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Abstract— The use of a voice-user interface for mobile  In distributed speech recognition (DSR), the speech
wireless devices has been an area of interest for somefeatures, typically mel-frequency cepstral coefficients
time. However, these devices are generally limited by (MFCC), are calculated at the client and sent over the
computation, memory, and battery energy, so performing yire|ess network to a server. This client-server approach
high-quality speech recognition on an embedded device is a;, AgR has been well studied in the literature. The back-

difficult challenge. In this paper, we investigate the energ . . .
consumption of distributed speech recognition on the end ASR search including hidden Markov model (HMM)

HP Labs SmartBadge IV embedded system and propose Staté output evaluation and Viterbi search is performed

optimizations at both the application and network layers at the server. This further limits the problem to single
that reduce the overall energy budget for this application hop communication with a mobile host and base station

while still maintaining adequate quality of service for infrastructure. A true distribution of the workload across
the end-user. We consider energy consumption in both many wireless nodes of equal processing capability
computation and communication. would probably cause too much wireless traffic to be
beneficial. In order to minimize the bit rate, the MFCCs
are first compressed using some quantization scheme.
The result is a three-step process on the mobile client in-
Wireless mobile devices such as PDAs and cellulaolving computation, quantization, and communication.
phones typically contain small screens and tiny keypads.One challenge in designing an ASR system for a mo-
Appropriate use of speech recognition technology céile device is minimizing the total energy consumption
allow users to interact with the system in a more naturased in the task. The use of CPU, memory, and the
manner. While many cellular phones currently have voiedreless network can cause considerable battery drain
dialing capability, more sophisticated automatic speeifhused indiscriminately. In this work, we examine the
recognition (ASR) tasks require computation capabilignergy usage of a DSR system with respect to the
beyond what these devices currently provide. Applicguality-of-service metrics pertinent to this application
tions of ASR for embedded devices may include e-male consider both communication- and computation-
dictation, Web browsing, and scheduling and contactlated energy drain and propose techniques to minimize
management applications, navigation, and command atkrgy usage in both areas while maintaining a useful
control. level of service for the end-user. We compare the energy
Mobile devices are limited in computation, memorngonsumption of both client-side ASR and DSR using two
and battery energy, therefore complex ASR tasks atdferent network interfaces.
difficult to perform on the device due to these resource The embedded system used in the experiments is the
limitations. A typical ASR system consists of a signabmartBadge IV developed at the Mobile and Media
processing front-end or feature extraction step, followe&ystems Lab at HP Labs [1]. The SmartBadge contains
by a search across acoustic and language models for@ah206 MHz StrongARM-1110 processor, StrongARM-
most likely sentence hypothesis. The signal processibfill co-processor, Flash, SRAM, PCMCIA interface,
front-end is a small portion of the overall computatioand various sensor inputs such as audio, temperature,
and storage required. The acoustic and language modw®id accelerometers. It runs the Linux operating system.
typically use on the order of tens of megabytes eadie SmartBadge has speech/audio driven 1/0, so ASR
of storage with significant computation required focan provide some level of user interaction through a
large vocabulary search. Therefore, distributing the ASRice-user interface. It supports a variety of different
across the network is an attractive alternative for thesetworking hardware options including Bluetooth and
mobile wireless devices. In the absence of a netwoBk2.11b wireless interfaces. It has high-quality audio
connection, some limited ASR may be performed on theput suitable for ASR. The StrongARM platform is still
device. used in many high-end PDAs on the market today, such
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as the HP iPAQ H3800. The SmartBadge IV uses theoposals and packet scheduling strategies. A server-
same memory and CPU as this version of the iPAQ, bdtiven scheduling methodology aimed at reducing power
it offers a wider range of hardware-based power meesnsumption for streaming MPEG4 video is introduced
surements as well as software simulation tools, therefarg[5]. Traditional system-level power management tech-
it is a better choice to investigate the issues discussechigques are divided into those aimed at shutting down
this paper. Newer PDAs based on the XScale processomponents and policies that dynamically scale down
have a similar architecture to the StrongARM, and wgrocessing voltage and frequency. Energy-performance
expect similar results with these processors. tradeoffs based on application needs have been recently
In Section I, we discuss some related work. Seaddressed, including the energy-QoS tradeoff and co-
tion Il includes a discussion on the energy consumpti@peration between multimedia applications and the op-
of a signal processing front-end as well as an estimatierating system. A more complete list of references is
of the energy consumption of client-side ASR. In Segrovided in [6].
tion 1V, we discuss the energy used in communication
for both 802.11b and Bluetooth. Finally, we present a I1l. M ODELING THE ENERGY USED IN
summary in Section V and conclusions in Section VI. COMPUTATION

The computation of speech features is a small portion
Il. RELATED WORK of the overall ASR task in both computation and memory

_ _ usage. Client-side ASR requires more computation and
Earlier work on DSR considered the effects of Con?'hemory bandwidth due to the back-end search algo-

munication over cellular networks. The effects of usingthm Table | shows the average cycle count to process
coded speech in ASR is presented in [2]. Low bit rafg,o frame of speech in the Sphinx-lil large vocabulary
speech coders, such as those used in cellular telephQQyg system on an Intel Pentium 4 workstation. The total
exhibited significant reductions in ASR accuracy. In g cessing for the front-end is less than 1% of the overall
attempt to alleviate the effects of low bit rate speeqtyny tation, with the majority of time being spent in the
coders, cepstral co_efﬁuents We_re ca_llculated dwecﬁ]wdden Markov modeling step. Porting a full ASR sytem
from the wireless bitstream. While this offered somg, ; mnqpile device requires more optimization than a
improvement, a fundamental limitation is that traditionaliy, e conversion to fixed-point arithmetic. It involves
speech coding techniques are aimed at human and Agfinization at many levels, from search space reduc-
machine listeners. The spectral distortion introduced RY, 11 fast arithmetic kernels and techniques to reduce
speech coding is designed to have minimum impact Qo handwidth. For these reasons, we concentrate
human listeners, but speech recognizers rely solely Qi) software optimization on the signal processing front-

this spectral information. Currently deployed low biEnd only, and estimate the full client-side ASR energy
rate speech coding techniques are not suitable for higﬂ},’age by using some published results [7].
guality ASR applications.

More recent work on DSR can be grouped into two TABLE |
main areas, those that attempt to design ASR-friendI$YCLE COUNTS FOR THE FRONFEND, GAUSSIAN EVALUATION,
speech coders and those that assume to communicate AND VITERBI SEARCH PORTIONS OFASR.
only with an ASR system. We consider the latter, where [ Module Avg. Cycles/Frame % of totdl
only the spectral information needs to be included, Er_ggt-Erll\;li <o Model EiXig: 32-2‘;?}/

H H H H ldaen Markov ivioae . X . (]
which can result in better performance with lower bit Viterbi Search 588 x 10° 66.97%

rates. Vector quantization is the dominant compression
technigque with bit rates in the low kbps range [3]. The
ETSI Aurora DSR standard includes a vector quantizerClient-side ASR may be necessary to maintain in-
with some error detection, concealment, and framingractivity with the mobile device when the network is
techniques [4]. not present. We compare these results with DSR under
This work considers the application of DSR traffizarious channel conditions, error correction methods, and
to both Bluetooth and 802.11b networks. The wirelegmcket sizes to show the benefits of DSR from an energy
network power optimization problem has been addressamhsumption perspective. Through the use of algorithmic
at different abstraction layers, starting from the semicoand architectural optimization in software, we can reduce
ductor device level to the system and application levehe energy consumption of the signal processing front-
The results include energy efficient channel codingnd by 83%. These savings can be enhanced by the use
scheduling at the physical layer, new 802.11b protocof runtime dynamic voltage scaling (DVS) techniques.



A. Signal Processing Front-End tion. The mathematical details of these optimizations can
Th iic ob i ted by the si be found in [6].
€ acoustic observations generated by the Slgnal2) Algorithmic Optimization:Profiling of the original

ource code under a StrongARM simulator revealed that

processing front-end are mel-frequency cepstral coegl—
cients [8]. The calculation of MFCCs requires 1E”terin%ost of the execution time was spent in the computation

and windowing operations, a magnitude FFT calculatiogf the DFT (which is implemented as an FFT). Since

a filter-bank operation, a logarithm operation, and eech is a real-valued signal, anpoint complex FFT

discrete cosine tra_nsform applied to speech frames e_V%ﬁ be reduced to aN/2-point,reaI EET. Some further

10ms. Implementing the front-end feature eXtraCt'.Oroessing of the output is required to get the desired
for a DSR system on an embedde_d _plaf[form TeAUITESSult, but this overhead is minimal compared with the
not only_sp_eed,.but also power optimization, since gy, .tion in computation. Additional savings can be
battery_ lifetime in such devices is very limited. Th'.%btained though the use of look-up tables for frequently
work discusses both the source code and the run-time. § mathematical functions.

optimizations. o ~3) Dynamic Voltage ScalingOnce the code is op-
The source code optimizations can be grouped inNfghizeq for both power consumption and speed, fur-
two categories. The first category, architectural opfer savings are possible by changing the processing
mizations, aims to reduce power consumption Wh"l?equency and voltage at run-time. The StrongARM
increasing speed by using optimization methods targe‘ﬁr%cessor on SmartBadge IV can be configured at run-
to a particular processor or platform. Measuremenig,q 1y a simple write to a hardware register to execute
presented in [9] show that the improvements that cap gne of 11 different frequencies. We measured the
be gained using standard compiler optimizations agsition time between two different frequency settings
marginal compared with writing energy efficient sourcg; 150 microseconds. Since typical processing time for
code. The second category of source code optimizatiqag front-end is much longer than the transition time,
is more general and involves changes in the algorithmjc;g possible to change the CPU frequency without
implementation_of the source code with the ggal OffaStEErceivable overhead. For each frequency, there is a
performance with reduced energy consumption. minimum voltage the StrongARM needs in order to
The final optimization presented in this work, dynamig,n correctly but with lower energy consumption. We
voltage scaling (DVS), is the most general since it c@jhtained real-time performance at all possible frequency
be applied at run-time without any changes to the sourggg voltage settings.
code. Dynamic voltage scaling algorithms reduce energys) Software Optimization ResultSimulation results
consumption by changing processor speed and voltggge processing one frame (25ms) of speech on the
at run-time depending on the needs of the applicatio8gartBadge IV architecture running at 202.4 MHz are
running. The maximum power savings obtained Withhown in Figure 1. The X-axis shows the source code
DVS are proportional to the savings in frequency ang various stages of optimization. The “baseline” source
to the square of voltage. code contains no software optimizations. The “optimized
1) Architectural Optimization:Signal processing al- float” code contains the set of optimizations described
gorithms, such as the calculation of the mel-frequengy section IlI-A.2 as well as some general C source
cepstrum, are generally mathematically intensive, thekgptimizations [10]. Double-precision floating-point num-
fore a significant amount of effort was spent in optimizsers were changed to single-precision 32-bit floats in the
ing the arithmetic. In addition, simple C code optimiza32-bit float” version of the code. Finally, the “fixed-
tions were employed to help the compiler generate maseint” implementation contains all of the source code
efficient code. Due to a lack of floating-point hardwareyptimizations described in this paper. For each version
simulations showed that the StrongARM spent over 9086 the code, we report the performance (in CPU cycles)
of its time in floating-point emulation. Any further gainsand the total battery energy consumed fidoules).
require fixed-point arithmetic. The simulation results are computed by a cycle-accurate
Implementing a pre-emphasis filter and Hammingnergy simulator, and include processor core and L1
window using fixed-point arithmetic is straight forwardcache energy, interconnect and pin energy, energy used
Fixed-point FFTs are well studied and have often bedy the memory, losses from the DC/DC converter, and
implemented on digital signal processor chips. The rbattery inefficiency [9]. We have achieved a reduction in
maining optimizations involve a fast complex magnitudehe total battery energy required to process one frame of
calculation, dynamic range reduction for the filterbangpeech data by 83.5%. When using this optimized ASR
operation, and a fast logarithm based on bit manipulient-end in both the test and training phases, we observe



no significant reduction in ASR accuracy on a connectegeeding up the quantization process by using smaller

digit recognition task. codebooks would produce minimal reductions in energy
consumption and would have a much greater impact
on ASR accuracy. Both hardware measurements and

-2s0  Simulation reveal that there is approximately a 14%
l.0o  INcrease in CPU power consumption but a greater than
170 90% reduction in WER between the highest and lowest
bit rates. Therefore, we advocate the use of higher
and more robust bit rates since the reduction in energy
consumption is minimal.
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P o In the absence of a network connection it may be nec-

] | | | | | . essary to perform ASR on the mobile device. Speaker-
Baseline Optimized Float 32-bit Float medroint  dependent ASR engines have been optimized for the

StrongARM or other mobile processors by several com-
Fig. 1. Cycle count, left, and energy consumptioryidy right, per  panijes, but it has been shown that they use almost all
frame of speech. available resources and may run several times slower
, . . _ than real-time for many tasks. Power measurements
Because the fixed-point version runs 34 times fas [ an embedded dictation ASR system running on

than the original baseline source code, it is possible OStrongARM—based processor are given in [7]. The
get further reductions in energy usage by using DV SR system ran just over 2.5 times real-time, and the
Power measurements are performed on the SmartBa§ cessor was never idle during the task '

IV 'system running the Linux O/S and our optimize For the purposes of this work, it is sufficient to

front-end. At the lowest combined frequency and VOIta.%eescribe the energy requirements for local ASR as the

settln_gs, 59 MHz and 0.78 V, the aI%onthm still runs i roduct of the average power dissipation of the processor
real-time, and the system uses 34.7% less power tha ﬁl& memory under load and the time required to perform
206 MHz. o _ _ _ the ASR task. For the SmartBadge 1V, we have measured
5) Vector QuantizationFinally, we include the fixed- he average CPU and memory power dissipatio®as
point vector quantization code in our profiling and 694 mW andP - 1115 mW when under load.
consider different bit rates and quantization levels. Fer, o real-timn:n;actoR for the ASR task, we can

our system, we use a _spht vector quantlzauon SCherggtimate the energy consumption to recognize one frame
presented in [3] with bit rates ranging from 1.2 to 2'8f speech as:

kbps. We include an additional bit allocation that is

similar to the ETSI DSR standard that will operate at Ejocat = (Ppu + Prmem) X R X 1 1)

4.2kbps [4]. The actual bit rate needed for an ASR task 100

depends on many factors such as acoustic and spediigrefore, for an ASR task that ruf® = 2.5 times

conditions as well as the vocabulary size and complex@pwer than real-time, we can expect to use approxi-

of the acoustic models used. In [3], the range of bit rat8ately 45 mJ of battery energy to process one frame

was evaluated for a small vocabulary task under ide?fl speech. By using smaller vocabularies and simpler

acoustic conditions. We can expect the WER to increa@goustic and language modeling techniques, it should be

under less ideal conditions (i.e. larger vocabulary, moR®ssible to lower the total run-time and energy consump-

acoustic background noise, etc.). Table Il shows th@n at the cost of reduced performance. A reduced ASR

resulting b|t rates and Word error rates from [3] task running in real-time on a SmartBadge IV would use
Source code to perform the quantization of the MFC@Pproximately 18 mJ of energy per frame of speech, but

data was written in fixed-point for the StrongARMNe tradeoff is reduced utility for the end-user.

processor and profiled using the energy consumption

simulator. The total energy consumption required to cal- IV. MODELING THE ENERGY USED IN

culate MFFCs for one frame of speech including vector COMMUNICATION

guantization at 4.2 kbps is approximatag0 pJoules.  Measurements on the SmartBadge IV hardware show

Even at the highest bit rate, the vector quantization tisat an 802.11b interface card can use up to 45% of the

only 12% of the total energy budget. This suggests thatal power budget. Reducing the energy consumption is




an important consideration and has been well studiet/erage amount of broadcast packets. While operating
Section Il outlines some of the techniques. We considerthe 802.11b PM mode, a WLAN card goes into an
both 802.11b and Bluetooth wireless networks in oidle state. Every 100ms it wakes up and receives a
analysis. traffic indication map, which is used to indicate when the
Given the relatively low bit rates used in DSR, bothase station will be transmitting data to this particular
of these networks will operate well below their maxiunmobile host. With heavy broadcast traffic, the WLAN
throughput range. In this situation, more energy savinmgterface will rarely be in the idle state and it will
opportunities will develop from exploiting moderate ineonsume power as if it were in the always-on mode. This
creases in application latency by transmitting more databecause the time required to analyze the broadcast
less often. This allows the network interface to eithgrackets is larger than the sleep interval. This increase
be powered down or placed into a low-power state in power consumption will happen even if there are no
between transmissions. applications running on the mobile host. Measurements
In order to estimate the power consumption for wirdn [5] indicate that, even in less than average amounts
less transmission, we directly measure the average oofr-broadcast traffic, significant energy is wasted by the
rent into the network interface. Using these measumxtra processing.
ments as a baseline, we are able to tailor a simpleSince the energy consumption of PM mode on 802.11b
energy consumption model to investigate the effects nétworks breaks down in heavy broadcast traffic con-
increased application latency. By buffering compresséiions, we consider an alternate algorithm. If we are
speech features, we maximize the amount of time spénferested in transmitting only ASR-related traffic and
in the low-power or off state. We introduce a powenot any other broadcast traffic, we can simply power off
on/off scheduling algorithm for the 802.11b device thdhe WLAN card until we have buffered enough data to
exploits this increased latency. Given the medium accdeansmit. However, powering the card on and off has an
control (MAC) scheme for both 802.11b and Bluetoottgnergy-related cost that needs to be accounted for.
we can incorporate the effects of channel errors into

the energy model. We use these results to investigats T >
which techniques should be used to maintain a minimum Pon ‘Thack_on | Ttx |
quality of service for the ASR task with respect to »~ } ;

channel conditions. A more rigorous analysis of the

—

energy models discussed in this section can be fou8 o
save

in [6]. gl =

A. 802.11b Wireless Networks

The 802.11b interface operates at a maximum bit rate
of 11 Mbps with a range of 100 meters. It uses aflg. 2. The timing of the 802.11b scheduling algorithm.
automatic repeat request (ARQ) protocol with CRC error
detection to maintain data integrity. We used a PCMCIA Figure 2 shows the timing of this scheduling algo-
802.11b interface card and measured the average currigthtn. The period,T’, is determined by the number of
going into the card to get the power dissipation. Owpeech frames sent in one packet. The transmission is
measurements indicate there is a difference of onlysgnchronous such that evefly seconds we will send
few mW in power consumption between the highest artldat amount of compressed speech features and stay in
lowest bit rates. This is expected since the bit rates ahe off state for the remainder of the time. With larger
low, and the transmit times are very short. Also, thealues of7" we can hope to amortize the cost of turning
use of UDP/IP protocol stacks and 802.11b MAC layehe WLAN card on and offy,.x_.n, at the expense of
protocols both add significant overhead for small packiehger delay. Assuming that a speech recognition server
sizes. Due to the relatively high data rates provided ly able to process speech at or near real-time, the user
802.11b, the WLAN interface spends most of its timeill experience delay near the value @ The amount
waiting for the next packet to transmit. of tolerable delay depends on the application. For user

The 802.11b power management (PM) mode céamerface applications, such as Web browsing, a calendar
provide some savings in energy consumption but application, or a voice-driven MP3 player, it is important
was shown in [5] that this does not hold under heawp reduce the delay to maintain interactivity. Delays of
broadcast traffic conditions, defined as a higher thabout one second may hardly be noticed by the user,

Time



whereas delays of about three seconds or more r
hinder interactivity. For a dictation application, such ¢
e-mail, this delay is less important.

The energy consumption for the always dw,,, and
WLAN PM mode, F 4., can be estimated as the produ
of the measured average power dissipation and the ¢\
time T. Under the proposed scheduling algorithm, tt
WLAN card will be on only during the shaded region i

Energy (mJ)
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scheduling algorithm.,.q) will be able to outperform
the PM mode configuration{,,.) regardless of traffic
conditions. Shorter power off,.x_o») times can help
move this crossover point to shorter delays. Longer
delays of two seconds or more can further reduce energy
consumption and are good candidates for applications
requiring lower interactivity, such as dictation.
2 100 o0 200 20 300 30 400 Since the 802.11b MAC proto_col uses an automa_tlc—
WLAN Power on Delay (ms) repeat-request (ARQ) protocol with CRC error detection
to maintain data integrity, the energy consumption will
Fig. 3. WaveLAN power on delay vs. energy consumption pgie g function of channel signal to noise ratio (SNR).
packet. After the reception of a good packet, an ACK is sent

The two interesting parameters to consider are tASMOSS @ robust control channel. If the ACK is not
power on time Thaek on) and the number of speecHece'Ved by the sender, then the packet is retran_smltted.
frames transmitted at once, which dictates the toth!® €xpected number of retransmits for a given bit error
period T. Figure 3 shows the power on delay on thl’eat? and packet length can be.calculated and_used to
x-axis and estimated energy consumption on the y-a§Stimate the energy consumption [11]. The bit error
We fixed the value of to 0.48 seconds, or 48 framed@t€ IS estimated using an expression for 256-QAM
of speech data. The PM mode configuration in light trafedulation in a Rayleigh fading channel. The Rayleigh
fic almost always outperforms the proposed schedulif@find channel asssumption is widely used in wireless
algorithm except for very small values ®f,cx_on- (TYp- communlcg_tlons I|t_erature as a more realistic alternative
ical values may range from 100ms to 300ms.) Howevdf, @0 additive white Gaussian noise channel [12]. By
in heavy traffic conditions, the PM mode approach&@PPlying our BER expression and power measurements
the always on power consumption (shown by the tdf the expression for energy per goodput in [11], we can
line in the plot), so the scheduling algorithm can giv_Bnd an expression for the expected energy consumption
better performance under these conditions. The mobffie@ NOiSy channel.
device will have to monitor the broadcast traffic and
decide between the standard 802.11b PM mode or fRe Bluetooth Personal Area Network
scheduling algorithm. The Bluetooth personal area network provides a maxi-

Finally, we consider increased delay or lateriEy,in  mum bit rate of 1 Mbps, and a variety of packet types are
Figure 4 withTy,.x_o, fixed at 100ms. In this plot, the available to support different traffic requirements [13]. |
energy cost was determined using measured valuessopports a range that is considerably less than 802.11b,
power consumption. The energy cost has been normaii the order of 10 meters. Bluetooth supports both data
ized to show the average energy required to transmit cauwed voice traffic packets. Media access is handled via a
frame of speech data. As the total number of framése-division duplex (TDD) scheme in which each time
approaches 807( = 800ms), we can see that theslot lasts 625useconds. Data packets are available in
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both high-rate (DH) and medium-rate (DM) packets th&it errors, data packets will continue to be retransmitted
occupy either 1, 3, or 5 time slots. Medium rate packetmtil they are received correctly or a timeout occurs.
contain a 2/3 rate error correction code in addition to thle assume BFSK modulation with coherent detection
ARQ protocol. Voice packets, due to their time-sensitivender a Rayleigh fading channel [12] and estimate the
nature, do not use an ARQ protocol. Voice packets gpeobability of packet failure [14] as well as the expected
available in HV1, HV2, or HV3 types, in which thenumber of retransmits to get the final expression for
number denotes the amount of error correction rathemergy consumption. Voice packets are delivered even
than slot length. HV3 packets use no error correctioim error, so the energy consumption can be estimated as
HV2 packets use the (15,10) Hamming code, and H\&Lsimple power-time product using measured values of
packets use a 1/3 rate repetition code. Given the sptiwer dissipation.
time deadlines with speech data intended for a machine
listener, we can use either data packets or voice packets V. SUMMARY OF DSR TRADEOFFS
without consideration of packet jitter or delay character- By using the client-side ASR energy model and the
istics. DSR energy model for both Bluetooth and 802.11b
Based on the packet types and various error correctimireless networks, we can examine the energy tradeoffs
overhead, we can construct a simple energy model fwith respect to channel quality, delay, and ASR accuracy.
Bluetooth packet transmissions. For voice packets, thiéggher bit rates have small increases in system level
total energy used is the power used in transmissienergy consumption due to the overhead of the power
multiplied by the time required to transmit. Because c&faving algorithms on the wireless device. This tradeoff
the error correction overhead, we need to transmit thriseshown in Table II. For the remainder of this analysis,
times as many HV1 packets as HV3 packets for thee consider transmission at the highest available bit
same amount of user data. For data packets, the enawg, which offers the best WER. In Figure 5, we plot
consumption is dependent on the size of the data pacttet energy consumption per frame of speech for client-
being transmitted. Data packets occupy either 1, 3, oskle ASR and DSR under both 802.11b and Bluetooth
TDD slots, so the energy can again by estimated by théreless networks with respect to channel quality. For
power-time product. DSR, we include the both the communication and com-
We can incorporate the Bluetooth power-saving modpatation (feature extraction/quantization) energy costs
into our model to account for the idle time in betweeRor 802.11b, we consider the energy consumption of
packets. A node within a Bluetooth piconet can operatiee power on/off scheduling algorithm with a latency
in a variety of different power management modes [13)f 240ms, 480ms, and 2 seconds and unlimited ARQ
We consider only thgark mode, where the Bluetoothretransmissions. For the Bluetooth interface we show the
node temporarily gives up its membership to the piconehergy consumption for both medium- and high-rate data
to join a list of parked nodes. The node’s only activity ipackets as well as the three types of voice packets with
parked mode is to periodically listen for synchronizatiolatency of 480ms. To the right of the Y-axis we show
and broadcast packets. A Bluetooth node in park motlee approximate energy savings over client-side ASR
will wake up upon activity to transmit some data andperating 2.5 times slower than real-time. We can expect
then enter the park mode when finished. a scaled down ASR task (i.e. simpler acoustic and lan-
By varying the amount of data transmitted at oncguage models or smaller vocabulary) running at real-time
we can increase the amount of time spent in the paxk give 60% energy savings. However, this will come
state. Our models show that for smaller valuesTgf at a cost of reduced functionality for the user, perhaps
Bluetooth can offer better performance than 802.11¢0ing to a more constrained vocabulary and speaking
but asT approaches 1.3 seconds, 802.11b will use lestyle. For the various DSR scenarios in Figure 5 we
energy. This is because the 100 ms startup cost afsume little to no reduction in quality for the end-user
802.11b is amortized across a larger number of framéy, maintaining sufficient data integrity through source
while the Bluetooth node remains in the park state awdding techniques and/or ARQ retransmissions. Table Il
still consumes power. Powering off a Bluetooth nodghows the percentages of computation and communica-
between packet transmissions is not an option since tien energy for a few different configurations as well
paging/inquiry actions required to join a piconet caas the expected battery lifetime with a 1400mAh/3.6V
easily take in excess of 10 seconds. lithium-ion cell. The 802.11b interface with long delays
We can perform a similar analysis as in Section I\gives the lowest overall energy consumption and an al-
A to estimate the energy consumption of Bluetooth dataost even division between energy spent in computation
packets in the presence of bit errors. During periods ahd communication. DSR with Bluetooth uses a higher



percentage of communication energy, and this amouwalues of7". With larger values of’, such as one second
does not decrease significantly with increased delay douemore, we can use less energy than Bluetooth. How-
to the overhead of the park mode. Expected battegyer, due to the larger packet overhead, larger maximum
lifetimes exceed that of typical cellular telephones as vpacket sizes, different modulation, techniques, and lack
do not require real-time communication. Even modest payload error-correcting codes, the 802.11b network
delays of less than 0.5s can yield significant battedpes not operate as well in lower SNR ranges. Packet
lifetime. fragmentation or a switch to a more robust modulation
technique with lower maximum bit rate can extend
the lower SNR range at the cost of increased energy
consumption, but we have not considered these effects
here. However, 802.11b does offer increased range and
may be more appropriate in certain scenarios.

TABLE I
TOTAL ENERGY CONSUMPTION FOR BOTH COMPUTATION AND
COMMUNICATION VS. BIT RATE FORBLUETOOTH AND 802.1B.
(T = 0.485).

Computation + Communicatioh
Bit rate (kbps)| WER (%) | Bluetooth (mJ)| 802.11b (mJ)

12 16.79 1.1279 2.4661 VI. CONCLUSION

L4 1171 1.1315 2.4688 In this paper, we investigated the energy consumption
1.6 9.3 1.1323 2.4698 ; ¢ q dered ‘

18 8.1 1.1338 24717 of a DSR ront-end. We considered energy usage from
1.9 6.99 1.1358 2.4719 both computation and communication. The advantages of
2.0 6.63 1.1380 2.4749 DSR from an energy consumption perspective are clear.
4.2 6.55 1.1701 2.5044

Client-side ASR in software can consume several orders
of magnitude more energy than a DSR system. However,

In a good channel with high SNR, Bluetooth allowéhe use of low-power ASIC chips for ASR may help
9 . g ' rﬁduce the energy consumption of client-side ASR in
systemwide energy savings of over 95% compared the future

full client-side ASR. DH5 packets offer the lowes : .
overhead and best energy savings, while DM1 packetsThe computation of an ASR front-end can be opti-

offer the most robust operation down to about 10 d ized for_a partu_:ular processor to reduce the energy
consumption. Savings of more than 80% can be obtained

with some minimal energy cost. The ARQ retransmissi o . T
19y . Q ?Hrough algorithmic and architectural optimizations. Dy-
protocol causes rapid increases in energy consumption

after some SNR threshold is reached. It is possible hgmic voltage scaling can be applied at run-time to

operate in lower SNR through packet fragmentatiorr1nlnlmlze the energy consumption even further.

. . , . "In our analysis of DSR, we considered both 802.11b
which will lower the probability of a packet being re- : ) .

. . . . T . and Bluetooth wireless networks. Given the relatively
ceived in error. This is evident in Figure 5 by comparin ioh bit rates these standards orovide with respect to
DH1 and DH5 data packets. The longer packet Ieng@? P P

in DH5 packets causes a sharp increase in retransmi sR traffic, we investigated the use OT synchronous
. H rsty transmission of the data to maximize the amount

and energy consumption at about 25 dB, whereas DH]L ~ : : :
of . time spent in a low-power or off state. While this

packets can operate down 15 dB before the numberaoJ

retransmits becomes excessive. In addition, FEC bits candS a small delay to the end-user, the energy savings

be used to lower the probability of a packet retransmito be significant. With 802.11b, we can reduce the

The Hamming code in DM1 and DM5 packets allowSNeray consumption of the wireless interface by about

o o .
operation down to about 10 and 16 dB respectively. ég c/(o)r\:\(ljlthBrITL]lZ?oeostthagf?(lel(r:stllcc))vr\]/edre;fr of J(L:Jj;su;r?wer[igslic?r
nally, Bluetooth voice packets have energy consumption ' gy b

hat s independent of SR since no ARQ proocol BIEICE ISR 1 s T 6 So REEsen, T8

used. Uncoded HV3 packets have the lowest overhe éue ooth energy consumption Is dominated by the time
, spént in park mode. Bluetooth voice packets can operate

and therefore the lowest energy consumption per fra t0 12 dB SNR without tibl duct

of speech, but they only operate down to about 27 d own to without any perceptivie reduction

Beyond that, the probability of a bit error excedds?, In accuracy. The use of FEC code_s can allow Bluetooth
; . , . data packets to operate down to slightly less than 10 dB
which we have determined to have a noticable impact or%d <till use less enerav than client-side ASR
ASR accuracy [6]. HV1 and HV2 packets can operatae 9y ’
down to about 12 and 17 dB respectively, with little
noticeable loss in recognition accuracy. ACKNOWLEDGEMENT
Finally, 802.11b networks allow system wide energy The authors would like to thank John Anckorn and

savings of approximately 89-94% with relatively smaNVajahat Qadeer for their contribution of Bluetooth power



Fig. 5.

TABLE 11l

SUMMARY OF ENERGY CONSUMPTION FORASR AND DSRWITH HIGH CHANNEL SNR.

| Local ASR (R=2.5)

Local ASR (R=1)

Type Computation (%)| Communication (%)| Total per Speechl Battery Lifetime (h)
Frame (mJ)
DSR wi/Bluetooth (T=0.48s) 32% 68% 1.17 43.1
DSR w/802.11b (T=0.48s) | 15% 85% 25 20.2
DSR w/802.11b (T=2s) 42% 58% 0.92 54.8
Local ASR (R=2.5) 100% 0% 45 1.12
/ i _‘ BT Data | % Reduction
¢ BT Voice in Energy

== 802.11b
— Local ASR

60%

10 -

Energy (mJ)

802.11b (T=0.24s) |

/

89%

94%

10 HV1 |

HV2 ‘

>97%

SNR (dB)

The energy consumption of client-side ASR and DSReuBluetooth and 802.11b vs. SNR.

consumption measurements as well as Mat Hans ang B. Delaney, T. Simunic, and N. Jayant, “Energy aware
Mark Smith of HP Labs for their continued support of
this work.
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