in modern
OSes, e.g. Solaris) is Dynamic Load Balancing, which
assigns an incoming thread to the core it ran previously, if the
thread ran recently. If the thread has not run recently, then the
dispatcher assigns it to the core that has the lowest priority
thread in the queue. The dispatcher first tries to assign the
thread based on locality (e.g. if several cores are sharing a
cache or on the same chip, etc.) if possible. At runtime, if
there is significant imbalance among the queues, the threads
are migrated to have more balanced utilization.
Power Management:

Many current MPSoCs have power management capabil-
ities to reduce the energy consumption. Even though the
power management techniques do not directly address tem-
perature, they affect the thermal behavior significantly. We
implement two commonly used power management methods;
Dynamic Power Management (DPM) and Dynamic

Voltage-Frequency Scaling (DVS). For DPM, we
utilize a fixed timeout policy, which puts a core to sleep state
if it has been idle longer than the timeout period. We set the
timeout as the breakeven time [16]. The DVS policy observes
the core utilization over a given length of recent history, and
reduces the frequency/voltage proportionally.
Reactive Thermal Management:

Several reactive thermal management techniques have been
proposed in the literature (e.g. [9]). In this work we implement
some of the most commonly used methods.

• Reactive Thread Migration migrates the work-
load from a core if the threshold temperature is exceeded
to the coolest core available. In single threaded systems,
this correspond to migrating the currently running job
or swapping the jobs among the hot and cool cores. In
multithreaded environment, the technique migrates the
current threads in the hot core’s dispatch queue to other
cool cores, or swaps threads among hot and cool cores.

• Reactive DVS reduces the voltage/frequency (V/f)
setting on a core if the threshold temperature is exceeded,
similar to the frequency scaling approach in [29]. We
assume three built-in voltage frequency states in our
experiments. The policy continues to reduce the (V/f)
level at every tick as long as the temperature is above
the threshold. When the temperature is below the critical
threshold, then the V/f setting is increased.

Proactive Thermal Management:
The proactive methods we discuss next utilize the tem-

perature prediction introduced in Section III-A. The motiva-
tion behind proactive management is to respond to thermal
emergencies before they occur, and thus to minimize the
adverse affects of hot spots and temperature variations at lower
performance cost.

In the workload allocation techniques we propose, we do
not change the priority assignment of the threads or the time
slices allocated for each priority level. Our work focuses on
finding effective dispatching methods to reduce temperature
induced problems without affecting performance.

• Proactive Thread Migration moves workload
from cores that are projected to be hot in the near future
to cool cores. Proactive DVS reduces the V/f setting
on a core if the temperature is expected to exceed the
critical threshold. These two policies are the same as their
reactive counterparts, except that they get triggered by the
temperature estimates instead of the current temperature.

• Proactive Temperature Balancing follows
the principle of locality (i.e. allocating the threads on
the same core they ran before) during initial assignment
as in the default policy. At every scheduler tick, if the
temperature of cores are predicted to have imbalance
in the next interval, threads waiting on the queues
of potentially hotter cores are moved to cooler cores.
This way, the thermal hot spots can be avoided before
they occur, and the gradients are prevented by thermal
balancing.

In a single-threaded system, we bound the number of
migrations to avoid the unnecessary performance cost.



Migration of the jobs on all the hot cores can cause
thermal oscillations. We start performing migrations from
the hottest core, and migrate only if the workload on the
hot core’s neighbors have not been migrated during the
current tick. Note that in a multi-threaded environment,
threads waiting in the queue are moved unless the thresh-
old is already exceeded, so migration does not stall the
running thread. This is in contrast to moving the actively
running threads in thread migration policies discussed
above. As moving the waiting threads in the queues is
already performed by the default policy for load balanc-
ing purposes, this technique does not introduce additional
overhead. In Proactive Temperature Balancing for multi-
threaded systems, the number of threads to migrate is
proportional to the spatial temperature difference among
the hot core and the cool core.

VII. EXPERIMENTAL RESULTS

In this section, we evaluate the thermal management tech-
niques we have discussed in the previous section. In the results,
DLB is the default load balancing policy, R-Mig., P-Mig. and
DVS are the proactive and reactive migration and voltage
scaling, respectively, and PTB is the proactive temperature
policy we propose.

We show two sets of experimental results. The first set is
based on the UltraSPARC T1 processor [20]. In the second set
of results, we use an architecture-level simulation framework
to simulate performance, power and temperature, and provide
results on a hypothetical high-performance 16-core architec-
ture manufactured at 65nm.

In the experimental evaluation, the hot spot results demon-
strate the percentage of “time spent above 85oC”, which is
considered a high temperature for our system. Similar metrics
have been used in previous work as well (e.g.[19]). The spatial
gradient results summarize the percentage of time that gradi-
ents above 15oC occur, as gradients of 15−20oC start causing
clock skew and delay issues [1]. The spatial distribution is
calculated by evaluating the temperature difference between
hottest and coolest cores at each sampling interval. For metal-
lic structures, assuming the same frequency of thermal cycles,
when ∆T increases from 10 to 20oC, failures happen 16 times
more frequently [15]. So, we report the temporal fluctuations
of magnitude above 20oC. ∆T values we report are computed
over a sliding window and averaged over all cores.

A. UltraSPARC T1 Implementation

The first set of experimental results are based on the Ultra-
SPARC T1 [20]. The experimental flow consists of gathering
workload traces, applying policies (scheduling, DVS, etc.)
on the given workload, computing the corresponding power
traces, and finally calculating the temperature response.

In the results marked as real implementation, we imple-
mented the policies in Solaris and ran the workload on the
UltraSPARCT1 in real time. We simulated the power/thermal
dynamics simultaneously on another machine running in par-
allel. The results marked as simulator are from our simulation
infrastructure attached to the power/thermal model, where we

use the real-life workload traces again, but implement the
scheduling policies within the simulator on a replica of the
multicore system model.

We leveraged the Continuous System Telemetry Harness
(CSTH) [10] to gather detailed workload characteristics of
real applications. We sampled the utilization percentage for
each hardware thread at every second using mpstat [22].
We recorded half an hour long traces for each benchmark. To
determine the active/idle time slots of cores more accurately,
we recorded the length of user and kernel threads using
DTrace [22].

We ran the following sets of benchmarks: 1) Web server,
2) Database, 3) Common Integer, 4) Multimedia. To generate
web server workload, we ran SLAMD [30] with 20 and 40
threads per client to achieve medium and high utilization, re-
spectively. For database applications, we tested MySQL using
sysbench for a table with 1 million rows and 100 threads.
We also ran compiler (gcc) and compression/decompression
(gzip) benchmarks. For multimedia, we ran mplayer (integer)
with a 640x272 video file. We summarize the details of our
benchmarks in Table I. The utilization ratios are averaged over
all cores throughout the execution. Using cpustat, we also
recorded the cache misses and floating point (FP) instructions
per 100K instructions.

TABLE I
WORKLOAD CHARACTERISTICS

Benchmark Avg L2 L2 FP
Util (%) I-Miss D-Miss instr

1 Web-med 53.12 12.9 167.7 31.2
2 Web-high 92.87 67.6 288.7 31.2
3 Database 17.75 6.5 102.3 5.9
4 Web & DB 75.12 21.5 115.3 24.1
5 gcc 15.25 31.7 96.2 18.1
6 gzip 9 2 57 0.2
7 MPlayer 6.5 9.6 136 1
8 MPlayer&Web 26.62 9.1 66.8 29.9

Peak power consumption of SPARC is similar to the average
power [20], so we assumed that the instantaneous power
consumption is equal to the average power at each state (active,
idle, sleep). The average power consumption for UltraSPARC
T1 (including leakage) and area distribution of the units on
the chip are provided in Table II, and the floorplan is available
in [20].

TABLE II
POWER AND AREA DISTRIBUTIONS OF THE UNITS

Component Type Power (%) Area (%)
Cores 65.27 37.66

Caches 25.50 50.69
Crossbar 6.01 5.84

Other 3.22 5.81

We estimated the power at lower voltage levels based
on the equation P ∝ f ∗ V 2. We assumed three built-in
voltage/frequency settings in our simulations. To account for
the leakage power variation at runtime, we used the second-
order polynomial model proposed in [34]. We determined the
coefficients in the model empirically to match the normalized
leakage values in the paper. As we know the amount of leakage



at the default voltage level for each core, we scaled it based on
this model for each voltage level, considering the temperature
change as well. We used a sleep state power of 0.02 Watts,
which is estimated based on sleep power of similar cores. To
compute the power consumption of the crossbar, we scaled
power according to the number of active cores and the memory
access statistics.

We used HotSpot version 4.0 [29] as the thermal mod-
eling tool, and modified the floorplan and thermal package
characteristics for UltraSPARC T1. We performed the thermal
simulations with a sampling interval of 100 ms, which pro-
vided good precision. We initialized HotSpot with steady state
temperature values.

First we provide the results obtained on our simulator.
Table III shows a detailed analysis of the hot spots observed
on the system for each workload, and also the average perfor-
mance results. We show the percentage of time spent above
85oC for all the workloads, and the average results for the
cases with no power management (No PM) and DPM. The
performance results shown in the table are normalized with
respect to the default policy’s performance. We computed
performance based on the average delay we observed in the
thread completion times. Migration of workload upon reaching
the threshold or applying temperature triggered DVS cannot
eliminate all the hot spots, especially for workloads with
medium to high utilization level. Performing migration or
DVS proactively achieves significantly better results, while
also reducing the performance cost. The performance overhead
is less with the proactive approaches as they maintain the
temperature at lower levels, requiring fewer overall number
of migrations or shorter periods of DVS. Our technique, PTB,
achieves very similar results to proactive DVS while it has
much better performance. DPM reduces the thermal hot spots
to some extent as it reduces the temperature when the system
has idle time. Performing proactive temperature management
results in the best thermal profile among the techniques when
there is DPM, as demonstrated in the table.

Figure 13 shows the average percentage of time we observed
thermal cycles above 20oC. We also plotted the workload with
the maximum thermal cycling, i.e. Web-med, for comparison.
We only consider the case with DPM for the thermal cycling
results, as putting cores to sleep state creates larger cycles.
Our technique achieves very significant reduction in thermal
cycles, i.e. to around 1% in the average case, as it contin-
uously balances the workload among the cores according to
their expected temperature. As reactive techniques take action
after reaching temperature thresholds, they cannot avoid the
temperature imbalance in time as well as our technique. P-
DVS and PTB perform very similarly; however it should be
noted that the performance cost of PTB is less than DVS.

Figure 14 shows the average percentage of time large spatial
gradients above 15oC occurred while running the policies.
DPM creates larger gradients due to the low temperatures on
the cores that go into the sleep state. Proactive temperature
balancing can almost eliminate large gradients by reducing
their frequency to below 2% in average. Proactive DVS is the
second best policy for reducing the on-die variations.

To show the effect of adaptation (i.e. when workload

�

�

��

��

��

��

��� �	
�� 
	
�� �	��� 
	��� 
��

�
��
��
�
�
�
�	


��
�
�


	
��
�
�
��
��
��
��
��
��
��

���


�������	����

Fig. 13. Temperature Cycles - with DPM (simulator)

�

�

�

�

�

��

��

��

��	
� �
�

�
��
��
�
�
�
�
	

�
�

��
�
�
�


��
�
�
��
��
��
��
��
��
�

�
�

�����


����

�����


����


��

Fig. 14. Spatial Gradients (simulator)

changes) on the accuracy of our technique, we ran traces of
different workloads sequentially and computed the temperature
statistics. As examples, in Table IV, we show the results for
running the following combinations of workload with the PTB
policy: (A) Web-med followed by Web&DB, (B) Mplayer
followed by Web-med. We show the percentage of hot spots,
cycles and gradients for the individual workloads, and also
for the combined workloads for the case with DPM. We ran
equal lengths of each benchmark in the combined workloads.
We see that the percentage of hot spots and variations of the
combined workload are close to the average values of running
the individual benchmarks. This shows us that PTB can adapt
to workload changes without negatively affecting the thermal
profile.

TABLE IV
TEMPERATURE RESULTS FOR COMBINED WORKLOADS (simulator)

Hot Spots (%) Cycles(%) Gradients(%)
Web-med 2.6 4.5 4.4
Web&DB 4.6 2.9 5.7
Mplayer 0 0.1 0.9

(A) Web-med, Web&DB 3.7 3.7 5.0
(B) MPlayer, Web-med 1.3 2.2 2.7

We next discuss results collected on the real implementa-
tion, where we implemented our technique in the Solaris task
dispatcher running on an UltraSPARC T1 system. Some of
our policies utilize temperature readings from all cores, and
UltraSPARC T1 does not contain an individual sensor for each
core. To obtain per core temperature data, we installed HotSpot
on another machine in the private network, to avoid intro-
ducing performance overhead on the system we are running
the experiments on. Based on the utilization of each core and
the average power values, HotSpot computes the temperature
values and communicates them back to the system running the



TABLE III
THERMAL HOT SPOTS AND PERFORMANCE (simulator)

no PM DPM
Workload DLB R-Mig P-Mig R-DVS P-DVS PTB DLB R-Mig P-Mig R-DVS P-DVS PTB
Web-med 25.9 12.9 5.9 7.7 3.3 3.8 19.5 10.9 3.4 4.6 2.0 2.5
Web-high 39.1 22.1 13.3 19.2 10.4 10.6 37.4 21.6 10.7 14.8 8.4 8.5
Database 8.3 2.1 1.2 1.5 1.1 1.0 4.6 1.5 0.0 1.1 0.0 0.0
Web&DB 32.4 15.3 7.1 10.7 5.2 4.8 27.8 13.2 7.7 6.7 4.8 4.6

gcc 7.2 1.8 1.5 0.5 1.3 0.7 3.8 1.3 0.0 0.1 0.0 0.0
gzip 2.9 0.6 0.0 0.1 0.0 0.0 1.3 0.5 0.0 0.0 0.0 0.0

Mplayer 4.9 0.7 0.0 0.4 0.0 0.0 1.7 0.5 0.0 0.1 0.0 0.0
Mplayer&Web 13.3 9.4 5.3 4.9 2.4 2.1 8.9 7.2 5.2 4.1 1.2 1.1

AVG 16.8 8.1 4.3 5.6 3.0 2.9 13.1 7.1 3.4 3.9 2.1 2.1
AVG Perf. 1.00 0.96 0.97 0.89 0.91 0.98 1.00 0.95 0.96 0.87 0.90 0.97

�

�

�

�

�

��

��

��	 
��
� ���
� ��	

�
��
��
�
��
�
	

�
�

��
�
�
�
��
��
��
�

�����

���

Fig. 15. Spatial Gradients (Real Implementation)

thermal management techniques through a shared file between
the two machines. We used an interval length of 1 second in
these experiments.

We simulated DPM effects on temperature using HotSpot as
we did with the simulator, and assumed the transition overhead
among active and sleep states has negligible overhead. As
the system does not have DVS capabilities, we simulated the
thermal behavior for the default policy (DLB), reactive and
proactive migration, and our policy (PTB), running the same
benchmarks described previously.

In Table V, we show the distribution of hot spots, comparing
various benchmarks. The combination workloads (A) and (B)
are described in Table IV above. We observe that PTB can re-
duce the hot spots by 60% in average in comparison to reactive
migration, and 20 to 30% with respect to proactive migration.
Workloads with low utilization, such as Mplayer, do not have
a significant percentage of high temperatures. However, for
hotter benchmarks PTB achieves dramatic reduction in the
occurrence of hot spots.

In Figures 15 and 16, we demonstrate the average frequency
of spatial gradients and thermal cycles on our real system im-
plementation. These results confirm the simulation results that,
our proactive policy, PTB, reduces the spatial and temporal
variations in temperature in comparison to other proactive and
reactive thermal management techniques.

To evaluate the performance of the various techniques
we implemented, we used the “Load Average” metric. Load
average is the sum of run queue length and number of
jobs currently running. Therefore, if this number is low (i.e.
typically below 3 or 5, depending on the system), the response
time of the system is expected to be fast. As load average
grows, performance gets worse. Figure 17 demonstrates the

�

�

��

��

��

��

��� �	
�� 
	
�� 
��

�
��
��
�
�
�
��
	
�

�
�


��
��
��

���


�������	����

Fig. 16. Thermal Cycles - with DPM (Real Implementation)

����

����

����

����

����

���	

���


����

����

�

�
��� �
��� ���

�
�
�
��
�
�
�
�
	
�









�

���
���

��������

������

���� �!

"#$

"�$

Fig. 17. Normalized Performance (Real Implementation)

performance values for the policies, normalized relative to
the default policy (i.e. dynamic load balancing). Proactive
temperature balancing is able to achieve better thermal profiles
than other policies with less performance cost. This is due to
the fact that PTB first attempts to migrate the threads waiting
in the dispatch queue, as opposed to stalling and migrating
actively running threads.

Lastly, to show the effect of prediction accuracy on thermal
behavior, we implemented the proactive temperature balanc-
ing (PTB) technique using least squares prediction (LSQ)
and history predictor (HISTORY), and compared the results
against performing PTB with the ARMA predictor. Figure 18
compares the percentage of hot spots observed with all the
predictors. For this experiment, we ran a sequential trace
of several benchmarks in the following order: Web-medium,
Web-high, Web&Database and Database. Each benchmark was
run for an equal amount of time. ARMA predictor combined
with PTB achieves a better thermal profile than using the
other predictors. This advantage is mainly a result of the
longer adaptation period the history predictor and least squares



TABLE V
HOT SPOTS (EM REAL IMPLEMENTATION)

no PM DPM
Workload DLB R-Mig P-Mig PTB DLB R-Mig P-Mig PTB
Web-med 25.7 14.3 6.2 4.8 19.5 12.4 4.8 3.9
Database 8.4 3.5 1.8 1.3 4.6 3.1 1.5 1.2
Web&DB 32.4 15.7 8.1 6.0 27.4 14.7 9.1 5.8
Mplayer 4.9 1.5 0.7 0.9 1.9 2.0 1.5 1.2

(A) 17.2 9.1 4.9 4.1 23.7 14.2 7.9 5.1
(B) 15.6 8.5 4.5 3.7 10.7 8.0 3.7 3.6

AVG 17.4 8.8 4.4 3.5 14.6 9.1 4.8 3.5

�
���
���
���
���
���

�	

��

��

�������

�
�
�
�
�

������� ����� �!����� "�# $%"&������')(+* (+, -.,/��,�0��

1 234
523
� 687.9

:+; 7 <%= �8>

< # ���

Fig. 18. Proactive Balancing Results for Various Predictors

predictor spend when the workload changes. SPRT detects the
change in workload immediately and initiates the computation
of a new ARMA model, whereas the other predictors have to
go through a training period to be able to provide accurate
predictions.

B. Architecture-Level Simulator

To study the effect of reactive and proactive thermal man-
agement strategies in larger MPSoCs with higher performance
cores, we have used an architecture-level simulator in our
experimental work in addition to the results we collected on
UltraSPARC T1. Following the industry trend of integrating
an increasing number of cores on a single die, e.g. Sun’s 16-
core Rock processor [36] and Intel’s Larrabee with up to 32
cores [27], the CPU we model is a homogeneous 16-core
multiprocessor manufactured at 65nm. The floorplan for this
CPU is provided in Figure 19. Each core has out-of-order
issue, a private data cache, instruction cache, L2 cache, and
memory channels.

The simulation flow in this part consists of capturing the
application phases using SimPoint [28], and computing the
average power consumption for each phase. Then, with a
finite number of simulation samples for each phase (using the
M5 simulator [4] integrated with Wattch [5]), we reconstruct
the power and execution properties of complete program
execution. We do this for all voltage and frequency settings
available, so that we can reconstruct the complete program
even in the face of an arbitrary number of voltage/frequency
changes. To model power dissipation of L2 caches, we used
CACTI [35]. This phase analysis based set-up is used to
ensure that we can simulate longer time frames than typically
architecture-level simulations with high accuracy.

We capture these program traces in a database which is
queried by the scheduler at distinct intervals. Given a program

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

������
�

�
�
�


�	
�
�

��
�

�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

�����
�

�
�


�	
�
�

��


�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

��������

�
�
�
�
�	
�
�

��
��
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�������

�
�
�
�	
�
�

��
�
�	��

�

�

�����
�

�
�


�	
�
�

��


�	��

�

Fig. 19. Floorplan of the 16-core CPU

start point, an interval length in cycles, and a frequency setting,
the query tool returns the average IPC and power levels across
the interval, and the point in execution the program reaches
at the end of the interval. The power data collected by the
scheduler is fed into HotSpot [29], which gives the thermal
results for the modeled architecture.

We assumed each core possesses three voltage and fre-
quency settings for dynamic voltage/frequency scaling (DVS),
similar to our assumptions in the previous experimental setup:
1.200V at 2.0GHz, 1.187V at 1.900GHz, and 1.06V at
1.7GHz. Each core has a 64KB 2-way DCache and 64KB
2-way ICache. Size of each L2 cache is 2MB. Each core has
single-threaded execution and 4-width out-of-order issue, 4
integer ALUs, 2 integer multiplication units, 2 FP ALUs and 2
FP Multiplier/Dividers. The core architecture mimics an Alpha
processor scaled to 65nm.

We used applications with different characteristics of CPU
and memory boundedness [38] in our simulations to create
representative traces for a large range of real-world applica-
tions. We designed the following multicore workloads using
the SPEC 2000 benchmark suite: 1) 16 CPU-bound threads,
2) 16 mixed threads (containing highly CPU-bound, highly
memory-bound and medium CPU-bound threads), 3) 14 CPU-
bound threads, 4) 14 mixed threads. The specifics of each
workload is provided in Table VI

The leakage model we use in this simulator is the same as
described in Section VII-A. To get the transient temperature
response, HotSpot [29] was integrated with Wattch. We cal-
culated the die characteristics based on the trends reported for



TABLE VI
WORKLOAD CHARACTERISTICS FOR THE ARCHITECTURAL SIMULATOR

Workload name Benchmarks
1) 16-CPU mesa*3, bzip2 program*3, crafty*2, eon rushmeier*3, vortex1*2, sixtrack*3
2) 16-MIX mcf*2, mesa, art110, sixtrack*2, equake, bzip2 program, eon rushmeier*2

swim, applu, twolf, crafty, apsi, lucas
3) 14-CPU mesa*2, bzip2 program*3, crafty*2, eon rushmeier*2, vortex1*2, sixtrack*3
4) 14-MIX mcf*2, mesa, art110, sixtrack*2, equake, eon rushmeier*2

swim, twolf, crafty, apsi, lucas

65nm process technology.
Next, we provide results on how the policies affect the

thermal behavior and performance of the 16-core architecture.
Figure 20 demonstrates the frequency of hot spots for R-
Mig, P-Mig, DVS and PTB. Note that for this part of the
experiments, we use the single-threaded version of the policies.

Unlike the multi-threaded simulations, in Figure 20 we
see that DVS can reduce the frequency of hot spots more
effectively. However, this comes at a performance cost, which
will be investigated later. On our 16-core architecture, we
have not observed a significant amount of large temperature
variations. This is due to the fact that our applications we
used highly utilized the system, unlike the multi-threaded
benchmarks that have a much more variant execution profile.

Next, we compare the performance of the temperature man-
agement techniques on the 16-core architecture. A common
performance metric on multicore platforms is a raw count of
instructions per second, frequently measured in millions or
billions (BIPS). However, this metric gives undeserved bias
towards high-IPC threads as performance may be increased
by running more CPU bound threads. To circumvent this
difficulty, we used the Fair Speedup Metric (FS) from [6]
and [31]. FS is computed by finding the harmonic mean of
each thread “speed-up” over a baseline policy of running the
thread at highest frequency and voltage.

Figure 21 provides the performance hit computed for each
workload and policy, as well as the average case for the 16-
core architecture. PTB increases the performance by over 3%
in comparison to P-DVS and by over 5% in comparison to R-
DVS. PTB achieves the same performance as P-Mig, while
reducing the hot spots, as described earlier. It should also
be noted that, on a single threaded system, the performance
benefit of PTB over P-Mig diminishes, as PTB is a policy that
is specifically designed for optimizing multithreaded system
performance.

��� ���
��� ���
��� ���

��	

� � 
 ��� �

� 
 ��� �

��� ���
��� ���
��� ���

��� 
 � ��� ��� 
 ��� � ��� 
 � ��� ��� 
 ��� � �����

� � 
! " 
� � ��� �

� 
 #$��%
� 
 #$��%
��&('

Fig. 21. Performance Cost of Policies on the 16-core architecture

On the 16-core system, we also ran simulations where
the ARMA predictor was used for predicting IPC, and the

proactive balancing (PTB) was ran based on the IPC pre-
dictions instead of temperature. In other words, prediction
of high IPC is considered equivalent to a forecast of high
temperature. Therefore, the high-IPC threads is moved to
cooler cores. Again, we follow the same principle as in
PTB with temperature prediction for bounding the number of
migrations. Figure 22 shows the thermal behavior achieved
by PTB Thermal and PTB IPC, which refer to PTB com-
bined with temperature forecast and IPC forecast, respectively.
PTB IPC achieves a very slight (negligible) reduction in hot
spots at the cost of higher performance overhead. The reason
for the impact in performance is the increased number of
migrations. In PTB IPC, the policy reacts to changes in IPC
which may not get reflected to the temperature profile, due
to the thermal time constants. The results show that for a
single-threaded system without temperature sensors, IPC is a
reasonable metric to guide thermal management.

)�* +�,
)�* +�-
)�* +�.
/�* )�)

/�)
/�0
1�)

23 4
25
6789

4: ;
< =
>?
@AB

)�* +�)
)�* +�1

)
0

/�- C D�E�F /�- C G�H I /�, C D�E�F /�, C G�H I J�KML

N 92
O 4:P
Q4

E�R(S�T�R(U�V�W XZY\[^] _ V�` a�JMI^H b c E�R(S�T�d E�De] _ V(` a�JfI H b c
E�R(S�T�R(U�V�W XZY\[^] g�H h\U�a�JfI H b c E�R(S�T�d E�De] g�H h\U�a�JMI^H b c

Fig. 22. Thermal Results for ARMA IPC Predictor

VIII. CONCLUSION

In this paper, we have presented a proactive tempera-
ture management approach for multiprocessor system-on-chips
(MPSoCs), which can adapt to changes in system dynamics at
runtime. We utilize autoregressive moving average (ARMA)
modeling to accurately predict future temperature on each core
based solely on the previous measurements. We continuously
monitor how well the ARMA model fits the current tem-
perature using sequential probability ratio test (SPRT), and
update the model if necessary. The advantage of SPRT is
that it guarantees to achieve the fastest detection of changes
in thermal dynamics. Our proactive temperature balancing
method for dynamic allocation of threads is able to reduce
the thermal hot spots and temperature gradients significantly
at very low performance impact. The proposed method is
a completely online approach, and does not require offline
analysis or workload profiling.

Our paper provides a thorough experimental evaluation of
reactive and proactive thermal management approaches on



� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �
� � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

� � � � � �
� � � � � �
� � � � � �

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

������

�

�

�

�

��

��

���	
� ����
� ���	
� ����
� ���

�
��
�
	�


�
�
	�
�

�
�
�
��
��
��
��
��
�

� � � � � � �
� � � � � � �
� � � � � � �

� � � � � � � �
� � � � � � � �
� � � � � � � �

� � � � � � �
� � � � � � �
� � � � � � �

���

�

�

�

�

��

��

���	
� ����
� ���

�
��
�
	�


�
�
	�
�

�
�
�
�
��
��
��
��

���
�� � � � �
� � � � � 
��
�

�����


����


��

Fig. 20. Thermal Hot Spots (16-core system)

single- and multi-threaded MPSoCs. In our experiments on an
UltraSPARC T1 implementation, we have observed that our
technique achieves 60% reduction in hot spot occurrences,
80% reduction in spatial gradients and 75% reduction in
thermal cycles in average, in comparison to reactive thermal
management. In addition, we provide a detailed comparison of
our ARMA/SPRT based approach to other prediction methods
(e.g., exponential moving average, history predictor and least
squares predictor).

REFERENCES

[1] Amir H. Ajami, Kaustav Banerjee, and Massoud Pedram. Modeling and
analysis of nonuniform substrate temperature effects on global ULSI
interconnects. IEEE Transactions on CAD, 24(6):849–861, June 2005.

[2] D. Atienza, G. De Micheli, Luca Benini, Jose L. Ayala, P. G. Del Valle,
M. DeBole, and V. Narayanan. Reliability-aware design for nanometer-
scale devices. In ASPDAC, 2008.

[3] D. Atienza, P. Del Valle, G. Paci, F. Poletti, L. Benini, G. De Micheli,
and Jose M. Mendias. A fast HW/SW FPGA-based thermal emulation
framework for multi-processor system-on-chip. In DAC, 2006.

[4] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented
full-system simulation using M5. In Sixth Workshop on Computer
Architecture Evaluation using Commercial Workloads (CAECW), 2003.

[5] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: a framework for
architectural-level power analysis and optimizations. In ISCA ’00:
Proceedings of the 27th annual international symposium on Computer
architecture, pages 83–94, 2000.

[6] J. Chang and G. S. Sohi. Cooperative cache partitioning for chip
multiprocessors. In In Proc. of the 21st ACM International Conference
on Supercomputing, 2007.

[7] A. K. Coskun, T. Rosing, and K. Whisnant. Temperature aware task
scheduling in MPSoCs. In DATE, 2007.

[8] J. Donald and M. Martonosi. Techniques for multicore thermal man-
agement: Classification and new exploration. In ISCA, 2006.

[9] M. Gomaa, M. D. Powell, and T. N. Vijaykumar. Heat-and-Run: lever-
aging SMT and CMP to manage power density through the operating
system. In ASPLOS, 2004.

[10] K. Gross, K. Whisnant, and A. Urmanov. Electronic prognostics through
continuous system telemetry. In MFPT, pages 53–62, April 2006.

[11] K. C. Gross and K. E. Humenik. Sequential probability ratio test for
nuclear plant component surveillance. Nuclear Technology, 93(2):131–
137, Feb 1991.

[12] Jingcao Hu and Radu Marculescu. Energy-aware communication and
task scheduling for network-on-chip architectures under real-time con-
straints. In DATE, 2004.

[13] W-L. Hung, Y. Xie, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin.
Thermal-aware task allocation and scheduling for embedded systems. In
DATE, 2005.

[14] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase monitoring
and prediction on real systems with application to dynamic power
management. In MICRO 39: Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 359–370, 2006.

[15] Failure mechanisms and models for semiconductor devices, JEDEC
publication JEP122C. http://www.jedec.org.

[16] A. Karlin, M. Manesse, L. McGeoch, and S. Owicki. Competitive
randomized algorithms for nonuniform problems. Algorithmica, 1994.

[17] H. Kufluoglu and M. A. Alam. A computational model of NBTI and
hot carrier injection time-exponents for MOSFET reliability. Journal of
Computational Electronics, 3 (3):165–169, Oct. 2004.

[18] A. Kumar, L. Shang, L.-S. Peh, and N. K. Jha. HybDTM: a coordinated
hardware-software approach for dynamic thermal management. In DAC,
pages 548–553, 2006.

[19] E. Kursun, C-Y. Cher, A. Buyuktosunoglu, and P.Bose. Investigating
the effects of task scheduling on thermal behavior. In TACS, 2006.

[20] A. Leon, L. Jinuk, K. Tam, W. Bryg, F. Schumacher, P. Kongetira,
D. Weisner, and A. Strong. A power-efficient high-throughput 32-thread
SPARC processor. ISSCC, 2006.

[21] Jinfeng Liu, Pai H. Chou, Nader Bagherzadeh, and Fadi Kurdahi. Power-
aware scheduling under timing constraints for mission-critical embedded
systems. In DAC, 2001.

[22] R. McDougall, J. Mauro, and B. Gregg. Solaris Performance and Tools.
Sun Microsystems Press, 2006.

[23] M. Mutyam, F. Li, V. Narayanan, M. Kandemir, and M. J. Irwin.
Compiler-directed thermal management for VLIW functional units. In
LCTES, pages 163–172, 2006.

[24] P. Rong and M. Pedram. Power-aware scheduling and dynamic voltage
setting for tasks running on a hard real-time system. In ASPDAC, 2006.

[25] T. S. Rosing, K. Mihic, and G. De Micheli. Power and reliability
management of SoCs. IEEE Transactions on VLSI, 15(4), April 2007.

[26] M. Ruggiero, A. Guerri, D. Bertozzi, F. Poletti, and M. Milano.
Communication-aware allocation and scheduling framework for stream-
oriented multi-processor system-on-chip. In DATE, 2006.

[27] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael
Abrash, Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Suger-
man, Robert Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat
Hanrahan. Larrabee: a many-core x86 architecture for visual computing.
In ACM SIGGRAPH, pages 1–15, New York, NY, USA, 2008. ACM.

[28] T. Sherwood, G. Hamerly E. Perelman, and B. Calder. Automatically
characterizing large scale program behavior. In ISCA ’02: In 10th
International Conference on Architectural Support for Programming,
2002.

[29] K. Skadron, M.R. Stan, W. Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and D. Tarjan. Temperature-aware microarchitecture.
In ISCA, 2003.

[30] SLAMD Distributed Load Engine. www.slamd.com.
[31] J.E. Smith. Characterizing computer performance with a single number.

In Communication of ACM, 31(10), 1988.
[32] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The case for lifetime

reliability-aware microprocessors. In ISCA, 2004.
[33] K. Stavrou and P. Trancoso. Thermal-aware scheduling for future chip

multiprocessors. EURASIP Journal on Embedded Systems, 2007.
[34] H. Su, F. Liu, A. Devgan, E. Acar, and S. Nassif. Full-chip leakage

estimation considering power supply and temperature variations. In
ISLPED, 2003.

[35] David Tarjan, Shyamkumar Thoziyoor, and Norman P. Jouppi. CACTI
4.0. Technical Report HPL-2006-86, HP Laboratories Palo Alto, 2006.

[36] M. Tremblay and S. Chaudhry. A third-generation 65nm 16-core 32-
thread plus 32-scout-thread CMT SPARC processor. In IEEE Interna-
tional Solid State Circuits Conference (ISSCC), 2008.

[37] A. Wald and J. Wolfowitz. Optimum character of the sequential
probability ratio test. Ann. Math. Stat., 19:326, 1948.

[38] Q. Wu, M. Martonosi, D. W. Clark, V. J. Reddi, D. Connors, Y. Wu,
J. Lee, and D. Brooks. A dynamic compilation framework for controlling
microprocessor energy and performance. In MICRO 38: Proceedings of
the 38th annual IEEE/ACM International Symposium on Microarchitec-
ture, pages 271–282, 2005.

[39] Inchoon Yeo, Chih Chun Liu, and Eun Jung Kim. Predictive dynamic
thermal management for multicore systems. In Design Automation
Conference, pages 734–739, June 2008.

[40] Y. Zhang, X. S. Hu, and D. Z. Chen. Task scheduling and voltage
selection for energy minimization. In DAC, 2002.


