
676 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

System-Level Power Management
Using Online Learning

Gaurav Dhiman and Tajana Šimunić Rosing, Member, IEEE

Abstract—In this paper, we propose a novel online-learning
algorithm for system-level power management. We formulate
both dynamic power management (DPM) and dynamic voltage-
frequency scaling problems as one of workload characterization
and selection and solve them using our algorithm. The selection
is done among a set of experts, which refers to a set of DPM
policies and voltage-frequency settings, leveraging the fact that
different experts outperform each other under different work-
loads and device leakage characteristics. The online-learning al-
gorithm adapts to changes in the characteristics and guarantees
fast convergence to the best-performing expert. In our evaluation,
we perform experiments on a hard disk drive (HDD) and Intel
PXA27x core (CPU) with real-life workloads. Our results show
that our algorithm adapts really well and achieves an overall
performance comparable to the best-performing expert at any
point in time, with energy savings as high as 61% and 49% for
HDD and CPU, respectively. Moreover, it is extremely lightweight
and has negligible overhead.

Index Terms—Dynamic voltage frequency scaling, energy-
performance trade-off, online learning, power management.

I. INTRODUCTION

POWER consumption is a key issue in the design of com-
puting systems today. While battery-driven systems need

to meet an ever-increasing demand for performance with a
longer battery life, high-performance systems contend with
issues of heating. Dynamic power management (DPM) and
dynamic voltage-frequency scaling (DVFS) are the two most
popular techniques for dynamically reducing system power
dissipation. DPM achieves this by selective shutdown of system
components that are idle, while the key idea behind DVFS
techniques is to dynamically scale the supply voltage/frequency
level of the device. Reduction in voltage/frequency level is
beneficial, since it reduces the overall power consumption [1].
DPM can be employed for any system component with multiple
power states, while DVFS is useful only for components that
support multiple speed and voltage levels (like CPU). A number
of modern processors such as Intel XScale [2], AMD Opteron
[3], etc., are equipped with DVFS capability. In existing lit-
erature, however, the design of DPM and DVFS policies for

Manuscript received May 21, 2008; revised November 4, 2008. Current
version published April 22, 2009. This work was supported in part by
HPWREN under NSF Grants 0087344 and 0426879 (http://hpwren.ucsd.edu),
by the Center of Networked Systems (http://cns.ucsd.edu), by Cisco Sys-
tems, and by Sun Microsystems. This paper was recommended by Associate
Editor P. Eles.

The authors are with the Department of Computer Science and Engineering,
University of California, San Diego, La Jolla, CA 92093-0407 USA (e-mail:
gdhiman@cs.ucsd.edu; tajana@ucsd.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCAD.2009.2015740

general-purpose systems has been treated as separate problems.
In this paper, we target both the problems with the objective of
achieving system-wide energy efficiency.

A number of heuristic and stochastic policies have been
proposed in the past with their design varying in terms of how
they take the decision to perform shutdown for DPM. While
simpler DPM policies like timeout and predictive policies do
it heuristically with no performance guarantees, more sophis-
ticated stochastic policies guarantee optimality for stationary
workloads. There is no single policy solution that guarantees
optimality under varying workload conditions. We propose a
novel setup for DPM, where we maintain a set of DPM policies
(suited for different workloads) and design a control algorithm
that selects the best suited one for the current workload. In
such a setup, the DPM problem reduces to one of accurate
characterization and selection, where the best-suited policy is
selected based on the characterization of the current workload.

For devices like CPU that support both DPM and DVFS, it
is essential to understand the interplay between the two, since
the energy savings based on DVFS come at the cost of increased
execution time, which implies greater leakage energy consump-
tion and shortened idle periods for applying DPM. This impact,
as we show later on, depends on the nature of the executing
workload in terms of its CPU and memory intensiveness and
the leakage power characteristics. Therefore, the problem of
performing DPM-aware DVFS can also be viewed as one of
accurate characterization and selection, where the best-suited
voltage-frequency setting (hereon referred to as v-f setting) is
selected based on the characterization of CPU leakage and the
executing workload.

Instead of proposing a new policy for DPM and DVFS, we
apply online learning [4] to select among a set of possible poli-
cies and v-f settings. The online-learning algorithm (referred to
as controller) has a set of experts (DPM policies/v-f settings)
to choose from and selects an expert that has the best chance
to perform well based on the controller’s characterization of
the current workload. The selection takes into account energy
savings, performance delay, and the user-specified energy-
performance tradeoff (referred to as e/p tradeoff). The algo-
rithm is guaranteed to converge to the best-performing expert
in the set, thus delivering performance at least as good as the
best expert in the set, across different workloads.

We implement the controller for a server and laptop hard disk
drive (HDD), and Intel PXA27x CPU. The controller chooses
among a set of policies representing state of the art in DPM, and
v-f settings available on the Intel PXA27x CPU. In our experi-
ments, the controller achieved as high as 61% and 49% reduc-
tion for HDD and CPU, respectively, at negligible overhead.

0278-0070/$25.00 © 2009 IEEE

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 677

The rest of this paper is organized as follows. In Section II,
we discuss and compare the previous work for DPM and DVFS.
In Section III, we formulate both the DPM and DVFS problems
as one of workload characterization and selection and then
describe the design of our online-learning algorithm which is
used to solve them. In Section IV, we explain the implementa-
tion level details on how workload characterization and expert
selection is actually performed for DPM and DVFS. We then
describe our experimental setup and results in Section V before
concluding in Section VI.

II. PREVIOUS WORK

Since system-level power management is a critical design
issue, a lot of research effort has been devoted to explore
different approaches for performing DPM and DVFS in the
past. In this section, we discuss the previous work and highlight
the contributions of our work to the existing state of the art.

A. DPM

The existing DPM policies can be broadly classified into
timeout, predictive, and stochastic policies. In a timeout policy,
the device is put to sleep if it is idle for more than a specified
timeout period [5], [6]. For instance, in [5], the device is put to
sleep if it is idle for more than Tbe (break-even time). Tbe of
a low power state is the minimum length of the idle period,
which compensates for the cost associated with entering it.
In contrast, predictive policies [7]–[9] predict the duration of
upcoming idle period and make the shutdown decision as soon
as the device goes idle. Such heuristic policies tend to be easy
to implement but do not offer any guarantee on energy and
performance delay.

Stochastic policies model the request arrival and device
power state changes as stochastic processes. Minimizing power
consumption and performance delay then becomes a stochastic
optimization problem. For instance, in [10], Paleologo et al.
assume the arrival of requests as a geometric distribution and
model power management as a discrete-time Markov decision
process. This model is subsequently improved in [11] and
[12] using more complex MDP models to characterize real-
life workloads. However, stochastic policies offer optimality
only for stationary workloads, thus having limited adaptability.
The work in [13] and [14] extends the stochastic model to
handle nonstationary workloads by switching between a set
of precalculated optimal stochastic policies. However, these
approaches compromise optimality by switching heuristically
and are also quite complex.

There are a few existing approaches which apply machine
learning to power management. In [15], supervised learning
techniques like nearest neighbor, decision trees, etc., are used
to perform DPM, which rely on offline training. This makes
them unsuitable for dynamic workload and systems that we
are targeting. In [16], a reinforcement-learning-based policy is
used for performing midlevel power management in wireless
network cards. Unlike online learning, reinforcement learning
is more suited for probabilistic environments, where it is not
possible to evaluate performance of all the experts. As a result,

the bounds given by it are also probabilistic in nature, compared
to deterministic bounds we have provided with online learning.
Furthermore, our system model is different from this work,
since instead of designing a new policy, we rather select among
a set of existing policies.

B. DVFS

Previous DVFS-related work may be broadly divided into
three categories. The first category of techniques targets sys-
tems where the task arrival times, workload, and deadlines
are known in advance [17], [18]. DVFS is performed at task
level in order to reduce energy consumption while meeting
hard timing constraints. The second category of techniques
requires either application or compiler support for perform-
ing DVFS [19]–[21]. The third category comprises system-
level DVFS techniques that target general-purpose systems
that have no hard-task deadlines, and expect no support from
application/compiler level. Our work for DVFS belongs to this
category. The works done in [22]–[24] monitor the system
workload in terms of CPU utilization at regular intervals and
perform DVFS based on their estimate of CPU utilization for
the next interval. These approaches, however, do not take the
characteristics of the running tasks into account, which, as
we show in Section IV-B, determine the potential benefits of
performing DVFS. In contrast, the works done in [25]–[27]
characterize the running tasks at runtime and accordingly make
the voltage scaling decisions. They use dynamic runtime statis-
tics such as cache hit/miss ratio, memory access counts, etc.,
obtained from the hardware performance counters to perform
task characterization. However, the policy in [25] is not flexible
since it operates for a static performance loss (10%), while
those in [26] and [27] present results only in a single-task en-
vironment. Moreover, none of these techniques give strategies
on how to adapt DVFS policies to different leakage character-
istics. The prior algorithms that take leakage into account [28],
[29] are targeted toward real-time systems and assume precise
knowledge of task deadlines and characteristics in advance.

To summarize, the primary contributions of our work are as
follows: 1) a controller based on an online-learning algorithm
which guarantees convergence to the best-suited DPM policy
and v-f setting (DVFS) under both single-task as well as multi-
task scenarios; 2) a scalable strategy for adapting DPM/DVFS
decisions across devices with different leakage characteristics;
and 3) a lightweight implementation of the proposed algorithm
that has negligible runtime overhead.

III. DESIGN

In this section, we first describe how both DPM and DVFS
can be formulated as a problem of accurate workload charac-
terization and selection. The selection is done among a set of
DPM policies (e.g., fixed timeout, TISMDP, etc.) or allowable
v-f settings available on the processor or both depending upon
the problem we are targeting. Without the loss of generality, we
refer to these policies/v-f settings as experts. We then elaborate
on our algorithm, which we employ to perform this control
activity of workload characterization and expert selection.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

678 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

Fig. 1. System model.

A. System Model

DPM problem is fundamentally a decision problem in which
the policy has to decide whether to perform a shutdown for a
given idle period. As described in Section II-A, different DPM
policies use different mechanisms to decide this. However,
as we show in Section V, DPM policies outperform each
other under different workloads, devices, and user e/p tradeoff
preferences. This observation motivates the use of multiple
DPM policy experts, where the best-suited expert is selected
as a function of the current workload characteristics and e/p
tradeoff.

DVFS problem is intuitively a problem of selection among
the given v-f setting experts of the device (e.g., CPU). A lower
v-f setting can prolong the execution time of a task, hence short-
ening the upcoming idle period durations, which has a direct
impact on the energy savings possible due to DPM. Longer
execution times also cause extra leakage energy consumption,
which can offset power savings due to DVFS (as explained in
detail in Section IV-B). An ideal DVFS policy must understand
this impact and hence perform v-f setting selection with the
objective of reducing the overall energy consumption. The
primary elements, which govern the choice of v-f settings,
are the characteristics of the executing workload in terms of
its CPU/memory intensiveness and the device leakage power
characteristics. This observation transforms the DVFS problem
into one of accurate modeling of the characteristics of the
executing task and device leakage, which, in turn, drives the
expert selection.

To summarize, both DPM and DVFS problems can be solved
by selection of appropriate expert based on the current work-
load characterization. For DPM, the characterization is in terms
of the distribution of idle period durations, while for DVFS, it
is in terms of the CPU/memory intensiveness of the executing
task. With this background, we now present our system model,
which consists of three primary entities as shown in Fig. 1:
1) controller: the core algorithm we employ to perform the
workload characterization and expert selection activity for both
DPM and DVFS; 2) working set: it is the set of experts that
the controller selects from. An expert can be any DPM pol-
icy (for DPM) or any allowable v-f setting (for DVFS); and
3) device: device is the entity whose power is being managed
by the controller.

We invoke the controller on an event, which we refer to as the
controller event. For DPM, this event is the idle period, i.e., we
run the controller whenever an idle period occurs. For DVFS, it

TABLE I
ALGORITHM CONTROLLER

is the scheduler tick of the operating system. Scheduler tick is
a periodic timer interrupt, which is used by the OS scheduler to
make scheduling decisions. Hence, it is the finest granularity at
which system updates are performed.

As shown in Fig. 1, the experts can be in one of the two
possible states: dormant or operational. By default, all the
experts are in the dormant state and are referred to as the
dormant experts. When a controller event occurs, the controller
on the basis of its model of the current workload selects an
expert that has the highest probability to perform well. This
selected expert is referred to as the operational expert, which
can either be a DPM policy or a v-f setting depending upon
the event (idle period or scheduler tick). The amount of time
for which the expert stays in the operational state is referred
to as the operative period, after which it returns to its default
dormant state. The operative period for an operational expert in
case of DPM is the length of the idle period, while in case of
DVFS, it is the length of the scheduler quantum. In Fig. 1, this
implies that Expert 3 has been selected by the controller as the
operational expert for the current operative period.

It may be noted that for DPM, the controller has a form
of a meta-policy, where it performs selection among multiple
DPM policies, while for DVFS, it is a policy that selects among
multiple v-f settings. There are two primary reasons we did not
implement a meta-policy for DVFS-like DPM. First, different
DVFS policies operate under different setups, which might be
difficult to put together on a given CPU. For instance, the policy
in [26] operates on every scheduler tick, while, the one in [27]
operates at 100 million instruction intervals, which might or
might not coincide with a scheduler tick. As a result, there
is no common controller event, where it can evaluate these
two policies and select an operational policy. Second, differ-
ent DVFS policies also make assumptions about the systems
they operate on, with help from applications, compilers, etc.
[19], [30], which might not hold on other systems.

B. Controller

We adapt the online allocation algorithm of Freund and
Schapire [4] to the problem of DPM/DVFS. A big advantage
of the algorithm is that it provides a theoretical guarantee on
convergence to the best-suited expert in the working set. We
present an analysis of the theoretical bound in Section III-C.

Table I contains the pseudocode for the algorithm. The
controller has N experts to choose from; we number these
i = 1, 2, . . . , N . The experts can be any DPM policy (for DPM)

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 679

or any valid v-f setting (for DVFS). The algorithm associates
and maintains a weight vector wt = 〈wt

1, w
t
2, . . . , w

t
N 〉, where

wt
i is a weight factor corresponding to expert i for operative

period t. The value of weight factor, at any point in time, reflects
the performance of the expert, with a higher value indicating a
better performance. All of the weights of the initial vector w1

sum to one, as shown in Table I. In our implementation, we
assign equal weights to all the experts at initialization.

To perform expert selection, the controller maintains a prob-
ability vector rt = 〈rt

1, r
t
2, . . . , r

t
N 〉, where 0 ≤ rt

i ≤ 1, that
consists of probability factors associated with each expert for
operative period t. It is obtained by normalizing the weight
vector as shown in the following equation:

rt =
wt

∑N
i=1 wt

i

. (1)

At any point in time, the best-performing expert, in accordance
with the current workload, has the highest probability factor
among all the experts. Thus, the controller simply selects the
expert with the highest probability factor as the operational
expert for the upcoming operative period. If the probability
factor of multiple experts is equal, then it randomly selects one
of them with a uniform probability (step 1 in Table I).

When the operative period starts, the operational expert takes
control of the device (step 2 in Table I). For DPM, the opera-
tional DPM expert takes the shutdown decision. For DVFS, the
v-f setting corresponding to the operational DVFS expert is ap-
plied to the CPU. When the operative period ends, the controller
does an evaluation of all the experts in the working set (step 3
in Table I). The key objective of performing evaluation is to
figure out how suitable each expert was for the just concluded
operative period. The details on how the controller actually esti-
mates this suitability are DPM/DVFS specific and are provided
in the next section. The end result of this evaluation is a loss
factor (lti) corresponding to each expert i, which indicates how
unsuitable it was for the previous operative period. A higher
value indicates higher unsuitability and vice versa.

The final step in the algorithm involves updating the weight
factors for each expert on the basis of the loss they have
incurred

wt+1
i = wt

i · βlti . (2)

Thus, the weight factors corresponding to experts with higher
loss are penalized more by this simple multiplicative rule. The
value of constant β can be set between zero and one. The
criterion for selecting its appropriate value is explained in [4].
This rule gives higher probability of selecting the better per-
forming experts in the next operative period. Once the weights
are updated, we are again ready to select the operational expert
for next operative period by calculating the new probability
vector rt using step 1 in Table I.

C. Performance Bound of Controller

From the previous discussions, we know that lti is the loss
incurred by each expert for the operative period t. Hence, the

average loss incurred by our scheme for a given operative
period t in a system with N experts is

N∑

i=1

rt
i l

t
i = rt · lt. (3)

The goal of the algorithm is to minimize its cumulative loss
relative to the loss incurred by the best expert. That is, the
controller attempts to minimize the net loss

LG − miniLi

where LG =
∑T

t=1 rt · lt is the total loss incurred by controller
and Li =

∑T
t=1 lti is individual expert i’s cumulative loss over

T operative periods. It can be shown [4] that net loss of the
algorithm is bounded by O(

√
T ln N) or that the average net

loss per period decreases at the rate O(
√

ln N/T). Thus, as T
increases, the difference decreases to zero. This guarantees that
the performance of the controller is close to that of the best-
performing expert for any workload.

IV. IMPLEMENTATION DETAILS

The previous section gave an overview of how DPM and
DVFS can be modeled as workload characterization and expert
selection problems that can be solved using the controller
algorithm. In this section, we provide implementation details
required for accomplishing this solution. We break this section
into two parts, with the first part discussing details pertaining to
devices that support only DPM and the second part considering
devices that support both DPM and DVFS (specifically CPU).
Finally, we show how controller can explicitly be adapted to
different leakage regimes.

A. Devices With Only DPM

In this section, we discuss controller implementation with re-
spect to devices that support only DPM such as HDD, memory,
network card, etc.

Expert Selection: As described before, the controller main-
tains a weight vector wt (Section III-B) and its normalized
version probability vector rt (1) for the experts. At any point in
time, the best-performing expert has the highest probability fac-
tor among all the experts, and hence, for performing selection,
the controller simply selects the expert with the highest proba-
bility factor as the operational expert for the next idle period.

The controller evaluates the performance of all the experts
at the end of the idle period. The evaluation takes into account
energy savings, performance delay, and user-specified e/p trade-
off for this update. The energy savings and performance delay
caused by the operational expert can be easily calculated since
the length of that idle period is known. The dormant experts are
evaluated on the basis of how they would have performed had
they been the operational experts. We evaluate loss with respect
to an ideal oracle policy that has zero delay and maximum
possible energy savings. Since this loss evaluation takes place
at the end of idle period, when we already know its length, we
can easily estimate the performance of the ideal oracle policy as
well. The value of loss factor (lti) for each expert is influenced

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

680 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

by the relative importance of energy savings and performance
delay as expressed by factor α (0 ≤ α ≤ 1), which is specified
by the user. For this purpose, we break it down into two compo-
nents: ltie and ltip, which correspond to energy and performance
loss, respectively, for expert i. The loss factor is then given by

lti = α · ltie + (1 − α) · ltip. (4)

In our implementation, we determine the energy loss ltie by
comparing the length of the idle period with the sleep time. If
it is less than Tbe (break-even time, defined in Section II), then
we do not save energy and thus ltie = 1. For the values of sleep
time Tsleepi

of an expert i greater than Tbe and of idle period
Tidle, we use the following equation:

ltie = 1 − Tsleepi

/
Tidle. (5)

Calculation of performance loss ltip is based on whether the
device sleeps or not. If the expert makes the device sleep,
ltip = 1 since we incur performance delay upon wakeup,
otherwise it is set to zero.

Once the loss factor is available for each expert, the corre-
sponding weight factor is updated using (2) [we use β = 0.75
in (2)]. Once all the weight factors have been updated, the
probability factors for all the experts are updated using (1).
Then, the operative expert for the next idle period is simply
the expert with the highest current probability factor. At any
given point in time, the current value of the weight/probability
factors is a result of the successive application of (2) in the
previous idle periods. This means that the weight/probability
vector actually characterizes the workload or, more precisely,
its idle period distribution in the form of suitability of the
different DPM experts for it. By regularly updating it at the end
of every idle period, this suitability is updated to keep up with
changes in the workload characteristics.

B. Devices With DPM and DVFS (CPU)

For devices that support both DPM and DVFS (e.g., CPU),
the controller must determine how to perform a tradeoff be-
tween the two. This is important since DVFS impacts DPM by
potentially reducing the idle period durations. We will show in
this section that the impact is dominated by two factors, CPU
leakage characteristics and CPU/memory intensiveness of the
executing task. To understand this, we first present a simple
energy model based on the analysis done in [29]. Then, by using
it, we show how task and CPU leakage characteristics affect
energy savings due to DVFS and DPM.

Energy Model: Consider the following equation, which ap-
proximates the power consumption in a CMOS circuit:

P = D + L, D = CLV 2f ; L = ILV (6)

where CL is the load capacitance, V is the supply voltage,
IL is the leakage current, and f is the operational frequency.
The first term corresponds to the dynamic power-consumption
component of the total power consumption (referred to as
D), while the second term corresponds to the leakage power
consumption (referred to as L).

Let the maximum frequency of the device be fmax, and let
the corresponding voltage be Vmax. The device would consume
the maximum power, i.e., Pmax at this v-f setting. We define Pn,
Dn, and Ln as the normalized power-consumption values, i.e.,

Pn =
P

Pmax
= Dn + Ln =

D

Pmax
+

L

Pmax
. (7)

We next define λ and ρ as the % contribution of dynamic and
leakage power to the total power consumption at the highest
v-f setting

λ =
Dmax

Pmax
ρ =

Lmax

Pmax
. (8)

If we further define Vn and fn as the normalized voltage and
frequency levels, then Dn and Ln can be rewritten as

Dn =λ
D

Dmax
= λ

CLV 2f

CLV 2
maxf

2
max

= λV 2
n fn (9)

Ln = ρ
L

Lmax
= ρ

ILV

ILVmax
= ρVn. (10)

Combining (9) and (10), we get

Pn = λV 2
n fn + ρVn. (11)

We next define Tn as the execution time of a task at v-f setting
fn normalized against the execution time at the maximum v-f
setting (fn = 1), Tmax, i.e.,

Tn =
T

Tmax
. (12)

The normalized energy consumption of an executing task as a
function of the normalized voltage, frequency, and execution
time is then

En(Vn, fn, Tn) = λV 2
n fnTn + ρVnTn. (13)

For any given processor, λ and ρ can be considered to
be constants. Given the selected v-f setting (Vn/fn) and the
execution time (Tn) for a task at that setting, we can estimate
the CPU energy consumption using (13).

Task Characterization: The execution time of a task can be
broken down into two components: 1) Tcpu—corresponding
to the time during which the execution is CPU bound, and
hence, no stalls occur, and 2) Tstall—corresponding to the time
during which CPU stalls because of memory accesses (cache
misses), dependencies, etc. If we define Tmax, Tcpumax

, and
Tstallmax as the durations at the maximum v-f setting (fn = 1),
and Tncpu and Tnstall as normalized versions of Tcpu and Tstall,
respectively, at fn, then

T =Tstall + Tcpu

Tmax =Tstallmax + Tcpumax

Tn =
T

Tmax
= Tnstall + Tncpu. (14)

During Tstall, the CPU is waiting for the cause of stall to
be resolved. For instance, when there is a cache miss, CPU
is stalled waiting for the memory access to complete. Thus,
duration of Tstall is independent of the frequency setting of the
CPU, since the CPU is not executing instructions. This means

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 681

Fig. 2. Execution time and energy consumption estimates. For energy estimates, the black line indicates the baseline or the energy consumption at fn = 1.
The region below the baseline indicates energy savings, while the region above indicates higher energy consumption or energy loss. (a) Tn estimates.
(b) mem (μ ≈ 0). (c) combo (μ ≈ 0.5). (d) burn_loop (μ ≈ 1).

that Tnstall is constant across all the v-f settings and hence also
equal to Tnstallmax , the normalized duration at the maximum
v-f setting (fn = 1)

Tnstall = Tnstallmax =
Tstallmax

Tmax
. (15)

In contrast, during Tcpu, the execution is cache intensive, and
thus, its duration depends on the number of cycles it takes to
access the cache and CPU registers. The duration of this cycle
is directly proportional to the frequency of the CPU, and hence,
a reduction in frequency results in a proportional increase
in Tncpu

Tncpu =
Tncpumax

fn
, where Tncpumax

=
Tcpumax

Tmax
. (16)

Combining (14)–(16), we get

Tn = Tnstallmax +
Tncpumax

fn
. (17)

If we define Tncpumax
= μ, then Tnstallmax = (1 − μ) since Tn

at the maximum v-f setting (fn = 1) is one. The factor μ indi-
cates the degree of CPU and cache intensiveness of a task, with
a high value indicating high CPU intensiveness and a low value
indicating otherwise. Substituting these values in (17), we get

Tn = (1 − μ) +
μ

fn
. (18)

On the basis of this discussion, we define three tasks with dif-
ferent characteristics: 1) burn_loop—highly CPU and cache in-
tensive (μ ≈ 1); 2) mem—highly stall intensive due to memory
accesses (μ ≈ 0); and 3) combo—combination of the previous
two (μ ≈ 0.5). Fig. 2(a) shows Tn estimates based on (18) for
these three tasks across four different fn values (100%, 80%,
60%, and 40%). It illustrates that Tn for highly memory/stall
intensive task mem is fairly insensitive to changes in fn, while
for CPU intensive burn_loop, it increases in proportion to the
decrease in fn. To verify these estimates, we implemented three
benchmarks with such characteristics and ran them on an Intel
PXA27x CPU [31] at 520 MHz/fn = 100%, 416 MHz/fn =
80%, 312 MHz/fn = 60%, and 208 MHz/fn = 40%. We
found the estimated values of Tn to be on an average within
1% of the actual measured values. This shows that our analysis
of Tn estimation is accurate, and emphasizes the importance of
task characteristics for modeling its execution times.

Impact of Task and Leakage Characteristics: To understand
the impact of task (μ) and CPU leakage (ρ) characteristics
on the energy savings at different fn values, we next estimate
the energy consumption (En) of these three tasks using (13).
Fig. 2(b)–(d) shows En for benchmarks mem, combo, and
burn_loop at different fn values for platforms with different
leakage percentage (ρ) values (30% and 50%). For a modern
day processor like Intel PXA27x, ρ is around 30% and is ex-
pected to rise further in future CPUs according to industry
estimates [32]. We confirmed this value of ρ for PXA27x CPU
by measuring the current flowing into the processor employing
a 1.25-Msamples/s data acquisition system (DAQ) at different
v-f settings. We also measured the energy consumption of these
benchmarks on PXA27x CPU (ρ ≈ 30%) and found them to be
on an average within 1% of the theoretically estimated values
for ρ ≈ 30% using (13). This confirmed the validity of our
analysis and estimates. We used Vn values of (80%, 86.6%,
93%, and 100%), which correspond to the v-f settings on the
PXA27x CPU, for these estimates (refer to Table VII).

Fig. 2(b)–(d) shows the following. First, increasing the frac-
tion of leakage (ρ) value results in a reduction in energy
savings consistently across all the tasks. The reason for this
is that DVFS brings just a linear decrease in leakage power,
compared to cubic in active power [refer to (6)]. Hence, its
effectiveness begins to diminish with increasing ρ. Second, the
energy savings decrease due to the increased execution times of
the task. For mem, which has no performance penalty across
different fn values, the gain in energy savings is significant
with decreasing frequency because of the lower voltage. Task
burn_loop incurs the highest performance penalty, which man-
ifests in low energy savings at ρ = 30% and higher energy
consumption than the baseline (fn = 100%) at higher ρ values.
This means that it is no longer energy efficient to run burn_loop
and combo at lower v-f settings. It is better to run such tasks
at the highest v-f setting (i.e., no DVFS) and then switch to
DPM when they become inactive. This indicates that task and
leakage characteristics determine the tradeoff between DVFS
and DPM, and hence, it is important to take both into account.
Based on these observations, we now discuss how the controller
incorporates estimation of these characteristics into its design.

Expert Selection: The controller maintains two weight vec-
tors: one for the DPM experts (policies) and second for the
DVFS experts (v-f settings). During the idle periods, when the
idle task is scheduled by the OS, the controller selects among
the DPM experts as explained in Section IV-A. During active

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

682 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

execution periods, the controller selects among the DVFS ex-
perts based on the characteristics of the executing task. Since, in
a multitasking environment, tasks with differing characteristics
can be runnable at the same time, the controller maintains a per-
task weight vector. These weight vectors get initialized when
the task gets created.

Workload characterization for DVFS involves accurately
measuring the degree of CPU intensiveness or μ [refer to (18)]
of the executing workload. In order to estimate μ, we use the
concept of cycles per instruction (CPI) stack, which breaks
down processor execution time into a baseline CPI plus a
number of miss event CPI components like cache and trans-
lation lookaside buffer (TLB) misses, etc. [33]. The following
equation represents the average CPI in terms of its’ CPI stack
components:

CPIavg = CPIbase+ CPIcache+ CPItlb+ CPIbranch+ CPIstall.
(19)

CPI stacks give insight into the CPU intensiveness of the
currently executing task. For instance, a high value for CPIbase/
CPIavg ratio indicates that CPU is busy executing instructions
for majority of the time, thus indicating a higher μ and vice
versa.

In order to dynamically characterize executing workload, we
construct its CPI stack at runtime. For the PXA27x processor,
we do this by using the performance monitoring unit (PMU).
The PMU is an independent hardware unit with four 32-b
performance counters that can be used to monitor any four out
of 20 unique events available simultaneously. We monitor the
number of instructions executed (INSTR), data cache misses
(DCACHE), number of cycles instruction cache could not
deliver instruction (ICACHE), and processor stall cycles due
to dependence (STALL). We also get the total number of clock
cycles (CCNT) elapsed since the PMU was started in order to
calculate the CPI components

CPIavg = CCNT/INSTR
CPIdcache = (DCACHE × PEN)

/
INSTR

CPIicache = ICACHE/INSTR
CPIstall = STALL/INSTR. (20)

In this equation, CPIcache has been broken down into CPIicache

and CPIdcache and PEN is the average miss penalty for a data
cache miss (we used PEN = 75 cycles at 520 MHz in our
experiments). Note that CPItlb and CPIbranch are missing. This
is because we can monitor only four events at a time, and in our
experiments, we found the events being monitored to be more
indicative of the task characteristics. Hence, we can estimate
CPIbase as follows:

CPIbase = CPIavg − CPIicache − CPIdcache − CPIstall. (21)

Finally, we estimate μ as a ratio of CPIbase to CPIavg in the
following equation:

μ = CPIbase/CPIavg. (22)

With CPU intensiveness (μ) of the task estimated, we now
describe the loss evaluation stage for the DVFS experts. To

Fig. 3. μ-mappers. (a) ρ = 30%. (b) ρ = 50%.

evaluate the loss factor of each expert, we define a data structure
called μ-mapper, which maps the suitability of v-f settings
to the characteristics of the task as a function of the CPU
leakage characteristics. For instance, for CPU with ρ = 30%,
Fig. 2(b)–(d) shows that the best-suited frequency scales lin-
early with μ of a task. Based on this observation, Fig. 3(a)
shows a μ-mapper for a CPU with five experts, where the
frequencies increase in equal steps from 0 to Expert 5. The
μ-mapper divides the domain of μ (0 ≤ μ ≤ 1) into intervals
for each expert and sequentially maps each interval to the
successive experts. This captures the fact that higher frequency
experts are better suited for tasks with higher μ. The mean
of each interval, μ-mean, is associated with their respective
expert and is used for performing weight update. If CPU has
higher leakage component (e.g., ρ = 50%), then the μ-mapper
is changed accordingly. For instance, if we compare the energy
results in Fig. 2(b)–(d) for ρ = 50% and ρ = 30%, we can see
that the energy consumption of combo for ρ = 50% is similar to
that of burn_loop at ρ = 30%. This means that for CPUs with
such high leakage, workloads with medium CPU intensiveness
need to be run at higher v-f settings, while highly CPU intensive
tasks, such as burn_loop, must run only at the highest v-f
setting. Thus, to derive a μ-mapper for such a CPU, we will
map only 0–0.5 of μ’s sample space to the available v-f set-
tings. Fig. 3(b) shows the corresponding μ-mapper. This way,
μ-mapper provides the controller with the critical information
on CPU leakage characteristics and allows it to adapt seam-
lessly across different CPUs without any modifications to the
core algorithm.

Given a μ-mapper, the loss factors can be easily evaluated
by comparing μ to the μ-mean of each expert. This calculation
takes both the energy savings and performance delay into
account by breaking this loss factor into two components, the
energy loss (ltie) and the performance loss (ltip). If μ < μ-mean
for an expert, then the task is more stall intensive with respect to
the given expert and hence can afford to run slower. At the same
time, it means that this expert would cause no performance

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 683

TABLE II
LOSS EVALUATION METHODOLOGY

TABLE III
DEVICE AND WORKLOAD CHARACTERISTICS FOR HDD

delay for the current task, since it corresponds to a higher fre-
quency than required. Similarly, there is a performance loss, but
there is no energy loss when μ > μ-mean. Table II summarizes
how we evaluate the loss factor. The α factor in Table II is
similar to the one used for DPM (4), a user-defined value that
determines the e/p tradeoff. Once the loss factors are evaluated
for each expert, the controller updates the weights of all the
experts using (2). The controller then restarts the PMU so that
μ for the upcoming scheduler quantum can be evaluated at its
conclusion.

The task weight vector accurately characterizes the task it
represents, since it encapsulates all the updates based on previ-
ous μ values. Moreover, the weight updates are based on both
the task as well as the CPU leakage characteristics (μ-mapper).
This ensures that the controller understands when it is beneficial
to perform aggressive DVFS or not from overall energy effi-
ciency point of view (as described in the previous paragraphs).

V. EXPERIMENTS AND RESULTS

We performed our experiments using the following devices:
an HDD and Intel PXA27x core (CPU) with real-life work-
loads. For HDD, we used the controller with just DPM enabled
because of lack of DVFS functionality, while for CPU, we
used controller with both DPM and DVFS enabled. The results
indicate that our controller is capable of dynamically adapting
while delivering sizable (as high as 60%) energy savings over a
range of e/p tradeoff settings.

A. HDD (DPM)

We evaluated our online-learning-based DPM algorithm by
studying both server and laptop HDDs. We used two sets of
workload traces: 1) originally collected on an HP server [34]
(referred to as HP traces) and 2) traces collected on a laptop
hard disk (referred to as laptop traces) [12]. The characteristics
of workloads selected are described in Table III. This is a
broad range of workload characteristics. For example, HP-1 and
HP-3 traces have very different distribution of idle time du-
rations in terms of both average value and standard deviation
(t̄idle and σt̄idle , respectively). We consider the HDD to be idle

TABLE IV
WORKING-SET CHARACTERISTICS FOR HDD

after 1 s of inactivity. This threshold is based on the observation
that across all the workloads, many idle periods are smaller
than 1 s. These idle periods incur performance delay without
contributing much to the energy savings. Table III also shows
the device characteristics in terms of Pon and Psleep, which
refer to the powers consumed when the devices are on and in
the sleep state, respectively. Tbe refers to the break-even time.
We run the workload traces described in Table III and record
the performance in terms of energy savings and performance
delays for both the individual experts as well as the controller.

For our working set, we select fixed timeout, adaptive time-
out [35], exponential predictive [8], and TISMDP [12] policies,
representing different classes of state-of-the-art DPM policies.
While fixed and adaptive timeout policies represent the timeout
class, exponential predictive policy represents the predictive
class and TISMDP represents the stochastic class of policies.
Table IV describes the precise characteristics of the DPM
policy experts employed for the experiments. The fixed timeout
employs a timeout equal to three times the break-even time or
Tbe (see Section II for definition). The adaptive timeout policy
uses Tbe as the initial timeout with an adjustment factor of
+1Tbe/ − 1Tbe, depending on whether the previous idle period
resulted in energy savings or not. Exponential predictive policy
is implemented as described in [8] without pre-wake-up. It
predicts the length of the upcoming idle period (In+1) using
the actual (in) and predicted (In) lengths of the previous idle
period. TISMDP policy is optimized for a given delay (2.3%)
on the HP-3 trace. The main idea we are trying to show is that
given a set of experts, the controller always converges to select
the best-performing expert at any point in time.

Table V shows the results achieved in terms of energy savings
and performance delay for the individual experts on the HDD
traces. The %energy indicates the amount of energy saved
relative to the case where we do not have any DPM policy, while
the %delay shows the amount of performance delay caused
relative to the total time frame because of power management.
The first row of the table gives the results for the oracle policy. It
is an ideal offline policy which knows the workload in advance
and hence always takes the optimal decision for each idle
period. Consequently, its performance delay is 0%. The results
highlighted in black show where we get the best energy savings,
while the results highlighted in gray show the case where we
get the least performance delay. We can notice that the HP
trace predictive policy does well in terms of saving energy.
For instance, on HP-1, it achieves around 58% energy savings.
It performs equally well for the other workloads as well.
However, predictive policy is also the worst in terms of causing
performance delay, since it is extremely aggressive in turning

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

684 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

TABLE V
ENERGY SAVINGS/PERFORMANCE DELAY RESULTS FOR

HDD WITH INDIVIDUAL EXPERTS

off the HDD and thus incurs delay while waking up. In contrast,
TISMDP causes the least performance delay and consequently
fetches the least energy savings. It can be observed in Table IV
that TISMDP was optimized for 2.3% delay on HP-3 workload
and the results achieved confirm this. However, the figure is not
the same for HP-1 and HP-2 workloads, which confirms that
it is optimal for stationary workloads and does not adapt with
changing workloads. Fixed timeout performs reasonably well
on both the accounts, while adaptive timeout is quite close to
predictive in terms of energy savings.

Similarly, Table V(b) shows the results with individual ex-
perts for the laptop traces. We can observe that for these traces,
the predictive expert performs the worst in terms of both energy
savings as well as performance delay. This is in contrast to
HP traces, where it did the best in terms of energy savings.
This happens due to the smaller idle periods of laptop traces
(Table III) and lack of correlation between successive idle
period durations, which causes the predictive expert to cause
many wrong shutdowns (where Tidle < Tbe). These results
highlight that different classes of policies, depending upon their
characteristics, deliver different levels of performance across
different workloads. However, depending upon the application
requirements or user preferences, one might want the overall
performance to be more delay sensitive or more energy sen-
sitive. The problem with just having a single DPM policy is
that it does not offer the flexibility to control this behavior. The
controller offers exactly this flexibility.

Table VI shows results achieved on the same traces using the
controller with different e/p tradeoff (α) settings. As explained
in Section IV-A, α value indicates the desired e/p tradeoff
setting. A high value indicates higher preference to energy sav-
ings, a low value indicates higher preference to performance,
and a medium value indicates a reasonable ratio of both. In
our experiments, we tested with values of α ranging from
around 0.3 (low) to 0.7 (high). We used values of α around
0.5 for the medium value. As we increase the value of α, we
get higher energy savings, and for lower values of α, we get
low performance delay. For instance, on HP-2 workload, we
get 50.1% energy savings for high α, which is quite close to
that achieved by predictive and adaptive timeout policies. In

TABLE VI
ENERGY SAVINGS/PERFORMANCE DELAY RESULTS

FOR HDD WITH CONTROLLER

Fig. 4. Selection frequency of experts for HP-3 trace.

contrast for low α, we get performance delay that is comparable
to that of TISMDP. Remember that we limit the values of α
between 0.3 and 0.7. For even higher values (close to one), we
achieve energy savings even closer to that of adaptive timeout
and predictive policies. Similarly, for the laptop traces, we
observe results converging to that of TISMDP for low α and
to that of adaptive timeout for high α.

Fig. 4 shows how the frequency of selection of experts
changes with α on HP-3 trace. For higher value of α, adaptive
timeout expert is selected most often since it achieves close to
highest energy savings (60.6%) at a lower performance delay
than predictive expert. For lower values of α, TISMDP expert is
selected with higher frequency since it is conservative in turning
off the HDD and thus offers lower performance delays. For the
medium value of α, we can see that it selects among all the
experts to deliver a performance which offers a reasonable e/p
tradeoff. Hence, α factor offers us a simple yet powerful control
knob to obtain the desired e/p tradeoff.

We next show that our controller can form a Pareto optimal
curve over a set of experts. The experts consist of TISMDP, pre-
dictive, four adaptive timeout (AT0-3), and four fixed-timeout
(FT0-3) policies. We run the controller at six different α values
(ranging from low of around 0.3 to high of around 0.7) to
get different e/p tradeoffs. Fig. 5 shows a line connecting the
e/p tradeoff points offered by the controller and the e/p tradeoff
points offered by the individual experts. The line divides the
e/p space into two parts: 1) the part above the line represents
e/p tradeoff points that are better than those offered by the

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 685

Fig. 5. Controller comparison with multiple experts for HP-1 trace.

Fig. 6. Controller comparison with fixed-timeout experts for HP-1 trace.

controller, since they either offer lower performance delay for
same energy savings or vice versa, and 2) the part below the line
represents e/p tradeoff points that are inferior to those of con-
troller. Fig. 5 illustrates that the e/p tradeoff points of individual
experts either lie on this line or below it. Therefore, based on
the e/p preference (α), the performance of the controller either
converges to that of the best expert or is even superior to any of
the experts. Better results than any single expert are possible
due to the fast convergence property of the controller to the
best-performing experts over different phases of the workload.

Selection With Fixed-Timeout Policies: We next test our con-
troller with a working set of eight simple fixed-timeout policies
that have timeout values ranging from Tbe to as large as 50 s for
HDD. A timeout of Tbe guarantees that the energy consumption
is not greater than a factor of two when compared to an ideal
offline policy [5]. Timeout of 50 s represents a conservative
policy to keep the performance delay low.

Fig. 6 shows the performance of these individual timeout
policies against the performance of the controller correspond-
ing to the HP-1 workload. The line in Fig. 6 shows e/p points
for the controller algorithm with five different values for α.
Just like Fig. 5, all the e/p tradeoff points for the fixed-timeout
experts are either close to the line or below it, showing that
our controller can achieve pareto optimality. For high values

Fig. 7. CPU controller system-level implementation.

of α, we get energy savings as high as 54%, which is very
close to that achieved by controller using a working set of
more sophisticated policies (see Table V). For a low value
of α, it achieves a very low performance delay of just 0.5%.
This clearly shows that the controller can achieve competitive
e/p tradeoffs just with a set of simple fixed-timeout policies.

B. CPU (DPM + DVFS)

In this section, we present results for the controller with
both DPM and DVFS enabled. We use the CPU of the Intel
PXA27x platform (running Linux 2.6.9) as the testbed for
these experiments. Fig. 7 shows details of our system-level
implementation of the controller. We implement the controller
as a Linux loadable kernel module (LKM). As soon as the
LKM is loaded, it performs both the DPM and DVFS specific
initializations. For DPM, it initializes the weight and proba-
bility vectors corresponding to the DPM policy experts. For
DVFS, it scans the available v-f setting experts and calculates
the corresponding μ-means based on the μ-mapper shown in
Fig. 3(a). This is based on our experiments with PXA27x (refer
to Section IV-B) that indicate ρ ≈ 30%.

As shown in Fig. 7, the LKM is closely knit to the Linux
process manager. To isolate the characterization in terms of
CPU/memory intensiveness on a per-task basis and preserve
them across context switches, the Linux task data structure
task_struct is modified to include the weight vector. This is
required for DVFS but not for DPM since in that case, we model
the inactivity of the system, and when the system gets inactive,
the only task that runs is the idle thread. The controller always
has a pointer to the current task data structure, and this ensures
that the update and selection of experts are occurring for the
current task only. The LKM also exposes a /proc interface to
the user, which can be used to specify the e/p tradeoff (α). The
LKM receives notifications from the process manager on the
following three events: 1) Task creation—The process manager
provides LKM with the pointer to the new task_struct, and the
LKM initializes the per-task DVFS weight vector; 2) scheduler
tick—this acts as a controller event for DVFS; and 3) context
switch—on this notification, the LKM checks if the next thread
that is getting scheduled is the idle thread. If it is the case, then it
switches to the lowest v-f setting in the working set and selects
a DPM expert since it indicates the beginning of an idle period.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

686 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

TABLE VII
DEVICE CHARACTERISTICS: CPU

The Linux 2.6.9 kernel has a scheduler quantum of 10 ms.
This means that the scheduler runs every 10 ms, irrespective
of whether there are any schedulable threads in the system or
not. This is clearly energy inefficient since it makes 10 ms the
upper bound on the maximum achievable idle time for the CPU.
This renders most of the low power modes of the PXA27x CPU
(standby, sleep, etc.) unusable, since they have larger break-
even times. To solve this problem, dynamic tick support has
been added to the latest kernel version (2.6.24) [36]. This allows
reprogramming of scheduler tick when there are no schedulable
threads in the system, hence achieving longer idle periods.
However, there is no publicly available support for the port
of this kernel version on the PXA27x platform, with the latest
being 2.6.9 [37]. The absence of dynamic tick support made
practical experiments of DPM for CPU impossible because of
the periodic scheduler ticks. Hence, we performed experiments
for DPM based on simulations on traces of real-life workloads
collected using the LKM. The LKM calculates the idle periods
as durations for which the idle thread stays scheduled at a
stretch. The approach is very similar to the one used in [38].

Hence, in our current setup, we run the workloads with
and without DVFS enabled and calculate CPU energy savings
by current measurements using a 1.25-Msamples/s DAQ. The
energy savings and performance delay values are compared
to a system which performs the following: 1) It runs at the
highest v-f setting (1.5 V/520 MHz in our case) when ac-
tive and 2) switches to idle mode and the lowest v-f setting
(1.2 V/208 MHz) when idle. While running the workloads, the
LKM also generates a trace of the idle period distribution. This
allows us to estimate the energy savings due of DPM offline us-
ing the characteristics listed in Table VII(a). The DPM working
set comprises nine fixed-timeout policies with timeouts ranging
from Tbe to 9Tbe. We have shown in Section V-A on HDD that
a working set of fixed-timeout policies performed nearly as well
as the one with more sophisticated policies. For DVFS, we use
working set of v-f setting experts listed in Table VII(b).

Workloads for CPU can be divided into two categories:
idle dominated and computationally intensive. Idle-dominated
workloads are the ones for which the idle thread is scheduled
most of the time. All user-interface-related workloads like word
processing, web surfing, etc., belong to this category. The
computationally intensive workloads are the ones for which the
idle thread never gets scheduled. This category includes tasks
like decompressing, running intensive encryption/decryption
algorithms, etc. Typical real-life applications are a mix of

TABLE VIII
ENERGY SAVINGS/PERFORMANCE DELAY RESULTS

FOR CPU ON IDLE-DOMINATED WORKLOADS

TABLE IX
FREQUENCY OF SELECTION OF EXPERTS (%)

both. For instance, the workload for a user using GUI-based
archiving application would be mostly idle dominated when he
is browsing the various options and computationally intensive
in bursts when he enters password for authentication or actually
compresses/decompresses some file. In the next two sections,
we present the results for these kinds of workloads separately.

Idle-Dominated Workloads: For these experiments, we used
two real-life workloads: editor and www. The editor workload
involves the use of vi editor for writing and reviewing data files
and the use of some basic shell commands (ls, etc.). The www
workload involves general web surfing (search, reading articles,
etc.) on a wireless interface using the lynx web browser. We
analyzed the results for the following three configurations of the
controller: only DPM, only DVFS, and both DPM and DVFS.

For the first case, we disabled DVFS and kept DPM enabled.
Table VIII shows the results achieved for with the two work-
loads for different values of α. The %energy numbers indicate
the energy savings baselined against the case where the CPU
is placed in idle mode (which halts its clock supply) and the
lowest v-f setting as soon as it gets idle. The %delay is the
overhead incurred because of power management. We again
used values around 0.3, 0.5, and 0.7 for low, medium, and
high values of α. The last row shows the results for the oracle
policy, which shows the maximum achievable energy savings
for these workloads using DPM. We can see in Table VIII
that for both workloads, with increasing value of α, the energy
savings increase. For high α, the energy savings are around
25% for both editor and www, which is very close to the energy
savings achieved by the oracle policy.

Table IX shows the frequency of selection of experts for the
different α settings for both the editor and www workloads. We
can observe that for low α, 9Tbe is the most selected expert
since it offers the least possible delay across all the experts. As
we move toward higher values of α, the frequency of selection
of smaller timeout experts increases since they offer higher
energy savings. In fact, for www workload, Tbe expert gets
selected for all idle periods. The table also shows that the nature

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 687

TABLE X
ENERGY SAVINGS/PERFORMANCE DELAY RESULTS FOR CPU ON

COMPUTATIONALLY INTENSIVE WORKLOADS

of workload affects the expert selection even for the same value
of α. For instance, for medium value, Tbe expert gets selected
for 37% with the editor workload, but for 65% with the www
workload.

Next, we experiment with the controller with DVFS enabled
and DPM disabled for different values of α. The energy savings
are negligible for both editor and www across all the values
of α since they spend most of their time in the idle thread.
As described earlier, our baseline CPU switches to the idle
mode and the lowest v-f setting available in the working set
(1.2 V/208 MHz) on getting idle. Thus, there are no additional
savings possible because of DVFS during idle periods. The
energy savings for the active periods due to DVFS are negli-
gible, since they are very small compared to the idle periods.
The performance delay is almost 0% across all α values as
the active periods are not long enough to observe significant
performance loss.

In the last set of experiments, we enable both DPM and
DVFS. In this case, we observe that the energy savings and
performance delay results converge to those in Table VIII, i.e.,
the case with just DPM enabled. The reason for this is that we
now switch to DPM as soon as the idle thread is scheduled,
where these workloads spend most of their time. This shows
that DPM is very effective for idle-dominated workloads.

Computationally Intensive Workloads: We experimented
with a number of computationally intensive workloads in both
single and multitasking environments. For such workloads,
the idle thread is not scheduled, and thus, the energy sav-
ings are exclusively due to DVFS. The chosen workloads
include common UNIX utility gzip for decompression (dgzip)
and three benchmarks taken from an open-source benchmark
suite mibench [39]: bf (blowfish)—a symmetric block cipher;
djpeg—decoding a jpeg image file; qsort—sorting a large array
of strings in ascending order. All these workloads have a mix of
CPU- and memory-intensive phases. We have also added results
for the synthetic workload burn_loop (Section IV-B) to see how
the controller performs for highly CPU-intensive workloads,
which benefit the least from DVFS. The results achieved under
both single- and multitask environments for these benchmarks
are illustrated in Table X. We discuss them separately.

Fig. 8. Frequency of selection of experts for qsort.

Fig. 9. Average μ for qsort.

Single-Task Environment: Table X(a) displays the results
we achieved for each individual benchmark in a single-task
environment. From the results, we can observe that as we
increase the value of α, we get higher energy savings. For lower
values of α, we get lower performance delay. For instance, with
qsort, the delay is just 6% for a low value of α, while the energy
savings are as high as 41% for a high value.

Fig. 8 shows the frequency of selection of different experts
for qsort according to the selected value of α. For higher value
of α, the 208-MHz expert is selected for 65% of the time, while
the rest of the time, 416-MHz expert is chosen. This suggests
that qsort has both CPU- and memory-intensive phases. Fig. 9
shows the average μ of qsort along its execution timeline and
illustrates these phases. We can observe that around the first
20% of its execution, qsort is consistently very CPU inten-
sive (high μ), for which the controller selects the 416-MHz
expert. Beyond that, it varies, but the average is on the lower
side (around 0.45), for which the controller mostly selects the
208-MHz expert. Thus, the controller can quickly and accu-
rately identify CPU-/memory-intensive phases in the workload
and adapt at runtime.

We perform offline analysis to evaluate the maximum achiev-
able energy savings for these benchmarks for the given work-
ing set by running all the individual benchmarks statically at
208 MHz/1.2 V. This is in line with our observation in
Section IV-B [Fig. 2(b)–(d)] that for ρ ≈ 30%, the en-
ergy savings and performance delay increase with decreasing
v-f settings for all kinds of tasks. Table XI displays the %energy
and %delay for the benchmarks at this setting. Comparing these
results with Table X(a), we can see that for high α, the energy
savings for all the benchmarks are on an average within 8% of
the maximum possible at much lower overhead. For instance,

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

688 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 28, NO. 5, MAY 2009

TABLE XI
ENERGY SAVINGS/PERFORMANCE DELAY AT 208 MHz/1.2 V

for qsort, with the controller at high α, we get 41% energy
savings at delay of 25% compared to 48% savings and 56%
delay at 208 MHz/1.2 V. Thus, the controller almost gets the
same energy savings at much lower performance delay because
it runs the highly CPU intensive phase of qsort (Fig. 9) at
416 MHz (as discussed in the preceding paragraph). For
burn_loop, the controller is able to identify the high CPU inten-
siveness and hence runs at 416 MHz/1.4 V even for high α to
achieve within 5% of maximum energy savings at significantly
lower performance overhead.

Multitask Environment: We next experimented with the
benchmarks in a multitasking environment to verify our per-
task characterization by spawning two threads running different
benchmarks simultaneously. Table X(b) presents the results
we achieved for multitasking for different values of α. For
djpeg+dgzip, the results are roughly an average of the individ-
ual results in Table X(a). This happens because the duration of
execution of both tasks is equal. The average values of the de-
lay and savings indicate that both the tasks run with the same
expert selection over their execution time frame as in the
single-task case across all the α settings. This shows that per-
task characterization of the controller is accurately preserved
across context switches. For qsort+djpeg, the results for all the
values of α correspond very closely to the results of qsort in
Table X(a). Since the total time of execution of qsort benchmark
is roughly four times the duration of djpeg benchmark, the
results converge to that of individual qsort benchmark results.
However, the djpeg benchmark runs exactly twice longer with
qsort than alone. This shows that accurate preservation of per-
task characteristics enables the controller to select the same
set of experts for djpeg as it does when djpeg runs alone in
the system, hence keeping its effective run time the same. We
observed similar results for the qsort+dgzip combination.

Task Characteristics and Leakage Awareness: Since the
controller incorporates task characteristics and leakage aware-
ness, it knows when DVFS is beneficial for a task from overall
system energy efficiency and performance point of view. This
awareness becomes more critical for future generation proces-
sors with higher leakage, where running at lower frequency
could result in higher energy consumption [see burn_loop
results in Fig. 2(d)]. To verify how controller would adapt to
such platforms, we derived a new μ-mapper for our v-f setting
experts based on Fig. 3(b) to simulate a platform with ρ = 50%.
We then ran the benchmarks under different α settings. For
burn_loop, we observed that the controller now selected the
1.5-V/520-MHz expert consistently for the high α settings,
since the new μ-mapper now incorporates the knowledge of
high leakage power consumption of the CPU. This is in con-
trast to the results with our old μ-mapper (ρ ≈ 30%), where

it selected 1.4-V/416-MHz expert for high α. We observed
similar results for other benchmarks as well. By incorporating
CPU leakage characteristics, controller is also able to balance
DVFS and DPM for better overall energy efficiency. This makes
the controller scalable and adaptable across CPUs with varying
leakage characteristics.

C. Overhead

For HDD, the controller causes overhead in terms of both
energy and time to perform the evaluation of experts. In our
experiments, we measured the average controller overhead at
0.0001% of the total time frame for HDD, which is negligible
relative to the overall time frame. For CPU, the controller adds
overhead to the system, since it processes the three events
delivered to it by the Linux process manager as discussed in
Fig. 7. We used lmbench [40] for measuring the overhead
caused by the LKM. The lat_proc and lat_ctx tests measure
the overhead added to process creation and context switch
times. For lat_proc, the overhead was 0%, while for lat_ctx, it
was around 3%. The overhead is negligible because the event
processing functions in the controller are extremely fast and
lightweight. The controller itself is implemented in fixed-point
arithmetic and is very lightweight. The use of weights obviates
the need for storing μ estimates, thereby avoiding a potential
overhead. For instance, in [26], a regression-based approach is
used for workload characterization, which maintains a queue
of 25 most recent estimates of CPIavg and MPIavg samples. In
tests with lmbench, they increase the context switch time by a
factor of two, while our overhead is negligible.

In terms of memory overhead, the controller adds an array
of unsigned long long variables, whose size is equal to the
number of experts in the working set, to the task_struct of
Linux. The LKM uses unsigned long long variables to simulate
decimal values for weight/probability factors since we do not
use floating point inside the kernel. Thus, overall, the overhead
of controller on a running system is negligible, which makes its
deployment in real systems practical.

VI. CONCLUSION

In this paper, we presented a novel online-learning algorithm
that solves both DPM and DVFS problems. We presented a
formulation of both DPM and DVFS as one of workload char-
acterization and expert selection and used the algorithm to solve
it. The advantage of using an online-learning algorithm is that
it provides a theoretical guarantee on convergence to the best-
performing expert. The general formulation of the controller
makes it applicable to any system component with support for
power management. We performed experiments on two differ-
ent HDDs and an Intel PXA27x CPU under varying real-life
workloads in both single-task and multitask scenarios. Our re-
sults indicate that our algorithm adapts really well to changing
workload characteristics and achieves an overall performance
comparable to the best-performing expert at any point in time.
Moreover, the algorithm incorporates leakage awareness, which
allows it to adapt seamlessly to changing CPU leakage char-
acteristics and also understand the tradeoff between DPM and

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

DHIMAN AND ROSING: SYSTEM-LEVEL POWER MANAGEMENT USING ONLINE LEARNING 689

DVFS. Moreover, it is extremely lightweight and has almost
negligible overhead in terms of performance and energy.

REFERENCES

[1] A. P. Chandrakasan and R. Brodersen, “Minimizing power consumption
in digital CMOS circuits,” Proc. IEEE, vol. 83, no. 4, pp. 498–523,
Apr. 1995.

[2] M. Gillespie, Power Management in the Intel PXA27x Series Application
Processors. [Online]. Available: http://www.intel.com

[3] Mobile AMD Athlon 4 Processor Model 6 CPGA Data Sheet, 2001.
[Online]. Available: http://www.amd.com

[4] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-
line learning and an application to boosting,” J. Comput. Syst. Sci., vol. 55,
no. 1, pp. 119–139, Aug. 1997. special issue for EuroCOLT’95.

[5] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki, “Competi-
tive randomized algorithms for non-uniform problems,” in Proc. 1st Annu.
ACM-SIAM SODA, 1990, pp. 301–309.

[6] R. Golding, P. Bosch, and J. Wilkes, “Idleness is not sloth,” Hewlett
Packard Lab., Palo Alto, CA, Tech. Rep. HPL-96-140, Oct. 4, 1996.

[7] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen, “Predictive
system shutdown and other architectural techniques for energy efficient
programmable computation,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 4, no. 1, pp. 42–55, Mar. 1996.

[8] C.-H. Hwang and A. C.-H. Wu, “A predictive system shutdown method
for energy saving of event-driven computation,” in Proc. ICCAD, 1997,
pp. 28–32.

[9] E.-Y. Chung, L. Benini, and G. D. Micheli, “Dynamic power management
using adaptive learning tree,” in Proc. ICCAD, 1999, pp. 274–279.

[10] G. A. Paleologo, L. Benini, A. Bogliolo, and G. D. Micheli, “Policy
optimization for dynamic power management,” in Proc. DAC, 1998,
pp. 182–187.

[11] Q. Qiu and M. Pedram, “Dynamic power management based on
continuous-time Markov decision processes,” in Proc. DAC, 1999,
pp. 555–561.

[12] T. Simunic, L. Benini, P. W. Glynn, and G. D. Micheli, “Event-driven
power management,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 20, no. 7, pp. 840–857, Jul. 2001.

[13] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. D. Micheli,
“Dynamic power management for nonstationary service requests,” IEEE
Trans. Comput., vol. 51, no. 11, pp. 1345–1361, Nov. 2002.

[14] Z. Ren, B. H. Krogh, and R. Marculescu, “Hierarchical adaptive dynamic
power management,” IEEE Trans. Comput., vol. 54, no. 4, pp. 409–420,
Apr. 2005.

[15] G. Theocharous, S. Mannor, N. Shah, P. Gandhi, B. Kveton, S. Siddiqi,
and C.-H. Yu, “Machine learning for adaptive power management,” Intel
Technol. J., vol. 10, pp. 299–312, Nov. 2006.

[16] C. Steinbach, A reinforcement-learning approach to power manage-
ment, 2002. AI Technical Report, M.Eng Thesis, Artificial Intelligence
Laboratory, MIT.

[17] G. Quan and X. Hu, “Minimum energy fixed-priority scheduling for vari-
able voltage processor,” in Proc. DATE, 2002, p. 782.

[18] Y. Zhu and F. Mueller, “Feedback EDF scheduling of real-time tasks
exploiting dynamic voltage scaling,” Real-Time Syst., vol. 31, no. 1–3,
pp. 33–63, Dec. 2005.

[19] A. Azevedo, I. Issenin, R. Cornea, R. Gupta, N. Dutt, A. Veidenbaum,
and A. Nicolau, “Profile-based dynamic voltage scheduling using program
checkpoints,” in Proc. DATE, 2002, p. 168.

[20] P. Yang, C. Wong, P. Marchal, F. Catthoor, D. Desmet, D. Verkest,
and R. Lauwereins, “Energy-aware runtime scheduling for embedded-
multiprocessor SOCs,” IEEE Des. Test Comput., vol. 18, no. 5, pp. 46–58,
Sep./Oct. 2001.

[21] E.-Y. Chung, G. D. Micheli, and L. Benini, “Contents provider-assisted
dynamic voltage scaling for low energy multimedia applications,” in Proc.
ISLPED, 2002, pp. 42–47.

[22] M. Weiser, B. Welch, A. Demers, and S. Shenker, “Scheduling for reduced
CPU energy,” in Proc. OSDI, 1994, p. 2.

[23] K. Govil, E. Chan, and H. Wasserman, “Comparing algorithm for dynamic
speed-setting of a low-power CPU,” in Proc. MobiCom, 1995, pp. 13–25.

[24] A. Varma, B. Ganesh, M. Sen, S. R. Choudhury, L. Srinivasan, and
J. Bruce, “A control-theoretic approach to dynamic voltage scheduling,”
in Proc. CASES, 2003, pp. 255–266.

[25] A. Weissel and F. Bellosa, “Process cruise control: Event-driven
clock scaling for dynamic power management,” in Proc. CASES, 2002,
pp. 238–246.

[26] K. Choi, R. Soma, and M. Pedram, “Fine-grained dynamic voltage and
frequency scaling for precise energy and performance tradeoff based on
the ratio of off-chip access to on-chip computation times,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 1, pp. 18–28,
Jan. 2005.

[27] C. Isci, G. Contreras, and M. Martonosi, “Live, runtime phase monitoring
and prediction on real systems with application to dynamic power man-
agement,” in Proc. MICRO, 2006, pp. 359–370.

[28] R. Jejurikar, C. Pereira, and R. Gupta, “Leakage aware dynamic
voltage scaling for real-time embedded systems,” in Proc. DAC, 2004,
pp. 275–280.

[29] P. J. de Langen and B. H. H. Juurlink, “Leakage-aware multiprocessor
scheduling for low power,” in Proc. IPDPS, 2006, p. 60.

[30] T. Ishihara and H. Yasuura, “Voltage scheduling problem for dynami-
cally variable voltage processors,” in Proc. ISLPED, Aug. 10–12, 1998,
pp. 197–202.

[31] Intel XScale Core Developer’s Manual . [Online]. Available: http://
download.intel.com/design/intelxscale/27347302.pdf

[32] [Online]. Available: http://www.itrs.net/Links/2005ITRS/ExecSum
2005.pdf

[33] S. Eyerman, L. Eeckhout, T. Karkhanis, and J. E. Smith, “A performance
counter architecture for computing accurate CPI components,” Oper. Syst.
Rev., vol. 40, no. 5, pp. 175–184, Dec. 2006.

[34] C. Ruemmler and J. Wilkes, “UNIX disk access patterns,” in Proc.
USENIX Winter, 1993, pp. 405–420.

[35] F. Douglis, P. Krishnan, and B. N. Bershad, “Adaptive disk spin-down
policies for mobile computers,” in Proc. MLICS, 1995, pp. 121–137.

[36] [Online]. Available: http://lwn.net/Articles/223185/
[37] [Online]. Available: http://pxa linux.sourceforge.net/
[38] L. Benini, A. Bogliolo, S. Cavallucci, and B. Ricco, “Monitoring system

activity for OS-directed dynamic power management,” in Proc. ISLPED,
1998, pp. 185–190.

[39] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and
R. B. Brown, “MiBench: A free, commercially representative embedded
benchmark suite,” in Proc. IEEE 4th Annu. Workshop Workload Charac-
terization, Dec. 2001, pp. 3–14.

[40] [Online]. Available: http://www.bitmover.com/lmbench/

Gaurav Dhiman received the B.Tech. degree in
computer science and engineering from the Indian
Institute of Technology, Roorkee, India, in 2002 and
the M.S degree in computer science from the Uni-
versity of California, San Diego (UCSD), La Jolla, in
2007, where he is currently working toward the Ph.D.
degree in computer science with the Department of
Computer Science and Engineering.

Prior to coming to UCSD, he was with STMi-
croelectronics, India, from 2002 to 2005 and has
done internships with Qualcomm (summer 2006)

and Sun Microsystems (summer 2007 and summer 2008) in the field of low-
power systems. His research interests are in operating systems and computer
architecture with specific focus on power management.

Tajana Šimunić Rosing (S’97–M’01) received the
M.S. degree in electrical engineering, with a thesis
on high-speed interconnect and driver-receiver cir-
cuit design, from the University of Arizona, Tucson,
and the Ph.D. degree, with a dissertation on dynamic
management of power consumption, in 2001 from
Stanford University, Stanford, CA, concurrently with
the M.S. degree in engineering management.

She is currently an Assistant Professor with the
Department of Computer Science and Engineering,
University of California, San Diego, La Jolla. Prior to

this, she was a Full-Time Researcher with HP Laboratories, while working part
time with Stanford University, where she was involved with leading research
of a number of graduate students and taught graduate-level classes. Prior to
pursuing the Ph.D. degree, she was a Senior Design Engineer with the Altera
Corporation. Her research interests include energy-efficient computing and
embedded and wireless systems.

Dr. Rosing has served at a number of Technical Paper Committees and is cur-
rently an Associate Editor of IEEE TRANSACTIONS ON MOBILE COMPUTING.
In the past, she has been an Associate Editor of IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS.

Authorized licensed use limited to: Univ of Calif San Diego. Downloaded on September 24, 2009 at 15:25 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

