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ABSTRACT
In distributed speech recognition, speech features are computed
on a mobile device, compressed, and sent to a server that performs
the computationally intensive search for the most likely word se-
quence. Much of the current research in distributed speech recog-
nition has been in the area of feature compression and communica-
tion robustness over wireless links, including error correction and
concealment techniques. However, another challenge in designing
a distributed speech recognition system is minimizing the energy
consumption on the mobile device. We consider quality-of-service
tradeoffs including compression ratio and overall system latency.
Our measurements verify that for high speed wireless interfaces
such as 802.11b, small changes in compression rates have little ef-
fect on system level energy consumption. However, for wireless
networks with lower power/bit-rate ratios such as Bluetooth, the
choice of bit-rate and compression ratio becomes more important.
We present a wireless LAN scheduling algorithm to minimize the
energy consumption of a distributed speech recognition front-end
on a mobile device. By powering down the 802.11b interface when
not in use, we are able to reduce the energy consumption by up to a
factor of 5 in heavy traffic conditions. Increasing the total amount
of time spent in the off state to almost one second will allow the
system to save power regardless of traffic conditions. We compare
the results of this power saving algorithm to the low-power mech-
anisms of Bluetooth. The lower overhead of Bluetooth allows for
greater energy savings with a much lower delay of approximately
300ms.

1. INTRODUCTION

Wireless hand-held devices such as PDAs, cell phones, and other
embedded devices are limited in computation, memory, and bat-
tery energy. Complex speech recognition tasks are difficult to per-
form on the device due to these resource limitations. Figure 1
shows a block diagram of a typical speech recognition system.
The signal processing front-end is a very small portion of the over-
all computation and storage required. The acoustic and language
models typically use on the order of tens of megabytes each of
storage. Complex tasks require back-end search algorithms that
use large amounts of memory and CPU cycles. Therefore, dis-
tributing the speech recognition across the network is an attractive
alternative for these small wireless devices.

Previous work on distributed speech recognition (DSR) has
been mainly focused on techniques for the quantization of speech
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Fig. 1. Block diagram of a typical speech recognizer [1].

parameters. Most involve some form of vector quantization with
bit rates in the low kbps range. In [2], a two stage vector quan-
tizer was used to achieve a fixed rate of 4.0 kbps with little loss
of recognition accuracy. In [3] a scalable quantization scheme was
developed for bit rates ranging from less than 1 kbps to around
3 kbps. A wider range of quantization schemes was investigated
in [4] with the best performance coming from an intra-frame prod-
uct code vector quantizer. By exploiting the correlation between
successive frames of speech, an inter-frame vector quantizer can
achieve greater recognition accuracy with lower bit rates as shown
in [5]. Finally, the ETSI Aurora DSR standard includes a simple
intra-frame vector quantizer with some error detection and framing
techniques in [6].

A low-power DSP solution that uses less than 1mW of power
and conforms to the ETSI standard is presented in [7]. Some ar-
chitectural and algorithmic optimization techniques to minimize
the energy consumption required to compute speech recognition
features in software were presented in [8]. The fully optimized
source code consumed 83% less energy than the initial floating-
point source code. It also ran 34 times faster, which allowed for
further energy savings through dynamic voltage scaling. This work,
however, did not consider the quantization and transmission re-
lated aspects of the DSR front-end. Given that a wireless interface
can consume more than half the total power used on an embedded
device, efficient use of the radio in DSR is an important consider-
ation.

The wireless network power optimization problem has been
addressed at different abstraction layers, starting from the semi-
conductor device level, to the system and application level. En-



ergy efficient channel coding and traffic shaping to exploit bat-
tery lifetime of portable devices were proposed in [9]. A physical
layer aware scheduling algorithm aimed at efficient management
of sleep modes in sensor network nodes is illustrated in [10]. En-
ergy efficiency can be improved at the data link layer by perform-
ing adaptive packet length and error control [11]. At the proto-
col level, there have been attempts to improve the efficiency of
the standard 802.11b, and proposals for new protocols [12, 13,
14]. Packet scheduling strategies can also be used to reduce the
energy consumption of transmit power. In [15] authors propose
theE2WFQ scheduling policies based on Dynamic Modulation
Scaling. A small price in packet latency is traded for the reduced
energy consumption. A server-driven scheduling methodology aimed
at reducing power consumption for streaming MPEG4 video was
introduced in [16]. Savings of as much as 50% in WLAN power
consumption relative to just using 802.11 power management were
reported.

Traditional system-level power management techniques are di-
vided into those aimed at shutting down components and policies
that dynamically scale down processing voltage and frequency [17,
18]. Energy-performance trade-offs based on application needs
have been recently addressed [19]. Several authors exploit the
energy-QoS trade-off [20, 21, 22, 23]. A different approach is
to perform transcoding and traffic smoothing at the server side
by exploiting estimation of energy budget at the clients [24]. A
new communication system, consisting of a server, clients and
proxies, that reduces the energy consumption of 802.11b compli-
ant portable devices by exploiting a secondary low-power chan-
nel is presented in [25]. Since multimedia applications are often
most demanding of system resources, a few researchers studied
the cooperation between such applications and the OS to save en-
ergy [26, 27, 28, 29].

In this paper, we investigate the energy consumption involved
in computation as well as wireless transmission of compressed
speech data for a fixed-point DSR front-end running on an em-
bedded device. We will consider wireless optimization at the ap-
plication level and present results specific to DSR but that may
be applied to more general types of traffic. We will also exam-
ine some energy-QoS trade-offs relating to DSR, including speech
recognition accuracy and delay. The architecture of the embedded
system used in the experiments is that of the SmartBadge 4 em-
bedded system developed at the Mobile and Media Systems Lab at
HP Labs [30]. The SmartBadge contains a 206 MHz StrongARM-
1110 processor, StrongARM-1111 co-processor, Flash, SRAM,
PCMCIA interface, and various sensor inputs such as audio, tem-
perature, and accelerometers. It runs the Linux operating system.
This hardware platform is similar to the sensor network system
studied in [21]. The SmartBadge has speech/audio driven I/O, so
DSR can provide some level of user interaction through a voice
user interface.

2. DISTRIBUTED SPEECH RECOGNITION

In distributed speech recognition the speech features, typically mel-
frequency cepstral coefficients (MFCC), are calculated at the client
and sent over the wireless network to a server. This feature extrac-
tion step is a small fraction of the overall computation needed to
perform speech recognition. Figure 1 shows a block diagram of a
typical Hidden Markov Model based speech recognizer. The back-
end requires much more computation and memory, especially for
large vocabulary tasks. This back-end speech recognition search

including HMM state output evaluation and Viterbi search is per-
formed at the server. In order to minimize the bit rate, the MFCCs
are first compressed using some quantization scheme.

2.1. Signal Processing Front-End

The acoustic observations generated by the signal processing front-
end or “feature extraction” step are mel-frequency cepstral coeffi-
cients. Mel-frequency cepstral coefficients are calculated using the
real cepstrum, defined as the inverse Fourier transform of the log
spectrum:

cs(n) =
1

2π

∫ π

−π

log |S(ω)| ejωndω (1)

whereS(ω) is the spectrum of the speech signal. The most com-
mon set of features consist of 13 mel-frequency cepstral coeffi-
cients computed every 10ms. Secondary features, consisting of
first and second time derivatives of the cepstrum, are also used,
but they can be calculated easily at the server. A more in depth dis-
cussion of the theory and properties of the cepstrum can be found
in [31].
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Fig. 2. The algorithm used to compute the mel-cepstrum.

In practice, the mel-frequency cepstral coefficients can be com-
puted using the algorithm in Figure 2. We used digitized speech at
16 linear bits per sample, sampled at 16kHz. A pre-emphasis fil-
ter whitens the speech signal and overlapping frames of 25ms are
multiplied by a Hamming window. Next the magnitude squared of
the discrete Fourier transform (DFT) is computed. The magnitude
squared is processed by a set of mel-filter banks to produce an es-
timate of the mel-spectrum. The mel-filter banks are implemented
as a series of overlapping triangle filters,Hi[k], that are centered
on equally spaced frequencies in the mel-scale. The result is an
estimate of the total energy in theith critical band:

Y [i] =

N/2∑
k=0

|X[k]|2 Hi[k] (2)

whereX[k] is the DFT of the windowed speech signal andHi[k]
contains the filter-bank coefficients. Finally, the logarithm of the
mel-spectrum is taken to produce a weighted log energy,Ỹ [i]. The



weighted log energy is real and even, so the inverse Fourier trans-
form can be implemented as a discrete cosine transform (DCT)
with equivalent results. In order to calculate the MFCCs in real-
time on the StrongARM processor, we used the low-power fixed-
point implementation presented in [8].

2.2. Vector Quantization

Although many different techniques have been proposed, the most
common technique for compressing MFCCs is some form of vec-
tor quantization. In vector quantization we train a set of codebooks
against some speech data. These codebooks contain a set of cen-
troids representing the clusters that occur in the training data. We
simply transmit the centroid index for each codebook. The server
can then lookup the codebook index to get an approximation to the
original speech vector. A Euclidean distance measure can be used
to find the best centroid for a given input vector. Smaller code-
books will result in a noisy representation of the original signal,
and speech recognition accuracy will degrade.

For our system, we used an intra-frame product code vector
quantization scheme presented in [4]. We used the existing bit
allocation in [4] to train a set of codebooks using a K-means train-
ing algorithm with bit rates ranging from 1.2 kbps to 2.0 kbps.
However, the speech recognition task considered was a relatively
small vocabulary with clean speech. Higher bit rates used in the
ETSI standard (4.8 kbps) will provide more robust operation un-
der a variety of speakers and noise conditions [6]. Therefore, we
have added an additional bit allocation that is similar to the ETSI
standard that will operate at 4.2kbps.1 Although data regarding
the word error rate (WER) of this particular quantization scheme
under the speech recognition task in [4] is not available, it should
be very close to that of uncoded speech. Source code to perform
the quantization on the MFCC data was written in fixed point for
the StrongARM processor. Table 1 shows the resulting bit rates
and word error rates from [4] on the rows labeled VQ-XX, where
XX is the number of bits per 10 ms speech frame. The WER for
full bandwidth speech at 16 kHz and 16 bits per sample (256 kbps)
was 6.55%.

Table 1. Word error rate for several bit rates [4].
Description Bit rate (kbps) WER (%)

VQ-12 1.2 16.79
VQ-14 1.4 11.71
VQ-16 1.6 9.3
VQ-18 1.8 8.1
VQ-19 1.9 6.99
VQ-20 2.0 6.63
VQ-42 4.2 ≈ 6.55
16kHz 256 6.55

3. ENERGY CONSUMPTION

In this section, we measure the energy consumption of the DSR
front-end. We will use these results to characterize different as-
pects of a DSR system (including speech recognition accuracy,

1We use the same bit allocation as in the ETSI standard with the excep-
tion of leaving out the log energy as well as bits required for header and
error protection as described in the standard.
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Fig. 3. Energy consumption per DSR functional block.

transmission bit rate, and delay) with respect to energy consump-
tion. We consider energy consumption from both computation and
wireless transmission.

For computation energy, the results are computed by a cycle-
accurate energy consumption simulator. The simulator includes
processor core and level 1 cache energy, interconnect and pin en-
ergy, energy used by the memory, losses from the DC/DC con-
verter, and battery inefficiency [32]. In addition to the energy con-
sumption simulator, we also directly measured the average current
going into the StrongARM CPU and the WaveLAN 802.11b wire-
less card. This can be used to compute the average power dissipa-
tion.

3.1. Energy Required for MFCC Calculation and Quantiza-
tion

We ran our fixed-point MFCC algorithm with quantization through
the energy consumption simulator for the SmartBadge platform.
The relative energy consumption for each basic block of the sig-
nal processing algorithm is shown in Figure 3. The energy con-
sumption is shown for a single frame of speech with the exception
of the pre-emphasis filter which processes several frames at once.
The total energy consumption required to process one frame of
speech is approximately381.6 µJoules. Here we used the software
vector quantization scheme with the highest bit rate and encod-
ing cost. Notice that the quantization cost is still a small fraction
of the overall energy consumption required for the computation.
This suggests that speeding up the quantization process by using
smaller codebooks would produce minimal reductions in energy
consumption and would have a much greater impact on speech
recognition accuracy.

Figure 4 shows a comparison of energy consumption for vari-
ous vector quantization bit allocation schemes. The bars represent
the total energy consumption per frame of speech for the quantiza-
tion step, and the line represents the measured CPU power dissipa-
tion at each bit rate. The measured values closely match the results
from the energy consumption simulator. Those with the smaller bit
rates (i.e. 1.2 kbps to 1.6 kbps) offer the poorest speech recogni-
tion performance and do not save very much battery energy when
compared to the overall computation. There is a 100 mW increase



0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

1.2 1.4 1.6 1.8 1.9 2.0 4.2

Bit rate (kbps)

u
J

700
720
740
760
780
800
820
840
860
880
900

m
W

CPU Energy Consumption (uJ) Avg. Measured CPU Power (mW)
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in CPU power consumption but a greater than 50% reduction in
WER between the highest and lowest bit error rate. Even the 2.0
kbps bit rate offers a large reduction in WER with little change in
CPU power consumption. Therefore, if better performance is de-
sired, larger codebooks and higher bit rates are probably worth the
small extra encoding cost.

3.2. Energy Consumption for Wireless Transmission

In order to estimate the power consumption for wireless transmis-
sion, we directly measured the average current into the network
interface. These measurements were performed under ideal con-
ditions with no competing mobile hosts or excessive interference.
These measurements were taken for each quantization scheme and
for both the “always on” and 802.11b power management (PM)
mode configurations. We also consider the energy consumption of
a Bluetooth radio, which has a much lower power/bit-rate ratio.

Figure 5 shows the energy required to transmit one frame of
speech data at various DSR compression rates over a Bluetooth
link. We consider the use of both high speed and medium speed
data packets. High speed packets use a stop-and-wait ACK pro-
tocol with some CRC error detection within the packet. Medium
rate packets use a 2/3 rate FEC with no ACK protocol. We have
assumed that both packet types are only transmitted once without
error. We can see in figure 5 that there is a higher energy cost
for medium rate packets due to the FEC overhead. However, these
packets might be a better choice for lower SNR conditions. Energy
consumption approximately doubles between the 1.2 kbps and 4.2
kbps bit rates. However, these estimates do not consider wait time
between packets which will consume energy as well. Section 3.4
will discuss the implications of this wait time.

For 802.11b, our measurements indicate that there is only a
difference of a few mW in power consumption between the high-
est and lowest bit rates. This is expected since the bit rates are low,
and the transmit times are very short. Also, the use of UDP/IP pro-
tocol stacks and 802.11 MAC layer protocols both add significant
overhead for small packet sizes. The 11 Mbps WLAN interface is
under-utilized with this type of low bit rate traffic. However, we
can obtain some improvement in power consumption by increas-
ing the number of frames per packet as shown in Figure 6. This
increases the total delay of the system, but less battery energy is
used since the various networking overhead is amortized across a
larger packet size. Due to the relatively high bit rates provided
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by 802.11, the WLAN interface spends most of it’s time waiting
for the next packet to transmit. The 802.11 PM mode can provide
some savings in energy consumption but this does not hold under
heavy traffic conditions.
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It has been shown in [16] that the 802.11b power management
mode may not serve to reduce energy consumption in heavy traf-
fic conditions. While operating in the 802.11b power management
mode, a WLAN card goes into an idle state. Every 100ms it wakes
up and receives a traffic indication map which is used to indicate
when the base station will be transmitting data to this particular
mobile host. With heavy broadcast traffic, the WLAN interface
will rarely be in the idle state and it will consume power as if it
were in the always on mode. This will happen even if there are no
applications running on the mobile host. Figure 7 shows the power
consumption of the WLAN card in the 802.11b power manage-
ment mode in both heavy and light traffic conditions. Notice that
in the bottom graph under heavy traffic the card is unable to tran-
sition to the low-power idle state very often. The average power
approaches the always on mode.
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Fig. 7. WLAN power consumption in 802.11b PM mode in light
and heavy traffic conditions.

3.3. Synchronous Scheduling of the WLAN Interface

Since the energy consumption of PM mode on 802.11b networks
breaks down in heavy traffic conditions, we consider an alternate
algorithm here. If we are only interested in transmitting speech
recognition related traffic and not any other broadcast traffic, we
can simply power off the WLAN card until we have buffered enough
data to transmit. However, powering the card on and off has an en-
ergy related cost which needs to be accounted for.
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Fig. 8. The timing of the WLAN scheduling algorithm.

Figure 8 shows the timing of this scheduling algorithm. The
period,T , is determined by the number of speech frames sent in
one packet. The transmission is synchronous such that everyT
seconds we will send that amount of compressed speech features.
Larger values ofT will result in longer delay for the speech recog-
nition application. Assuming the average power for the always

on WLAN mode isPon, the total energy required to transmitT
seconds of speech frames can be estimated as:

Eon = Pon × T (3)

Similarly, the total amount of energy required to transmit in power
management mode is:

Esave = Psave × T (4)

where bothPsave andPon are the measured average power val-
ues at the particular bit rates and number of speech frames per
packet. These data values were measured directly off the WLAN
hardware.

Using the proposed scheduling algorithm, the WLAN card
will only be on during the shaded region in figure 8. The value,
Tback on, is the amount of time required to turn the WLAN card
back on, during which time it uses power as if it were transmitting.
The valueTTx is the total amount of time required to transmit the
data, which is typically much smaller thanTback on for the low bit
rates required for speech traffic. The energy required to transmit
under the proposed scheduling algorithm is:

Esave = Pon × (Tback on + TTx) (5)
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The two interesting parameters to consider are the power on
time (Tback on) and the number of speech frames transmitted at
once, which dictates the total periodT . Figure 9 shows the power
on delay on the x-axis and estimated energy consumption on the
y-axis. We fixed the value ofT to 0.48 seconds, or 48 frames of
speech data. The PM mode configuration in light traffic almost
always outperforms the proposed scheduling algorithm except for
very small values ofTback on. (Typical values may range from
100ms to 300ms.) However, in heavy traffic conditions, the PM
mode approaches the always on power consumption (shown by
the top line in the plot), so the scheduling algorithm can give better
performance under these conditions. WithTback on at 100ms, the
total energy consumption per packet is approximately 75 mJ for
the scheduling algorithm and approximately 390 mJ for PM mode
in heavy traffic conditions (from figure 9. This is a reduction in en-
ergy consumption by about a factor of 5. However, this only holds



true for heavy broadcast traffic conditions, so the mobile device
will have to monitor the broadcast traffic and decide between the
standard 802.11 PM mode or the scheduling algorithm.
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The other parameter to consider is the total delayT which de-
termines the total number of packets sent at once. With larger val-
ues ofT we can hope to amortize the cost of turning the WLAN
card on and off at the expense of longer delay. Assuming that a
speech recognizer server is able to process speech at or near real-
time, the user will experience delay near the value ofT . For an
interactive application the total delay seen by the user begins when
the user stops speaking and ends when some action is taken by the
mobile device. A server which is able to process speech faster than
real-time will be able to reduce this delay but not eliminate it com-
pletely. The amount of tolerable delay depends on the application.
For user interface applications, such as web browsing, a calendar
application, or a voice driven MP3 player, it is important to reduce
the delay to maintain interactivity. Delays of around 1 second may
hardly be noticed by the user, whereas delays of around 3 seconds
or more may hinder interactivity. For a dictation application, such
as such as e-mail, this delay is less important. In this case, the use
simply dictates a response, and corrections or edits can occur after
the speech-to-text process is complete.

Figure 10 shows the results for varying delay, withTback on

fixed at 100ms. In this plot, the energy cost was determined us-
ing measured values of power consumption. The energy cost has
been normalized to show the average energy required to transmit
one frame of speech data. As the total number of frames ap-
proaches 80 (T = 800ms), we can see that the scheduling al-
gorithm (Esched) will be able to outperform the PM mode config-
uration (Esave) regardless of traffic conditions. This will result in
less than one second of delay for a user interface application with
speech recognition. Shorter power on (Tback on) times can help
move this crossover point to shorter delays. Longer delays of two
seconds or more can further reduce energy consumption and are
good candidates for applications requiring lower interactivity such
as dictation.

3.4. Bluetooth Power Management

A node within a Bluetooth piconet can operate in a variety of dif-
ferent power management modes [33]. In the defaultactivemode,

the slave node listens to every master-slave slot to see if the packet
is addressed to it. In thesniff mode, the node only listens to slots
at specified intervals. Inpark mode the Bluetooth node gives up
its membership to the piconet to join a list of parked nodes. The
node’s only activity in parked mode is to periodically listen for
synchronization and broadcast packets. Inhold mode, the node
goes into a low power state until some specified interval, after
which it powers up to transmit. This is very similar to the WLAN
scheduling algorithm discussed in the previous section.

A Bluetooth node in hold mode will wait a specified period of
time, switch to active mode to transmit, and then switch back to
hold mode. The approximate energy consumption can be obtained
with the following equation:

E = Ptx × Ttx + Phold × Thold + Etransition (6)

wherePtx andTtx are the power consumption and times to trans-
mit the data,Phold andThold are the power consumption and time
spent in the hold state, andEtransition is the total energy required
to transition from the hold state to the active state and back. The
transition from hold to active takes approximately11.62 ms, the
reverse transition takes approximately1.68 ms.
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Fig. 11. Energy per frame of speech vs. latency for a Bluetooth
node transmitting DSR traffic.

By varying the amount of data transmitted at once, we can in-
crease the amount of time spent in the low-power hold state, sim-
ilar to specifically turning the card off forT seconds in 802.11.
Figure 11 shows the tradeoff between speech recognition latency
and energy consumption per frame of speech. The total energy
consumption per frame is less than 802.11 for all but the WLAN
power off scheduling at the largest delay. Powering off a Bluetooth
node between transmits is not an option since the paging/incquiry
options required to join a piconet can easily take over 10 seconds.
However, since the transition time from hold to active and back is
small, we see a much faster reduction in energy consumption with
respect to increased latency in Bluetooth. We can achieve signifi-
cant reductions in energy consumption after around 300-400ms of
delay, which would hardly be noticed by any user of a voice-user
interface.



4. CONCLUSION

In this paper, we investigated the energy consumption of a dis-
tributed speech recognition front-end. We considered energy us-
age from both computation and communication. We show that
QoS tradeoffs involving compression rates are less important for
high speed wireless networks such as 802.11, but they can have
a larger impact for wireless interfaces with lower data rates and
power consumption such as Bluetooth.

The total latency of the system, which is dictated by the amount
of DSR data buffered before transmitting, has the greatest im-
pact on energy consumption. Larger packets allow the networking
overhead to be amortized across a larger number of speech frames,
which drives down the total energy cost per 10 ms frame of speech.
In 802.11, we can couple the energy savings from larger packet
sizes with a power on/off scheduling algorithm to reduce the over-
all energy consumption by a factor of 5 over the 802.11 PM mode
in heavy broadcast traffic conditions. Additionally, we can iden-
tify the delay which will always yield a lower energy consumption
even in ideal traffic conditions. For a power on delay of 100ms,
this value is approximately 900ms or 90 frames of speech data.

The Bluetooth standard provides a low-power scheduling mech-
anism with considerably less overhead than 802.11. Use of this
power-saving scheme allows for substantial reductions in power
consumption with about 300-400ms of delay. Increasing the delay
past 500ms only gives marginal reductions in energy consumption.
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