
1

Energy Aware Distributed Speech Recognition for
Wireless Mobile Devices

Brian Delaney, Tajana Simunic, Nikil Jayant

Abstract— The use of a voice-user interface for mobile
wireless devices has been an area of interest for some
time. However, these devices are generally limited by
computation, memory, and battery energy, so performing
high-quality speech recognition on an embedded device is a
difficult challenge. In this paper, we investigate the energy
consumption of distributed speech recognition on the
HP Labs SmartBadge IV embedded system and propose
optimizations at both the application and network layers
that reduce the overall energy budget for this application
while still maintaining adequate quality of service for
the end-user. We consider energy consumption in both
computation and communication.

I. INTRODUCTION

Wireless mobile devices such as PDAs and cellular
phones typically contain small screens and tiny keypads.
Appropriate use of speech recognition technology can
allow users to interact with the system in a more natural
manner. While many cellular phones currently have voice
dialing capability, more sophisticated automatic speech
recognition (ASR) tasks require computation capability
beyond what these devices currently provide. Applica-
tions of ASR for embedded devices may include e-mail
dictation, Web browsing, and scheduling and contact
management applications, navigation, and command and
control.

Mobile devices are limited in computation, memory,
and battery energy, therefore complex ASR tasks are
difficult to perform on the device due to these resource
limitations. A typical ASR system consists of a signal
processing front-end or feature extraction step, followed
by a search across acoustic and language models for the
most likely sentence hypothesis. The signal processing
front-end is a small portion of the overall computation
and storage required. The acoustic and language models
typically use on the order of tens of megabytes each
of storage with significant computation required for
large vocabulary search. Therefore, distributing the ASR
across the network is an attractive alternative for these
mobile wireless devices. In the absence of a network
connection, some limited ASR may be performed on the
device.

In distributed speech recognition (DSR), the speech
features, typically mel-frequency cepstral coefficients
(MFCC), are calculated at the client and sent over the
wireless network to a server. This client-server approach
to ASR has been well studied in the literature. The back-
end ASR search including hidden Markov model (HMM)
state output evaluation and Viterbi search is performed
at the server. This further limits the problem to single
hop communication with a mobile host and base station
infrastructure. A true distribution of the workload across
many wireless nodes of equal processing capability
would probably cause too much wireless traffic to be
beneficial. In order to minimize the bit rate, the MFCCs
are first compressed using some quantization scheme.
The result is a three-step process on the mobile client in-
volving computation, quantization, and communication.

One challenge in designing an ASR system for a mo-
bile device is minimizing the total energy consumption
used in the task. The use of CPU, memory, and the
wireless network can cause considerable battery drain
if used indiscriminately. In this work, we examine the
energy usage of a DSR system with respect to the
quality-of-service metrics pertinent to this application.
We consider both communication- and computation-
related energy drain and propose techniques to minimize
energy usage in both areas while maintaining a useful
level of service for the end-user. We compare the energy
consumption of both client-side ASR and DSR using two
different network interfaces.

The embedded system used in the experiments is the
SmartBadge IV developed at the Mobile and Media
Systems Lab at HP Labs [1]. The SmartBadge contains
a 206 MHz StrongARM-1110 processor, StrongARM-
1111 co-processor, Flash, SRAM, PCMCIA interface,
and various sensor inputs such as audio, temperature,
and accelerometers. It runs the Linux operating system.
The SmartBadge has speech/audio driven I/O, so ASR
can provide some level of user interaction through a
voice-user interface. It supports a variety of different
networking hardware options including Bluetooth and
802.11b wireless interfaces. It has high-quality audio
input suitable for ASR. The StrongARM platform is still
used in many high-end PDAs on the market today, such

2

as the HP iPAQ H3800. The SmartBadge IV uses the
same memory and CPU as this version of the iPAQ, but
it offers a wider range of hardware-based power mea-
surements as well as software simulation tools, therefore
it is a better choice to investigate the issues discussed in
this paper. Newer PDAs based on the XScale processor
have a similar architecture to the StrongARM, and we
expect similar results with these processors.

In Section II, we discuss some related work. Sec-
tion III includes a discussion on the energy consumption
of a signal processing front-end as well as an estimation
of the energy consumption of client-side ASR. In Sec-
tion IV, we discuss the energy used in communication
for both 802.11b and Bluetooth. Finally, we present a
summary in Section V and conclusions in Section VI.

II. RELATED WORK

Earlier work on DSR considered the effects of com-
munication over cellular networks. The effects of using
coded speech in ASR is presented in [2]. Low bit rate
speech coders, such as those used in cellular telephony,
exhibited significant reductions in ASR accuracy. In an
attempt to alleviate the effects of low bit rate speech
coders, cepstral coefficients were calculated directly
from the wireless bitstream. While this offered some
improvement, a fundamental limitation is that traditional
speech coding techniques are aimed at human and not
machine listeners. The spectral distortion introduced by
speech coding is designed to have minimum impact on
human listeners, but speech recognizers rely solely on
this spectral information. Currently deployed low bit
rate speech coding techniques are not suitable for high-
quality ASR applications.

More recent work on DSR can be grouped into two
main areas, those that attempt to design ASR-friendly
speech coders and those that assume to communicate
only with an ASR system. We consider the latter, where
only the spectral information needs to be included,
which can result in better performance with lower bit
rates. Vector quantization is the dominant compression
technique with bit rates in the low kbps range [3]. The
ETSI Aurora DSR standard includes a vector quantizer
with some error detection, concealment, and framing
techniques [4].

This work considers the application of DSR traffic
to both Bluetooth and 802.11b networks. The wireless
network power optimization problem has been addressed
at different abstraction layers, starting from the semicon-
ductor device level to the system and application level.
The results include energy efficient channel coding,
scheduling at the physical layer, new 802.11b protocol

proposals and packet scheduling strategies. A server-
driven scheduling methodology aimed at reducing power
consumption for streaming MPEG4 video is introduced
in [5]. Traditional system-level power management tech-
niques are divided into those aimed at shutting down
components and policies that dynamically scale down
processing voltage and frequency. Energy-performance
tradeoffs based on application needs have been recently
addressed, including the energy-QoS tradeoff and co-
operation between multimedia applications and the op-
erating system. A more complete list of references is
provided in [6].

III. M ODELING THE ENERGY USED IN

COMPUTATION

The computation of speech features is a small portion
of the overall ASR task in both computation and memory
usage. Client-side ASR requires more computation and
memory bandwidth due to the back-end search algo-
rithm. Table I shows the average cycle count to process
one frame of speech in the Sphinx-III large vocabulary
ASR system on an Intel Pentium 4 workstation. The total
processing for the front-end is less than 1% of the overall
computation, with the majority of time being spent in the
hidden Markov modeling step. Porting a full ASR sytem
to a mobile device requires more optimization than a
simple conversion to fixed-point arithmetic. It involves
optimization at many levels, from search space reduc-
tion to fast arithmetic kernels and techniques to reduce
memory bandwidth. For these reasons, we concentrate
our software optimization on the signal processing front-
end only, and estimate the full client-side ASR energy
usage by using some published results [7].

TABLE I

CYCLE COUNTS FOR THE FRONT-END, GAUSSIAN EVALUATION ,

AND V ITERBI SEARCH PORTIONS OFASR.

Module Avg. Cycles/Frame % of total
Front-End 7:22 � 104 0.4%
Hidden Markov Model 1:21 � 107 32.63%
Viterbi Search 5:88 � 106 66.97%

Client-side ASR may be necessary to maintain in-
teractivity with the mobile device when the network is
not present. We compare these results with DSR under
various channel conditions, error correction methods, and
packet sizes to show the benefits of DSR from an energy
consumption perspective. Through the use of algorithmic
and architectural optimization in software, we can reduce
the energy consumption of the signal processing front-
end by 83%. These savings can be enhanced by the use
of runtime dynamic voltage scaling (DVS) techniques.

3

A. Signal Processing Front-End

The acoustic observations generated by the signal
processing front-end are mel-frequency cepstral coeffi-
cients [8]. The calculation of MFCCs requires filtering
and windowing operations, a magnitude FFT calculation,
a filter-bank operation, a logarithm operation, and a
discrete cosine transform applied to speech frames every
10ms. Implementing the front-end feature extraction
for a DSR system on an embedded platform requires
not only speed, but also power optimization, since the
battery lifetime in such devices is very limited. This
work discusses both the source code and the run-time
optimizations.

The source code optimizations can be grouped into
two categories. The first category, architectural opti-
mizations, aims to reduce power consumption while
increasing speed by using optimization methods targeted
to a particular processor or platform. Measurements
presented in [9] show that the improvements that can
be gained using standard compiler optimizations are
marginal compared with writing energy efficient source
code. The second category of source code optimizations
is more general and involves changes in the algorithmic
implementation of the source code with the goal of faster
performance with reduced energy consumption.

The final optimization presented in this work, dynamic
voltage scaling (DVS), is the most general since it can
be applied at run-time without any changes to the source
code. Dynamic voltage scaling algorithms reduce energy
consumption by changing processor speed and voltage
at run-time depending on the needs of the applications
running. The maximum power savings obtained with
DVS are proportional to the savings in frequency and
to the square of voltage.

1) Architectural Optimization:Signal processing al-
gorithms, such as the calculation of the mel-frequency
cepstrum, are generally mathematically intensive, there-
fore a significant amount of effort was spent in optimiz-
ing the arithmetic. In addition, simple C code optimiza-
tions were employed to help the compiler generate more
efficient code. Due to a lack of floating-point hardware,
simulations showed that the StrongARM spent over 90%
of its time in floating-point emulation. Any further gains
require fixed-point arithmetic.

Implementing a pre-emphasis filter and Hamming
window using fixed-point arithmetic is straight forward.
Fixed-point FFTs are well studied and have often been
implemented on digital signal processor chips. The re-
maining optimizations involve a fast complex magnitude
calculation, dynamic range reduction for the filterbank
operation, and a fast logarithm based on bit manipula-

tion. The mathematical details of these optimizations can
be found in [6].

2) Algorithmic Optimization:Profiling of the original
source code under a StrongARM simulator revealed that
most of the execution time was spent in the computation
of the DFT (which is implemented as an FFT). Since
speech is a real-valued signal, anN -point complex FFT
can be reduced to anN=2-point real FFT. Some further
processing of the output is required to get the desired
result, but this overhead is minimal compared with the
reduction in computation. Additional savings can be
obtained though the use of look-up tables for frequently
used mathematical functions.

3) Dynamic Voltage Scaling:Once the code is op-
timized for both power consumption and speed, fur-
ther savings are possible by changing the processing
frequency and voltage at run-time. The StrongARM
processor on SmartBadge IV can be configured at run-
time by a simple write to a hardware register to execute
at one of 11 different frequencies. We measured the
transition time between two different frequency settings
at 150 microseconds. Since typical processing time for
the front-end is much longer than the transition time,
it is possible to change the CPU frequency without
perceivable overhead. For each frequency, there is a
minimum voltage the StrongARM needs in order to
run correctly but with lower energy consumption. We
obtained real-time performance at all possible frequency
and voltage settings.

4) Software Optimization Results:Simulation results
for processing one frame (25ms) of speech on the
SmartBadge IV architecture running at 202.4 MHz are
shown in Figure 1. The X-axis shows the source code
in various stages of optimization. The “baseline” source
code contains no software optimizations. The “optimized
float” code contains the set of optimizations described
in section III-A.2 as well as some general C source
optimizations [10]. Double-precision floating-point num-
bers were changed to single-precision 32-bit floats in the
“32-bit float” version of the code. Finally, the “fixed-
point” implementation contains all of the source code
optimizations described in this paper. For each version
of the code, we report the performance (in CPU cycles)
and the total battery energy consumed (in�Joules).
The simulation results are computed by a cycle-accurate
energy simulator, and include processor core and L1
cache energy, interconnect and pin energy, energy used
by the memory, losses from the DC/DC converter, and
battery inefficiency [9]. We have achieved a reduction in
the total battery energy required to process one frame of
speech data by 83.5%. When using this optimized ASR
front-end in both the test and training phases, we observe

4

no significant reduction in ASR accuracy on a connected
digit recognition task.

Fig. 1. Cycle count, left, and energy consumption in�J, right, per
frame of speech.

Because the fixed-point version runs 34 times faster
than the original baseline source code, it is possible to
get further reductions in energy usage by using DVS.
Power measurements are performed on the SmartBadge
IV system running the Linux O/S and our optimized
front-end. At the lowest combined frequency and voltage
settings, 59 MHz and 0.78 V, the algorithm still runs in
real-time, and the system uses 34.7% less power than at
206 MHz.

5) Vector Quantization:Finally, we include the fixed-
point vector quantization code in our profiling and
consider different bit rates and quantization levels. For
our system, we use a split vector quantization scheme
presented in [3] with bit rates ranging from 1.2 to 2.0
kbps. We include an additional bit allocation that is
similar to the ETSI DSR standard that will operate at
4.2kbps [4]. The actual bit rate needed for an ASR task
depends on many factors such as acoustic and speaker
conditions as well as the vocabulary size and complexity
of the acoustic models used. In [3], the range of bit rates
was evaluated for a small vocabulary task under ideal
acoustic conditions. We can expect the WER to increase
under less ideal conditions (i.e. larger vocabulary, more
acoustic background noise, etc.). Table II shows the
resulting bit rates and word error rates from [3].

Source code to perform the quantization of the MFCC
data was written in fixed-point for the StrongARM
processor and profiled using the energy consumption
simulator. The total energy consumption required to cal-
culate MFFCs for one frame of speech including vector
quantization at 4.2 kbps is approximately380 �Joules.
Even at the highest bit rate, the vector quantization is
only 12% of the total energy budget. This suggests that

speeding up the quantization process by using smaller
codebooks would produce minimal reductions in energy
consumption and would have a much greater impact
on ASR accuracy. Both hardware measurements and
simulation reveal that there is approximately a 14%
increase in CPU power consumption but a greater than
50% reduction in WER between the highest and lowest
bit rates. Therefore, we advocate the use of higher
and more robust bit rates since the reduction in energy
consumption is minimal.

B. Client-Side ASR

In the absence of a network connection it may be nec-
essary to perform ASR on the mobile device. Speaker-
dependent ASR engines have been optimized for the
StrongARM or other mobile processors by several com-
panies, but it has been shown that they use almost all
available resources and may run several times slower
than real-time for many tasks. Power measurements
for an embedded dictation ASR system running on
a StrongARM-based processor are given in [7]. The
ASR system ran just over 2.5 times real-time, and the
processor was never idle during the task.

For the purposes of this work, it is sufficient to
describe the energy requirements for local ASR as the
product of the average power dissipation of the processor
and memory under load and the time required to perform
the ASR task. For the SmartBadge IV, we have measured
the average CPU and memory power dissipation asP
pu
= 694 mW andPmem = 1115 mW when under load.
Given the real-time factorR for the ASR task, we can
estimate the energy consumption to recognize one frame
of speech as:Elo
al = (P
pu + Pmem)�R� 1100 (1)

Therefore, for an ASR task that runsR = 2:5 times
slower than real-time, we can expect to use approxi-
mately 45 mJ of battery energy to process one frame
of speech. By using smaller vocabularies and simpler
acoustic and language modeling techniques, it should be
possible to lower the total run-time and energy consump-
tion at the cost of reduced performance. A reduced ASR
task running in real-time on a SmartBadge IV would use
approximately 18 mJ of energy per frame of speech, but
the tradeoff is reduced utility for the end-user.

IV. M ODELING THE ENERGY USED IN

COMMUNICATION

Measurements on the SmartBadge IV hardware show
that an 802.11b interface card can use up to 45% of the
total power budget. Reducing the energy consumption is

5

an important consideration and has been well studied.
Section II outlines some of the techniques. We consider
both 802.11b and Bluetooth wireless networks in our
analysis.

Given the relatively low bit rates used in DSR, both
of these networks will operate well below their maxium
throughput range. In this situation, more energy saving
opportunities will develop from exploiting moderate in-
creases in application latency by transmitting more data
less often. This allows the network interface to either
be powered down or placed into a low-power state in
between transmissions.

In order to estimate the power consumption for wire-
less transmission, we directly measure the average cur-
rent into the network interface. Using these measure-
ments as a baseline, we are able to tailor a simple
energy consumption model to investigate the effects of
increased application latency. By buffering compressed
speech features, we maximize the amount of time spent
in the low-power or off state. We introduce a power
on/off scheduling algorithm for the 802.11b device that
exploits this increased latency. Given the medium access
control (MAC) scheme for both 802.11b and Bluetooth,
we can incorporate the effects of channel errors into
the energy model. We use these results to investigate
which techniques should be used to maintain a minimum
quality of service for the ASR task with respect to
channel conditions. A more rigorous analysis of the
energy models discussed in this section can be found
in [6].

A. 802.11b Wireless Networks

The 802.11b interface operates at a maximum bit rate
of 11 Mbps with a range of 100 meters. It uses an
automatic repeat request (ARQ) protocol with CRC error
detection to maintain data integrity. We used a PCMCIA
802.11b interface card and measured the average current
going into the card to get the power dissipation. Our
measurements indicate there is a difference of only a
few mW in power consumption between the highest and
lowest bit rates. This is expected since the bit rates are
low, and the transmit times are very short. Also, the
use of UDP/IP protocol stacks and 802.11b MAC layer
protocols both add significant overhead for small packet
sizes. Due to the relatively high data rates provided by
802.11b, the WLAN interface spends most of its time
waiting for the next packet to transmit.

The 802.11b power management (PM) mode can
provide some savings in energy consumption but it
was shown in [5] that this does not hold under heavy
broadcast traffic conditions, defined as a higher than

average amount of broadcast packets. While operating
in the 802.11b PM mode, a WLAN card goes into an
idle state. Every 100ms it wakes up and receives a
traffic indication map, which is used to indicate when the
base station will be transmitting data to this particular
mobile host. With heavy broadcast traffic, the WLAN
interface will rarely be in the idle state and it will
consume power as if it were in the always-on mode. This
is because the time required to analyze the broadcast
packets is larger than the sleep interval. This increase
in power consumption will happen even if there are no
applications running on the mobile host. Measurements
in [5] indicate that, even in less than average amounts
of broadcast traffic, significant energy is wasted by the
extra processing.

Since the energy consumption of PM mode on 802.11b
networks breaks down in heavy broadcast traffic con-
ditions, we consider an alternate algorithm. If we are
interested in transmitting only ASR-related traffic and
not any other broadcast traffic, we can simply power off
the WLAN card until we have buffered enough data to
transmit. However, powering the card on and off has an
energy-related cost that needs to be accounted for.

P
o

w
er

Time

T

TtxPon

Psave

Tback_on

Fig. 2. The timing of the 802.11b scheduling algorithm.

Figure 2 shows the timing of this scheduling algo-
rithm. The period,T , is determined by the number of
speech frames sent in one packet. The transmission is
synchronous such that everyT seconds we will send
that amount of compressed speech features and stay in
the off state for the remainder of the time. With larger
values ofT we can hope to amortize the cost of turning
the WLAN card on and off,Tba
k on, at the expense of
longer delay. Assuming that a speech recognition server
is able to process speech at or near real-time, the user
will experience delay near the value ofT . The amount
of tolerable delay depends on the application. For user
interface applications, such as Web browsing, a calendar
application, or a voice-driven MP3 player, it is important
to reduce the delay to maintain interactivity. Delays of
about one second may hardly be noticed by the user,

6

whereas delays of about three seconds or more may
hinder interactivity. For a dictation application, such as
e-mail, this delay is less important.

The energy consumption for the always on,Eon, and
WLAN PM mode,Esave, can be estimated as the product
of the measured average power dissipation and the cycle
time T . Under the proposed scheduling algorithm, the
WLAN card will be on only during the shaded region in
Figure 2.

50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

WLAN Power on Delay (ms)

A
vg

. e
ne

rg
y

co
ns

um
pt

io
n

pe
r

pa
ck

et
 (

m
J) Power management (w/heavy traffic)

Power management (ideal)
Power down scheduling

Fig. 3. WaveLAN power on delay vs. energy consumption per
packet.

The two interesting parameters to consider are the
power on time (Tba
k on) and the number of speech
frames transmitted at once, which dictates the total
period T . Figure 3 shows the power on delay on the
x-axis and estimated energy consumption on the y-axis.
We fixed the value ofT to 0.48 seconds, or 48 frames
of speech data. The PM mode configuration in light traf-
fic almost always outperforms the proposed scheduling
algorithm except for very small values ofTba
k on. (Typ-
ical values may range from 100ms to 300ms.) However,
in heavy traffic conditions, the PM mode approaches
the always on power consumption (shown by the top
line in the plot), so the scheduling algorithm can give
better performance under these conditions. The mobile
device will have to monitor the broadcast traffic and
decide between the standard 802.11b PM mode or the
scheduling algorithm.

Finally, we consider increased delay or latency,T , in
Figure 4 withTba
k on fixed at 100ms. In this plot, the
energy cost was determined using measured values of
power consumption. The energy cost has been normal-
ized to show the average energy required to transmit one
frame of speech data. As the total number of frames
approaches 80 (T = 800ms), we can see that the

Fig. 4. Average energy consumption per 10ms speech frame vs.DSR
latency for various 802.11b power save schemes. (WLAN poweron
delay is fixed at 100ms.)

scheduling algorithm (Es
hed) will be able to outperform
the PM mode configuration (Esave) regardless of traffic
conditions. Shorter power on (Tba
k on) times can help
move this crossover point to shorter delays. Longer
delays of two seconds or more can further reduce energy
consumption and are good candidates for applications
requiring lower interactivity, such as dictation.

Since the 802.11b MAC protocol uses an automatic-
repeat-request (ARQ) protocol with CRC error detection
to maintain data integrity, the energy consumption will
be a function of channel signal to noise ratio (SNR).
After the reception of a good packet, an ACK is sent
across a robust control channel. If the ACK is not
received by the sender, then the packet is retransmitted.
The expected number of retransmits for a given bit error
rate and packet length can be calculated and used to
estimate the energy consumption [11]. The bit error
rate is estimated using an expression for 256-QAM
modulation in a Rayleigh fading channel. The Rayleigh
fading channel asssumption is widely used in wireless
communications literature as a more realistic alternative
to an additive white Gaussian noise channel [12]. By
applying our BER expression and power measurements
to the expression for energy per goodput in [11], we can
find an expression for the expected energy consumption
in a noisy channel.

B. Bluetooth Personal Area Network

The Bluetooth personal area network provides a maxi-
mum bit rate of 1 Mbps, and a variety of packet types are
available to support different traffic requirements [13]. It
supports a range that is considerably less than 802.11b,
on the order of 10 meters. Bluetooth supports both data
and voice traffic packets. Media access is handled via a
time-division duplex (TDD) scheme in which each time
slot lasts 625�seconds. Data packets are available in

7

both high-rate (DH) and medium-rate (DM) packets that
occupy either 1, 3, or 5 time slots. Medium rate packets
contain a 2/3 rate error correction code in addition to the
ARQ protocol. Voice packets, due to their time-sensitive
nature, do not use an ARQ protocol. Voice packets are
available in HV1, HV2, or HV3 types, in which the
number denotes the amount of error correction rather
than slot length. HV3 packets use no error correction.
HV2 packets use the (15,10) Hamming code, and HV1
packets use a 1/3 rate repetition code. Given the soft
time deadlines with speech data intended for a machine
listener, we can use either data packets or voice packets
without consideration of packet jitter or delay character-
istics.

Based on the packet types and various error correction
overhead, we can construct a simple energy model for
Bluetooth packet transmissions. For voice packets, the
total energy used is the power used in transmission
multiplied by the time required to transmit. Because of
the error correction overhead, we need to transmit three
times as many HV1 packets as HV3 packets for the
same amount of user data. For data packets, the energy
consumption is dependent on the size of the data packet
being transmitted. Data packets occupy either 1, 3, or 5
TDD slots, so the energy can again by estimated by the
power-time product.

We can incorporate the Bluetooth power-saving modes
into our model to account for the idle time in between
packets. A node within a Bluetooth piconet can operate
in a variety of different power management modes [13].
We consider only thepark mode, where the Bluetooth
node temporarily gives up its membership to the piconet
to join a list of parked nodes. The node’s only activity in
parked mode is to periodically listen for synchronization
and broadcast packets. A Bluetooth node in park mode
will wake up upon activity to transmit some data and
then enter the park mode when finished.

By varying the amount of data transmitted at once,
we can increase the amount of time spent in the park
state. Our models show that for smaller values ofT ,
Bluetooth can offer better performance than 802.11b,
but asT approaches 1.3 seconds, 802.11b will use less
energy. This is because the 100 ms startup cost of
802.11b is amortized across a larger number of frames,
while the Bluetooth node remains in the park state and
still consumes power. Powering off a Bluetooth node
between packet transmissions is not an option since the
paging/inquiry actions required to join a piconet can
easily take in excess of 10 seconds.

We can perform a similar analysis as in Section IV-
A to estimate the energy consumption of Bluetooth data
packets in the presence of bit errors. During periods of

bit errors, data packets will continue to be retransmitted
until they are received correctly or a timeout occurs.
We assume BFSK modulation with coherent detection
under a Rayleigh fading channel [12] and estimate the
probability of packet failure [14] as well as the expected
number of retransmits to get the final expression for
energy consumption. Voice packets are delivered even
in error, so the energy consumption can be estimated as
a simple power-time product using measured values of
power dissipation.

V. SUMMARY OF DSR TRADEOFFS

By using the client-side ASR energy model and the
DSR energy model for both Bluetooth and 802.11b
wireless networks, we can examine the energy tradeoffs
with respect to channel quality, delay, and ASR accuracy.
Higher bit rates have small increases in system level
energy consumption due to the overhead of the power
saving algorithms on the wireless device. This tradeoff
is shown in Table II. For the remainder of this analysis,
we consider transmission at the highest available bit
rate, which offers the best WER. In Figure 5, we plot
the energy consumption per frame of speech for client-
side ASR and DSR under both 802.11b and Bluetooth
wireless networks with respect to channel quality. For
DSR, we include the both the communication and com-
putation (feature extraction/quantization) energy costs.
For 802.11b, we consider the energy consumption of
the power on/off scheduling algorithm with a latency
of 240ms, 480ms, and 2 seconds and unlimited ARQ
retransmissions. For the Bluetooth interface we show the
energy consumption for both medium- and high-rate data
packets as well as the three types of voice packets with
latency of 480ms. To the right of the Y-axis we show
the approximate energy savings over client-side ASR
operating 2.5 times slower than real-time. We can expect
a scaled down ASR task (i.e. simpler acoustic and lan-
guage models or smaller vocabulary) running at real-time
to give 60% energy savings. However, this will come
at a cost of reduced functionality for the user, perhaps
going to a more constrained vocabulary and speaking
style. For the various DSR scenarios in Figure 5 we
assume little to no reduction in quality for the end-user
by maintaining sufficient data integrity through source
coding techniques and/or ARQ retransmissions. Table III
shows the percentages of computation and communica-
tion energy for a few different configurations as well
as the expected battery lifetime with a 1400mAh/3.6V
lithium-ion cell. The 802.11b interface with long delays
gives the lowest overall energy consumption and an al-
most even division between energy spent in computation
and communication. DSR with Bluetooth uses a higher

8

percentage of communication energy, and this amount
does not decrease significantly with increased delay due
to the overhead of the park mode. Expected battery
lifetimes exceed that of typical cellular telephones as we
do not require real-time communication. Even modest
delays of less than 0.5s can yield significant battery
lifetime.

TABLE II

TOTAL ENERGY CONSUMPTION FOR BOTH COMPUTATION AND

COMMUNICATION VS. BIT RATE FOR BLUETOOTH AND 802.11B.(T = 0:48s).
Computation + Communication

Bit rate (kbps) WER (%) Bluetooth (mJ) 802.11b (mJ)
1.2 16.79 1.1279 2.4661
1.4 11.71 1.1315 2.4688
1.6 9.3 1.1323 2.4698
1.8 8.1 1.1338 2.4717
1.9 6.99 1.1358 2.4719
2.0 6.63 1.1380 2.4749
4.2 6.55 1.1701 2.5044

In a good channel with high SNR, Bluetooth allows
systemwide energy savings of over 95% compared with
full client-side ASR. DH5 packets offer the lowest
overhead and best energy savings, while DM1 packets
offer the most robust operation down to about 10 dB
with some minimal energy cost. The ARQ retransmission
protocol causes rapid increases in energy consumption
after some SNR threshold is reached. It is possible to
operate in lower SNR through packet fragmentation,
which will lower the probability of a packet being re-
ceived in error. This is evident in Figure 5 by comparing
DH1 and DH5 data packets. The longer packet length
in DH5 packets causes a sharp increase in retransmits
and energy consumption at about 25 dB, whereas DH1
packets can operate down 15 dB before the number of
retransmits becomes excessive. In addition, FEC bits can
be used to lower the probability of a packet retransmit.
The Hamming code in DM1 and DM5 packets allows
operation down to about 10 and 16 dB respectively. Fi-
nally, Bluetooth voice packets have energy consumption
that is independent of SNR since no ARQ protocol is
used. Uncoded HV3 packets have the lowest overhead,
and therefore the lowest energy consumption per frame
of speech, but they only operate down to about 27 dB.
Beyond that, the probability of a bit error exceeds10�3,
which we have determined to have a noticable impact on
ASR accuracy [6]. HV1 and HV2 packets can operate
down to about 12 and 17 dB respectively, with little
noticeable loss in recognition accuracy.

Finally, 802.11b networks allow system wide energy
savings of approximately 89-94% with relatively small

values ofT . With larger values ofT , such as one second
or more, we can use less energy than Bluetooth. How-
ever, due to the larger packet overhead, larger maximum
packet sizes, different modulation, techniques, and lack
of payload error-correcting codes, the 802.11b network
does not operate as well in lower SNR ranges. Packet
fragmentation or a switch to a more robust modulation
technique with lower maximum bit rate can extend
the lower SNR range at the cost of increased energy
consumption, but we have not considered these effects
here. However, 802.11b does offer increased range and
may be more appropriate in certain scenarios.

VI. CONCLUSION

In this paper, we investigated the energy consumption
of a DSR front-end. We considered energy usage from
both computation and communication. The advantages of
DSR from an energy consumption perspective are clear.
Client-side ASR in software can consume several orders
of magnitude more energy than a DSR system. However,
the use of low-power ASIC chips for ASR may help
reduce the energy consumption of client-side ASR in
the future.

The computation of an ASR front-end can be opti-
mized for a particular processor to reduce the energy
consumption. Savings of more than 80% can be obtained
through algorithmic and architectural optimizations. Dy-
namic voltage scaling can be applied at run-time to
minimize the energy consumption even further.

In our analysis of DSR, we considered both 802.11b
and Bluetooth wireless networks. Given the relatively
high bit rates these standards provide with respect to
DSR traffic, we investigated the use of synchronous
bursty transmission of the data to maximize the amount
of time spent in a low-power or off state. While this
adds a small delay to the end-user, the energy savings
can be significant. With 802.11b, we can reduce the
energy consumption of the wireless interface by about
80% with modest application delays of just under half a
second. Bluetooth offers lower energy consumption for
smaller values of delay,T , but as delay increases, the
Bluetooth energy consumption is dominated by the time
spent in park mode. Bluetooth voice packets can operate
down to 12 dB SNR without any perceptible reduction
in accuracy. The use of FEC codes can allow Bluetooth
data packets to operate down to slightly less than 10 dB
and still use less energy than client-side ASR.

ACKNOWLEDGEMENT

The authors would like to thank John Anckorn and
Wajahat Qadeer for their contribution of Bluetooth power

9

TABLE III

SUMMARY OF ENERGY CONSUMPTION FORASR AND DSRWITH HIGH CHANNEL SNR.

Type Computation (%) Communication (%) Total per Speech
Frame (mJ)

Battery Lifetime (h)

DSR w/Bluetooth (T=0.48s) 32% 68% 1.17 43.1
DSR w/802.11b (T=0.48s) 15% 85% 2.5 20.2
DSR w/802.11b (T=2s) 42% 58% 0.92 54.8
Local ASR (R=2.5) 100% 0% 45 1.12

0 5 10 15 20 25 30 35 40

10
0

10
1

SNR (dB)

E
ne

rg
y

(m
J)

BT Data
BT Voice
802.11b
Local ASRLocal ASR (R=2.5)

Local ASR (R=1)

802.11b (T=0.24s)

802.11b (T=0.48s)

802.11b (T=2s)

DH5
DH1

DM5 DM1

HV1 HV3 HV2

% Reduction
in Energy

60%

89%

94%

>97%

Fig. 5. The energy consumption of client-side ASR and DSR under Bluetooth and 802.11b vs. SNR.

consumption measurements as well as Mat Hans and
Mark Smith of HP Labs for their continued support of
this work.

REFERENCES

[1] G. Q. Maguire, M. Smith, and H. W. P. Beadle, “Smartbadges:
A wearable computer and communication system,” 6th Interna-
tional Workshop on Hardware/Software Codesign, 1998, invited
Talk.

[2] B. Lilly and K. Paliwal, “Effect of speech coders on speech
recognition performance,” inICLSP 96, vol. 4, 1996, pp. 2344–
2347.

[3] V. Digilakis, L. Neumeyer, and M. Perakakis, “Quantization of
cepstral parameters for speech recognition over the world wide
web,” IEEE Journal on Selected Areas in Communications,
vol. 17, pp. 82–90, 1999.

[4] “Speech processing, transmission and quality aspects (stq);
distributed speech recognition; front-end feature extraction al-
gorithm; compression algorithms,” ETSI Standard: ETSI ES
201 108 v1.1.2, 2000, http://www.etsi.org.

[5] A. Acquaviva, T. Simunic, V. Deolalikar, and S. Roy, “Remote
power control of wireless network interfaces,”Lecture Notes in
Computer Science, October 2003.

[6] B. Delaney, T. Simunic, and N. Jayant, “Energy aware
distributed speech recognition for wireless mobile devices,”
Hewlett Packard Laboratories, Tech. Rep.

[7] W. H. et. al., “Itsy: Stretching the bounds of mobile computing,”
Computer, vol. 34, pp. 28–36, April 2001.

[8] Deller, Proakis, and Hansen,Discrete–Time Processing of
Speech Signals. Upper Saddle River, NJ: Prentice Hall, 1987.

[9] T. Simunic, L. Benini, and G. D. Micheli, “Energy-efficient
design of battery-powered embedded systems,”Special Issue of
IEEE TVLSI, pp. 18–28, May 2001.

[10] Various, “C source code optimizations for arm,” Application
Note 33, 1996, aRM Inc.

[11] J.-P. Ebert, S. Aier, G. Kofahl, A. Becker, B. Burns, and
A. Wolisz, “Measurement and simulation of the energy con-
sumption of a wlan interface,” Technical University of Berlin,
Telecommunication Networks Group, Tech. Rep. TKN-02-010,
June 2002.

[12] J. G. Proakis,Digital Communications, 3rd ed. McGraw-Hill,
1995.

[13] “Bluetooth specification (v1.1),” [http://www.bluetooth.com],
2002.

[14] M. Valenti, M. Robert, and J. Reed, “On the throughput of
bluetooth data transmissions,” inIEEE Wireless Communica-
tions and Networking Conference, vol. 1, 2002, pp. 119– 123.

