
6

vGreen: A System for Energy-Efficient
Management of Virtual Machines

GAURAV DHIMAN, GIACOMO MARCHETTI, and TAJANA ROSING
University of California, San Diego

In this article, we present vGreen, a multitiered software system for energy-efficient virtual ma-
chine management in a clustered virtualized environment. The system leverages the use of novel
hierarchical metrics that work across the different abstractions in a virtualized environment to
capture power and performance characteristics of both the virtual and physical machines. These
characteristics are then used to implement policies for scheduling and power management of
virtual machines across the cluster. We show through real implementation of the system on a
state-of-the-art testbed of server machines that vGreen improves both average performance and
system-level energy savings by close to 40% across benchmarks with varying characteristics.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Distributed Systems

General Terms: Design, Experimentation, Performance

Additional Key Words and Phrases: Virtualization, migration, energy, workload characterization

ACM Reference Format:
Dhiman, G., Marchetti, G., and Rosing, T. 2010. vGreen: A system for energy-efficient manage-
ment of virtual machines. ACM Trans. Des. Autom. Electron. Syst. 16, 1, Article 6 (November
2010), 27 pages. DOI = 10.1145/1870109.1870115. http://doi.acm.org/10.1145/1870109.1870115.

1. INTRODUCTION

Power consumption is a critical design parameter in modern data center and
enterprise environments, since it directly impacts both the deployment (peak
power delivery capacity) and operational costs (power supply, cooling). The
energy consumption of the compute equipment and the associated cooling in-
frastructure is a major component of these costs. The electricity consumption
for powering the data centers in the U.S. is projected to cross $7B by the end of

A preliminary version of this article appeared in ISLPED 2009 [Dhiman et al. 2009].
This work has been funded in part by Oracle Corp., UC MICRO, Center for Networked Systems
(CNS) at UCSD, MARCO/DARPA Gigascale Systems Research Center and NSF Greenlight
Authors’ address: G. Dhiman (corresponding author), G. Marchetti, T. Rosing, Department of
Computer Science, University of California, San Diego, CA; email: gdhiman@cs.ucsd.edu.
Permission to make digital or hard copies part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial ad-
vantage and that copies show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others than ACM must be hon-
ored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific per-
mission and/or a fee. Permissions may be requested from the Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2010 ACM 1084-4309/2010/11-ART6 $10.00 DOI: 10.1145/1870109.1870115.

http://doi.acm.org/10.1145/1870109.1870115.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 2 · G. Dhiman et al.

2010 [Meisner et al. 2009; Pakbaznia and Pedram 2009]. This provides strong
motivation for developing mechanisms to efficiently manage computation in
data centers.

Modern data centers and cloud computing providers (like Amazon EC2
[Amazon 2008]) use virtualization (e.g., Xen [Barham et al. 2003] and VMware
[Haletky 2008]) to get better fault and performance isolation, improved system
manageability, and reduced infrastructure cost through resource consolidation
and live migration [Clark et al. 2005]. Consolidating multiple servers running
in different Virtual Machines (VMs) on a single Physical Machine (PM) in-
creases the overall utilization and efficiency of the equipment across the whole
deployment. Thus, the creation, management, and scheduling of VMs across a
cluster of PMs in a power-aware fashion is key to reducing the overall opera-
tional costs. Policies for power-aware VM management have been proposed in
previous research [Raghavendra et al. 2008] and are available as commercial
products as well (e.g., VMware DRS [VMware 2009]). These policies require
understanding of the power consumption and resource utilization of the PM,
as well as its breakdown among the constituent VMs for optimal decision mak-
ing. Currently they treat the overall CPU utilization of the PM and its VMs
as an indicator of their respective power consumption and resource utilization,
and use it for guiding the VM management policy decisions (VM migration,
dynamic voltage frequency scaling or DVFS, etc.). However, in our work we
show that based on the characteristics of these different colocated VMs, the
overall power consumption and performance of the VMs can vary a lot even at
similar CPU utilization levels. This can mislead the VM management policies
into making decisions that can create hotspots of activity, and degrade overall
performance and energy efficiency.

In this article, we introduce vGreen, a multitiered software system to man-
age VM scheduling across different PMs with the objective of managing the
overall energy efficiency and performance. The basic premise behind vGreen
is to understand and exploit the relationship between the architectural char-
acteristics of a VM (e.g., instructions per cycle, memory accesses, etc.) and
its performance and power consumption. vGreen is based on a client server
model, where a central server (referred to as “vgserv”) performs the manage-
ment (scheduling, DVFS, etc.) of VMs across the PMs (referred to as “vgnodes”).
The vgnodes perform online characterization of the VMs running on them and
regularly update the vgserv with this information. These updates allow vgserv
to understand the performance and power profile of the different VMs and aids
it to intelligently place them across the vgnodes to improve overall performance
and energy efficiency.

We implemented vGreen on a testbed of state-of-the-art servers running Xen
as the virtualization software (known as hypervisor). For evaluation, we cre-
ated and allocated VMs across the PM cluster, which ran benchmarks with
varying workload characteristics. We show that vGreen is able to dynami-
cally characterize VMs, and accurately models their resource utilization levels.
Based on these characteristics, it can intelligently manage the VMs across the
PM cluster by issuing VM migration or DVFS commands. As we show in the
latter sections, this improves the overall performance up to 100% and energy

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 3

efficiency up to 55% compared to state-of-the-art VM scheduling and power
management policies. Moreover, vGreen is very lightweight with negligible
runtime overhead.

The rest of the article is organized as follows: In Section 2, we discuss the
related state-of-the-art work and outline our contributions. This is followed by
a discussion on the background and motivation for the approach we adopt to
solve the problem in Section 3. In Section 4, we explain the overall design,
architecture and implementation details of the vGreen system. We provide
details of the overall methodology for evaluation of our system and the experi-
mental results in Section 5 before concluding in Section 6.

2. RELATED WORK

Systems for management of VMs across a cluster of PMs have been proposed
in the past. Eucalyptus [Nurmi et al. 2008], OpenNebula [OpenNebula] and
Usher [McNett et al. 2007] are open-source systems which include support for
managing VM creation and allocation across a PM cluster. For management
of VMs on larger scale, for instance across multiple data center sites, systems
like Grid Virtualization Engine (GVE) [Wang et al. 2009] have been proposed.
However, these solutions do not have VM scheduling policies to dynamically
consolidate or redistribute VMs. VM scheduling policies for this purpose have
also been investigated in the past. In Wood et al. [2007], the authors propose a
VM scheduling system which dynamically schedules the VMs across the PMs
based on their CPU, memory, and network utilization to avoid hotspots of activ-
ity on PMs for better overall performance. The Distributed Resource Scheduler
(DRS) from VMware [VMware 2009] also uses VM scheduling to perform au-
tomated load balancing in response to CPU and memory pressure. Similarly,
in Bobroff et al. [2007], the authors propose VM scheduling algorithms for dy-
namic consolidation and redistribution of VMs for managing performance and
SLA (Service-Level Agreement) violations. In Wang and Kandasamy [2009],
the authors model application performance across VMs to dynamically control
the CPU allocation to each VM with the objective of maximizing the profits.
The authors in Hermenier et al. [2009] propose Entropy, which uses constraint
programming to determine a globally optimal solution for VM scheduling in
contrast to the first-fit decreasing heuristic used by Wood et al. [2007] and Bo-
broff et al. [2007], which can result in globally suboptimal placement of VMs.
However, none of these VM scheduling algorithms takes into account the im-
pact of the policy decisions on the energy consumption in the system.

Power management in data-center-like environments has been an active
area of research. In Chase et al. [2001], data center power consumption is
managed by turning servers off depending on demand. Reducing operational
costs by performing temperature-aware workload placement has also been ex-
plored [Moore et al. 2005]. In Ge et al. [2007], Dynamic Voltage Frequency
Scaling (DVFS) is performed based on the memory intensiveness of workloads
on the server clusters to reduce energy costs. Similarly, Ranganathan et al.
[2006] and Fan et al. [2007] use DVFS to reduce average power consumption in
blade servers with the objective of performing power budgeting. Recent studies
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 4 · G. Dhiman et al.

[Dhiman et al. 2008; Meisner et al. 2009] have shown that in modern server
systems, the effectiveness of DVFS for energy management has diminished
significantly due to its impact on the performance of the workloads. In this ar-
ticle, we confirm this observation and show how intelligent VM colocation out-
performs state-of-the-art DVFS policies [Dhiman and Rosing 2007; Isci et al.
2006] in terms of energy savings.

The problem of power management in virtualized environments has also
been investigated. In Nathuji and Schwan [2007], the authors propose Vir-
tualPower, which uses the power management decisions of the guest OS on
virtual power states as hints to run local and global policies across the PMs. It
relies on efficient power management policies in the guest OS, and does no VM
characterization at the hypervisor level. This makes it difficult to port some of
the state-of-the-art power management policies like Dhiman and Rosing [2007]
and Isci et al. [2006] in guest OS because of lack of exclusive access to privileged
resources such as CPU performance counters. This problem has led to adoption
of power management frameworks like cpufreq and cpuidle in recent virtual-
ization solutions (like Xen [Barham et al. 2003]). In Abdelsalam et al [2009],
the authors develop a power and performance model of a transaction-based ap-
plication running within the VMs, and use it to drive cluster-level energy man-
agement through DVFS. However, they assume the application characteristics
to be known. In Raghavendra et al. [2008], a coordinated multilevel solution
for power management in data centers is proposed. Their solution is based on
a model that uses power estimation (using CPU utilization) and overall uti-
lization levels to drive VM placement and power management. However, the
model and results are based on offline trace-driven analysis and simulations.
In Liu et al. [2009], the authors present GreenCloud, an infrastructure to dy-
namically consolidate VMs based on CPU utilization to produce idle machines,
which could be turned off to generate energy savings. However, none of these
solutions [Abdelsalam et al 2009; Liu et al. 2009; Nathuji and Schwan 2007;
Raghavendra et al. 2008] takes the architectural characteristics of the VM into
account which, as we show in Section 3, directly determine the VM performance
and power profile. In Verma et al. [2008], the authors use VM characteristics
like cache footprint and working set to drive power-aware placement of VMs.
But their study assumes an HPC application environment, where the VM char-
acteristics are known in advance. Besides, their evaluation is based on simula-
tions. In contrast, vGreen assumes a general-purpose workload setup with no
apriori knowledge on their characteristics.

The concept of dynamic architectural characterization of workloads using
CPU performance counters for power management [Dhiman and Rosing 2007;
Isci et al. 2006], performance [Knauerhase et al. 2008], and thermal manage-
ment [Merkel and Bellosa 2006] on nonvirtualized systems has been explored
before. For a stand-alone virtualized PM, the authors in Stoess et al. [2007]
use performance counters to enforce power budgets across VMs on that PM.
In Merkel et al. [2010], the authors identify resource contention as a prob-
lem for energy efficiency, but primarily focus on scheduling and power man-
agement on a single PM. In some recent papers, performance counters have
been used in virtualized clusters to perform power metering [Dhiman et al.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 5

2010; Kansal et al. 2010; Koller et al. 2010], QoS management [Nathuji et al.
2010], and power budgeting [Nathuji et al. 2009] to aid efficient power pro-
visioning. However, using architectural characterization to drive cluster-level
VM management from the perspective of energy efficiency and balanced power
consumption has been largely unexplored.

Based on this discussion, the primary contributions of our work are as fol-
lows: (1) We propose a system for characterization of VMs in a virtualized en-
vironment. It is based on novel hierarchical metrics that capture power and
performance profiles of the VMs. (2) We use the online VM characterization to
drive dynamic VM management across a PM cluster for overall performance
and energy efficiency. (3) We implement the proposed system on a real-life
testbed of state-of-the-art machines and through extensive set of experiments
and measurements across machines with different architectures and configu-
rations, and highlight the benefits of the approach over existing state-of-the-art
approaches.

3. MOTIVATION

3.1 Background

In this article we assume Xen as the underlying virtualization hypervisor. It
is a standard open-source virtualization solution which also forms the baseline
technology for commercial products like XenSource, Oracle VM, etc. However,
the ideas presented in this work are independent of Xen, and can be applied to
other virtualization solutions like Kernel-based Virtual Machines (KVM), etc.,
as well. In Xen, a VM is an instance of an OS which is configured with Virtual
CPUs (VCPUs) and a memory size. The number of VCPUs and memory size is
configured at the time of VM creation. Xen virtualizes the real hardware to the
VM making the OS running within it believe that it is running on a real ma-
chine. A PM can have multiple VMs active on it at any point in time, and Xen
multiplexes them across the real Physical CPUs (PCPUs) and memory. The
entity that Xen schedules over the PCPU is the VCPU, making it the funda-
mental unit of execution. Thus, a VCPU is analogous to a thread, and a VM is
analogous to a process in a system running a single OS like Linux. In addition,
Xen provides a control VM, referred to as Domain-0 (or Dom-0), which is what
the machine running Xen boots into. It acts as an administrative interface for
the user, and provides access to privileged operations like creating, destroying,
or migrating VMs.

3.2 Performance and Power Profile of VMs

The nature of workload executed in each VM determines the power profile and
performance of the VM, and hence its energy consumption. As discussed be-
fore, VMs with different or same characteristics could be colocated on the same
PM. In this section, we show that colocation of VMs with heterogeneous char-
acteristics on PMs is beneficial for overall performance and energy efficiency
across the PM cluster.
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 6 · G. Dhiman et al.

For understanding this, we performed some experiments and analysis on
two benchmarks from SPEC-CPU 2000 suite, namely eon and mcf. These two
benchmarks have contrasting characteristics in terms of their CPU and mem-
ory utilization. While mcf has high Memory Per Cycle (MPC) accesses and low
Instructions committed Per Cycle (IPC), eon has low MPC and high IPC. We
use a testbed of two dual Intel quad core Xeon (hyper-threading equipped)-
based PMs (sixteen CPUs each) running Xen. On each of these PMs, we
create two VMs with eight virtual CPUs (VCPUs) each (total of four VMs).
Inside each VM we execute either eon or mcf as the workload. We use multi-
ple instances/threads of the benchmarks to generate higher utilization levels.
For our PM (sixteen CPUs), this implies four instances for 25% utilization,
eight instances for 50%, and sixteen instances for 100% utilization. Each PM
is equipped with power sensors which are interfaced to the Dom-0 OS in a
standardized fashion using Intelligent Platform Management Interface (IPMI)
[IPMI 2004]. We periodically (every 2s) query the IPMI interface to log the
power consumption of the whole PM for all our experiments.

In our first set of experiments, we run homogeneous VMs on each PM, that
is, the two VMs with mcf on one PM, and two with eon on the other. We re-
fer to this VM placement schedule as “same” indicating homogeneity. During
the execution, we record the execution time of all the benchmark instances.
Figure 1(a) shows the normalized execution time results for different num-
ber of instances of the benchmarks, where the execution times are normalized
against the execution time with two instances (one instance per VM). We can
observe that for mcf in the “same” schedule (shown as “mcf-same”), as the CPU
utilization increases, the execution time almost increases linearly. For 100%
utilization mcf, the execution time is almost 8.5x compared to the baseline ex-
ecution time. The primary reason for such an observation is the high MPC of
mcf. The high MPC results in higher cache conflict rate and pressure on the
memory bandwidth when multiple threads execute, which decreases the effec-
tive IPC per thread and hence increases its execution time. This is illustrated
by the plot of aggregate IPC and MPC of all mcf threads in Figure 1(c). We
can see how the MPC increases by around 7x as CPU utilization goes from
12% to 100%. However, the aggregate IPC almost remains constant, which im-
plies IPC per thread goes down significantly, resulting in increased execution
time observed in Figure 1(a). In contrast, for eon (“eon-same”), the execution
time is fairly independent of the CPU utilization due to its much lower MPC.
We can observe that the execution time shows an increase beyond 50% uti-
lization. This happens since our machine has eight cores and sixteen CPUs
(due to hyper-threading), with two CPUs per core. When we reach 50% uti-
lization that corresponds to eight threads of the benchmark, and beyond that
the threads start sharing the pipeline, which reduces the individual IPC of
threads sharing the pipeline. This phenomena is illustrated in Figure 1(c),
where the IPC slope of eon drops off a little beyond 50% CPU utilization. How-
ever, this increase in execution time is trivial compared to that of mcf as seen in
Figures 1(a) and 1(c). In summary, this analysis indicates that the performance
of a VM has a strong negative correlation to utilization rate of the memory
subsystem.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 7

Fig. 1. Comparison of eon and mcf.

Similarly, Figure 1(b) shows the system-level power consumption of the PMs
normalized against the power consumption with just two threads. We can ob-
serve that for eon (“eon-same”), the power consumption increases almost lin-
early to the increase in utilization. This happens since it has high IPC, which
implies higher CPU resource utilization and power consumption. We can ob-
serve that the slope of increase in power changes at 50% utilization. This is
again due to pipeline sharing between threads beyond 50% utilization, which
lowers the contribution of new threads to power consumption (see Figure 1(c)).
In contrast, for mcf, the power consumption increases initially but then it satu-
rates. This primarily happens due to the lower IPC of threads at higher utiliza-
tion levels as discussed before. As a consequence of this, the difference in power
consumption between the two PMs is almost 20% (∼45 Watts in our measure-
ments). This analysis indicates that the power consumption of a VM has direct
corelation to IPC of the workload running inside it.

These results indicate that coscheduling VMs with similar characteristics
is not beneficial from the energy-efficiency point of view at the cluster level.
The PM running mcf contributes to higher system energy consumption, since
it runs for a significantly longer period of time. To understand the benefits of
coscheduling heterogeneous workloads in this context, we swapped two VMs
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 8 · G. Dhiman et al.

on the PMs, hence running VMs with mcf and eon on both the PMs. We re-
fer to this VM placement schedule as “mixed”, indicating the heterogeneity.
Figure 1 shows the results (indicated as “mixed”) achieved for this configura-
tion in terms of normalized execution time and power consumption. We can
observe that eon execution time almost stays the same, while mcf execution
time goes down significantly at higher utilization rates (around 450% reduc-
tion at 100% utilization). This happens because we now get rid of the hotspot
of intense activity in the memory subsystem on one PM (running just the mcf
VMs in the “same” schedule), and share the overall system resources in a much
more efficient fashion. The average power consumption of the two PMs becomes
similar, and roughly lies between that of the two PMs in the “same” schedule,
as the overall IPC is also much better balanced across the cluster.

Figure 1(d) illustrates the comparison of the “mixed” and “same” VM sched-
ules, and highlights the benefits of the “mixed” schedule. It plots three key
metrics to capture this.

(1) Energy savings. We estimate the energy reduction in executing each com-
bination of VMs using “mixed” over “same” schedule. This is calculated by
measuring the total energy consumption for a VM combination with two
schedules, and then taking their difference. We can observe that across all
utilization levels, the “mixed” schedule is clearly more energy efficient com-
pared to the “same” schedule. At higher utilization rates (50% and beyond),
it achieves as high as 50% energy savings. This primarily happens due to
the high speedup achieved by it compared to “same” schedule, as discussed
before, while keeping the average power consumption almost similar. The
next two metrics provides details on these.

(2) Average Weighted Speedup (AWS). This metric captures how fast the work-
load runs on the “mixed” schedule compared to “same” schedule. The AWS
is based on a similar metric defined in Snavely and Tullsen [2000]. It is
defined as

AWS =

∑
VMi

Tsamei
Talonei

∑
VMi

Tmixedi
Talonei

− 1, (1)

where Talonei is the execution time of VMi when it runs alone on a PM, and
Tsamei and Tmixedi are its execution time as part of a VM combination with
“same” and “mixed” schedules, respectively. To calculate AWS, we normal-
ize Tsamei and Tmixedi against Talonei for each VM, and then take ratio of the
sum of these normalized times across all the VMs in the combination as
shown in Eq. (1). AWS > 0 implies that the VM combination runs faster
with “mixed” schedule and vice versa. Figure 1(d) clearly shows that the
“mixed” schedule is able to achieve significant speedup. The AWS reaches
as high as 57% due to efficient resource sharing and contributes signifi-
cantly to the energy savings discussed earlier.

(3) Increase in power consumption. This metric captures the difference be-
tween the average power consumption of the PMs under the “mixed” and
“same” schedule. This is important, since we need to make sure that the

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 9

speedup achieved does not result in much higher average power consump-
tion across the cluster. Figure 1(d) shows that the increase in system power
consumption is trivial (<3%) across all the utilization levels. Thus, high
speedups at almost similar average power consumption results in signifi-
cant energy savings illustrated in Figure 1(d).

In summary, this discussion provides us key insights into the VM manage-
ment problem: (1) VM characteristics provide invaluable information on both
the power as well as performance profile of VMs. (2) VM scheduling policies
should try to coschedule VMs with heterogeneous characteristics on the same
PM. This results in efficient sharing of resources across the cluster and as a
consequence is beneficial from both energy-efficiency and performance point of
view. This is achievable in virtualized environments, since VMs can be dynam-
ically migrated at runtime across PMs at low overhead using “live migration”
[Clark et al. 2005].

This provides strong motivation to use online characterization of VMs for
system-wide VM management. In the next section, we describe the overall
architecture of vGreen, and present details on how it constructs VM character-
istics dynamically at runtime using a novel hierarchical approach.

4. DESIGN

In this section, we present the details on the design, architecture, and imple-
mentation of our system, vGreen. Building upon the discussion in the last
section, we show how the system is structured to capture the CPU and mem-
ory utilization rates of individual VMs, and how it uses it to manage the VMs
in an efficient fashion across a PM cluster.

4.1 Architecture

Figure 2 illustrates the overall architecture of vGreen, which is based on
a client-server model. Each PM in the cluster is referred to as a vGreen
client/node (vgnode). There is one central vGreen server (vgserv) which man-
ages VM scheduling across the vgnodes based on a policy (vgpolicy) running on
the vgserv. The vgpolicy decisions are based on the value of different metrics,
which capture MPC, IPC, and utilization of different VMs, that it receives as
updates from the vgnodes running those VMs. The metrics are evaluated and
updated dynamically by the vGreen modules in Xen (vgxen) and Dom-0 (vgdom)
on each vgnode. Regular updates from the vgnodes on the metrics allow the vg-
policy to balance both the power consumption and overall performance across
the PMs. We now describe the vGreen components and the metrics employed
in detail.

4.1.1 vgnode. A vgnode refers to an individual PM in the cluster. A vgnode
might have multiple VMs running on it at any given point in time as shown
in Figure 2. Each vgnode has vGreen modules (vgxen and vgdom) installed on
them.

vgxen. The vgxen is a module compiled into Xen (see Figure 2) and is re-
sponsible for characterizing the CPU and memory behavior (specifically IPC
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 10 · G. Dhiman et al.

Fig. 2. Overall vGreen design.

Fig. 3. An example of hierarchical metrics in vGreen.

and MPC) of running VMs. Since multiple VMs with possibly multiple VCPUs
might be active concurrently, it is important to cleanly isolate the characteris-
tics of each of these different entities. vGreen adopts a hierarchical approach
for this purpose as illustrated in Figure 3. The lowest level of the hierarchy is
the VCPU level, which is the fundamental unit of execution and scheduling in
Xen. When a VCPU is scheduled on a PCPU by the Xen scheduler, vgxen starts
the CPU performance counters of that PCPU to count the following events: (1)
Instructions Retired (INST), (2) Clock cycles (CLK), and (3) Memory accesses
(MEM).

When that VCPU consumes its time slice (or blocks) and is removed from
the PCPU, vgxen reads the performance counter values and estimates its MPC
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 11

(MEM/CLK) and IPC (INST/CLK) for the period it executed. This process is
performed for every VCPU executing in the system across all the PCPUs. To
effectively estimate the impact of these metrics on the VCPU power consump-
tion and performance, vgxen also keeps track of the CPU utilization (util) of
each VCPU, that is, how much time it actually spends executing on a PCPU
over a period of time. This is important, since even a high IPC benchmark
will cause high power consumption only if it is executing continuously on the
PCPU. Hence, the metric derived for each VCPU is weighted by its util, and is
referred to as the current weighted MPC and IPC (wMPCcur and wIPCcur) as
shown next.

wMPCcur = MPC · util
wIPCcur = IPC · util (2)

They are referred to as “current”, since they are estimated based on the
IPC/MPC values from the latest run of a VCPU. To also take into account
the previous value of these metrics, we maintain them as running exponential
averages. The equation that follows shows how weighted MPC is estimated.
We have

wMPC = α · wMPCcur + (1− α) · wMPCprev , (3)

where the new value of weighted MPC (wMPC) is calculated as an exponen-
tial average of wMPCprev , the previous value of wMPC, and wMPCcur (Eq. (2)).
The factor α determines the weight of current value (wMPCcur) and history
(wMPCprev). In our implementation we use α=0.5, thus giving equal weight
to both. The IPC metric is computed in a similar fashion as discussed before.
We store these averaged metrics in the Xen VCPU structure to preserve them
faithfully across VCPU context switches. This constitutes the metric estima-
tion at the lowest level of the hierarchy as shown in Figure 3.

At the next level, vgxen estimates the aggregate metrics (vMPC, vIPC, vutil)
for each VM by adding up the corresponding metrics of its constituent VCPUs,
as shown in the middle level of Figure 3. This information is stored in VM
structure of Xen to personalize metrics at per VM level and is exported to Dom-
0 through a shared page, which is allocated by vgxen at the boot-up time.

vgdom. The second vGreen module of vgnode is the vgdom (see Figure 2). Its
main role is to periodically (Tup period) read the shared page exported by vgxen
to get the latest characteristics metrics for all the VMs running on the vgnode,
and update the vgserv with it. In addition, vgdom also acts as an interface for
the vgnode to the vgserv. It is responsible for registering the vgnode with the
vgserv and also for receiving and executing the commands sent by the vgserv
as shown in Figure 2.

4.1.2 vgserv. The vgserv acts as the cluster controller and is responsible
for managing VM scheduling and power management across the vgnode clus-
ter. The vgpolicy is the core of vgserv, which makes the scheduling and power
management decisions based on periodic updates on the VM metrics from the
vgnodes. The metrics of each VM are aggregated by the vgpolicy to construct
the top-level or node-level metrics (nMPC, nIPC, nutil) as shown in Figure 3.
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 12 · G. Dhiman et al.

Table I. MPC Balance Algorithm

Input: vgnode n1
1: if nMPCn1 < nMPCth then
2: return
3: end if
4: pm min← NULL
5: for all vgnodes ni except n1 do
6: if (nMPCni < nMPCth) and (nMPCn1 − nMPCth) < (nMPCth − nMPCni)

then
7: if !pm min or nMPCpm min > nMPCni then
8: pm min← ni
9: end if

10: end if
11: end for
12: vmmig← NULL
13: for all vmi in n1 do
14: if (nMPCth − nMPCpm min) > vMPCvmi and vMPCvmi > vMPCvmmig then
15: vMPCvmmig ← vMPCvmi

16: end if
17: end for
18: if pm min and vmmig then
19: do migrate(vmmig, n1, pm min)
20: end if

Thus, the knowledge of both the node-level and VM-level metrics allow the vg-
policy to understand not only the overall power and performance profile of the
whole vgnode, but also fine-grained knowhow of the breakdown at VM level.

Based on these metrics, the vgpolicy runs its balancing and power manage-
ment algorithm periodically (Tp period). The basic algorithm is motivated by the
fact that VMs with heterogeneous characteristics should be coscheduled on the
same vgnode (Section 3). The problem of consolidation of VMs in minimum
possible PMs has been explored in previous work [Hermenier et al. 2009; Wood
et al. 2007], and is similar to bin-packing problem, which is computationally
NP-hard. As discussed in Section 2, the existing solutions perform the consoli-
dation based on just CPU utilization. Our balancing algorithms build on top of
these existing algorithms to perform balancing based on MPC and IPC as well.
The overall algorithm runs in the following four steps.

(1) MPC balance. This step ensures that nMPC is balanced across all the
vgnodes in the system for better overall performance and energy efficiency
across the cluster. Table I gives an overview of how the MPC balance algo-
rithm works for a vgnode n1. The algorithm first of all checks if the nMPC
of n1 is greater than a threshold nMPCth (step 1 in Table I). This threshold
is representative of whether high MPC is affecting the performance of the
VMs in that vgnode. This is based on the observation in Section 3, that for
lower MPC workloads (like eon), the memory subsystem is lightly loaded
and has little impact on the performance of the workload. Hence, if nMPC
is smaller, the function returns, since there is no MPC balancing required
for n1 (step 2 in Table I). If it is higher, then in steps 4–11, the algorithm
tries to find the target vgnode with the minimum nMPC (pm min) to which
a VM from n1 could be migrated to resolve the MPC imbalance, subject to

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 13

the condition in step 6. The condition states that the target vgnode (ni)
nMPC (nMPCni) must be below nMPCth by atleast (nMPCn1 − nMPCth).
This is required, since otherwise migration of a VM from n1 to ni cannot
bring n1 below the MPC threshold or might make ni go above the MPC
threshold. In steps 7 and 8, it stores the node ni as target minimum nMPC
vgnode (pm min), if its nMPC (nMPCni) is lower than the nMPC of the vgn-
ode currently stored as pm min. This way, once the loop in step 5 completes,
it is able to locate the vgnode in the system with the least nMPC (pm min).

Once the pm min is found, the algorithm finds the VM (vmmig) that could
be migrated to pm min for resolving the MPC imbalance (steps 12–17). For
this purpose it scans the list of VMs on n1 to find the VM with the maximum
vMPC, which if migrated, does not reverse the imbalance by making nMPC
of pm min more than nMPCth (steps 14 and 15). If such a VM is found,
the algorithm invokes the do migrate function to live migrate vmmig from
n1 to pm min [Clark et al. 2005] in step 19. The decisions taken by the
vgpolicy (updates, migration) are communicated to the vgnodes in form of
commands as shown in Figure 2, while the vgdom component on the vgnode
actually accomplishes the migration.

The complexity of the MPC balance algorithm (Table I) is linear (O(n),
where “n” is the number of vgnodes in steps 5–11, and number of VMs
on n1 in steps 13–17) for resolving an MPC bottleneck, since it requires a
single scan of vgnodes and VMs to detect and resolve it. Hence, in terms of
implementation and performance the algorithm is simple and scalable.

(2) IPC balance. This step ensures nIPC is balanced across the vgnodes for
better balance of power consumption across the PMs. The algorithm is
similar to MPC balance, but uses nIPC instead of nMPC.

(3) Util balance. This step balances the CPU utilization of vgnodes to ensure
there are no overcommitted nodes in the system, if there are other under-
utilized vgnodes. The algorithm is again similar to MPC balance, but uses
nutil instead of nMPC.

(4) Dynamic Voltage Frequency Scaling (DVFS). The vgpolicy may issue a com-
mand to scale the voltage-frequency setting (v-f setting) of a vgnode, if it
deems that it is more energy efficient than VM migration. This may hap-
pen if there are not enough heterogeneous VMs across the cluster to be able
to balance the resource utilization evenly. The DVFS policy is itself based
on state-of-the-art DVFS policies [Dhiman and Rosing 2007; Isci et al. 2006]
that exploit the characteristics of the workload to determine the best suited
v-f setting for it. Specifically, it aggressively downscales the v-f setting if the
overall MPC is high (> nMPCth), otherwise keeps the system at the highest
v-f setting.

Figure 4 gives the intuition behind the policy using an example of two bench-
marks, mcf and eon, running at 90% CPU utilization level. It plots the execu-
tion time (Figure 4(a)) and energy consumption (Figure 4(b)) at five different
v-f settings. The execution time, energy consumption, and the v-f settings are
normalized against the values at the highest v-f setting. We can observe that
as the frequency is decreased, the execution time of eon almost increases in
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 14 · G. Dhiman et al.

Fig. 4. Comparison of execution time and energy consumption of mcf and eon at different fre-
quency levels

proportion to the drop in frequency. For instance, at normalized frequency of
0.54, the increase in execution time is more than 80% (∼ 1

0.54). This happens
since eon has high IPC, and uses the pipeline of the processor intensively, which
makes its execution time a function of the clock rate of the pipeline or the CPU
frequency. This huge performance degradation has a direct impact on the en-
ergy consumption of eon at lower v-f settings as shown in Figure 4(b). We can
observe that at all the frequencies the system consumes more energy compared
to the highest v-f setting, reaching as high as 40% more. This implies, that for
high IPC workloads, DVFS is actually energy inefficient.

In contrast, for mcf, which has high MPC, we observe that the execution
time (Figure 4(a)) is actually fairly independent of the CPU frequency. This is
a consequence of the high degree of CPU stalls that occur during its execution
due to frequent memory accesses, which makes its execution time insensitive
to actual CPU frequency. The low performance degradation translates into
system-level energy savings (see Figure 4(b)), which reaches 10% at the lowest
frequency.

This example also illustrates the fact that the effectiveness of DVFS for en-
ergy savings is not very significant in modern server class systems. This has
been also observed in previous research [Dhiman et al. 2008; Meisner et al.
2009], and the reasons for such a trend include lower contribution of CPU in
total system power consumption, finer voltage settings in modern CPUs due
to shrinking process technology, etc. These observations also motivate our
approach to focus more on efficient VM scheduling to achieve higher energy
savings rather than on aggressive DVFS. Rather, the system resorts to DVFS
only when no further benefits are achievable through scheduling and the MPC
is high enough to achieve energy savings. As we show in Section 5, such an
approach enables energy savings under both heterogeneous and homogeneous
workload scenarios through VM scheduling and aggressive DVFS, respectively.

The four steps described earlier in the overall algorithm have relative priori-
ties to resolve conflicts, if they occur. MPC balance is given the highest priority,
since a memory bottleneck severely impacts overall performance and energy
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 15

efficiency as identified in Section 3.1 (Figure 1(a)). IPC balance results in a
more balanced power consumption profile, which helps create an even thermal
profile across the cluster and hence reduces cooling costs [Ayoub et al 2010],
and is next in the priority order. Finally, Utilization balance results in a fairly
loaded system, and is representative of the prior state-of-the-art scheduling al-
gorithms. DVFS step (step 4), as explained before, is invoked only if the system
is already balanced from the perspective of MPC, IPC, and CPU utilization,
and no further savings are possible through VM scheduling.

4.2 Implementation

Our testbed for vGreen includes two state-of-the-art 45nm Dual Intel Quad
Core Xeon X5570 (Intel Nehalem architecture with 16 PCPUs each)-based
server machines with 24GB of memory, which act as the vgnodes, and a
Core2Duo-based desktop machine that acts as the vgserv. The vgnodes run
Xen3.3.1, and use Linux 2.6.30 for Dom-0.

The vgxen module is implemented as part of the Xen credit scheduler (the
default scheduler) to record VCPU- and VM- level metrics. It stores all the VM-
level metrics in a shared page mapped into the address space of Dom-0. It fur-
ther exposes a new hypercall which allows the vgdom to map this shared page
into its address space when it gets initialized (as explained in Section 4.1.1).
The vgdom module is implemented in two parts on Dom-0.

(1) vgdom Driver. A Linux driver that interfaces with vgxen to get the VM
characteristics and exposes it to the application layer. When initialized, it
maps the shared page storing the VM metrics into its address space us-
ing the hypercall discussed earlier. Such a design makes getting the VM
metrics a very low overhead process, since it is a simple memory read.

(2) vgdom App. An application client module that is responsible for interfacing
and registering the vgnode with the vgserv. The primary responsibility is to
get the VM metrics data from the driver and pass it on to vgserv as shown
in Figure 2. It also accepts vgserv commands for VM migration or DVFS
and processes it.

vGreen requires no modifications to either the OS or the application run-
ning within the VMs. This makes the system nonintrusive to customer VMs
and applications and hence easily deployable on existing clusters. The vgserv
and vgpolicy run on Linux 2.6.30, and are implemented as application server
modules.

The system is designed to seamlessly handle dynamic entry and exit of vgn-
odes in the system without any disruption to the vgpolicy. On initialization,
vgserv opens a well-known port and waits for new vgnodes to register with
it. When vgnodes connect, vgserv instructs them to regularly update it with
VM characteristics (Tup period), and accordingly updates the node- and VM-level
metrics. It runs the vgpolicy every Tp period and performs balancing or DVFS
decisions, which it communicates to the vgnode through commands as de-
scribed in Section 4.1. If a vgnode goes offline, the connection between it and
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 16 · G. Dhiman et al.

Table II. Benchmarks Used
Benchmark Characteristics

eon High IPC/Low MPC
applu Medium IPC/High MPC
perl High IPC/Low MPC
bzip2 Medium IPC/Low MPC
equake Low IPC/High MPC
gcc High IPC/Low MPC
swim Low IPC/High MPC
mesa High IPC/Low MPC
art Medium IPC/High MPC
mcf Low IPC/High MPC

the vgserv is broken. This results in a dynamic cleanup of all the state associ-
ated with that vgnode on the vgserv.

For real-world deployments, vGreen can be either installed as a stand-alone
system for VM management, or as part of bigger infrastructure management
systems like OpenNebula [OpenNebula] or Grid Virtualization Engine [Wang
et al. 2009] as well. For instance, in context of GVE, vgxen and vgdom can be
incorporated into the “GVE agent service layer”, which is the monitoring layer,
while vgserv and vgpolicy can be implemented as part of the “GVE site service
layer”, which is the control layer.

5. EVALUATION

5.1 Methodology

For our experiments, we use benchmarks with varying characteristics from the
SPEC-CPU 2000 benchmark suite. The used benchmarks and their character-
istics are illustrated in Table II. We run each of these benchmarks inside a
VM, which is initialized with eight VCPUs and 4GB of memory. We generate
experimental workloads by running multiple VMs together, each running one
of the benchmarks. For each combination run we sample the system power
consumption of both the vgnodes every 2s using the power sensors in the PM,
which we query through the IPMI interface [IPMI 2004].

We compare vGreen to a VM scheduler that mimics the Eucalyptus VM
scheduler [Nurmi et al. 2008] for our evaluation. Eucalyptus is an open-source
cloud computing system that can manage VM creation and allocation across
a cluster of PMs. The default Eucalyptus VM scheduler assigns VMs using a
greedy policy, that is, it allocates VMs to a PM until its resources (number of
CPUs and memory) are full. However, this assignment is static, and it does not
perform any dynamic VM migration based on actual PM utilization at runtime.
For fair comparison, we augment the Eucalyptus scheduler with the CPU uti-
lization metrics and algorithm proposed in the previous section, which allow it
to redistribute/consolidate VMs dynamically at runtime. This enhancement is
representative of the metrics employed by the existing state-of-the-art policies
which use CPU utilization for balancing (see Section 2). We refer to this en-
hanced scheduler as E+. For further fairness in comparison, we use the same
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 17

initial assignment of VMs to PMs as done by the default Eucalyptus scheduler
for both E+ and vGreen.

We report the comparative results of vGreen and E+ for two primary
parameters:

(1) System Level Energy savings. We estimate the energy reduction in execut-
ing each combination of VMs using vGreen over E+. This is calculated by
measuring the total system level energy consumption for a VM combination
with E+ and vGreen, and then taking their difference. Note that the combi-
nations may execute for different times with E+ and vGreen, and since we
do not know the state of the system after the execution (could be active if
there are more jobs, or be in sleep state if nothing to do), we only compare
the energy consumed during active execution of each combination.

(2) Average Weighted Speedup. We also estimate the average speedup of each
VM combination with vGreen. For this, we use the weighted speedup (AWS)
based on a similar metric defined earlier in Section 3 (refer to Eq. (1)). It is
defined as

AWS =

∑
VMi

Te+i
Talonei

∑
VMi

Tvgreeni
Talonei

− 1, (4)

where Talonei is the execution time of VMi when it runs alone on a PM, and
Te+i and Tvgreeni are its execution time as part of a VM combination with E+
and vGreen, respectively. AWS > 0 implies that the VM combination runs
faster with vGreen and vice versa.

For all our experiments, we use Pp period and Pup period as 5s. Based on our ex-
periments across different benchmarks, we choose nMPCth as 0.02 and nIPCth

as 8. These threshold values allowed us to cleanly separate memory- and CPU-
intensive VMs from each other.

5.2 Results

5.2.1 Heterogeneous Workloads. In the first set of experiments, we use
combinations of VMs running benchmarks with heterogeneous characteristics.
Each VM consists of multiple instances of the benchmark to generate different
CPU utilization levels. In total we run four VMs, varying the overall CPU uti-
lization of vgnodes between 50% to 100%. We choose this range of CPU utiliza-
tion, since it is representative of a consolidated environment, where multiple
VMs are consolidated to get higher overall resource utilization across the clus-
ter [Wood et al. 2007]. We run CPU-intensive benchmarks in two VMs, and
memory-intensive benchmarks in the other two. We did experiments across
all possible heterogeneous VM combinations, but for the sake of clarity and
brevity have included results for 19 workloads in the following discussion. The
excluded results lead to similar average metrics and conclusions as reported
next.

Overall Results. Figure 5 shows the overall results across different utiliza-
tion levels for the vGreen system normalized to that with E+. The x-axis on
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 18 · G. Dhiman et al.

Fig. 5. Comparison of E+ and vGreen.

the graphs shows the initial distribution of VMs on the physical machines by
the default Eucalyptus scheduler. For instance, 2gcc/2art means that two VMs
running gcc are on the first PM, while the two VMs running art are on the
second. We can observe in Figure 5(a), that vGreen achieves an average of
between 30–40% system-level energy savings across all the utilization levels,
reaching as high as 60%. The high energy savings are a result of the fact that
vGreen schedules the VMs in a much more efficient fashion resulting in higher
speedups while maintaining similar average power consumption. This results
in energy savings, since now the benchmarks run and consume active power
for a smaller duration.
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 19

Fig. 6. Power consumption imbalance in E+: The difference in power consumption between the
two PMs under the E+ scheduling algorithm.

Figure 5(b) shows that vGreen achieves an average of around 30–40%
weighted speedup over E+ across all the combinations at all utilization levels,
reaching as high as 100%. The reason for this is that E+ colocates the high-IPC
VMs on one vgnode, and the high-MPC ones on the second one. Thereafter,
since the CPU utilization of both the vgnodes is balanced, no dynamic reloca-
tion of VMs is done. With vGreen, although the initial assignment of the VMs
is same as with E+, the dynamic characterization of VMs allows the vgserv to
detect a heavy MPC imbalance. This initiates migration of a high-MPC VM
to the second vgnode running the high-IPC VMs. This results in an IPC and
utilization imbalance between the two vgnodes, since the second vgnode now
runs a total of three high-utilization VMs. This is detected by vgserv and it
responds by migrating a high-IPC VM to the first vgnode. This creates a per-
fect balance in terms of MPC, IPC, and utilization across both the vgnodes.
This results in significant speedup as observed in Figure 5(b). We can see in
Figure 5(b), that some combinations achieve higher weighted speedup com-
pared to others. For instance, for the 2eon/2applu combination it is around
30%, while for 2eon/2art it is over 100%. This difference is due to the fact that
colocation of art and eon VMs significantly benefits art from the point of view of
larger cache and memory bandwidth availability, since it has very high MPC.
In contrast, applu benefits lesser due to its lower overall MPC compared to art,
which results in relatively smaller weighted speedup.

Another disadvantage of not taking the characteristics of the workload into
account for scheduling is that there could be significant imbalance in power
consumption across the nodes in a cluster. For instance, the node running
high-IPC workloads might have much higher power consumption compared to
the node running high-MPC workloads (as observed in Section 3). This can
create power hot spots on certain nodes in the cluster, and be detrimental to
the overall cooling energy costs [Ayoub et al 2010]. Figure 6 illustrates the
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 20 · G. Dhiman et al.

imbalance in power consumption across the two vgnodes under the E+ system.
We can see that the average imbalance in power consumption could be as high
as 30W, with the highest imbalance close to 45W. With vGreen system, this
imbalance is almost negligible due to the better balance of IPC and utilization
across the machines. This results in a better overall thermal and power profile
and reduces power hot spots in the cluster.

Comparison with DVFS policies. A possible way for saving energy with the
E+ system is to augment it with a DVFS policy. For comparison, we consider
two policies for the E+ system.

(1) The “naive” policy. This policy simply resorts to throttling the CPU in order
to reduce the energy consumption in the system. We refer to the system
with the “naive” policy as E+nDVFS.

(2) The “smart” policy. This policy is the same as incorporated into the vGreen
system (see Section 4). The policy throttles the CPU only if it deems it
would result in lower performance impact and higher energy savings. We
refer to the system with the “smart” policy as E+sDVFS.

Figure 7 shows the average weighted speedup and energy consumption re-
sults for the E+sDVFS, E+nDVFS, and the vGreen system normalized against
the results for the E+ system. Figure 7(a) illustrates the average weighted
speedup results across all the combinations at 100% CPU utilization. The
vGreen results are the same as those plotted in Figure 5(b), but have been in-
cluded for the sake of comparison. We can observe that across all the combina-
tions, both the DVFS policies perform slower than the baseline E+ system. This
is intuitive, since the DVFS policies run the system at a lower frequency. How-
ever, the E+sDVFS clearly outperforms the E+nDVFS system across all work-
load combinations. While the E+sDVFS system is on an average always within
2% of the E+ system, the E+nDVFS system is on average 22% slower than the
E+ system. This happens, since the E+sDVFS system exploits the characteris-
tics of the VMs, and performs aggressive throttling only on the nodes running
VMs with high MPC. As discussed in the Section 4, this results in minimal per-
formance degradation, since such high-MPC workloads are highly stall inten-
sive and have little dependence on CPU frequency. In contrast, the E+nDVFS
system naively throttles even the nodes running high-IPC VMs, resulting in
the high performance slowdown as observed in Figure 7(a).

The average weighted speedups have a direct impact on the energy sav-
ings as illustrated in Figure 7(b). The E+nDVFS system gets an average of
just 1% energy savings across all the combinations. For some workloads, like
2mesa/2art, it in fact consumes more energy than the baseline system. This in-
dicates that the power reduction due to E+nDVFS system is outweighed by the
huge performance slowdown. The E+sDVFS system does better by achieving
around 9% energy savings due to the small performance slowdown. However,
both are clearly outperformed by the vGreen system, which achieves close to
35% energy savings. This shows that efficient resource utilization across a
cluster is key to energy-efficient computing in virtualized environments.
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 21

Fig. 7. Comparison of E+, E+nDVFS, E+sDVFS, and vGreen.

5.2.2 Homogeneous Workloads. We also experimented with combination of
VMs running homogeneous benchmarks to evaluate the performance of our
system under cases where there is no heterogeneity across VMs. We did ex-
periments for all the benchmarks in Table II, where all the four VMs ran the
same benchmark. We observed that in all the experiments, there was no pos-
sibility of rebalancing based on characteristics, since the MPC and IPC of the
VMs were already balanced. However, for the case of high-MPC workloads, the
vGreen system effectively applies DVFS to get energy savings. Figure 8 illus-
trates the average weighted speedup and energy savings achieved across the
homogeneous set of high-MPC workloads. We can observe that vGreen achieves
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 22 · G. Dhiman et al.

Fig. 8. Comparison of E+ and vGreen with homogeneous workloads.

Table III. Comparison of Machines

Characteristic Machine-1 Machine-2

Microarchitecture Intel Nehalem Intel Core
CPU Xeon X5570 Xeon E5440
of PCPUs 16 8
Caches L1-L2-L3 L1-L2
Thermal Design Power 95W 80W
Memory 24GB 8GB
Memory Type DDR3 DDR2
Memory Controller On-Die (2.93GHz) Off-Chip (1.33GHz)
Memory Channels 3 2

average system-level energy savings of between 6–9% across all the utilization
levels. The slowdown due to DVFS is between 2–5% as indicated in Figure 8(a).
For high-IPC workloads, the results were identical to E+ system, since vGreen
neither does any VM migration nor DVFS.

5.3 Different Machine Architecture and Configurations

To verify the scalability of our system and ideas, we also experimented on a
machine with a different microarchitecture and configuration. Table III com-
pares the configurations of the two machines: Machine-1 refers to the Intel
Nehalem-based machine, which we used in the earlier parts of the evaluation
section; Machine-2 refers to the other machine, for which we present results in
this section. A quick look at Table III shows that the two machines significantly
vary from each other in terms of CPU microarchitecture (Intel Nehalem versus
Intel Core), power characteristics (different TDP), caches (L3 versus L2), as
well as the memory technology (DDR3 versus DDR2 and on-die versus off-chip
memory controller).

The methodology for experiments on Machine-2 was the same as that for
Machine-1 with small changes: (1) We use 2GB as the memory size for each
VM due to less memory in Machine-2; (2) we do experiments for 75% and 100%
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 23

Fig. 9. Comparison of E+ and vGreen on the Intel Core-based machine.

utilization only, since the machine has 8 PCPUs. The 62% and 87% workloads
on this machine would need a total of 5 and 7 threads, respectively, which
cannot be evenly divided across two VMs.

Figure 9 shows the average weighted speedup and energy savings results
across the heterogeneous set of workloads. We can observe that vGreen
achieves close to 22% average weighted speedup across both the utilization
levels. Similar to Figure 5, we can observe that for some workloads (e.g., 70%
for 2eon/2mcf), the speedup is more than others (e.g., 45% for 2eon/2swim).
This is again due to the fact that some workloads benefit more due to the effi-
cient resource utilization than others due to their higher aggregate MPC (mcf
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 24 · G. Dhiman et al.

having higher MPC than swim in this case). This speedup results in around
25% system-level energy savings across both the utilization levels.

A quick comparison of overall results with Figure 5 indicates that both the
average weighted speedup and energy savings are higher on the Machine-1 by
around 10%. This is explained by the faster memory technology (DDR3), mem-
ory controller (on-die), and higher number of channels (3) of Machine-1 com-
pared to Machine-2 (refer to Table III). As a consequence of a faster memory
subsystem, the high-MPC workloads benefit more on Machine-1 than Machine-
2, when the memory subsystem load is relieved, that is, they run much faster
on Machine-1. Since vGreen balances the aggregate MPC of workloads across
the machines, it results in higher weighted speedup on Machine-1 compared
to Machine-2. In future systems, the machine architectures are going to move
towards even faster memory technology and architectures, and these results
indicate that a vGreen-like system is even more beneficial for exploiting their
design, and delivering higher performance and energy efficiency.

5.4 Overhead

In our experiments we observed negligible runtime overhead due to vGreen. On
the vgnodes, vgxen is implemented as a small module which does simple perfor-
mance counter operations and VCPU and VM metric updates. The performance
counters are hardware entities with negligible cost (order of 100 cycles) on soft-
ware execution as accessing them is just a simple register read/write operation.
The vgdom executes every Tup period (5s in our experiments), and as explained
in Section 4 just reads and transmits the VM metrics information to the vgserv.
In our experiments, we observed negligible difference in execution time of all
the benchmarks (< 1%) with and without vgxen and vgdom.

vGreen achieves energy efficiency through VM scheduling, which requires
VM migration. We observed negligible overhead of VM live migration on ex-
ecution times of benchmarks, which is consistent with the findings in [Clark
et al. 2005]. VM migration, however, involves extra activity in the system
on both the source and the destination PMs. The primary source of activity
is the processing of network packets of VM data, and processing associated
with creating new VM on the destination and cleanup on the source. How-
ever, our methodology takes all of these costs into account. As described in
Section 5.1, we record the performance of the benchmarks within the VMs and
sample power consumption of the whole server in a power log every 2s for the
entire run. If a VM migration occurs in between, the extra power consumption
due to VM migration-related processing (discussed before) on the network card,
Dom0 and the hypervisor is taken in to account in the power log. The impact
of extra processing due to VM migration on the performance of the benchmark
is also taken in to account, since we record the execution times of the bench-
marks. These recorded power and performance numbers are used to estimate
the energy savings and average weighted speedup (Eq. (4)) for vGreen. Hence,
all our results in Section 5 already incorporate these power and performance
overheads, which indicate that the cost is clearly overwhelmed by the benefits
of VM migration.
ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 25

6. CONCLUSION

In this article we presented vGreen, a system for energy-efficient VM man-
agement across a cluster of machines. The key idea behind vGreen is linking
workload characterization of VMs to VM scheduling and power management
decisions to achieve better performance, energy efficiency, and power balance
in the system. We designed novel hierarchical metrics to capture VM charac-
teristics, and develop scheduling and DVFS policies to achieve the aforemen-
tioned benefits. We implemented vGreen on a real-life testbed of state-of-the-
art server machines, and show with benchmarks with varying characteristics
that it can achieve improvement in average performance and system-level en-
ergy savings of up to 40% over state-of-the-art policies at a very low overhead.
We further demonstrate the applicability and scalability of the system across
machines with different architecture and configurations.

REFERENCES

ABDELSALAM, H. S., MALY, K., MUKKAMALA, R., ZUBAIR, M., AND KAMINSKY, D. 2009. Analysis
of energy efficiency in clouds. In Future Computing, Service Computation, Cognitive, Adaptive,
Content, Patterns, Computation World, 416–421.

AMAZON. 2008. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2/.

AYOUB, R., SHERIFI, S., AND ROSING, T. 2010. Gentlecool: Cooling aware proactive workload
scheduling in multi-machine systems. In Proceedings of the IEEE Design, Automation Test in
Europe (DATE’10).

BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A., NEUGEBAUER, R.,
PRATT, I., AND WARFIELD, A. 2003. Xen and the art of virtualization. In Proceedings of the
19th ACM Symposium on Operating Systems Principles (SOSP’03). ACM, New York, 164–177.

BOBROFF, N., KOCHUT, A., AND BEATY, K. 2007. Dynamic placement of virtual machines for
managing sla violations. In Integrated Network Management. IEEE, 119–128.

CHASE, J. S., ANDERSON, D. C., THAKAR, P. N., VAHDAT, A. M., AND DOYLE, R. P. 2001. Manag-
ing energy and server resources in hosting centers. In Proceedings of the 18th ACM Symposium
on Operating Systems Principles (SOSP’01). ACM, New York, 103–116.

CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C., PRATT, I., AND

WARFIELD, A. 2005. Live migration of virtual machines. In Proceedings of the 2nd Conference on
Symposium on Networked Systems Design & Implementation (NSDI’05). USENIX Association,
273–286.

DHIMAN, G., MARCHETTI, G., AND ROSING, T. 2009. vGreen: A system for energy efficient com-
puting in virtualized environments. In Proceedings of the International Symposium on Lower
Power Electronics and Design (ISLPED’09). ACM, New York.

DHIMAN, G., MIHIC, K., AND ROSING, T. 2010. A system for online power prediction in virtualized
environments using gaussian mixture models. In Proceedings of the 47th Design Automation
Conference (DAC’10). ACM, New York, 807–812.

DHIMAN, G., PUSUKURI, K., AND ROSING, T. S. 2008. Analysis of dynamic voltage scaling for
system level energy management. In Proceedings of the Workshop on Power Aware Computing
and Systems (HotPower’08).

DHIMAN, G. AND ROSING, T. S. 2007. Dynamic voltage frequency scaling for multi-tasking systems
using online learning. In Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED’07). ACM, New York, 207–212.

FAN, X., WEBER, W.-D., AND BARROSO, L. A. 2007. Power provisioning for a warehouse-sized
computer. In Proceedings of the 34th Annual International Symposium on Computer Architecture
(ISCA’07). ACM, New York, 13–23.

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

6: 26 · G. Dhiman et al.

GE, R., FENG, X., FENG, W.-C., AND CAMERON, K. W. 2007. Cpu miser: A performance-directed,
run-time system for power-aware clusters. In Proceedings of the International Conference on
Parallel Processing (ICPP’07). IEEE Computer Society, 18.

HALETKY, E. L. 2008. VMware ESX Server in the Enterprise: Planning and Securing Virtualization
Servers. Prentice Hall.

HERMENIER, F., LORCA, X., MENAUD, J.-M., MULLER, G., AND LAWALL, J. 2009. Entropy: a
consolidation manager for clusters. In Proceedings of the ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE’09). ACM, New York, 41–50.

IPMI. 2004. Intelligent platform management interface v2.0 specification.
http://www.intel.com/design/servers/impi.

ISCI, C., CONTRERAS, G., AND MARTONOSI, M. 2006. Live, runtime phase monitoring and predic-
tion on real systems with application to dynamic power management. In Proceedings of the 39th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’39). IEEE Com-
puter Society, 359–370.

KANSAL, A., ZHAO, F., LIU, J., KOTHARI, N., AND BHATTACHARYA, A. A. 2010. Virtual machine
power metering and provisioning. In Proceedings of the 1st ACM Symposium on Cloud Comput-
ing (SoCC’10). ACM, New York, 39–50.

KNAUERHASE, R. C., BRETT, P., HOHLT, B., LI, T., AND HAHN, S. 2008. Using os observations to
improve performance in multicore systems. IEEE Micro 28, 3, 54–66.

KOLLER, R., VERMA, A., AND NEOGI, A. 2010. Wattapp: An application aware power meter for
shared data centers. In Proceeding of the 7th International Conference on Autonomic Computing
(ICAC’10). ACM, New York, 31–40.

LIU, L., WANG, H., LIU, X., JIN, X., HE, W. B., WANG, Q. B., AND CHEN, Y. 2009. Greencloud: a
new architecture for green data center. In Proceedings of the 6th International Conference Indus-
try Session on Autonomic Computing and Communications Industry Session (ICAC-INDST’09).
ACM, New York, 29–38.

MCNETT, M., GUPTA, D., VAHDAT, A., AND VOELKER, G. M. 2007. Usher: An extensible frame-
work for managing custers of virtual machines. In Proceedings of the 21st Conference on Large
Installation System Administration Conference (LISA’07). USENIX Association, 1–15.

MEISNER, D., GOLD, B., AND THOMAS, W. 2009. Powernap: Eliminating server idle power. In
Proceedings of the 14th International Conference on Architectural Support for Programming
Languages and Operating Systems.

MERKEL, A. AND BELLOSA, F. 2006. Balancing power consumption in multiprocessor systems.
SIGOPS Oper. Syst. Rev. 40, 4, 403–414.

MERKEL, A., STOESS, J., AND BELLOSA, F. 2010. Resource-conscious scheduling for energy ef-
ficiency on multicore processors. In Proceedings of the 5th European Conference on Computer
Systems (EuroSys’10). ACM, New York, 153–166.

MOORE, J., CHASE, J., RANGANATHAN, P., AND SHARMA, R. 2005. Making scheduling “cool”:
Temperature-aware workload placement in data centers. In Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference (ATEC’05). USENIX Association, 5–5.

NATHUJI, R., ENGLAND, P., SHARMA, P., AND SINGH, A. 2009. Feedback driven qos-aware power
budgeting for virtualized servers. In Proceedings of the 4th International Workshop on Feedback
Control Implementation and Design in Computing Systems and Networks (FeBID’09).

NATHUJI, R., KANSAL, A., AND GHAFFARKHAH, A. 2010. Q-clouds: Managing performance inter-
ference effects for qos-aware clouds. In Proceedings of the 5th European Conference on Computer
Systems (EuroSys’10). ACM, New York, 237–250.

NATHUJI, R. AND SCHWAN, K. 2007. Virtualpower: Coordinated power management in virtual-
ized enterprise systems. In Proceedings of 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP’07). ACM, New York, 265–278.

NURMI, D., WOLSKI, R., GRZEGORCZYK, C., OBERTELLI, G., SOMAN, S., YOUSEFF, L., AND

ZAGORODNOV, D. 2008. The eucalyptus open-source cloud-computing system. In Proceedings
of Cloud Computing and Its Applications.

OPENNEBULA. Opennebula homepage. http://dev.opennebula.org/

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

vGreen: A System for Energy Efficient Management of Virtual Machines · 6: 27

PAKBAZNIA, E. AND PEDRAM, M. 2009. Minimizing data center cooling and server power
costs. In Proceedings of the International Symposium on Lower Power Electronics and Design
(ISLPED’09). ACM, 145–150.

RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG, Z., AND ZHU, X. 2008. No “power”
struggles: Coordinated multi-level power management for the data center. In Proceedings of the
13th International Conference on Architectural Support for Programming Languages and Oper-
ating Systems (ASPLOS’08). ACM, New York, 48–59.

RANGANATHAN, P., LEECH, P., IRWIN, D., AND CHASE, J. 2006. Ensemble-level power manage-
ment for dense blade servers. In Proceedings of the 33rd Annual International Symposium on
Computer Architecture (ISCA’06). IEEE Computer Society, 66–77.

SNAVELY, A. AND TULLSEN, D. M. 2000. Symbiotic jobscheduling for a simultaneous mutlithread-
ing processor. SIGPLAN Not. 35, 11, 234–244.

STOESS, J., LANG, C., AND BELLOSA, F. 2007. Energy management for hypervisor-based virtual
machines. In Proceedings of the USENIX Annual Technical Conference (ATC’07). USENIX Asso-
ciation, 1–14.

VERMA, A., AHUJA, P., AND NEOGI, A. 2008. Power-Aware dynamic placement of hpc applications.
In Proceedings of the 22nd Annual International Conference on supercomputing (ICS’08). ACM,
New York, 175–184.

VMWARE. 2009. Vmware distributed resource scheduler. http://www.vmware.com/products/drs/
WANG, L., VON LASZEWSKI, G., TAO, J., AND KUNZE, M. 2009. Grid virtualization engine: design,

implementation and evaluation. IEEE Syst. J. 3, 4, 477–488.
WANG, R. AND KANDASAMY, N. 2009. A distributed control framework for performance manage-

ment of virtualized computing environments: Some preliminary results. In Proceedings of the 1st
Workshop on Automated Control for Datacenters and Clouds (ACDC’09). ACM, New York, 7–12.

WOOD, T., SHENOY, P., AND ARUN. 2007. Black-Box and gray-box strategies for virtual machine
migration. In Proceedings of the ACM Symposium on Networked Systems Design and Implemen-
tation (NSDI’07). 229–242.

Received March 2010; revised September 2010; accepted September 2010

ACM Transactions on Design Automation of Electronic Systems, Vol. 16, No. 1, Article 6, Pub. date: November 2010.

