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ABSTRACT OF THE DISSERTATION

Dynamic Workload Characterization for Energy Efficient Computing

by

Gaurav Dhiman

Doctor of Philosophy in Computer Science

University of California, San Diego, 2011

Professor Tajana Rosing, Chair

Energy management has become a key issue in the design of computing sys-

tems in both mobile as well as enterprise space. For mobile systems it is important

from the perspective of battery life, while for large scale systems it directly impacts

operational costs, making dynamic energy management methods a critical system

component. An effective and conventional mechanism to achieve runtime energy

savings is to dynamically reduce the power consumption of the system by transi-

tioning to sleep. This thesis introduces a novel online learning based meta-policy

for dynamic power management, where based on characteristics of the device and

workload, the system converges to the best suited power management policy for it.

We show, that this approach provides superior adaptability across diverse work-

xvii



loads compared to state of the art single policy solutions achieving energy savings

of up to 61%.

The thesis next provides analysis of effectiveness of power management

based approach for energy management on mobile and server class systems. The

study reveals that while the effectiveness is high for mobile systems, it is on a

decline for server systems due to their non energy proportional design. This mo-

tivates energy management through two alternative means – energy proportional

design and workload consolidation.

For energy proportional design, the thesis focuses on memory subsystem

as an example and proposes a memory hierarchy using phase change memory

(PRAM) and conventional DRAM. The proposed system exploits the characteris-

tics of workloads (in terms of their read and write intensity) to intelligently place

pages across both the memories, thus reducing overall energy consumption of the

memory subsystem by 40% on average compared to conventional DRAM. For work-

load consolidation, the thesis devises cluster level virtual machine (VM) scheduling

and resource management algorithms. We show that fine grained information on

how the VMs utilize share the system resources like the CPU pipeline, memory

bandwidth etc. can be exploited to perform more intelligent VM consolidation and

resource management to maximize the overall energy efficiency. Real-life imple-

mentation of such VM management policies out-perform state of the art techniques

that primarily use just CPU utilization for VM management by 35% on average.
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Chapter 1

Introduction

Energy management has become a key issue in the design of computing

systems today. On one end, the increasing popularity of small scale battery driven

portable systems necessitates a design that offers longer battery life without com-

promising the performance of increasingly complex applications (eg. multimedia,

web etc.). On the other end, for large scale systems that populate modern data

center and enterprise environments, energy efficient design is key to reduction of

all energy-related costs, including capital, operating expenses, and environmental

impacts. These reasons have made energy efficient design an active area of research

for both small and large scale systems.

Modern system designers and architects have designed system components

with efficient support for energy management. For instance, modern CPUs and

hard drives support sleep states, which consume dramatically lower power than

active states. Modern multi-core architectures provide much higher performance

per watt through inherent hardware parallelism. Technologies like virtualization

enable higher resource utilization through consolidation, which reduces operational

costs and increases the energy efficiency of individual systems.

Effectively utilizing these architectures and designs is key to achieving run-

time energy efficiency. This thesis shows that in order to do so, it is extremely

important to understand and exploit the characteristics of the workloads running

on the system. The characteristics here refer to the way the workloads utilize

different resources and components of the system such as CPU, caches, memory

1
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etc. Most of the existing state of the art dynamic energy management techniques

currently treat CPU utilization as the primary workload characteristic to drive

their management decisions, which as we show in this thesis, is sub-optimal. More

fine grained information on how intensively workloads use the whole architecture

hierarchy – CPU pipeline, shared caches, memory bandwidth etc. can provide

opportunities for aggressive energy management even at same CPU utilization

levels. This idea forms the over-arching theme of this thesis – developing mecha-

nisms and policies to perform dynamic runtime energy management of the system

by leveraging the way workloads use the system resources.

1.1 Dynamic Energy Management

A workload that uses a given system component can be represented by

a two state finite state machine in terms of how it uses the component : busy

and idle. Busy state corresponds to the times during which the workload uses the

component to actively perform some processing. For instance, when an application

thread in running on the CPU or the hard disk is spinning to serve a block request.

Conversely, the idle state corresponds to the instances when the workload is not

generating any requests for the component, as a consequence of which, it is inactive

or not being utilized. Energy consumption for any workload on an operational

system is the product of the power consumption of the system components and

the runtime of the workload:

E =

∫ t1

t0

P (t) dt (1.1)

Based on this equation, an intuitive way of dynamically achieving energy

savings is to reduce the power consumption of the system with minimal impact

on the execution time of the workload. This will result in reduction in energy

consumption proportional to the decrease in power consumption. This approach

towards energy management is referred to as ‘active power management’, since it

is based on actively managing the power consumption of the system to achieve
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energy savings. The power consumption can be managed during both the busy

as well as the idle states of the workload. Based on the state of the workloads

(and hence the component), i.e. busy or idle, during which power management

is performed, the active power management techniques can be divided into two

categories:

• Dynamic Power Management (DPM): When the workload is in the idle state,

the system component is inactive and its ability to actively execute work-

loads or serve user requests is not required. Consequently, modern system

components like CPUs, hard drives, network cards etc. support sleep states,

which consume lower power but compromise the ability of the component

to actively serve workload requests. Dynamically utilizing such sleep states

during the idle state to achieve energy savings is referred to as Dynamic

Power Management or DPM.

• Dynamic Voltage Frequency Scaling (DVFS): In addition to the sleep states,

modern CPUs also support low power states (in terms of lower voltage fre-

quency settings) that can be used when it is actively executing the workload.

This form of active power management is referred to as Dynamic Voltage

Frequency Scaling or DVFS.

The goal of both the active power management techniques – DPM and

DVFS, is to maximize the reduction in power consumption with minimal impact

on performance, so that the energy consumption (based on equation 1.1) can be

minimized. The following discussion will provide details on the existing state of the

art approaches for active power management and their applicability and limitations

in terms of their effectiveness for energy management.

1.1.1 Dynamic Power Management

Dynamic Power Management (DPM) refers to the mechanism of dynami-

cally exploiting the sleep or low power states of system components during the idle

states to reduce their power consumption. The control procedure that performs
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the DPM decision is referred to as the DPM policy. DPM has been an active area

of research and several system level DPM policies have been proposed in the past.

The existing DPM policies can be broadly classified into timeout, predictive and

stochastic policies. In a timeout policy, the device is put to sleep if it is idle for

more than a specified timeout period [59, 37]. For instance, in [59], the device is

put to sleep if it is idle for more than Tbe (break-even time). Tbe of a low power

state is the minimum length of the idle period, which compensates for the cost

associated with entering it. In contrast, predictive policies [92, 53, 21] predict the

duration of upcoming idle period and make the shutdown decision as soon as the

device goes idle. Such heuristic policies tend to be easy to implement, but do not

offer any guarantee on energy and performance delay, since they do not model the

statistical properties of the workload.

Stochastic policies model the workload and device power state changes as

stochastic processes. Minimizing power consumption and performance delay then

becomes a stochastic optimization problem. For instance, in [80], Paleologo et al

assume the arrival of requests as a geometric distribution and model power man-

agement as a Discrete-Time Markov Decision Process (DTMDP). This model is

subsequently improved in [84, 90] using more complex MDP models (for instance

the Time Indexed Semi Markov Decision Process or TISMDP model in [90]) to

characterize real life workloads. Stochastic policies offer optimality only for sta-

tionary workloads. The work in [20] and [88] extends the stochastic model to

handle non stationary workloads by switching between a set of pre-calculated op-

timal stochastic policies. However, these approaches compromise optimality by

switching heuristically and are also quite complex to implement.

1.1.2 Dynamic Voltage Frequency Scaling

For components like CPU, power consumption can be also managed while

actively executing workload by reducing its operational voltage and frequency set-

ting (v-f setting). This technique is known as Dynamic Voltage Frequency Scaling

(DVFS). To see why this is beneficial, the following equation shows the breakdown

of power consumption of a typical CPU:
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P = D + L, D = CLV 2f, L = ILV (1.2)

where CL is the load capacitance, V is the supply voltage, IL is the leakage current,

and f is the operational frequency. The first term corresponds to the dynamic

power consumption component of the total power consumption (referred to as D),

while the second term corresponds to the leakage power consumption (referred to

as L). We can clearly see that the dynamic power has a cubic dependence on the

product of voltage and frequency while the leakage power a linear dependence on

voltage. Thus, the dynamic component of power consumption clearly benefits (gets

reduced) more than the leakage component through reduction in v-f setting. This

implies that DVFS is more effective for energy savings on CPUs with lower leakage

power component (L
P

), which makes CPU leakage a very important characteristic

to be taken into account while designing DVFS policies.

The existing DVFS techniques may be broadly divided into three categories.

The first category of techniques target systems, where the task arrival times, work-

load and deadlines are known in advance [85, 106]. DVFS is performed at task

level in order to reduce energy consumption while meeting hard timing constraints.

The second category of techniques require either application or compiler support

for performing DVFS [7, 104, 22]. The third category comprises of system level

DVFS techniques that target general purpose systems that have no hard task dead-

lines, and expect no support from application/compiler level. The work done in

[101, 38, 96] monitor the system workload in terms of CPU utilization at regular

intervals and perform DVFS based on their estimate of CPU utilization for the

next interval. These approaches, however, do not take the characteristics of the

running tasks into account, which as we show in section 2.3.2, determine the po-

tential benefits of performing DVFS. In contrast, the work done in [102, 19, 56]

characterize the running tasks at runtime, and accordingly make the voltage scal-

ing decisions. They use dynamic runtime statistics such as cache hit/miss ratio,

memory access counts etc. obtained from the hardware performance counters to

perform task characterization. However, the policy in [102] is not flexible since it

operates for a static performance loss (10%), while [19] and [56] present results only
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in a single task environment. Besides, none of these techniques give strategies on

how to adapt DVFS policies to different CPU leakage characteristics, which as we

discussed above is extremely important for energy savings. The prior algorithms

that take leakage into account [58, 24], are targeted towards real time systems, and

assume precise knowledge of task deadlines and characteristics in advance.

The existing work on DPM and DVFS policies falls short on three major

fronts: (1) Most of the DPM policies are not designed to adapt to diverse device

and workload characteristics. As we show in this thesis, some policies can perform

very well for certain workloads, but can be easily outperformed by other policies

across diverse workloads. (2) Most of the DVFS policies do not take into account

both the leakage and workload characteristics for general purpose systems, which,

as this thesis shows, is key to performing effective DVFS across diverse workloads.

More fine grained information on how intensively the workload uses the CPU

pipeline (as opposed to just CPU utilization) and CPU leakage provides additional

opportunities for DVFS policies to achieve higher energy savings. (3) None of the

DVFS policies are designed to take into account the impact of their decisions on

possible energy savings due to DPM. This is extremely important since both of

them can be used to save energy for CPUs, and it is critical to devise an approach

that can symbiotically perform DVFS and DPM during busy and idle times to

save energy.

These observations and limitations serve as our motivation for developing

novel DPM and DVFS policies taking into account the workload characteristics to

address these concerns.

1.1.3 Applicability of Active Power Management

Active power management is an effective approach to achieve energy savings

only in systems where majority of power consumed is contributed by components

that are ‘energy proportional’ [42]. Energy proportionality refers to the property

of components where their power consumption is proportional to their utilization.

This property is extremely important for active power management since it re-

lies on moving components into lower power states when their utilization is low.
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For instance, CPUs are highly energy proportional since their power consumption

can be reduced in proportion to their utilization through DPM and DVFS states

commonly supported by commercial vendors like Intel and AMD. In contrast, com-

ponents like fans, power supply and memory are not energy proportional since their

utilization and power consumption curve is non linear.

The usage pattern of mobile systems is bimodal in nature, high levels of

activity interspersed with long periods of inactivity [90, 42]. The majority of power

consumption for these systems comes from devices like CPU, screen and radio

interface, which can be easily turned off during idle periods. These reasons make

mobile systems attractive candidates for aggressive active power management.

However, the same is not true for the server class systems that populate

modern data centers. The usage model for servers has very different characteristics.

Figure 1.1a shows the distribution of CPU utilization levels for thousands of servers

during a six-month interval at Google [42]. The key observation that can be made

from the figure is that servers are rarely completely idle and seldom operate near

their maximum utilization. Instead, servers operate most of the time at between

10 and 50% of their maximum utilization levels. As they have few windows of

complete idleness, it implies that the servers cannot take advantage of system level

DPM policies that mobile devices otherwise find so effective for dynamic energy

management. Furthermore, we show in section 3 that the effectiveness of DVFS

for energy management on server systems has significantly diminished.

In terms of power consumption, close to 50% power consumed by such

systems is contributed by non energy proportional components like fans, power

supplies, memory etc. [42]. Figure 1.1b plots the power consumption and the

energy efficiency (utilization
power

) for a server with active power management enabled.

We can clearly see that even an energy efficient server still consumes about half

its full power when doing virtually no work. Moreover, the peak energy efficiency

occurs at peak utilization and drops quickly as utilization decreases. Notably,

energy efficiency in the 20 to 30% utilization range – the point at which servers

spend most of their time – has dropped to less than half the energy efficiency at

peak performance. Thus, the applicability of active power management for energy
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(a) Average CPU utilization [42] (b) Server power usage and energy efficiency at

varying utilization levels [42]

Figure 1.1: Average CPU utilization, power and energy efficiency of 5000 servers
during six-month period.

management on such systems is pretty low.

1.1.4 Energy Efficiency for Server Systems

For server class systems which, as shown in the previous discussion are not

energy proportional, there are two ways of achieving energy efficiency: (1) Design

systems to be more energy proportional. (2) Push the existing systems towards

more energy efficient zone of operation by increasing their utilization (see Figure

1.1b).

The first approach requires changes at hardware as well as software level.

For instance, new non-volatile memory technologies like phase change memory,

flash memory etc., that are more energy efficient than conventional DRAM can

be used. This may require modifications to both the hardware and software stack

of the system to incorporate them. We refer to this approach towards energy

management as ‘energy proportional design’.

The second approach is to leverage technologies like virtualization that

enable consolidation of workloads on fewer physical machines to increase the overall

utilization of the system. This is beneficial from three angles: (1) It can generate

idle systems, which may be either turned off or be used for doing additional work
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thereby increasing the overall energy efficiency; (2) The consolidated machines

run at higher utilization, which is inherently more energy efficient (see Figure

1.1b); (3) The energy efficiency of the consolidated machines can be enhanced

by optimizing the runtime or throughput of the workloads (refer equation 1.1)

under the same power budget. We refer to this mechanism for energy efficiency as

‘workload consolidation’.

Role of Workload Characteristics: Due to the flexibility and benefits offered

by the virtualization and consolidation approach, it has achieved a lot of trac-

tion in recent years in both the open source community (Xen, KVM etc.) as well

as industry (VMware, Hyper-V etc.). Policies for power aware virtual machine

(VM) consolidation and management using these solutions have been proposed in

previous research [86, 74, 103] and are available as commercial products as well

(eg. VMware DRS [99]). These policies require understanding of the power con-

sumption and resource utilization of the physical machine, as well as its breakdown

among the constituent VMs for optimal decision making. Currently, they treat the

overall CPU utilization as the primary workload characteristic of VMs to estimate

their respective power consumption and resource utilization, and use it for guiding

the VM management policy decisions (VM migration, DVFS etc.). However, this

thesis shows that based on more fine grained characteristics of the workloads in

these different co-located VMs (like the CPU pipeline, shared cache and memory

bandwidth usage), the overall power consumption, resource utilization and perfor-

mance of the VMs can vary a lot even at similar CPU utilization levels, which can

mislead the VM management policies into making decisions that create hotspots

of activity, violate performance requirements of diverse workloads and degrade the

overall energy efficiency.

1.2 Thesis Contributions

This thesis presents research for energy management using all the techniques

described above: active power management, energy proportional design and work-

load consolidation. The following discussion highlights the primary contributions
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and the outline of the rest of the thesis:

• It presents an online learning based approach towards active power manage-

ment (both DPM and DVFS). We apply an online learning algorithm [34] to

select among a set of possible policies and v-f settings instead of developing

a new policy. The algorithm (referred to as controller) has a set of experts

(DPM policies/v-f settings) to choose from and selects an expert that has

the best chance to perform well based on the controller’s characterization

of the current workload. The selection takes into account energy savings,

performance delay as well as the user specified energy-performance tradeoff

(referred to as e/p tradeoff). The algorithm is guaranteed to converge to best

performing expert in the set, thus delivering performance atleast as good as

the best expert in the set, across different workloads. Evaluation across de-

vices with varying characteristics and workloads shows that the controller is

able to achieve energy savings of up to 61%. The controller is described in

Chapter 2.

• It shows that the applicability of active power management techniques for

server class systems has severely diminished for achieving energy savings, and

identifies the reasons for such a trend (non energy proportionality being one

of them, as identified in the discussion above). Memory hierarchy is then used

an example to illustrate the potential of energy savings through a redesign

in both hardware and software stack to achieve much better energy propor-

tionality and system level energy efficiency. The proposed novel memory

hierarchy comprises of both conventional DRAM and phase change memory

(PRAM), and the system exploits the characteristics of the workloads (in

terms of memory reads and writes) to optimize page allocation across both

the memories to achieve energy savings of up to 40%. This discussion is

included in Chapters 3 and 4.

• It introduces vGreen, a multi-tiered software system to manage virtual ma-

chine scheduling and consolidation across a cluster of physical machines with

the objective of maximizing the overall energy efficiency and performance
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in terms of instruction throughput. The basic premise behind vGreen is to

understand and exploit the relationship between the architectural character-

istics of the VM workload (eg. instructions per cycle, memory accesses etc.)

and its performance and power consumption, which has been not taken into

account by the previous state of the art VM management systems. vGreen

is implemented and validated on a real life testbed of server systems, and

improves the overall performance up to 100% and energy efficiency up to

55% compared to state of the art VM scheduling and power management

policies at negligible runtime overhead. The details of vGreen are presented

in Chapter 5.

• The vGreen system is extended to include resource management for man-

aging diverse workloads (both latency sensitive and batch applications) in

the data center. The enhanced system (referred to as Themis) is responsi-

ble for managing the performance and QoS of these diverse workloads while

maximizing the overall energy efficiency by facilitating aggressive workload

consolidation. The key idea behind Themis is to exploit the inherent het-

erogeneity in the characteristics of the latency sensitive services and batch

applications in the way they use system resources, which allows it to maxi-

mize energy-efficient throughput of the latter without sacrificing the service

guarantees of the former. Themis implements a resource management policy

that outperforms ideal implementations of prior state of the art policies by

up to 35% on average in terms of energy efficiency. We present the details of

Themis in Chapter 6.

Chapter 1, in part, is a reprint of the material as it appears in IEEE Trans-

actions in Computer Aided Design of Integrated Circuits and Systems, 2009. Dhi-

man, G. and Rosing, T.S. The dissertation author was the primary investigator

and author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in Proceed-

ings of the Workshop on Power Aware Computing and Systems, 2008. Dhiman,

G.; Pusukuri, K.K. and Rosing, T. S. The dissertation author was the primary

investigator and author of this paper.
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Chapter 1, in part, is a reprint of the material as it appears in Proceedings of

the 46th ACM/IEEE Design Automation Conference, 2009. Dhiman, G.; Ayoub,

R. and Rosing, T.S. . The dissertation author was the primary investigator and

author of this paper.

Chapter 1, in part, is a reprint of the material as it appears in ACM Transac-

tions on Design Automation of Electronic Systems, 2010. Dhiman, G.; Marchetti,

G. and Rosing, T.S. . The dissertation author was the primary investigator and

author of this paper.

Chapter 1, in part, is a reprint of the material under submission at Inter-

national Conference for High Performance Computing, Networking, Storage and

Analysis, 2011. Dhiman, G.; Kontorinis, V.; Ayoub, R.; Sadler, C.; Tullsen, D.

and Rosing, T.S. . The dissertation author is the primary investigator and author

of this paper.



Chapter 2

Active Power Management

2.1 Introduction

Dynamic Power Management (DPM) and Dynamic Voltage Frequency Scal-

ing (DVFS) are the two most popular techniques for dynamically reducing system

power dissipation. DPM achieves this by selective shutdown of system components

that are idle, while the key idea behind DVFS techniques is to dynamically scale the

supply voltage/frequency level of the device. Reduction in voltage/frequency level

is beneficial, since it reduces the overall power consumption [17]. While DPM can

be employed for any system component with multiple power states, while DVFS

is useful only for components that support multiple speed and voltage levels (like

CPU). A number of modern processors such as Intel XScale [36], AMD Opteron

[1] etc. are equipped with DVFS capability. In existing literature however, the

design of DPM and DVFS policies for general purpose systems has been treated as

separate problems. In this thesis, we target both the problems with the objective

of achieving system wide energy efficiency.

A number of heuristic and stochastic policies have been proposed in the past

with their design varying in terms of how they take the decision to perform shut-

down for DPM. While simpler DPM policies like timeout and predictive policies

do it heuristically with no performance guarantees, more sophisticated stochastic

policies guarantee optimality for stationary workloads. There is no single policy

solution which guarantees optimality under varying workload conditions. We pro-

13
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pose a novel setup for DPM, where we maintain a set of DPM policies (suited for

different workloads) and design a control algorithm that selects the best suited

one for the current workload. In such a setup, the DPM problem reduces to one

of accurate characterization and selection, where the best suited policy is selected

based on the characterization of the current workload.

For devices like CPU that support both DPM and DVFS, it is essential

to understand the interplay between the two, since the energy savings based on

DVFS come at the cost of increased execution time, which implies greater leakage

energy consumption and shortened idle periods for applying DPM. This impact,

as we show later on, depends on the nature of the executing workload in terms of

its CPU and memory intensiveness and the leakage power characteristics. There-

fore, the problem of performing DPM aware DVFS can be also viewed as one of

accurate characterization and selection, where the best suited voltage-frequency

setting (hereon referred to as v-f setting) is selected based on the characterization

of CPU leakage and the executing workload.

Instead of proposing a new policy for DPM and DVFS, we apply online

learning [34] to select among a set of possible policies and v-f settings. The online

learning algorithm (referred to as controller) has a set of experts (DPM policies/v-f

settings) to choose from and selects an expert that has the best chance to perform

well based on the controller’s characterization of the current workload. The se-

lection takes into account energy savings, performance delay as well as the user

specified energy-performance tradeoff (referred to as e/p tradeoff). The algorithm

is guaranteed to converge to best performing expert in the set, thus delivering per-

formance atleast as good as the best expert in the set, across different workloads.

We implement the controller for a server and laptop hard disk drive (HDD),

and Intel PXA27x CPU. The controller chooses among a set of policies representing

state-of-the-art in DPM, and v-f settings available on the Intel PXA27x CPU. In

our experiments, the controller achieved as high as 61% and 49% reduction for

HDD and CPU respectively at negligible overhead.
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2.2 Design

In this section we first describe how both DPM and DVFS can be formulated

as a problem of accurate workload characterization and selection. The selection is

done among a set of DPM policies (eg. Fixed Timeout, TISMDP etc.) or allowable

v-f settings available on the processor or both depending upon the problem we are

targeting. Without the loss of generality, we refer to these policies/v-f settings as

experts. We then elaborate on our algorithm, which we employ to perform this

control activity of workload characterization and expert selection.

2.2.1 System Model

DPM problem is fundamentally a decision problem in which the policy has

to decide whether or not to perform a shutdown for a given idle period. As de-

scribed in section 1.1.1, different DPM policies use different mechanisms to decide

this. However, as we show in section 2.4, DPM policies outperform each other

under different workloads, devices and user e/p tradeoff preferences. This obser-

vation motivates the use of multiple DPM policy experts, where the best suited

expert is selected as a function of the current workload characteristics and e/p

tradeoff.

DVFS problem is intuitively a problem of selection among the given v-f set-

ting experts of the device (eg. CPU). A lower v-f setting can prolong the execution

time of a task, hence shortening the upcoming idle period durations, which has a

direct impact on the energy savings possible due to DPM. Longer execution times

also cause extra leakage energy consumption, which can offset power savings due

to DVFS (explained in detail in section 2.3.2). An ideal DVFS policy must un-

derstand this impact and hence perform v-f setting selection with the objective of

reducing the overall energy consumption. The primary elements which govern the

choice of v-f settings are the characteristics of the executing workload in terms of

its CPU/memory intensiveness and the device leakage power characteristics. This

observation transforms the DVFS problem into one of accurate modeling of the

characteristics of the executing task and device leakage, which in turn drives the
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Figure 2.1: Overall System Model.

expert selection.

To summarize, both DPM and DVFS problems can be solved by selection of

appropriate expert based on the current workload characterization. For DPM, the

characterization is in terms of the distribution of idle period durations, while for

DVFS it is in terms of the CPU/memory intensiveness of the executing task. With

this background, we now present our system model, which consists of 3 primary

entities as shown in Figure 2.1: (1)Controller : The core algorithm we employ to

perform the workload characterization and expert selection activity for both DPM

and DVFS. (2)Working Set : It is the set of experts, the controller selects from. An

expert can be any DPM policy (for DPM) or any allowable v-f setting (for DVFS).

(3)Device: Device is the entity whose power is being managed by the controller.

We invoke the controller on an event, which we refer to as the controller

event. For DPM this event is the idle period, i.e. we run the controller whenever

an idle period occurs. For DVFS, it is the scheduler tick of the operating system.

Scheduler tick is a periodic timer interrupt, which is used by the OS scheduler

to make scheduling decisions. Hence, it is the finest granularity at which system

updates are performed.

As shown in Figure 2.1, the experts can be in one of the 2 possible states:

dormant or operational. By default all the experts are in the dormant state, and are

referred to as the dormant experts. When a controller event occurs, the controller

on the basis of its model of the current workload selects an expert that has the
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highest probability to perform well. This selected expert is referred to as the

operational expert, which can either be a DPM policy or a v-f setting depending

upon the event (idle period or scheduler tick). The amount of time for which

the expert stays in the operational state is referred to as the operative period,

after which it returns to its default dormant state. The operative period for an

operational expert in case of DPM is the length of the idle period, while in case

of DVFS is the length of the scheduler quantum. In Figure 2.1, this implies that

Expert3 has been selected by the controller as the operational expert for the current

operative period.

2.2.2 Controller

We adapt Freund et al’s on-line allocation algorithm [34] to the problem

of DPM/DVFS. A big advantage of the algorithm is that it provides a theoretical

guarantee on convergence to the best suited expert in the working set. We present

an analysis of the theoretical bound in section 2.2.3.

Table 2.1 contains the pseudo-code for the algorithm. The controller has

N experts to choose from; we number these i = 1, 2 . . .N . The experts can be

any DPM policy (for DPM) or any valid v-f setting (for DVFS). The algorithm

associates and maintains a weight vector wt =< wt
1, w

t
2 . . . wt

N >, where wt
i is a

weight factor corresponding to expert i for operative period t. The value of weight

factor, at any point in time, reflects the performance of the expert, with a higher

value indicating a better performance. All of the weights of the initial vector w1

sum to one, as seen in Table 2.1. In our implementation, we assign equal weights

to all the experts at initialization.

To perform expert selection, the controller maintains a probability vector

rt =< rt
1, r

t
2 . . . rt

N > where 0 ≤ rt
i ≤ 1, consists of probability factors associated

with each expert for operative period t. It is obtained by normalizing the weight

vector as shown below:

rt =
wt

∑N
i=1 wt

i

(2.1)

At any point in time the best performing expert, in accordance with the current

workload, has the highest probability factor among all the experts. Thus the
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Table 2.1: Algorithm Controller.

Parameters: β ∈ [0, 1]

Initialization:

-Initial weight vector w1 ∈ [0, 1]N , such that
∑N

i=1 w1
i = 1

-DPM/DVFS specific initialization

For operative periods t = 1, 2 . . .

1: Choose expert with highest probability factor in rt

2: Operative period starts → operational expert takes control of the device

3: Operative period ends → DPM/DVFS specific evaluation of experts

4: Set the new weights vector to be: wt+1
i = wt

i · β
lti

controller simply selects the expert with the highest probability factor as the op-

erational expert for the upcoming operative period. If the probability factor of

multiple experts is equal, then it randomly selects one of them with a uniform

probability (step 1 in Table 2.1).

When the operative period starts, the operational expert takes control of

the device (step 2 in Table 2.1). For DPM, the operational DPM expert takes the

shutdown decision. For DVFS, the v-f setting corresponding to the operational

DVFS expert is applied to the CPU. When, the operative period ends, the con-

troller does an evaluation of all the experts in the working set (step 3 in Table 2.1).

The key objective of performing evaluation is to figure out how suitable each ex-

pert was for the just concluded operative period. The details on how the controller

actually estimates this suitability are DPM/DVFS specific and are provided in the

next section. The end result of this evaluation is a loss factor (lti) corresponding

to each expert i, which indicates how unsuitable it was for the previous operative

period. A higher value indicates higher unsuitability and vice versa.

The final step in the algorithm involves updating the weight factors for each

expert on the basis of the loss they have incurred:

wt+1
i = wt

i · β
lti (2.2)

Thus, the weight factors corresponding to experts with higher loss are penalized
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more by this simple multiplicative rule. The value of constant β can be set between

0 and 1. The criterion for selecting its appropriate value is explained in [34]. This

rule gives higher probability of selecting the better performing experts in the next

operative period. Once the weights are updated we are again ready to select the

operational expert for next operative period by calculating the new probability

vector rt using step 1 in Table 2.1.

2.2.3 Performance Bound of Controller

From the previous discussions we know that lti is the loss incurred by each

expert for the operative period t. Hence, the average loss incurred by our scheme

for a given operative period t in a system with N experts is:

N
∑

i=1

rt
il

t
i = rt · lt (2.3)

The goal of the algorithm is to minimize its cumulative loss relative to the loss

incurred by the best expert. That is, the controller attempts to minimize the net

loss

LG −miniLi

where, LG =
∑T

t=1 rt · lt is the total loss incurred by controller, and Li =
∑T

t=1 lti

is individual expert i’s cumulative loss over T operative periods. It can be shown

[34], that net loss of the algorithm is bounded by O(
√

T ln N) or that the average

net loss per period decreases at the rate O(
√

ln N/T ). Thus, as T increases, the

difference decreases to zero. This guarantees that the performance of the controller

is close to that of the best performing expert for any workload.

2.3 Implementation Details

The previous section gave an overview of how DPM and DVFS can be

modeled as workload characterization and expert selection problems that can be

solved using the controller algorithm. In this section, we provide implementation

details required for accomplishing this solution. We break this section into two
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parts, with the first part discussing details pertaining devices that support only

DPM and the second part considering devices that support both DPM and DVFS

(specifically CPU). Finally, we show how controller can explicitly be adapted to

different leakage regimes.

2.3.1 Devices with only DPM

In this section, we discuss controller implementation with respect to devices

that support only DPM such as HDD, memory, network card etc.

Expert Selection As described before, the controller maintains a weight vector

wt (Section 2.2.2) and its normalized version probability vector rt (Equation 2.1)

for the experts. At any point in time the best performing expert has the high-

est probability factor among all the experts and hence, for performing selection,

the controller simply selects the expert with the highest probability factor as the

operational expert for the next idle period.

The controller evaluates the performance of all the experts at the end of

the idle period. The evaluation takes into account energy savings, performance

delay as well as user specified e/p tradeoff for this update. The energy savings and

performance delay caused by the operational expert can be easily calculated since

the length of that idle period is known. The dormant experts are evaluated on the

basis of how they would have performed had they been the operational experts.

We evaluate loss with respect to an ideal oracle policy that has zero delay and

maximum possible energy savings. Since this loss evaluation takes place at the

end of idle period, when we already know its length, we can easily estimate the

performance of the ideal oracle policy as well. The value of loss factor (lti) for each

expert is influenced by the relative importance of energy savings and performance

delay as expressed by factor α (0 ≤ α ≤ 1), which is specified by the user. For

this purpose, we break it down into two components: ltie and ltip, which correspond

to energy and performance loss respectively for expert i. The loss factor is then

given by equation 2.4:

lti = α · ltie + (1− α) · ltip (2.4)



21

In our implementation, we determine the energy loss, ltie, by comparing the length

of the idle period with the sleep time. If it is less than Tbe (break-even time, defined

in Section 1.1.1), then we do not save energy and thus ltie = 1. For the values of

sleep time Tsleepi
of an expert i greater than Tbe, and idle period, Tidle we use the

following equation:

ltie = 1− Tsleepi
/Tidle (2.5)

Calculation of performance loss, ltip, is based on whether the device sleeps or not.

If the expert makes the device sleep, ltip = 1 since we incur performance delay upon

wakeup, otherwise it is set to 0.

Once the loss factor is available for each expert, the corresponding weight

factor is updated using equation 2.2 (we use β=0.75 in equation 2.2). Once all the

weight factors have been updated, the probability factors for all the experts are

updated using equation 2.1. Then the operative expert for the next idle period

is simply the expert with the highest current probability factor. At any given

point in time, the current value of the weight/probability factors is a result of the

successive application of equation 2.2 in the previous idle periods. This means, the

weight/probability vector actually characterizes the workload or more precisely its

idle period distribution in the form of suitability of the different DPM experts

for it. By regularly updating it at the end of every idle period, this suitability is

updated to keep up with changes in the workload characteristics.

2.3.2 Devices with DPM and DVFS (CPU)

For devices that support both DPM and DVFS (eg. CPU), the controller

must determine how to perform a tradeoff between the two. This is important,

since DVFS impacts DPM by potentially reducing the idle period durations. We

will show in this section that the impact is dominated by two factors, CPU leakage

characteristics and CPU/memory intensiveness of the executing task. To under-

stand this, we first present a simple energy model based on the analysis done in

[24]. Then using it we show how task and CPU leakage characteristics affect energy

savings due to DVFS and DPM.
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Energy Model Consider the following equation, which approximates the power

consumption in a CMOS circuit:

P = D + L, D = CLV 2f, L = ILV (2.6)

where CL is the load capacitance, V is the supply voltage, IL is the leakage current,

and f is the operational frequency. The first term corresponds to the dynamic

power consumption component of the total power consumption (referred to as D),

while the second term corresponds to the leakage power consumption (referred to

as L).

Let the maximum frequency of the device be fmax and the corresponding

voltage be Vmax. The device would consume the maximum power, i.e. Pmax at

this v-f setting. We define Pn, Dn and Ln as the normalized power consumption

values, i.e.

Pn =
P

Pmax

= Dn + Ln =
D

Pmax

+
L

Pmax

(2.7)

We next define λ and ρ as the % contribution of dynamic and leakage power to

the total power consumption at the highest v-f setting:

λ =
Dmax

Pmax

, ρ =
Lmax

Pmax

(2.8)

If we further define Vn and fn as the normalized voltage and frequency

levels, then Dn and Ln can be rewritten as:

Dn = λ
D

Dmax

= λ
CLV 2f

CLV 2
maxf

2
max

= λV 2
n fn (2.9)

Ln = ρ
L

Lmax

= ρ
ILV

ILVmax

= ρVn (2.10)

Combining equations 2.9 and 2.10, we get:

Pn = λV 2
n fn + ρVn (2.11)

We next define Tn as the execution time of a task at v-f setting fn normalized

against the execution time at the maximum v-f setting (fn = 1), Tmax, i.e.

Tn =
T

Tmax

(2.12)
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(a) Tn Estimates (b) mem (µ ≈0)

(c) combo (µ ≈0.5) (d) burn loop (µ ≈1)

Figure 2.2: Execution Time and Energy Consumption Estimates. For energy
estimates the black line indicates the baseline or the energy consumption at fn=1.
The region below the baseline indicates energy savings, while the region above
indicates higher energy consumption or energy loss.

The normalized energy consumption of an executing task as a function of the

normalized voltage, frequency and execution time is then:

En(Vn, fn, Tn) = λV 2
n fnTn + ρVnTn (2.13)

For any given processor, λ and ρ can be considered to be constants. Given

the selected v-f setting (Vn/fn) and the execution time (Tn) for a task at that

setting, we can estimate the CPU energy consumption using equation 2.13.

Task Characterization The execution time of a task can be broken down into

two components, 1) Tcpu: corresponding to the time during which the execution is

CPU bound and hence no stalls occur; 2) Tstall: corresponding to the time during

which CPU stalls because of memory accesses (cache misses), dependencies etc. If

we define Tmax, Tcpumax and Tstallmax as the durations at the maximum v-f setting
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(fn = 1), and Tncpu and Tnstall as normalized versions of Tcpu and Tstall respectively

at fn, then:

T = Tstall + Tcpu

Tmax = Tstallmax + Tcpumax

Tn =
T

Tmax

= Tnstall + Tncpu (2.14)

During Tstall, the CPU is waiting for the cause of stall to be resolved. For

instance, when there is a cache miss, CPU is stalled waiting for the memory access

to complete. Thus, duration of Tstall is independent of the frequency setting of

the CPU, since the CPU is not executing instructions. This means, that Tnstall is

constant across all the v-f settings, and hence also equal to Tnstallmax , the normalized

duration at the maximum v-f setting (fn = 1):

Tnstall = Tnstallmax =
Tstallmax

Tmax

(2.15)

In contrast, during Tcpu, the execution is cache intensive, and thus its duration

depends on the number of cycles it takes to access the cache and CPU registers.

The duration of this cycle is directly proportional to frequency of the CPU, and

hence, a reduction in frequency results in a proportional increase in Tncpu:

Tncpu =
Tncpumax

fn

, where Tncpumax =
Tcpumax

Tmax

(2.16)

Combining equations 2.14, 2.15 and 2.16 we get:

Tn = Tnstallmax +
Tncpumax

fn

(2.17)

If we define Tncpumax = µ, then Tnstallmax = (1 − µ) since Tn at the maximum

v-f setting (fn = 1) is 1. The factor µ indicates the degree of CPU and cache

intensiveness of a task, with a high value indicating high CPU intensiveness, and a

low value indicating otherwise. Substituting these values in equation 2.17, we get:

Tn = (1− µ) +
µ

fn

(2.18)

On the basis of this discussion, we define three tasks with different characteristics:

(1) burn loop: highly CPU and cache intensive (µ ≈ 1), (2) mem: highly stall
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intensive due to memory accesses (µ ≈ 0) and (3) combo: combination of the pre-

vious two (µ ≈ 0.5). Figure 2.2a, shows Tn estimates based on equation 2.18 for

these three tasks across four different fn values (100%, 80%, 60%, 40%). It illus-

trates that Tn for highly memory/stall intensive task mem is fairly insensitive to

changes in fn, while for CPU intensive burn loop it increases in proportion to de-

crease in fn. To verify these estimates we implemented three benchmarks with such

characteristics and ran them on an Intel PXA27x CPU [54] at 520MHz/fn=100%,

416MHz/fn=80%, 312MHz/fn=60% and 208MHz/fn=40%. We found the esti-

mated values of Tn to be on an average within 1% of the actual measured values.

This shows that our analysis of Tn estimation is accurate and emphasizes the im-

portance of task characteristics for modeling its execution times.

Impact of task and leakage characteristics To understand the impact of

task (µ) and CPU leakage (ρ) characteristics on the energy savings at different

fn values, we next estimate the energy consumption (En) of these three tasks

using equation 2.13. Figures 2.2b-d show En for benchmarks mem, combo and

burn loop at different fn values for platforms with different leakage percentage (ρ)

values (30%, 50% and 70%). For a modern day processor like Intel PXA27x, ρ is

around 30%, and is expected to rise further in future CPUs according to industry

estimates [49]. We confirmed this value of ρ for PXA27x CPU by measuring the

current flowing into the processor employing a 1.25Msamples/sec DAQ at different

v-f settings. We also measured the energy consumption of these benchmarks on

PXA27x CPU (ρ ≈30%), and found them to be on an average within 1% of the

theoretically estimated values for ρ ≈30% using equation 2.13. This confirmed

the validity of our analysis and estimates. We used Vn values of (80%, 86.6%,

93%, 100%), which correspond to the v-f settings on the PXA27x CPU, for these

estimates (refer to Table 2.7).

Figures 2.2b-d show the following. First, increasing the fraction of leakage

(ρ) value results in a reduction in energy savings consistently across all the tasks.

The reason for this is that DVFS brings just a linear decrease in leakage power,

compared to cubic in active power (refer equation 2.6). Hence its effectiveness

begins to diminish with increasing ρ. Second, the energy savings decrease due to
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the increased execution times of the task. For mem, which has no performance

penalty across different fn values, the gain in energy savings is significant with de-

creasing frequency because of the lower voltage. Task burn loop incurs the highest

performance penalty, which manifests in low energy savings at ρ=30% and higher

energy consumption than the baseline (fn=100%) at higher ρ values. Same can

be observed for combo at ρ=70%, which means it is no longer energy efficient to

run burn loop and combo at lower v-f settings. It is better to run such tasks at

the highest v-f setting (i.e. no DVFS), and then switch to DPM when they be-

come inactive. This indicates that task and leakage characteristics determine the

tradeoff between DVFS and DPM, and hence it is important to take both into ac-

count. Based on these observations, we now discuss how the controller incorporates

estimation of these characteristics into its design.

Expert Selection The controller maintains two weight vectors: one for the

DPM experts (policies) and second for the DVFS experts (v-f settings). During

the idle periods, when the idle task is scheduled by the OS, the controller selects

among the DPM experts as explained in section 2.3.1. During active execution

periods, the controller selects among the DVFS experts based on the characteristics

of the executing task. Since in a multi-tasking environment, tasks with differing

characteristics can be runnable at the same time, the controller maintains a per

task weight vector. These weight vectors are initialized when the task is created.

The controller has a form of a meta-policy for DPM, where it performs

selection among multiple DPM policies, while for DVFS it is a policy that selects

among multiple v-f settings. There are two primary reasons we did not implement

a meta-policy for DVFS like DPM. First, different DVFS policies operate under

different setups, which might be difficult to put together on a given CPU. For

instance, the policy in [19] operates on every scheduler tick, while, the one in [56]

operates at 100 million instruction intervals, which might or might not co-incide

with a scheduler tick. As a result, there is no common controller event, where it

can evaluate these two policies and select an operational policy. Second, different

DVFS policies also make assumptions about the systems they operate on, help

from applications or compilers etc. ([57, 7] etc.), which might not hold on other
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systems.

Workload characterization for DVFS involves accurately measuring the de-

gree of CPU intensiveness or µ (refer equation 2.18) of the executing workload. In

order to estimate µ we use the concept of CPI stack, which breaks down processor

execution time into a baseline CPI plus a number of miss event CPI components

like cache and TLB misses etc. [32]. The following equation represents the average

CPI in terms of its’ CPI stack components:

CPIavg = CPIbase + CPIcache + CPItlb + CPIbranch + CPIstall (2.19)

CPI stacks give insight into the CPU-intensiveness of the currently executing task.

For instance, a high value for CPIbase/CPIavg ratio indicates that CPU is busy

executing instructions for majority of the time, thus indicating a higher µ, and

vice versa.

In order to dynamically characterize executing workload, we construct its

CPI stack at runtime. For the PXA27x processor we do this by using the perfor-

mance monitoring unit (PMU). The PMU is an independent hardware unit with

four 32-bit performance counters that can be used to monitor any four out of 20

unique events available simultaneously. We monitor the number of instructions

executed (INSTR), data cache misses (DCACHE), cycles instruction cache could

not deliver instruction (ICACHE) and cycles processor stalls due to dependency

(STALL). We also get the total number of clock cycles (CCNT) elapsed since the

PMU was started in order to calculate the CPI components:

CPIavg = CCNT/INSTR, CPIdcache = (DCACHE× PEN)/INSTR

CPIicache = ICACHE/INSTR, CPIstall = STALL/INSTR (2.20)

In this equation, CPIcache has been broken down into CPIicache and CPIdcache and

PEN is the average miss penalty for a data cache miss (we used PEN=75 cycles at

520MHz in our experiments). Note that CPItlb and CPIbranch are missing. This is

because we can monitor only 4 events at a time, and in our experiments we found

the events being monitored more indicative of the task characteristics. Hence, we

can estimate CPIbase as follows:

CPIbase = CPIavg − CPIicache − CPIdcache − CPIstall (2.21)



28

Finally we estimate µ as a ratio of CPIbase to CPIavg (equation 2.22).

µ = CPIbase/CPIavg (2.22)

With CPU-intensiveness (µ) of the task estimated, we now describe the

loss evaluation stage for the DVFS-experts. To evaluate the loss factor of each

expert, we define a data structure called µ-mapper, which maps the suitability

of v-f settings to the characteristics of the task as a function of the CPU leakage

characteristics. For instance, for CPU with ρ=30%, Figures 2.2b-d indicate that

the best suited frequency scales linearly with µ of a task. Based on this observation,

Figure 2.3a shows a µ-mapper for a CPU with five experts, where the frequencies

increase in equal steps from 0 to Expert5. The µ-mapper divides the domain of

µ (0 ≤ µ ≤ 1) into intervals for each expert, and sequentially maps each interval

to the successive experts. This captures the fact that higher frequency experts

are better suited for tasks with higher µ. The mean of each interval, µ-mean, is

associated with their respective expert, and is used for performing weight update.

If CPU has higher leakage component (eg ρ = 50%), then the µ-mapper is changed

accordingly. For instance, if we compare the energy results in Figures 2.2b-d for

ρ=50% and ρ=30%, we can see that the energy consumption of combo for ρ=50%

is similar to that of burn loop at ρ=30%. This means that for CPUs with such

high leakage, workloads with medium CPU intensiveness need to be run at higher

v-f settings, while highly CPU-intensive tasks, such as burn loop, must run only

at the highest v-f setting. Thus, to derive a µ-mapper for such a CPU, we will

map only 0-0.5 of µ’s sample space to the available v-f settings. Figure 2.3b

shows the corresponding µ-mapper. This way µ-mapper provides the controller

with the critical information on CPU leakage characteristics and allows it to adapt

seamlessly across different CPUs without any modifications to the core algorithm.

Given a µ-mapper, the loss factors can be easily evaluated by comparing µ

to the µ-mean of each expert. This calculation takes both the energy savings and

performance delay into account by breaking this loss factor into 2 components, the

energy loss (ltie) and the performance loss (ltip). If µ < µ-mean for an expert, then

the task is more stall intensive with respect to the given expert and hence can

afford to run slower. At the same time it means that this expert would cause no
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(a) ρ=30%

(b) ρ=50%

Figure 2.3: Example of µ-mappers for CPUs with different ρ values.

Table 2.2: Loss Evaluation Methodology.

Energy Loss (ltie) Perf Loss (ltip)

µ > µ-mean 0 (µ− µ-mean)

µ < µ-mean (µ-mean −µ) 0

Total Loss (lti) = α · ltie + (1− α) · ltip

performance delay for the current task, since it corresponds to a higher frequency

than required. Similarly, there is a performance loss but no energy loss when

µ > µ-mean. Table 2.2 summarizes how we evaluate the loss factor. The α factor

in Table 2.2 is similar to the one used for DPM (equation 2.4); a user defined value

that determines the e/p tradeoff. Once the loss factors are evaluated for each

expert, the controller updates the weights of all the experts using the equation

2.2. The controller then restarts the PMU so that µ for the upcoming scheduler

quantum can be evaluated at its conclusion.

The task weight vector accurately characterizes the task it represents, since

it encapsulates all the updates based on previous µ values. Besides, the weight
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Table 2.3: Device and Workload Characteristics for HDD.

Device Trace Duration t̄idle σt̄idle
Pon Psleep Tbe

(sec) (W) (W) (sec)

HP

HP-1 32311 30 91

1.6 0.4 4.2HP-2 35375 25 86

HP-3 29994 36 119

Laptop
Laptop-1 18017 17 111

0.95 0.13 5.2
Laptop-2 7528 11 31

t̄idle: Average Idle Period Duration (in sec)

updates are based on both the task as well as the CPU leakage characteristics

(µ-mapper). This ensures that the controller understands when is it beneficial to

perform aggressive DVFS or not from overall energy efficiency point of view (as

described in the previous paragraphs).

2.4 Experiments and Results

We performed our experiments using the following devices: a hard disk

drive (HDD) and Intel PXA27x core (CPU) with real life workloads. For HDD we

used the controller with just DPM enabled because of lack of DVFS functionality,

while for CPU we used controller with both DPM and DVFS enabled. The results

indicate that our controller is capable of dynamically adapting while delivering

sizable (as high as 60%) energy savings over a range of e/p tradeoff settings.

2.4.1 HDD (DPM)

We evaluated our online learning based DPM algorithm by studying both

server and laptop HDDs. We used two set of workload traces: 1) originally collected

on an HP server [89] (referred to as HP traces), 2) traces collected on a laptop hard

disk (referred to as laptop traces) [90]. The characteristics of workloads selected

are described in Table 2.3. This is a broad range of workload characteristics.

For example, HP-1 and HP-3 traces have very different distribution of idle time

durations in terms of both average value and standard deviation (t̄idle and σt̄idle

respectively). We consider the HDD to be idle after 1s of inactivity. This threshold
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Table 2.4: Working set characteristics for HDD.

Expert Characteristics

Fixed Timeout Timeout = 3Tbe

Adaptive Timeout [30]
Initial Timeout = Tbe

Adjustment = +1Tbe/− 1Tbe

Exponential Predictive [53]
In+1 = α · in + (1− α) · In

with α = 0.5

TISMDP [90]
Optimized for delay constraint of

2.3% on HP-3 Trace

is based on the observation that across all the workloads, many idle periods are

smaller than 1s. These idle periods incur performance delay without contributing

much to the energy savings. Table 2.3 also shows the device characteristics in

terms of Pon and Psleep, which refer to the power consumed when the devices are

on and in the sleep state respectively. Tbe refers to the break even time. We run

the workload traces described in Table 2.3 and record the performance in terms of

energy savings and performance delays for both the individual experts as well as

the controller.

For our working set we select fixed timeout, adaptive timeout [30], expo-

nential predictive [53] and TISMDP [90] policies, representing different classes of

state of the art DPM policies. While fixed and adaptive timeout policies repre-

sent the timeout class, exponential predictive policy represents the predictive class

and TISMDP represents the stochastic class of policies. Table 2.4 describes the

precise characteristics of the DPM policy experts employed for the experiments.

The fixed timeout employs a timeout equal to three times the break even time

or Tbe. The adaptive timeout policy uses the Tbe as the initial timeout with an

adjustment factor of +1Tbe/-1Tbe depending on whether the previous idle period

resulted in energy savings or not. Exponential predictive policy is implemented as

described in [53] without pre-wakeup. It predicts the length of the upcoming idle

period (In+1) using the actual (in) and predicted (In) lengths of the previous idle

period. TISMDP policy is optimized for a given delay (2.3%) on the HP-3 trace.

The main idea we are trying to show is that given a set of experts, the controller
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always converges to select the best performing expert at any point in time.

Table 2.5 shows the results achieved in terms of energy savings and perfor-

mance delay for the individual experts on the HDD traces. The %energy indicates

the amount of energy saved relative to the case where we do not have any DPM

policy while the %delay shows the amount of performance delay caused relative

to the total timeframe because of power management. The first row of the table

gives the results for the oracle policy. It is an ideal offline policy which knows

the workload in advance and hence always takes the optimal decision for each idle

period, so its performance delay is zero. The results highlighted in black show

where we get the best energy savings while the results highlighted in gray show

the case where we get the least performance delay. We can notice that the HP

traces predictive policy does well in terms of saving energy. For instance, on HP-

1, it achieves around 58% energy savings. It performs equally well for the other

workloads as well. However, predictive policy is also the worst in terms of causing

performance delay, since it is extremely aggressive in turning off the HDD and thus

incurs delay while waking up. In contrast, TISMDP causes the least performance

delay and consequently fetches the least energy savings. It can be observed in

Table 2.4 that TISMDP was optimized for 2.3% delay on HP-3 workload and the

results achieved confirm this. However, the figure is not the same for HP-1 and

HP-2 workloads which confirms that it is optimal for stationary workloads and

does not adapt with changing workloads. Fixed timeout performs reasonably well

on both the accounts while adaptive timeout is quite close to predictive in terms

of energy savings.

Similarly Table 2.5(b) shows the results with individual experts for the lap-

top traces. We can observe that for these traces the predictive expert performs

the worst in terms of both energy savings as well as performance delay. This is

in contrast to HP traces, where it did the best in terms of energy savings. This

happens due to the smaller idle periods of laptop traces (Table 2.3) and lack of

co-relation between successive idle period durations, which causes the predictive

expert to cause many wrong shutdowns (where Tidle < Tbe). These results highlight

that different classes of policies, depending upon their characteristics, deliver dif-
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Table 2.5: Energy Savings/Performance Delay Results for HDD with Individual
Experts.

Expert
HP-1 Trace HP-2 Trace HP-3 Trace

%delay %energy %delay %energy %delay %energy

Oracle 0 68.68 0 66.58 0 71.38

Timeout 3.95 44.4 4.08 41.28 3.23 50.44

Ad Timeout 6.61 57.2 7.35 54.12 5.27 60.63

TISMDP 2.9 38.7 2.7 36.5 2.29 44.6

Predictive 7.32 58.2 8.32 54.9 5.87 60.7

*(gray shade indicates min perf delay and black indicates max energy savings)

(a) HP

Expert
Laptop-1 Trace Laptop-2 Trace

%delay %energy %delay %energy

Oracle 0 76 0 65

Timeout 1 59 1.5 45

Ad Timeout 2 65 3.3 53

TISMDP 0.7 47 0.9 32

Predictive 4.1 42 6.7 30.2

(b) Laptop

ferent levels of performance across different workloads. However, depending upon

the application requirements or user preferences one might want the overall per-

formance to be more delay sensitive or more energy sensitive. The problem with

just having a single DPM policy is that it does not offer the flexibility to control

this behavior. The Controller offers exactly this flexibility.

Table 2.6 shows results achieved on the same traces using the controller with

different e/p tradeoff (α) settings. As explained in Section 2.3.1, α value indicates

the desired e/p tradeoff setting. A high value indicates a higher preference to

energy savings, a low value indicates higher preference to performance while a

medium value indicates a reasonable ratio of both. In our experiments we tested

with values of α ranging from around 0.3 (low) to 0.7 (high). We used values

of α around 0.5 for the medium value. As we increase the value of α, we get

higher energy savings and for lower values of α, we get low performance delay. For

instance, on HP-2 workload we get 50.1% energy savings for high α, which is quite

close to that achieved by predictive and adaptive timeout policies. In contrast, for
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Table 2.6: Energy Savings/Performance Delay Results for HDD with Controller.

Preference
HP-1 Trace HP-2 Trace HP-3 Trace

%delay %energy %delay %energy %delay %energy

Low α 2.95 39.27 2.8 36.6 2.5 45.9

Med α 4.17 47.2 4 43.4 3.33 53.2

High α 5.76 55.2 6.21 50.1 4.53 57.9

(a) HP

Preference
Laptop-1 Trace Laptop-2 Trace

%delay %energy %delay %energy

Low α 0.7 49 1 33.5

Med α 0.8 54 1.3 41

High α 1 61 1.7 48

(b) Laptop

Figure 2.4: Frequency of selection of experts for HP-3 trace.

low α we get performance delay comparable to that of TISMDP. Remember that

we limit the values of α between 0.3 and 0.7. For even higher values (close to 1)

we achieve energy savings even closer to that of adaptive timeout and predictive

policies. Similarly for the laptop traces we observe results converging to that of

TISMDP for low α, and to that of adaptive timeout for high α.

Figure 2.4 shows how the frequency of selection of experts changes with α on

HP-3 trace. For higher value of α, adaptive timeout expert is selected most often

since it achieves close to highest energy savings (60.6%) at a lower performance

delay than predictive expert. For lower values of α, TISMDP expert is selected
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Figure 2.5: Comparison of e/p tradeoff of controller with multiple experts for HP-
1 trace. The black line connects the different e/p tradeoff points of the controller.

with higher frequency since it is conservative in turning off the HDD and thus

offers lower performance delays. For the medium value of α, we can see that it

selects among all the experts to deliver a performance which offers a reasonable

e/p tradeoff. Hence, α factor offers us a simple yet powerful control knob to obtain

the desired e/p tradeoff.

We next show that our controller can form a Pareto optimal curve over a

set of experts. The experts consist of TISMDP, predictive, four adaptive timeout

(AT0-3) and four fixed timeout (FT0-3) policies. We run the controller at six

different α values (ranging from low of around 0.3 to high of around 0.7) to get

different e/p tradeoffs. Figure 2.5 shows a line connecting the e/p tradeoff points

offered by the controller, and the e/p tradeoff points offered by the individual

experts. The line divides the e/p space into two parts: (1) the part above the line

represents e/p tradeoff points that are better than those offered by the controller

since they either offer lower performance delay for same energy savings and vice

versa, (2) the part below the line represents e/p tradeoff points that are inferior to

those of controller. Figure 2.5 illustrates that the e/p tradeoff points of individual

experts either lie on this line or below it. Therefore, based on the e/p preference

(α), the performance of the controller either converges to that of the best expert

or is even superior to any of the experts. Better results than any single expert
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Figure 2.6: Comparison of e/p tradeoff of controller with fixed timeout experts
for HP-1 trace. The black and gray lines connects the different e/p tradeoff points
of the controller and the fixed timeout experts respectively.

are possible due to the fast convergence property of the controller to the best

performing experts over different phases of the workload.

Selection with Fixed Timeout Policies: We next test our controller

with a working set of eight simple fixed timeout policies that have timeout values

ranging from Tbe to as large as 50s for HDD. A timeout of Tbe guarantees that

the energy consumption is not be greater than a factor of 2 when compared to an

ideal offline policy [59]. Timeout of 50s represents a conservative policy to keep

the performance delay low.

Figure 2.6 illustrates the performance of these individual timeout policies

against the performance of the controller corresponding to the HP-1 workload. The

line in Figure 2.6 shows e/p points for the controller algorithm with five different

values for α. Just like Figure 2.5, all the e/p tradeoff points for the fixed timeout

experts are either close to the line or below it, showing that our controller can

achieve pareto optimality. For high values of α, we get energy savings as high as

54%, which is very close to that achieved by controller using a working set of more

sophisticated policies (see Table 2.5). For a low value of α, it gives achieves a very

low performance delay of just 0.5%. This clearly shows that the controller can

achieve competitive e/p tradeoffs just with a set of simple fixed timeout policies.
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Figure 2.7: System Level Implementation of Controller for CPU.

2.4.2 CPU (DPM+DVFS)

In this section, we present results for the controller with both DPM and

DVFS enabled. We use the CPU of the Intel PXA27x platform (running Linux

2.6.9) as the testbed for these experiments. Figure 2.7 shows details of our system

level implementation of the controller. We implement the controller as a Linux

loadable kernel module (LKM). As soon as the LKM is loaded, it performs both

the DPM and DVFS specific initializations. For DPM it initializes the weight and

probability vectors corresponding to the DPM policy experts. For DVFS, it scans

the available v-f setting experts and calculates the corresponding µ-means based

on the µ-mapper shown in Figure 2.3a. This is based on our experiments with

PXA27x (refer to section 2.3.2) that indicate ρ ≈ 30%.

As shown in Figure 2.7, the LKM is closely knit to the Linux process man-

ager. To isolate the characterization in terms of CPU/memory intensiveness on

a per task basis and preserve them across context switches, the Linux task data

structure task struct is modified to include the weight vector. This is required for

DVFS but not for DPM since in that case we model the inactivity of the system,

and when the system gets inactive the only task that runs is the idle thread. The

controller always has a pointer to the current task data structure, and this ensures

that the update and selection of experts is occurring for the current task only. The

LKM also exposes a /proc interface to the user, which can be used to specify the

e/p tradeoff (α). The LKM receives notifications from the process manager on the

following 3 events: 1) Task Creation: The process manager provides LKM with
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Table 2.7: Device Characteristics: CPU.

Pon Pidle Pstandby Ptr Ttr Tbe

747mW 129mW 1.7mW 747mW 12ms 12ms

(a)

Freq Voltage

(MHz) (V)

208 1.2

312 1.3

416 1.4

520 1.5

(b)

the pointer to the new task struct, and the LKM initializes the per task DVFS

weight vector. 2) Scheduler Tick : This acts as a controller event for DVFS. 3)

Context Switch: On this notification, the LKM checks if the next thread that is

getting scheduled is the idle thread. If it is the case then it switches to the lowest

v-f setting in the working set and selects a DPM expert since it indicates beginning

of an idle period.

The Linux 2.6.9 kernel has a scheduler quantum of 10ms. This means that

the scheduler runs every 10ms, irrespective of whether there are any schedulable

threads in the system or not. This is clearly energy inefficient since it makes 10ms

the upper bound on the maximum achievable idle time for the CPU. This renders

most of the low power modes of the PXA27x CPU (standby, sleep etc.) unus-

able, since they have larger break even times. To solve this problem, dynamic

tick support has been added to the latest kernel version (2.6.24)[43]. This allows

reprogramming of scheduler tick when there are no schedulable threads in the sys-

tem, hence achieving longer idle periods. However, there is no publicly available

support for the port of this kernel version on the PXA27x platform, with the latest

being 2.6.9 [44]. The absence of dynamic tick support made practical experiments

of DPM for CPU impossible because of the periodic scheduler ticks. Hence, we

performed experiments for DPM based on simulations on traces of real life work-

loads collected using the LKM. The LKM calculates the idle periods as durations

for which the idle thread stays scheduled at a stretch. The approach is very similar

to the one used in [12].

Hence, in our current setup, we run the workloads with and without DVFS

enabled, and calculate CPU energy savings by current measurements using a 1.25M
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samples/sec DAQ. The energy savings and performance delay values are compared

to a system, which: 1) runs at the highest v-f setting (1.5V/520MHz in our case)

when active, 2) switches to idle mode and the lowest v-f setting (1.2V/208MHz)

when idle. While running the workloads the LKM also generates a trace of the

idle period distribution. This allows us to estimate the energy savings due of

DPM offline using the characteristics listed in Table 2.7a. The DPM working set

comprises of 9 fixed timeout policies with timeouts ranging from Tbe to 9Tbe. We

have shown in section 2.4.1 on HDD that working set of fixed timeout policies

performed nearly as well as the one with more sophisticated policies. For DVFS,

we use working set of v-f setting experts listed in Table 2.7b.

Workloads for CPU can be divided into two categories: idle dominated

and computationally intensive. Idle dominated workloads are the ones for which

the idle thread is scheduled most of the time. All user interface related work-

loads like word processing, web surfing etc. belong to this category. The com-

putationally intensive workloads are the ones for which the idle thread never gets

scheduled. This category includes tasks like decompressing, running intensive en-

cryption/decryption algorithms etc. Typical real life applications are a mix of

both. For instance, the workload for a user using GUI based archiving applica-

tion would be mostly idle dominated when he is browsing the various options, and

computationally intensive in bursts when he enters password for authentication or

actually compresses/decompresses some file. In the next two sections we present

the results for these kinds of workloads separately.

Idle Dominated Workloads

For these experiments we used two real life workloads: editor and www. The

editor workload involves use of vi editor for writing and reviewing data files and

use of some basic shell commands (ls etc.). The www workload involves general

web surfing (search, reading articles etc.) on a wireless interface using the lynx

web browser. We analyzed the results for the following 3 configurations of the

controller: only DPM, only DVFS, both DPM and DVFS.

For the first case, we disabled DVFS and kept DPM enabled. Table 2.8
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Table 2.8: Energy Savings/Performance Delay Results for CPU on Idle Domi-
nated Workloads.

Preference
editor www

%delay %energy %delay %energy

Low α 0.41 17 0.31 19

Med α 0.81 20 0.85 22

High α 1.56 24 1.15 25

Oracle 0 26 0 27

Note: The %energy savings are baselined against a CPU that

is in the idle mode (clocks halted) and the lowest v-f setting during idle periods

shows the results achieved for with the two workloads for different values of α.

The %energy numbers indicate the energy savings baselined against the case where

the CPU is placed in idle mode (which halts its clock supply) and the lowest v-

f setting as soon as it gets idle. The %delay is the overhead incurred because of

power management. We again used values around 0.3, 0.5 and 0.7 for low, medium

and high values of α. The last row shows the results for the oracle policy, which

shows the maximum achievable energy savings for these workloads using DPM. We

can see in Table 2.8 that for both the workloads, with increasing value of α, the

energy savings increase. For high α, the energy savings are around 25% for both

editor and www, which is very close to the energy savings achieved by the oracle

policy.

Table 2.9 shows the frequency of selection of experts for the different α

settings for both the editor and www workloads. We can observe that for low α,

9Tbe is the most selected expert since it offers the least possible delay across all

the experts. As we move towards higher values of α, the frequency of selection of

smaller timeout experts increases since they offer higher energy savings. Infact for

www workload, Tbe expert gets selected for all idle periods. The table also shows

that the nature of workload affects the expert selection even for the same value of

α. For instance for medium value, Tbe expert gets selected for 37% with the editor

workload, but for 65% with the www workload.

We next experiment the controller with DVFS enabled and DPM disabled

for different values of α. The energy savings are negligible for both editor and www

across all the values of α since they spend most of their time in the idle thread.
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Table 2.9: Frequency of selection of experts (%).

Expert

editor www

Low α Med α High α Low α Med α High α

Tbe 1.4 37 84 10.9 65 100

2.Tbe 3.7 29.7 14.3 0.8 13.7 0

3.Tbe 1.4 7 1.8 2 1.6 0

4.Tbe 0.6 2.4 0 0.4 0.4 0

5.Tbe 4.7 1 0 0 0 0

6.Tbe 3.5 0.6 0 0 0 0

7.Tbe 25.5 5.5 0 2.4 2.4 0

8.Tbe 0 0 0 17.3 12.5 0

9.Tbe 59.1 16.7 0 66.1 4.4 0

As described above, our baseline CPU switches to the idle mode and the lowest

v-f setting available in the working set (1.2V/208MHz) once idle. Thus, there are

no additional savings possible because of DVFS during idle periods. The energy

savings for the active periods due to DVFS are negligible, since they are very small

compared to the idle periods. The performance delay is almost zero across all α

values as the active periods are not long enough to observe significant performance

loss.

In the last set of experiments, we enable both DPM and DVFS. In this

case we observe that the energy savings and performance delay results converge

to those in Table 2.8, i.e. the case with just DPM enabled. The reason for this is

that we now switch to DPM as soon as the idle thread is scheduled, where these

workloads spend most of their time. This shows that DPM is very effective for idle

dominated workloads.

Computationally Intensive Workloads

We experimented with a number of computationally intensive workloads in

both single and multitasking environments. For such workloads, the idle thread

is not scheduled, and thus, the energy savings are exclusively due to DVFS. The

chosen workloads include common UNIX utility gzip for decompression (dgzip)

and 3 benchmarks taken from an open source benchmark suite mibench [39]: bf

(blowfish) - a symmetric block cipher; djpeg - decoding a jpeg image file; qsort

- sorting a large array of strings in ascending order. All these workloads have a
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Table 2.10: Energy Savings/Performance Delay Results for CPU on Computa-
tionally Intensive Workloads.

Benchmarks
Low α Med α High α

%delay %energy %delay %energy %delay %energy

qsort 6 17 17 32 25 41

djpeg 7 21 15 37 27 45

dgzip 15 30 21 42 28 49

bf 6 11 16 28 25 40

burn loop 0 0 10 2.5 25 5

(a) Single Tasks

Benchmarks
Low α Med α High α

%delay %energy %delay %energy %delay %energy

qsort+djpeg 6 17 15 33 25 41

dgzip+djpeg 13 24 19 40 27 49

qsort+dgzip 7 20 18 35 26 42

dgzip+bf 11 17 20 31 26 45

(b) Multi-Tasking

mix of CPU and memory intensive phases. We have also added results for the

synthetic workload burn loop (section 2.3.2) to see how the controller performs for

highly CPU intensive workloads, which benefit the least from DVFS. The results

achieved under both single and multi task environments for these benchmarks are

illustrated in Table 2.10. We discuss them separately.

Single Task Environment Table 2.10(a) displays the results we achieved for

each individual benchmark in a single task environment. From the results we can

Figure 2.8: Frequency of selection of experts for qsort benchmark.
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Figure 2.9: Plot of average µ of qsort benchmark across its execution timeline.

observe that as we increase the value of α, we get higher energy savings. For lower

values of α, we get lower performance delay. For instance, with qsort, the delay

is just 6% for a low value of α, while the energy savings are as high as 41% for a

high value.

Figure 2.8 shows the frequency of selection of different experts for qsort

according to the selected value of α. For higher value of α, the 208MHz expert is

selected for 65% of the time, while rest of the time 416MHz expert is chosen. This

suggests that qsort has both CPU and memory intensive phases. Figure 2.9 plots

the average µ of qsort along its execution timeline and illustrates these phases. We

can observe that around the first 20% of its execution, qsort is consistently very

CPU intensive (high µ), for which the controller selects 416MHz expert. Beyond

that it varies, but the average is on the lower side (around 0.45), for which the

controller mostly selects the 208MHz expert. Thus, the controller can quickly and

accurately identify CPU/memory intensive phases in the workload and adapt at

runtime.

We perform offline analysis to evaluate the maximum achievable energy

savings for these benchmarks for the given working set by running all the individual

benchmarks statically at 208MHz/1.2V. This is inline with our observation in

section 2.3.2 (Figure 2.2b-d), that for ρ ≈30%, the energy savings and performance

delay increase with decreasing v-f settings for all kinds of tasks. Table 2.11 displays

the %energy and %delay for the benchmarks at this setting. Comparing these

results with Table 2.10(a), we can see that for high α, the energy savings for all
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Table 2.11: Energy Savings/Performance Delay at 208MHz/1.2V.
Benchmark %delay %energy

qsort 56 48

dgzip 34 54

djpeg 33 54

bf 40 51

burn loop 150 10

the benchmarks is on an average within 8% of the maximum possible at much

lower overhead. For instance, for qsort, with the controller at high α, we get

41% energy savings at delay of 25% compared to 48% savings and 56% delay at

208MHz/1.2V. Thus, the controller almost gets the same energy savings at much

lower performance delay because it runs the highly CPU intensive phase of qsort

(Figure 2.9) at 416MHz (as discussed in the preceding paragraph). For burn loop,

the controller is able to identify the high CPU-intensiveness, and hence runs at

416MHz/1.4V even for high α to achieve within 5% of maximum energy savings

at significantly lower performance overhead.

Multi Task Environment We next experimented with the benchmarks in a

multi-tasking environment to verify our per task characterization by spawning 2

threads running different benchmarks simultaneously. Table 2.10(b) presents the

results we achieved for multitasking for different values of α. For djpeg+dgzip the

results are roughly an average of the individual results in Table 2.10(a). This

happens because the duration of execution of both tasks is equal. An average

value of the delay and savings indicate that both the tasks run with the same

expert selection over their execution time-frame as in the single task case across

all the α settings. This shows that per task characterization of the controller is

accurately preserved across context switches. For qsort+djpeg, the results for all the

values of α correspond very closely to the results of qsort in Table 2.10(a). Since

the total time of execution of qsort benchmark is roughly 4 times the duration

of djpeg benchmark, the results converge to that of individual qsort benchmark

results. However, the djpeg benchmark runs exactly twice longer with qsort than

alone. This shows that accurate preservation of per task characteristics enables

the controller to select the same set of experts for djpeg as it does when djpeg runs
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alone in the system, hence keeping its effective run-time the same. We observed

similar results for the qsort+dgzip combination.

Task Characteristics and Leakage Awareness Since the controller incorpo-

rates task characteristics and leakage awareness, it knows when DVFS is beneficial

for a task from overall system energy efficiency and performance point of view.

This awareness becomes more critical for future generation processors with higher

leakage, where running at lower frequency could result in higher energy consump-

tion (see burn loop results in Figure 2.2d). To verify how controller would adapt

to such platforms, we derived a new µ-mapper for our v-f setting experts based

on Figure 2.3b to simulate a platform with ρ=50%. We then ran the benchmarks

under different α settings. For burn loop, we observed that the controller now se-

lected the 1.5V/520MHz expert consistently for the high α settings, since the new

µ-mapper now incorporates the knowledge of high leakage power consumption of

the CPU. This is in contrast to the results with our old µ-mapper (ρ ≈30%), where

it selected 1.4V/416MHz expert for high α. We observed similar results for other

benchmarks as well. By incorporating CPU leakage characteristics, controller is

also able to balance DVFS and DPM for better overall energy efficiency. This

makes the controller scalable and adaptable across CPUs with varying leakage

characteristics.

2.4.3 Overhead

For HDD, the controller causes overhead in terms of both energy and time

to perform the evaluation of experts. In our experiments, we measured the average

controller overhead at 0.0001% of the total timeframe for HDD, which is negligible

relative to the overall timeframe. For CPU the controller adds overhead to the

system, since it processes the 3 events delivered to it by the Linux process manager

as discussed in Figure 2.7. We used lmbench [45] for measuring the overhead caused

by the LKM. The lat proc and lat ctx tests measure the overhead added to process

creation and context switch times. For lat proc the overhead was 0%, while for

lat ctx it was around 3%. The overhead is negligible because the event processing
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functions in the controller are extremely fast and lightweight. The controller itself

is implemented in fixed point arithmetic and is very lightweight. The use of weights

obviates the need for storing µ estimates thereby avoiding a potential overhead. For

instance in [19] a regression based approach is used for workload characterization,

which maintains a queue of 25 most recent estimates of CPIavg and MPIavg samples.

In tests with lmbench, they increase the context switch time by a factor of 2, while

our overhead is negligible.

In terms of memory overhead, the controller adds an array of unsigned long

long variables, whose size is equal to the number of experts in the working set, to

the task struct of Linux. The LKM uses unsigned long long variables to simulate

decimal values for weight/probability factors since we do not use floating point

inside the kernel. Thus, overall the overhead of controller on a running system is

negligible, which makes its deployment in real systems practical.

2.5 Conclusion

In this chapter we presented a novel online learning algorithm that solves

both dynamic power management (DPM) and dynamic voltage frequency scaling

(DVFS) problems. We presented a formulation of both DPM and DVFS as one of

workload characterization and expert selection, and used the algorithm to solve it.

The advantage of using an online learning algorithm is that it provides a theoretical

guarantee on convergence to the best performing expert. The general formulation

of the controller makes it applicable to any system component with support for

power management. We performed experiments on two different HDDs and an Intel

PXA27x CPU under varying real life workloads in both single task and multi-task

scenarios. Our results indicate that our algorithm adapts really well to changing

workload characteristics and achieves an overall performance comparable to the

best performing expert at any point in time. Moreover, the algorithm incorporates

leakage awareness, which allows it to adapt seamlessly to changing CPU leakage

characteristics and also understand the tradeoff between DPM and DVFS. It is

extremely lightweight and has negligible overhead in terms of performance and



47

energy.
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Chapter 3

Analysis of Energy Efficiency in

Server Systems

3.1 Introduction

Active power management is an extremely attractive proposition for mobile

systems to achieve energy savings. As discussed in chapter 1, the primary reason

for that is the usage pattern of mobile systems, which is bimodal in nature – high

levels of activity intersperse long periods of inactivity [90, 42], which allows use of

aggressive system level active power management.

In this chapter we evaluate the effectiveness of DVFS and DPM in terms

of possible energy performance tradeoffs for server class systems. We show exper-

imentally and through analysis that the potential for energy savings with DVFS

on such systems has significantly diminished in newer CPU technologies due to

reasons like faster memory interface system, more efficient support for low power

modes in CPUs and higher relative power consumption of components other than

CPU (e.g. memory). In fact, simple DPM policies provide better system energy

savings/performance tradeoffs across a wide range of workloads than DVFS. This

is in sharp contrast to what we observed for a mobile system CPU in the previous

chapter, which benefited a great degree from DVFS. We further show that due to

a smaller contribution of CPU in power consumption of servers overall benefits of

48
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aggressive CPU power management in terms of DPM and DVFS have diminished.

We then identify possible ways to achieve better energy efficiency for such

systems, namely (1) developing more energy proportional technologies and archi-

tectures. We show this by taking an example of memory hierarchy; (2) maximizing

the performance per watt of server clusters through energy aware workload con-

solidation. These ideas form the baseline for the next three chapters.

Figure 3.1: Comparison of Power Consumption and Execution Times of a work-
load with and without DVFS.

3.2 DVFS for System Level Energy Savings

Figure 3.1 illustrates system power consumption with and without DVFS

for a workload. Without DVFS the CPU executes the workload at the highest

frequency for time t1 and the system consumes power Psys1 . When not executing

anything useful, the system/CPU is idle and consumes power Pidle. With DVFS

the power consumption reduces to Psys2, while the execution time increases by

tdelay from t1 to t1 + tdelay (shown as t2) because of CPU operation at a lower v-f

setting. The decrease in power consumption depends on the degree of reduction in

voltage and frequency, while the increase in execution time of the workload (tdelay)

is a function of how it utilizes the CPU resources [56, 29].

We can further break down the system power consumption into that of CPU

(Pc) and the other devices in the system (Pd). If we let the power consumption of

CPU at v-f settings 1 and 2 by Pc1 and Pc2 respectively, and Pcidle
, when it is idle
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(as shown in Figure 3.1), we can represent the energy savings due to DVFS as:

EDVFS = Psys1t1 + Pidletdelay − Psys2(t1 + tdelay)

= (Psys1 − Psys2)t1 − (Psys2 − Pidle)tdelay

= (Pc1 − Pc2)t1 − (Pc2 + Pd − Pcidle
− Pdidle

)tdelay

= (Pc1 − Pc2)t1 − ((Pc2 − Pcidle
) + (Pd − Pdidle

))tdelay

= PRt1 − PEtdelay

= ER − EE (3.1)

PR/ER is the reduction in CPU power/energy consumption because of

DVFS. The second term (PEtdelay/EE) represents the extra energy consumption

that DVFS causes relative to the case without DVFS. There are two sources of

extra power consumption for a system with DVFS: 1) The difference between CPU

power consumption at the lower v-f setting and the idle CPU (Pc2 −Pcidle
), 2) The

difference between device power consumption when it is active and idle (Pd−Pdidle
).

The extra device power consumption depends on how often the executing workload

accesses the devices. For instance, for a memory bound workload, the difference

would be high, since it would make the memory consume more power for the extra

time tdelay compared to an idle system. In contrast, for a CPU bound workload,

the difference would be negligible. The performance delay (tdelay) determines for

how long the DVFS based system consumes this additional power, and hence the

extra energy consumption (EE).

Clearly, the DVFS provides energy savings only as long as ER > EE. When

this inequality does not hold, the system incurs performance overhead (tdelay) and

consumes more energy than when running at the highest CPU frequency. We next

show how the performance delay, low overhead of entry into sleep states and the

energy impact of other system components affects the efficiency of DVFS.

Performance Delay (tdelay) As shown in the previous chapter, memory bound

workload incurs lower performance hit at a lower frequency setting, since it causes

many CPU stalls due to memory accesses. For an ideal stall intensive workload,

the delay in execution is zero, and hence represents the best case for DVFS. In
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contrast, the execution time of a CPU intensive workload is entirely determined

by the CPU frequency. For an ideal CPU intensive workload, the increase in

execution time when switching from frequency f1 to f2 can be estimated as (f1

f2
).

Such a workload represents the worst case for DVFS, since it incurs the highest

possible tdelay.

In SPECCPU 2000 suite, mcf is a memory bound benchmark, while sixtrack

is CPU intensive [15]. To understand the correlation between execution time delay

and workload characteristics we ran the benchmarks at different frequency settings

on a state of the art quad core AMD Opteron based system. Table 3.2 shows the

%delay incurred by the benchmarks at the four settings supported by the processor.

We also plot the %delay for an ideal CPU intensive workload, which we label as

the “worst” case, and for the ideal stall intensive workload, which we label as the

“best” case. Sixtrack incurs a delay that is identical to that of the worst case due

to its high CPU intensiveness. In contrast, for mcf it is relatively lower.

Figure 3.2: Analysis of Performance Delay (%delay) for mcf and sixtrack work-
loads at lower frequency settings.

However, this delay is significantly larger than the best case. This delay

is much smaller on processors with smaller caches and slower memory controllers.

The AMD processor we use has three levels of caches (L3 cache of 6MB), an on-die

memory controller that operates at 2.6GHz and sophisticated cache prefetching
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mechanisms. Consequently, the memory bound phases of mcf are much shorter on

this processor compared to running it on a processor with slower memory accesses.

For instance, running mcf on an older Intel quad core Xeon (with two frequency

settings: 2.6/1.9GHz, no L3 cache and an off chip memory controller), the delay

of mcf at 1.9GHz is just 6% from the best case (see Figure 3.2). This is much

lower when compared to 30% delay on the Opteron at the same frequency. Faster

memory controllers and larger caches successfully mask the memory latency making

the execution more dependent on the CPU frequency, thus limiting the possible

energy savings due to DVFS. The trend towards faster and efficient on die memory

controllers has also been adopted in the more recent Intel microarchitectures as

well [48].

Lower idle CPU power consumption The support for ACPI C-states or CPU

low power states/modes has evolved significantly over the last few years. The C1

state, where the clock supply to the CPU is gated, is so efficient in modern proces-

sors, that it is currently used by default in all major operating systems (eg. Linux,

OpenSolaris) when CPU is idle. Recently announced Intel and AMD processors

have also added support for deeper C states which can significantly reduce the

power consumption of CPU during idle times [47]. For instance, C6 power state

can reduce the power consumption to zero. The performance overhead of such

states is in the order of just µ-seconds, thus allowing their frequent use. The pre-

vious generation processors did not have such C-state support, and thus consumed

higher power during the idle periods. This increases the difference between the

CPU power consumption at lower v-f setting and idle time, or in terms of equation

3.1, increases (Pc2 − Pcidle
), and hence EE (see Figure 3.1).

Power consumption of other system components An important aspect

that is often ignored by research in DVFS is its impact on system level energy sav-

ings. This is important to consider for server systems, since the power contribution

of other components is also significant. DVFS can make other system components

consume more power for a longer duration due to operation at lower frequency.

For instance, our Opteron system is equipped with 4GB DDR3 RAM, which ap-
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Table 3.1: Power Management Policies.
Policy name Description

PM-1 switch CPU to ACPI state C1 (remove clock supply) and move to lowest voltage setting

PM-2 switch CPU to ACPI state C6 (remove power)

proximately consumes 4.5W when it is idle/not being accessed. However, when a

memory intensive benchmark (like mcf ) is running, the memory consumption in-

creases by 5W, i.e. it more than doubles. Thus, running mcf at a lower frequency

makes the memory consume extra 5W for tdelay (see Figure 3.1), compared to a

system without DVFS. This means a higher value of (Pd − Pdidle
), or higher EE

(see Figure 3.1).

3.3 Evaluation Setup and Results

To evaluate the effectiveness of DVFS for system level energy savings we

formulate a simple static DVFS policy (s-DVFS), where workloads are executed

statically at different v-f settings. This is sub-optimal, since one can potentially

get better results by running a workload at different settings based on its phase

of execution. However, as we show later, it does give a fair idea of the possible

savings in the best case for most of the benchmarks. We also propose three simple

power management policies that are based on running the workload at the highest

speed and then reducing the power during the idle periods (Pidle in Figure 3.1)

through different mechanisms. These policies are listed in Table 3.1. Each policy

is successively more aggressive than the previous one in terms of reducing Pidle.

PM-1 is extremely easy to implement as support for C1 states is widely available

in current processors. PM-2 relies on efficient C6 state support, which has recently

been introduced in Intel and AMD processors.

For our experiments, we instrument a quad core AMD Opteron proces-

sor based system running OpenSolaris. The processor supports four v-f settings:

1.25V/2.6GHz, 1.15V/1.9GHz, 1.05V/1.4GHz and 0.9V/0.8GHz. For workloads,

we use integer and floating point benchmarks from the SPECCPU 2000 suite. For

comparison of s-DVFS with the other PM policies in Table 3.1, we use the model

developed in section 3.2 (see equation 3.1). For instance, to compare s-DVFS and
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PM-1, we run the benchmarks at all the frequencies and measure the corresponding

execution time and system power. In terms of Figure 3.1, we get t1 and Psys1, i.e.

time and power for the highest frequency (we use that for PM-1) and t2 and Psys2

for the lower frequencies(we use that for s-DFVS). We measure power at the power

outlet of the system using a data acquisition system (DAQ), which collects power

samples every 300ms. These measurements allow us to estimate PR, PE , t1 and

tdelay (see Figure 3.1), and hence EDV FS based on equation 3.1 for each frequency

‘f’. In other words EDV FS gives the energy savings of s-DVFS over PM-1. Based

on this, we estimate the %energy savings of s-DVFS over PM-1 at given frequency

‘f’ as:

%EsavingsPM−i
=

EDV FSf
−EPM−i

EPM−i

where i = 1,2 (3.2)

EPM−i varies based on the policy we are comparing s-DVFS against, since

each has different idle system power consumption or Pidle (see Table 3.1). We

measure the CPU and memory power consumption separately to estimate Pidle for

PM-(1-2).

Results: Table 3.2 shows the comparison of energy and performance results

achieved for s-DVFS and policies PM-(1-2) across 16 SPEC benchmarks. The

“frequency” column indicates the frequency (in GHz) at which the processor is

set for s-DVFS policy. The %delay indicates the percentage by which the bench-

mark’s execution time increases because of s-DVFS when compared against policies

PM-(1-2). The %energy savings (%EsavingsPM−i
) column indicates the system level

energy savings achieved by the s-DVFS policy compared to the PM-(1-2) based

on equation 3.2. Positive savings indicate that s-DVFS at the given frequency is

more energy efficient than the corresponding PM policy and vice versa.

We can observe from Table 3.2 that across all the benchmarks the per-

formance delay because of s-DVFS is large. For 9 benchmarks (bzip2, eon, gcc,

crafty, gzip, parser, sixtrack, mesa, ammp) the performance delay is within 5% of

the worst case (refer to Figure 3.2) due to their high CPU intensiveness. For 5

benchmarks (art, mgrid, twolf, swim, applu), it is within 15% of the worst case,
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Table 3.2: Comparison of s-DVFS and PM 1-2.

Workload freq %delay
%EsavingsP M−i

PM-1 PM-2

mcf

1.9 29% 5.2% 0.7%

1.4 63% 8.1% 0.1%

0.8 163% 8.1% -6.3%

bzip2

1.9 37.1% 4.7% -0.6%

1.4 85.7% 7.4% -2.4%

0.8 222.9% 7.8% -9.0%

eon

1.9 33.3% 4.0% -0.9%

1.4 81.0% 6.6% -3.1%

0.8 219.0% 7.1% -9.9%

crafty

1.9 37.6% 4.7% -0.6%

1.4 85.5% 7.5% -2.3%

0.8 222.4% 7.9% -8.9%

gcc

1.9 34.7% 4.3% -0.7%

1.4 81.3% 7.4% -2.0%

0.8 214.2% 7.9% -8.6%

gzip

1.9 36.6% 6.4% 1.3%

1.4 85.2% 8.4% -1.2%

0.8 224.7% 7.9% -8.9%

parser

1.9 35.8% 4.4% -0.9%

1.4 82.1% 7.0% -2.7%

0.8 214.8% 8.0% -8.6%

twolf

1.9 35.1% 4.5% -0.8%

1.4 80.5% 6.8% -2.8%

0.8 211.4% 7.1% -9.6%

(a) SPEC 2000 INT

Workload freq %delay
%EsavingsPM−i

PM-1 PM-2

sixtrack

1.9 37.3% 5.0% -0.5%

1.4 86.2% 6.0% -4.3%

0.8 226.4% 6.8% -10.7%

mesa

1.9 36.5% 2.9% -2.5%

1.4 84.8% 5.8% -4.2%

0.8 223.8% 7.2% -9.9%

lucas

1.9 29% 4.3% 0.2%

1.4 63.2% 6.7% -1.0%

0.8 169.4% 6.1% -8.5%

swim

1.9 31.8% 3.3% -1.2%

1.4 75.2% 3.9% -5.0%

0.8 198.4% 4.2% -11.9%

art

1.9 32.4% 5.9% 1.2%

1.4 76.1% 7.3% -1.7%

0.8 202.4% 8.0% -8.0%

mgrid

1.9 31.1% 2.9% -1.6%

1.4 79.2% 4.1% -5.3%

0.8 208.5% 4.3% -12.3%

ammp

1.9 35.6% 5.0% -0.2%

1.4 83.3% 6.6% -3.3%

0.8 218.8% 2.0% -16.0%

applu

1.9 32.5% 2.7% -2.1%

1.4 73.9% 4.7% -4.4%

0.8 193.9% 5.7% -10.3%

(b) SPEC 2000 FP

which means they comprise of some phases of execution, which are memory bound.

Only for mcf and lucas it is more than 15%. Thus, in terms of performance all the

benchmarks except mcf and lucas take a severe hit because of DVFS. The primary

reason for the high delay is the sophisticated memory subsystem of the CPU we

use (refer to section 3.2).

The %energy savings results indicate that s-DVFS is also not very efficient

from the perspective of energy savings. Compared to PM-1, it achieves on an aver-

age a maximum of just 7% energy savings across all the benchmarks, which comes

at the cost of around 208% increase in execution time. We observe two interest-

ing trends in these results: (1) Energy savings has little correlation to benchmark

characteristics : This happens due to %delay being uniformly high for most of the
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benchmarks. Intuitively, mcf and lucas should incur higher savings due their lower

tdelay. However, as identified in section 3.2, the memory bound workloads cause

the memory to consume extra energy when compared to CPU bound workloads.

This offsets their higher CPU energy savings. (2) There is not much gained by

running benchmarks at lower v-f settings: Across all the benchmarks, the average

gain in energy savings for s-DVFS by switching from 1.9GHz to 0.8GHz is just

2%. For the same switch the increase in performance delay is around 180%. This

indicates that the higher power savings at lower v-f setting do not translate into

higher energy savings due to higher performance delay at that setting.

In comparison to PM 2, the results of s-DVFS are worse, as for majority of

the benchmarks, s-DVFS is actually energy inefficient. The reason for this follows

from our analysis on idle CPU power consumption in section 3.2, which is now

reduced to zero. Consequently, based on equation 3.1, EE becomes greater than

ER.

3.4 Conclusion

Figure 3.3: Power Consumption breakdown for a typical modern server [42].

The results clearly indicate that benefits of DVFS from system level en-

ergy savings viewpoint has diminished significantly. Simple DPM policies achieve

better system level energy performance tradeoffs in majority of the cases. This
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suggests that active power management in server class systems is much simpler

– just use DPM across all system components. However, the scope of achieving

energy savings through DPM in such systems is also limited due to the following

reasons: (1) The usage model for servers has very different characteristics from

that of mobile systems. As shown in Figure 1.1a, servers are rarely completely

idle and seldom operate near their maximum utilization. Instead, servers operate

most of the time at between 10 and 50% of their maximum utilization levels. This

means servers cannot take advantage of system level DPM policies. (2) In terms of

power consumption, close to 65% power consumed by server systems is contributed

by non energy proportional components like fans, power supplies, memory etc. as

shown in Figure 3.3. This property makes these systems highly energy inefficient

at lower utilization levels, since their power consumption does not come down in

proportion to their utilization due to poor support for DPM. For instance, memory

supports self-refresh mode where the power consumption goes down by 80%, but it

cannot be accessed at all in that mode and the break even time (defined in section

1.1.1) is large. This makes its usage for server systems difficult since memory and

system are rarely completely idle, as discussed above.

Thus, for the server class systems, there are two ways of achieving energy

efficiency: (1) Design systems to be more energy proportional. (2) Push the ex-

isting systems towards more energy efficient zone of operation by increasing their

utilization and maximizing the overall performance per watt.

In the next chapter, we focus on the first approach by taking memory

hierarchy as an example, since in modern servers memory is as big a consumer

of power as the CPUs (see Figure 3.3). The second approach is the focus of the

following two chapters.

Chapter 3, in part, is a reprint of the material as it appears in Proceed-

ings of the Workshop on Power Aware Computing and Systems, 2008. Dhiman,

G.; Pusukuri, K.K. and Rosing, T. S. The dissertation author was the primary

investigator and author of this paper.



Chapter 4

Energy Efficient Memory

Hierarchy

4.1 Introduction

In this chapter, we introduce a new heterogeneous organization for main

memory that is composed of conventional DRAM and phase change memory

(PRAM). This configuration helps reduce the energy consumption of memory sub-

system with minimal impact on workload performance by exploiting benefits of

both the technologies. The properties of PRAM that we leverage are its lower

read access and standby power compared to DRAM while having a comparable

throughput. However, the primary challenges in using PRAM include its lower

write endurance (typical mean time to failure in the range of 109 − 1012 cycles),

and the higher power cost of write accesses compared to DRAM. These proper-

ties motivate the use of a heterogeneous memory architecture consisting of both

DRAM and PRAM, which we refer to as PDRAM, enabling exploitation of positive

aspects of the respective memories.

We propose a hybrid hardware/software solution to manage the PDRAM

memory organization. In order to maintain reliability for PRAM (because of write

endurance problem), we introduce cost efficient book keeping hardware technique

that stores the frequency of writes to PRAM at a page level granularity. We com-

58
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plement hardware solution with an efficient operating system (OS) level page man-

ager that utilizes the write frequency information provided by the hardware to per-

form uniform wear leveling across all the PRAM pages. Wear leveling refers to the

process of prolonging the lifetime of erasable storage devices with endurance prob-

lems (like Flash, PRAM etc.) by ensuring uniform usage/utilization of all the stor-

age blocks/pages of the device. The page manager intelligently allocates/migrates

pages across DRAM/PRAM in order to minimize the impact of wear leveling on

performance. The benefits of using such a hybrid approach is that the hardware

can maintain and track page level accesses at a very low cost, while the software

(OS) can leverage the high level observability and policies for management of free

pages across DRAM/PRAM.

Existing memory power management research has primarily focused on

DRAM based systems. In [62], the authors propose power aware page alloca-

tion algorithms for DRAM power management. They assume support in memory

controller for fine grained bank level power control and show that their allocation

algorithms give greater opportunities for placing memory in low power modes. In

[26, 52], the authors propose an OS level approach, where the OS maintains tables

that map processes onto the memory banks they have their memory allocated in.

This allows the OS to dynamically move unutilized DRAM banks into low power

modes.

The possible use of alternative memory technology for improving energy

efficiency has also been explored before. The authors in [60] propose NAND flash

based page cache, which reduces the amount of DRAM required for system mem-

ory. This results in energy efficiency due to lower power consumption and higher

density of NAND flash compared to DRAM. However, this approach is beneficial

for more disk intensive applications, since flash is used only for page cache. In

addition, flash also has endurance problems in terms of number of write cycles,

which is tackled using wear leveling in the flash translation layer [65].

PRAM is an attractive alternative to flash, since: (1) Its endurance is higher

by several orders of magnitude, (2) It is a RAM and hence does not require an

overhead of an erase before a write. In [63], the authors evaluate the challenges
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Figure 4.1: Illustration of PRAM cell (a) and transistor (b).

involved in architecting PRAM as a DRAM alternative. The authors in [67] pro-

pose a hybrid cache, that is composed of PRAM and SRAM for power savings. To

solve the endurance problem of PRAM, they set a threshold on number of writes

to the PRAM cache lines, beyond which they do not use those lines. However,

the concern is that the typical level of conflicts and activity in cache could create

reliability problems very soon on such a configuration. Extensive research has been

done in modeling and understanding the basic characteristics of this technology

[94, 61, 105, 82, 51].

4.2 Design

4.2.1 PRAM/DRAM Background

The DRAM memory is organized as a grid of rows and columns, where each

bit is stored in the form of charge in a small capacitor. As the charge gets exhausted

due to leakage and frequent accesses, DRAM requires a consistent refresh operation

to sustain its data. This results in a constant power consumption referred to as the

refresh power. DRAM further consumes power for setting up its row and column

for a physical address accessed, and also for closing a row if some other row needs

to be accessed. This is referred to as the activation/precharge power. Additionally,

it consumes power for the actual read/write accesses, and consistent standby power

due to leakage and clock supply.

Unlike DRAM, PRAM is designed to retain its data even when the power

is turned off. A PRAM cell stores information permanently in the form of the cell
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material state, which can be amorphous (low electrical conductivity) or crystalline

(high electrical conductivity). A PRAM cell typically consists of chalcogenide

alloy material (eg. Ge2Sb2Te5 (GST)) and a small heater as shown in Figure

4.1a. The cell can be addressed using a selection transistor (MOS or BJT) that is

connected to the word-lines (WL) and bit-lines (BL) as illustrated in Figure 4.1b.

To write to a PRAM cell, the GST state needs to be altered by injecting a large

but fast current pulse (few 100ns) to heat up the GST active region. Consequently,

PRAM write power is high compared to DRAM. For reading a PRAM cell, the

power consumption is much lower, since no heating is involved. It is also lower

than DRAM cell read power based on the measurements shown in [82]. PRAM

consumes no refresh power, as it retains its information permanently and consumes

much lower standby power due to its negligible leakage [82]. However, PRAM has

limited write endurance (109 − 1012 cycles), which poses a reliability problem.

Regarding access times, the access latency of random reads/writes on PRAM is

slower compared to DRAM, although their read throughput is comparable. Thus,

considering all of these factors, PRAM is a promising candidate for energy savings

because of its low read and standby power compared to DRAM.

4.2.2 Architecture

Both PRAM and DRAM technologies have their respective advantages and

disadvantages. This motivates us to propose a hybrid memory architecture, which

consists of both DRAM and PRAM (PDRAM) for achieving higher energy ef-

ficiency. While PRAM provides low read and standby power, DRAM provides

higher write endurance and lower write power.

The primary design challenge in managing a PDRAM system is to man-

age efficient wear leveling of PRAM pages to ensure its longer lifetime. For this

purpose, we provide a hybrid hardware-software based solution. The hardware

portion is based in the memory controller and manages the access information to

different PRAM pages. The software portion is part of the operating system (OS)

memory manager (referred to as the page manager), which performs wear leveling

by page swapping/migration. The components of the solution are described in
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detail below.

Memory controller Figure 4.2 illustrates the various components and interac-

tions of the PDRAM memory controller. The memory controller is aware of the

partitioning of system memory between DRAM and PRAM. Based on the address

being accessed, it is able to route requests to the required memory. To help wear

leveling the PRAM, it maintains a map (access map in Figure 4.2) of the number

of write accesses to it. This information is kept at a page level granularity, which

is a function of the processor being used. For instance, the page size is 4KB for

x86, 8KB for Alpha etc. We use page level granularity, since it is the unit of

memory management, i.e. allocation and deallocation in the OS. If the number of

writes to any PRAM page exceed a given threshold, then the controller generates

a ‘page swap’ interrupt to the processor, and provides the page address. The OS

then assumes the responsibility of handling this interrupt and performing page

swapping as described in discussion below. The controller stores the map in the

PRAM, for which it reserves space during bootup. The access map is maintained

for the lifetime of the system, and after the first page swap interrupt, future in-

terrupts are generated whenever the write access count becomes a multiple of the

threshold. To maintain the map across reboots, it is stored on disk before the

shutdown, and copied back into PRAM during the startup. To protect this data

against crashes, it is synced with the disk periodically. If the write count for a

page reaches the endurance limit (109 in the worst case), the controller generates

a ‘bad-page’ interrupt for that page. This interrupt is also handled by the page

manager as described in the discussion below.

The enhancement of the controller incurs energy and memory overhead:

1) time and energy for updating PRAM access map; this involves extra accesses

to PRAM, which causes extra power consumption. To avoid this overhead we

introduce a small SRAM based cache in the controller (see Figure 4.2), which

caches the updates to the map, hence reducing the consequent number of PRAM

accesses. 2) memory overhead for storing the access map; the amount of memory

required is proportional to the size of the PRAM used, and the size of the entry

stored for each physical page in the access map. For instance, if the PRAM used is
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Figure 4.2: PDRAM Memory Controller.

4GB in size and the page size is 8K, the memory required for the access map would

be around 4MB (each entry = 8 bytes). This is fairly small for modern systems,

which have multiple GBs of memory.

Page Manager The page manager is the OS level entity responsible for man-

aging memory pages across PRAM/DRAM. It consists of two key subsystems,

described below in detail, which help it perform its key tasks: Memory Alloca-

tor (page allocation/deallocation) and Page Swapper (uniform wear leveling of

PRAM).

Memory Allocator The goal of the OS memory allocator is to serve the mem-

ory allocation requests from the OS and the user processes. A list of free pages is

maintained by typical allocators from which the page request is fulfilled. Tradi-

tional memory allocators instantly mark the pages released by applications as free,

and may immediately allocate them on subsequent requests. Such an approach

can create hot spots of pages in memory, where the activity (reads/writes) is sig-

nificantly higher compared to rest of the pages. This is fine for memories (like

DRAM) that do not face endurance problems, but for memories like PRAM, it is

a problem, as it may render some pages unusable very soon. To get around it, we

make the PRAM memory allocator aware of these issues. The PRAM allocator

maintains three lists of free pages: free, used-free and threshold-free list. At the

startup time, all PRAM pages are in the free list, and the allocation requests from
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the applications are served from it. When the pages are freed, they go to the

used-free list rather than the free list. If an allocated page is written to a lot by

an application, and if the number of writes crosses a ‘threshold’, then as described

before, the memory controller generates a page swap interrupt for that page. At

this point, the page swapper (described below) handles the interrupt, and releases

this page, which goes to the threshold-free list.

When the free-list becomes exhausted, or it lacks sufficient pages to service

a request, it is merged with the used-free list, which is then used as the source

of page allocation. The user-free list will get exhausted only when all the free

PRAM pages have been written to at least a ‘threshold’ number of times. When

this happens, the free and threshold-free list pointers are swapped to move all the

free pages from the threshold-free list to the original free list. Such an approach

tries to achieve wear leveling across all the PRAM pages by ensuring that all the

free pages have been written to at least ‘threshold’ times before getting reused.

We assume that there is a separate allocator for DRAM memory, which does not

need any such changes.

Page Swapper: The page swapper is responsible for managing the page

swap and bad-page interrupts generated by the memory controller. It handles the

page-swap interrupt by doing the following: 1) Allocates a new page from the

memory allocator. The new page could be either from the PRAM or DRAM. 2)

Finds the page table entry/entries (PTE/PTEs) of the physical page for which

the interrupt is generated. This can be accomplished in modern systems such as

Linux using the reverse mapping (RMAP), which maintains a linked list containing

pointers to the page table entries (PTEs) of every process currently mapping a

given physical page. 3) Copies the contents of the old page to the new one using

their virtual addresses. The advantage of using virtual address for the copy as

opposed to something like DMA is that it results in coherent copying of data,

which ensures that the new page gets the latest data. 4) Updates the PTE/PTEs

derived from the RMAP with the new physical page address. 5) Replaces the TLB

entries corresponding to the old PTE/PTEs. 6) Releases the old physical page. If

it is a PRAM page, it goes to the threshold-free list as described above.
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The key decision for the swapper is in selection of the new page for replacing

the old PRAM page, for which interrupt is generated. We implement two policies

for this decision:

Uniform memory policy : This policy allocates the new page from the PRAM

allocator. We introduce this as our baseline policy, which can be used in a PRAM

only memory configuration as well, since it allocates only PRAM pages. This

policy exploits the wear leveling mechanism of page swapping to extend PRAM

endurance, but does not benefit from the memory heterogeneity of a PDRAM

system.

Hybrid memory policy : This policy allocates new page from the DRAM alloca-

tor. The motivation to do so is based on the fact that there is a high probability of

the page, for which page swap interrupt got generated, being very write intensive.

As we show later, this has a two fold advantage: (a) It reduces number of page

swap interrupts, which is good for performance; (b) It reduces number of writes

in PRAM, which is good from perspective of both reliability and power, since

PRAM writes consume higher power than DRAM writes. This policy exploits the

heterogeneity of the PDRAM system, hence the name hybrid memory policy.

For the bad-page interrupt, the page swapper does exactly the same things

as it does for the page-swap interrupt, except that it moves the page off its free

lists and moves it into a bad-page list. The pages in the bad-page list are discarded

and not used for future allocations. The list is stored reliably in a known location

on PRAM.

4.2.3 Endurance Analysis

In this discussion, we analyze PRAM reliability with and without our wear

leveling policies. Lets assume a system with pages of size 4K (eg. x86 systems)

and 4GB of PRAM, implying there are Np=1M pages available for allocation.

We assume an application, which consistently writes to two different addresses in

PRAM, that map to different PRAM rows in the same memory bank. This ensures

that each row is consistently written back to the PRAM cells with alternative

writes, because at a time only one row in a bank can be open. Typical latencies
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for such writes in PRAM is around 150ns (Tw). We assume that this application

writes to these two addresses every 150ns or Tw in an alternative fashion to generate

the worst case from endurance perspective. Note that this is unrealistic, since there

are caches and write buffers between the CPU and memory, which will throttle the

rate of writes. However, the analysis will allow us to estimate PRAM reliability

under extreme cases. Lets refer to the write endurance of PRAM (109 write cycles

in worst case) as Nw. If we do not take any wear leveling into account, then such

an application can cause row failure in the page containing these addresses in 2Nw

writes or Tw×2Nw = 300s. This is a very low time scale, and hence not acceptable

for a real system deployment.

Now, we analyze the case with our uniform memory wear leveling policy.

Let the threshold of writes, at which the memory controller generates a page swap

interrupt, to be Nt (where Nt ( Nw), and the % of free PRAM pages in the

system be α%. Lets assume, that the PRAM rows containing the two addresses

being written to by the application map to the same physical page. Now as soon

as the application writes Nt times, the page swapper will swap the physical page

mapping these two addresses to a new PRAM page, which will correspond to

different rows in the PRAM. The old physical page will then be moved into the

threshold-free list. From the previous discussion, we know that the application will

not be able to write to the freed physical page (and its corresponding PRAM rows)

again until both the free and used-free lists become empty and the threshold-free

and free list pointers are swapped. For this to happen, the application will have

to write at least Nt times to every free PRAM page (αNpNt writes) before it can

access the old physical page again. In other words, to write 2Nt times to the old

physical page, the application will do αNpNt + 2Nt writes, i.e.:

2Nt → αNpNt + 2Nt

3Nt → 2αNpNt + 3Nt

βNt → (β − 1)αNpNt + βNt (4.1)
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This means that for doing Nw writes (βNt = Nw in equation 4.1):

Nw → (
Nw

Nt

− 1)αNpNt + (
Nw

Nt

)Nt

Nw → αNwNp + Nw ≈ αNwNp (Nw ) Nt ; αNwNp ) Nw) (4.2)

Based on this analysis, our application will have to do approximately αNwNp =

α1015 writes in order to perform Nw writes to a given physical page. This means,

to write Nw times to a PRAM row, it will have to perform 2Nw writes. Using Tw

as 150ns (see the paragraph above) and α = 50%, this translates to around 2.4

years. Thus, with our wear leveling scheme the bounds go from order of seconds to

years. It must be noted that this analysis has been done assuming an application

which bypasses cache and write buffers to perform just writes. If we assume a

conservative assumption of 50% cache hit for writes, the PRAM lifetime would

increase to about 4.8 years. As the quality of PRAM is expected to increase to

1012 cycles and beyond, the bounds will be much higher. For the hybrid memory

policy, the expected bounds would be even higher since the write intensive pages

are moved to DRAM, where endurance is not an issue. In our experiments, we use

Nt=1000 as a good trade-off between endurance and swapping cost.

4.3 Evaluation

4.3.1 Methodology

For our experimental evaluation we use the M5 architecture simulator [14].

M5 has a detailed DRAM based memory model, which we significantly enhance

to model timing and power of a state of the art modern DDR3 SDRAM based on

the data sheet of a Micron x8 1Gb DDR3 SDRAM running at 667MHz [50]. We

implement a similar model for PRAM based on timing and power characteristics

described in [94, 105, 82, 63]. We assume PRAM cells to be arranged in a grid

of rows and columns just like DRAM. Such configuration of PRAM has been

practically implemented and demonstrated by Intel [82].

The power parameters used for DRAM and PRAM are listed in Table 4.1.

The DRAM parameters are based on 78nm technology [50]. The read-write power
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Table 4.1: DRAM and PRAM Characteristics (1Gb memory chip).

Parameter DRAM PRAM

Power Characteristics

Row read power 210 mW 78 mW

Row write power 195 mW 773 mW

Act Power 75 mW 25 mW

Standby Power 90 mW 45 mW

Refresh Power 4 mW 0 mW

Timing Characteristics

Initial row read latency 15 ns 28 ns

Row write latency 22 ns 150 ns

Same row read/write latency 15 ns 15 ns

values for PRAM are obtained from the results in [63, 10, 11, 82]. For a fair

comparison, the values are down scaled for 78nm technology based on the rules

described in [81]. We can observe that read power of PRAM is around three times

lower compared to DRAM, while write power is around four times more. This

suggests that PRAM is not very attractive for write intensive applications both

from the perspective of reliability as well as energy efficiency. The third parameter

in Table 4.1 (Act) refers to the activation/precharge power, which is consumed in

opening and closing a row in the memory array. It is higher for DRAM, since it

has to refresh the row data before closing a row, which can be avoided in PRAM

due to its non-volatility. The standby power, which the memory consumes when

it is idle, is also lower for PRAM due to its negligible leakage power consumption.

Finally, DRAM consumes refresh power for supplying sustained refresh cycles for

it to retain its data. This is not required in PRAM, since it is non-volatile.

For timing, we use the Micron data sheet to get the detailed parameters

for DRAM. For PRAM, we use the results in [10] to obtain the read-write latency

values for 180nm technology. We scale down the read latency for 78nm, but main-

tain the same value for write as a conservative assumption, since the write latency

is a function of the material property. Table 4.1 shows these values. We can ob-

serve, that for an initial read, PRAM requires almost twice the amount of time
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Table 4.2: Benchmark Characteristics.

Benchmark rpi (%) wpi (%) # of pages

applu 1.94 0.93 24435

bzip2 0.12 0.08 24600

facerec 0.6 0.5 2240

gcc 0.15 0.06 2781

sixtrack 0.01 0.008 7601

as compared to DRAM. This happens due to the higher row activation time of

PRAM. Similarly, writing back or closing an open row in PRAM is around seven

times more expensive than for DRAM. However, reads/writes on an open row have

latency values similar to DRAM.

Besides this, we further extend M5 for incorporating the memory controller

and page manager as described in section 4.2. We implement the access map cache

in the memory controller (see section 4.2) as a 32 entry (each entry = 8 bytes)

fully associative cache. For the page manager, we implement both the uniform and

hybrid memory policies as described in section 4.2.

For our experiments, we assume a baseline system with 4GB of DDR3

SDRAM, which we refer to as DRAM. The 4GB memory consists of four 1GB

ranks, where each rank is made up of eight x8 1Gb chips with characteristics de-

scribed in Table 4.1. We evaluate it against two experimental systems: 1) Hybrid

system : It comprises of 1GB DDR3 SDRAM and 3GB of PRAM, and employs

hybrid memory policy for managing page swap requests. 2) Uniform system :

It comprises of 4GB of PRAM, and employs uniform memory policy for managing

page swap requests. The motivation of the comparison is to show how heterogene-

ity in memory organization can result in better overall performance and energy

efficiency.

For workloads, we use benchmarks from the SPECCPU2000 suite, which we

execute on M5 using a detailed out-of-order execution ALPHA processor running

at 2.66GHz. The simulated processor has two levels of caches: 64KB of data

and instruction L1 caches, and 4MB of L2 cache. We use benchmarks described

in Table 4.2, and simulate the first five billion instructions. Table 4.2 illustrates
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(a) Energy Savings

(b) Performance Overhead

Figure 4.3: Energy Savings and Performance Overhead Results for Uniform and
Hybrid Policies.

the memory access characteristics of these benchmarks in terms of rpi (reads per

instruction), wpi (writes per instruction), and number of pages (total number of

pages allocated). We can see that they have varying memory access characteristics.

For instance, sixtrack has very low rpi (0.01%) and wpi (0.008%), while for applu

it is an order of magnitude higher (1.94% and 0.93%); facerec has high rpi (0.6%)

and wpi (0.5%), while gcc and bzip2 have medium rpi and low wpi. Similarly, the

working set of these benchmarks in terms of the number of pages allocated also

varies from just 2240 (facerec) to as high as 24600 (bzip2 ).

4.3.2 Results

Energy Savings and Performance Overhead Figure 4.3 shows the results of

the hybrid and uniform memory systems baselined against the DRAM system for
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all the benchmarks. Figure 4.3b shows the overhead incurred in terms of execution

time by these systems, while Figure 4.3a shows the reduction in memory energy

consumption. Please note that the %overhead and %energy numbers in these

figures include the energy and time overhead due to page migrations and accesses

to the access map in the memory controller and the PRAM. We describe the details

of the overhead in the following sections.

We can see in Figure 4.3, that on average, the hybrid system achieves

around 30% energy savings for just 6% performance overhead across all the bench-

marks. In contrast, the uniform system gets 30% energy savings at the cost of 31%

overhead. For sixtrack, which has low rpi and wpi, the impact on performance is

negligible since there are not enough accesses to expose the slower access times of

PRAM. Both systems achieve high energy savings due to the lower standby power

consumption of PRAM compared to DRAM (see Table 4.1). The energy savings

for the uniform system is higher (around 49%) than hybrid system (37%) since the

uniform system comprises exclusively of PRAM, while the hybrid system contains

1GB of DRAM as described in section 4.1. For gcc and bzip2, the performance

overhead is higher for the uniform system (around 6%). This happens due to the

relatively higher rpi and wpi of these benchmarks compared to sixtrack (see Table

4.2), which exposes the slower access times of the PRAM. The overhead is lower

for the hybrid system (2%), since it migrates the write intensive pages to DRAM.

The energy savings is higher again for the uniform system due to the lower standby

power of PRAM.

In contrast, for applu and facerec, the performance overhead of the uniform

system is significantly high (57% and 82% respectively). This happens due to

the higher wpi and rpi of both these benchmarks (see Table 4.2). The overhead

for facerec is higher than applu (despite its lower rpi and wpi) due to its higher

IPC (60% more than applu). This implies, facerec is more sensitive to higher

memory access latencies, which results in the poor performance of the uniform

system due to slower access times of PRAM. The high overhead nullifies the lower

power consumption of PRAM and results in negligible energy savings. In contrast,

the performance overhead of the hybrid system is very low (4%). This happens
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Figure 4.4: Access Map Cache Hit Rate (%) (the values were similar from both
Uniform and Hybrid Policies).

because facerec has a very high locality of read and writes to its pages, and the

hybrid system migrates them to DRAM. This results in much higher energy savings

as well (26%). For applu, the energy savings for the uniform system is low (around

10%) due to its high performance overhead. For the hybrid system as well, the

overhead is high (around 18%) because of low locality of reads and writes. However,

the energy savings is still higher (20%) compared to uniform system.

Thus, the results indicate, that in terms of comparison between the sys-

tems, the hybrid system is clearly more beneficial. It is able to exploit the read-

friendliness of PRAM as well as the write friendliness of DRAM, and hence achieves

better overall performance and energy efficiency.

System Overhead In this discussion, we analyze the sources of system overhead

and their impact in terms of performance and energy in detail. We focus on the

overhead due to accesses to the access map and its cache, and page swapping.

Access Map As described in section 4.2, the access map is used to store write

access information to PRAM pages. The updates to the access map and its memory

controller cache thus add energy overhead in the system in terms of extra accesses

to PRAM and the power consumption of the cache itself.

For understanding the extra accesses to PRAM, Figure 4.4 shows the hit

rate of the access map cache. The hit rate was almost the same for both the

hybrid and uniform systems. We can see that the hit rate is fairly high across all

the benchmarks (average around 90%). This indicates that the overhead is very



73

Table 4.3: Page Swap Interrupts.

Benchmark Uniform Hybrid % Reduction

applu 29000 18000 38

bzip2 2400 635 74

facerec 24600 1500 94

gcc 1350 320 77

sixtrack 0 0 0

low, since extra PRAM accesses are done only for 10% of writes. From Table 4.2,

we know that wpi of most of the benchmarks is fairly low, so in the context of

overall time frame, the impact is negligible.

For the access map cache, we estimate the power consumption to be around

78mW per access using CACTI 4.1 [46]. Since the cache is accessed only for writes,

in the overall time-frame, the extra energy consumption due to it is also very low.

It must be noted that the extra energy consumption due to accesses to the access

map and its cache is included in the results in Figure 4.3.

Page Swapping The second source of overhead is page swapping interrupts and

the consequent page swaps. Table 4.3 shows the statistics related to page swap

interrupts for the uniform and hybrid system. We can observe that for most of

the benchmarks, the number of interrupts drop significantly for the hybrid system.

For instance, for facerec, it drops down by as much as 94%. This happens due

to its high wpi and significant locality in its reads and writes to a small set of

addresses. In the uniform system, when the pages mapping these addresses reach

the threshold, they get mapped to a new PRAM page. However, sustained writes

to these addresses generate further page swap interrupts. In contrast, with the

hybrid system, once the pages mapping these addresses reach the threshold, they

are mapped to DRAM pages, where they no longer generate any further page swap

interrupts. For applu, the reduction is smaller (37%) due to its bigger working set,

and relatively lower lack of locality of reads-writes.

In terms of time overhead of a page swap, it is fairly low since it is a quick

software operation of allocating and copying the page, and modifying the page

table entries. We assume it to be 5µs, which is based on the estimate of timer
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interrupt overhead in modern systems that get generated as frequently as 1ms.

Hence, overall the page swapping overhead is also minimal in terms of performance

and energy. Note, the page swap overhead is also included in the results in Figure

4.3.

4.4 Conclusion

In the last two chapters we have evaluated the challenges in achieving en-

ergy efficiency for server class systems. We first showed that the effectiveness of

DVFS for system level energy savings has largely diminished in modern server

class systems, with even simple DPM policies outperforming it. We showed that

due to lack of energy proportionality of server class systems, the contribution of

DPM for energy savings is also much smaller at the system level. Based on these

observations we identified two ways for achieving energy efficiency for such system

– designing them to be more energy proportional and increasing their utilization so

that they operate in their energy efficient zone through workload characterization.

As an example of the first solution we proposed PDRAM, a novel, energy efficient

hybrid main memory system based on PRAM and DRAM in this chapter. We

highlighted the challenges involved in managing such a system, and provided a

hardware/software based solution for it, which exploits the workload characteris-

tics in terms of their read-write intensiveness to intelligently allocate them across

DRAM and PRAM. We evaluated the system using benchmarks with varying

memory access characteristics and demonstrated that the system can achieve up

to 37% energy savings at negligible overhead. Furthermore, we showed that it pro-

vides better overall energy and performance efficiency compared to homogeneous

PRAM based memory systems as well. The next two chapters focus on the second

approach towards energy efficiency for server systems – workload consolidation.

Chapter 4, in part, is a reprint of the material as it appears in Proceedings of

the 46th ACM/IEEE Design Automation Conference, 2009. Dhiman, G.; Ayoub,

R. and Rosing, T.S. The dissertation author was the primary investigator and

author of this paper.



Chapter 5

Energy Efficiency using Workload

Consolidation

5.1 Introduction

This chapter looks at the problem of energy efficiency from the perspective

of data center and enterprise environments, where the energy consumption of the

compute equipment and the associated cooling infrastructure is a major compo-

nent of the operational costs. As observed in the previous chapters, if workloads in

such installations could be consolidated on fewer machines, it can dramatically in-

crease the overall energy efficiency by increasing the overall performance per watt.

Consequently, modern data centers and cloud computing providers (like Amazon

EC2 [3]) use virtualization (eg. Xen [8] and VMware [40]) to not only get better

fault isolation and improved system manageability, but also reduced infrastructure

cost through resource consolidation and live migration [23]. Consolidating multiple

servers running in different virtual machines (VMs) on a single physical machine

(PM) increases the overall utilization and efficiency of the equipment across the

whole deployment. Thus, the creation, management and scheduling of VMs across

a cluster of PMs in a power aware fashion is key to reducing the overall operational

costs. Policies for power aware VM management have been proposed in previous

research [86] and are available as commercial products as well (eg. VMware DRS

75
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[99]). These policies require understanding of the power consumption and resource

utilization of the PM, as well as its breakdown among the constituent VMs for op-

timal decision making. Currently they treat the overall CPU utilization of the PM

and its VMs as an indicator of their respective power consumption and resource

utilization, and use it for guiding the VM management policy decisions (VM migra-

tion, dynamic voltage frequency scaling/DVFS, resource allocation etc.). However,

in our work we show that based on the characteristics of these different co-located

VMs, the overall power consumption and performance of the VMs can vary a lot

even at similar CPU utilization levels. This can mislead the VM management

policies into making decision that can create hotspots of activity, violate perfor-

mance requirements and degrade overall energy efficiency. Consequently, it is very

important to understand the data center workloads and their characteristics while

designing VM management policies.

5.2 Data Center Workloads

This section discusses the classification and key characteristics of the work-

loads that typically run in modern data centers – batch and service workloads

[42].

5.2.1 Services

These workloads refer to the software servers that provide services to clients.

The service could be either simple single tier web based, or comprised of multiple

tiers spanning web, application, and database servers. Regardless of the scale and

architecture of the service, the key property is that they are request driven. The

primary goal for these workloads is to serve the user request within a given time

bound to maintain a QoS (Quality of Service) level. In this thesis, we consider the

following two applications as representative services:

(a) RUBiS [4] is a multi-tier online service that implements the core func-

tions of an auction site including selling, browsing, and bidding. We configure it

as a two-tier service model, containing a front-end Apache PHP web server and a
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back-end MySQL database. RUBiS provides workloads of different mixes for the

client sessions that are emulated on a separate machine. In this chapter, we use

the ‘browsing mix’, which emulates a web-intensive user browsing experience.

(b) Olio [5] is a distributed web application that provides an events site

similar to popular social networking sites, featuring photos, calendars, and shared

comment feeds. Common user operations include homepage accesses, viewing per-

son/event details or adding new events. The client sessions are emulated by the

Faban workload generator [71], and based on the type of user request, the Apache

PHP web server may carry out several HTTP requests, MySQL database queries,

and accesses to a file store for user files, such as photos. Olio can be configured

either with or without a memcached server. In our experiments we disable mem-

cacheing to generate a more database intensive workload that provides greater

contrast with RUBiS.

5.2.2 Batch

These workloads refer to the (typically) resource intensive jobs that are

representative of the analytics, number crunching, and scientific computing class

of workloads. The primary goal of these jobs is to maximize the overall instruction

throughput, but with no specific response time requirements. We use representa-

tive workloads from SPEC-CPU 2K (eon – computer visualization, facerec – im-

age processing, equake - seismic wave propogation simulation etc.) and PARSEC

(streamcluster – data mining, swaptions – financial analysis, bodytrack – scientific

simulation etc.) benchmark suites, that are heavily throughput intensive, as our

batch workloads. The chosen set covers a wide array of application domains as

well as both single (SPEC-2K) and multi threaded (PARSEC) execution.

5.2.3 Workload Management

A typical data center, based on the corporate and enterprise requirements

or the time of the day could be running only batch jobs, only services or a mix

of both types of jobs. The goal of this thesis is to study how to maximize energy
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efficiency in all these cases. As we show in the review of the related work, the

problem of QoS aware energy efficient management in the presence of services

workloads scenario has been studied before [79]. So we focus on the other two

cases, i.e. batch only and the mix of batch and services in this thesis. We further

show that how a solution optimized for one scenario becomes sub-optimal in the

other.

In this chapter, we introduce vGreen, a multi-tiered software system to

manage batch VM scheduling with the objective of managing the overall energy

efficiency and performance. The basic premise behind vGreen is to understand

and exploit the relationship between the architectural characteristics of a VM (eg.

instructions per cycle, memory accesses etc.) and its performance and power con-

sumption. vGreen is based on a client server model, where a central server (referred

to as ‘vgserv’ ) performs the management (scheduling, DVFS etc.) of VMs across

the PMs (referred to as ‘vgnodes’ ). The vgnodes perform online characterization of

the VMs running on them and regularly update the vgserv with this information.

These updates allow vgserv to understand the performance and power profile of

the different VMs and aids it to intelligently place them across the vgnodes to

improve overall performance and energy efficiency.

In the next chapter, we focus on the mixed workload scenario, and introduce

the Themis system to manage the heterogeneous mix of workloads. We further

show how vGreen and the other existing state of the art is insufficient to maximize

the overall energy efficiency in the mixed workload case scenario.

5.3 Related Work

VM Management: A number of systems for management of VMs across

a cluster of PMs have been proposed in the past. Eucalyptus [76], OpenNebula

[78] and Usher [68] are open source systems, which include support for managing

VM creation and allocation across a PM cluster. However, these solutions do not

have VM scheduling policies to dynamically consolidate or redistribute VMs. VM

scheduling policies for this purpose have also been investigated in the past. In
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[103], the authors propose a VM scheduling system, which dynamically schedules

the VMs across the PMs based on their CPU, memory and network utilization to

avoid hotspots of activity on PMs for better overall performance. The Distributed

resource scheduler (DRS) from VMware [99] uses VM scheduling to perform au-

tomated load balancing in response to CPU and memory pressure. In [16], the

authors propose VM scheduling algorithms for dynamic consolidation and redis-

tribution of VMs for managing QoS requirements of different services VMs in the

cluster. They develop dynamic models to capture resource utilization (like CPU

utilization) profile of the VMs over different periods of time, which allows them to

make precise scheduling decisions that avoid resource bottlenecks. The authors in

[41] propose Entropy, which uses constraint programming to determine a globally

optimal solution for VM scheduling in contrast to the first fit decreasing heuris-

tic used by [103, 16], which can result in globally sub-optimal placement of VMs.

However, these approaches have limited awareness of the performance interference

effects between the different VMs and assume that the CPU utilization aggregates

upon VM consolidation, which as we show in our work is not always true. Besides,

none of these systems are structured to account for QoS requirements of service

workloads.

Software level QoS support: Management of QoS for latency sensitive

applications in a heterogeneous workload mix on standalone systems has been

studied before under the Stanford SMART scheduler [75] and QLinux [93] projects.

The primary approach of both the systems is to ensure timely access to CPU for

the latency sensitive applications while maintaining proportional sharing of CPU

resources for the batch applications. Similar solutions have been proposed for

virtualized environments as well [77, 64]. The solution adopted by Themis (adding

a QoS state) to guarantee timely CPU access for the service workloads is similar in

spirit. However, we further show that the software level support for QoS through

timely CPU access is not sufficient to guarantee QoS in presence of interference

effects in modern multi-core based systems. Recent work has proposed dynamic

VM resource management algorithms for satisfying QoS requirements of workloads

in presence of interference effects. In [79], the authors employ CPU capping to
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ensure meeting QoS requirements of different consolidated VMs, which as we show

in this paper can even be energy inefficient. Besides, their focus is very specific to

one class of workloads – just services [79].

Interference Effects: The interference effects due to shared resource us-

age by co-scheduled workloads on modern multi-core based platforms has been

studied before at both the OS and hypervisor levels. The work in [27] shows how

the pathological sharing of resources like last level cache and memory bandwidth

can severely deteriorate the overall performance as well as energy efficiency. They

propose OS scheduling based solutions to resolve the shared resource contention

dynamically. However, they explore the problem exclusively for batch jobs. The

vGreen system takes the same problem of shared resource usage to the cluster

level using virtualization, and develops novel workload characterization schemes

to implement energy efficient VM scheduling algorithms by exploiting them. In

the presence of both the batch and service workloads, as we show in the next

chapter, the interference effects and its impact on the QoS of services can be

rather unpredictable and difficult to model. Thus, instead of explicitly modeling

the interference, the Themis system solves this problem by inferring it through a

performance model based on QoS and CPU utilization feedback.

Power Management: Power management in data center like environ-

ments has been an active area of research. In [18], data center power consumption

is managed by turning servers off depending on demand. Reducing operational

costs by performing temperature aware workload placement has also been explored

[72]. In [35], DVFS is performed based on the memory intensiveness of workloads

on the server clusters to reduce energy costs. Similarly, [87, 33] use DVFS to re-

duce average power consumption in blade servers with the objective of performing

power budgeting. However, we have already shown in the previous chapter, that

in modern server systems, the effectiveness of DVFS for energy management has

diminished significantly due to its impact on the performance of the workloads. In

this chapter, we further corroborate this observation and show how intelligent VM

co-location outperforms state of the art DVFS policies [29, 56] in terms of energy

savings.
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The problem of power management in virtualized environments has also

been investigated. In [74], the authors propose VirtualPower, which uses the power

management decisions of the guest OS on virtual power states as hints to run

local and global policies across the PMs. It relies on efficient power management

policies in the guest OS, and does no VM characterization at the hypervisor level.

This makes it difficult to port some of the state of the art power management

policies like [29, 56] in guest OS because of lack of exclusive access to privileged

resources such as CPU performance counters. This problem has led to adoption

of power management frameworks like cpufreq and cpuidle in recent virtualization

solutions (like Xen [8]). In [2], the authors develop a power and performance

model of a transaction based application running within the VMs, and use it to

drive cluster level energy management through DVFS. However, they assume the

application characteristics to be known. In [86], a co-ordinated multi-level solution

for power management in data centers is proposed. Their solution is based on a

model that uses power estimation (using CPU utilization) and overall utilization

levels to drive VM placement and power management. However, the model and

results are based on offline trace driven analysis and simulations. In [66], the

authors present GreenCloud, an infrastructure to dynamically consolidate VMs

based on CPU utilization to produce idle machines, which could be turned off to

generate energy savings. However, none of these solutions [74, 2, 86, 66] take the

architectural characteristics of the VM into account, which, as we show in section

5.4, directly determine the VM performance and power profile. In [97], the authors

use VM characteristics like cache footprint and working set to drive power aware

placement of VMs. But their study assumes an HPC application environment,

where the VM characteristics are known in advance. Besides, their evaluation is

based on simulations. In contrast, vGreen and Themis systems assume a general

purpose workload setup with no apriori knowledge on their characteristics.

5.4 Motivation for Workload Characterization

In this chapter we assume Xen as the underlying virtualization hypervisor.

It is a standard open-source virtualization solution, which also forms the baseline
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technology for commercial products like XenSource, Oracle VM etc. However, the

ideas presented in this chapter are independent of Xen, and can be applied to other

virtualization solutions like kernel based virtual machines (KVM) etc. as well. In

Xen, a VM is an instance of an OS, which is configured with virtual CPUs (vCPUs)

and a memory size. The number of vCPUs and memory size is configured at the

time of VM creation. Xen virtualizes the real hardware to the VM making the OS

running within it believe that it is running on a real machine. A PM can have

multiple VMs active on it at any point in time, and Xen multiplexes them across

the real physical CPUs (PCPUs) and memory. The entity that Xen schedules over

the PCPU is the vCPU, making it the fundamental unit of execution. Thus, a

vCPU is analogous to a thread, and a VM is analogous to a process in a system

running a single OS like Linux. In addition, Xen provides a control VM, referred

to as Domain-0 (or Dom-0), which is what the machine running Xen boots into. It

acts as an administrative interface for the user, and provides access to privileged

operations like creating, destroying or migrating VMs.

5.4.1 Performance and Power Profile of VMs

The nature of workload executed in each VM determines the power profile

and performance of the VM, and hence its energy consumption. As discussed be-

fore, VMs with different or same characteristics could be co-located on the same

PM. In this section we show, that co-location of VMs with heterogeneous charac-

teristics on PMs is beneficial for overall performance and energy efficiency across

the PM cluster.

For understanding this, we performed some experiments and analysis on

two benchmarks from SPEC-CPU 2000 suite, namely eon and mcf. These two

benchmarks have contrasting characteristics in terms of their CPU and memory

utilization. While mcf has high memory per cycle (MPC) accesses and low in-

structions committed per cycle (IPC), eon has low MPC and high IPC. We use a

testbed of two dual Intel quad core Xeon (hyperthreading equipped) based PMs

(sixteen CPUs each) running Xen. On each of these PMs, we create two VMs

with eight virtual CPUs (vCPUs) each (total of four VMs). Inside each VM we



83

(a) Normalized Execution Time (b) Normalized Power Consumption

(c) Comparison of Aggregate IPC and

MPC

(d) Comparison of ‘mixed’ vs ‘same’ VM

placement schedules

Figure 5.1: Comparison of various metrics of eon and mcf across ‘mixed’ and
‘same’ schedules.

execute either eon or mcf as the workload. We use multiple instances/threads of

the benchmarks to generate higher utilization levels. For our PM (sixteen CPUs),

this implies four instances for 25% utilization, eight instances for 50% and sixteen

instances for 100% utilization. Each PM is equipped with power sensors, which are

interfaced to the Dom-0 OS in a standardized fashion using Intelligent Platform

Management Interface (IPMI) [55]. We periodically (every 2s) query the IPMI

interface to log the power consumption of the whole PM for all our experiments.

In our first set of experiments, we run homogeneous VMs on each PM, i.e.

the two VMs with mcf on one PM, and two with eon on the other. We refer to

this VM placement schedule as ‘same’ indicating homogeneity. During the exe-

cution, we record the execution time of all the benchmark instances. Figure 5.1a
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shows the normalized execution time results for different number of instances of

the benchmarks, where the execution times are normalized against the execution

time with two instances (one instance per VM). We can observe that for mcf in

the ‘same’ schedule (shown as ‘mcf-same’), as the CPU utilization increases, the

execution time almost increases linearly. For 100% utilization mcf, the execution

time is almost 8.5x compared to the baseline execution time. The primary reason

for such an observation is the high MPC of mcf. The high MPC results in higher

cache conflict rate and pressure on the memory bandwidth when multiple threads

execute, which decreases the effective IPC per thread and hence increases its exe-

cution time. This is illustrated by the plot of aggregate IPC and MPC of all mcf

threads in Figure 5.1c. We can see how the MPC increases by around 7x, as CPU

utilization goes from 12% to 100%. However, the aggregate IPC almost remains

constant, which implies IPC per thread goes down significantly, resulting in in-

creased execution time observed in Figure 5.1a. In contrast, for eon (‘eon-same’),

the execution time is fairly independent of the CPU utilization due to its much

lower MPC. We can observe that the execution time shows an increase beyond

50% utilization. This happens since our machine has eight cores and sixteen CPUs

(due to hyperthreading), with two CPUs per core. When we reach 50% utilization

that corresponds to eight threads of the benchmark, and beyond that the threads

start sharing the pipeline, which reduces the individual IPC of threads sharing

the pipeline. This phenomena is illustrated in Figure 5.1c, where the IPC slope

of eon drops off a little beyond 50% CPU utilization. However, this increase in

execution time is trivial compared to that of mcf as seen in Figures 5.1a and 5.1c.

In summary, this analysis indicates that the performance of a VM has a strong

negative co-relation to utilization rate of the memory subsystem.

Similarly, Figure 5.1b shows the system level power consumption of the PMs

normalized against the power consumption with just two threads. We can observe

that for eon (‘eon-same’), the power consumption increases almost linearly to the

increase in utilization. This happens, since it has high IPC, which implies higher

CPU resource utilization and power consumption. We can observe that the slope of

increase in power changes at 50% utilization. This is again due to pipeline sharing
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between threads beyond 50% utilization, which lowers the contribution of new

threads to power consumption (see Figure 5.1c). In contrast, for mcf, the power

consumption increases initially but then it saturates. This primarily happens due

to the lower IPC of threads at higher utilization levels as discussed above. As a

consequence of this, the difference in power consumption between the two PMs is

almost 20% (∼45 Watts in our measurements). This analysis indicates that the

power consumption of a VM has direct co-relation to IPC of the workload running

inside it.

These results indicate that co-scheduling VMs with similar characteristics

is not beneficial from energy efficiency point of view at the cluster level. The PM

running mcf contributes to higher system energy consumption, since it runs for

a significantly longer period of time. To understand the benefits of co-scheduling

heterogeneous workloads in this context, we swapped two VMs on the PMs, hence

running VMs with mcf and eon on both the PMs. We refer to this VM placement

schedule as ‘mixed’, indicating the heterogeneity. Figure 5.1 shows the results (in-

dicated as ‘mixed’) achieved for this configuration in terms of normalized execution

time and power consumption. We can observe that eon execution time almost stays

the same, while mcf execution time goes down significantly at higher utilization

rates (around 450% reduction at 100% utilization). This happens because we now

get rid of the hot-spot of intense activity in the memory subsystem on one PM

(running just the mcf VMs in the ‘same’ schedule), and share the overall system

resources in a much more efficient fashion. The average power consumption of the

two PMs becomes similar, and roughly lies between that of the two PMs in the

‘same’ schedule, as the overall IPC is also much better balanced across the cluster.

Figure 5.1d illustrates the comparison of the ‘mixed’ and ‘same’ VM sched-

ules, and highlights the benefits of the ‘mixed’ schedule. It plots three key metrics

to capture this: (1) Energy savings: We estimate the energy reduction in ex-

ecuting each combination of VMs using ‘mixed’ over ‘same’ schedule. This is

calculated by measuring the total energy consumption for a VM combination with

two schedules, and then taking their difference. We can observe that across all

utilization levels, the ‘mixed’ schedule is clearly more energy efficient compared
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to the ‘same’ schedule. At higher utilization rates (50% and beyond), it achieves

as high as 50% energy savings. This primarily happens due to the high speedup

achieved by it compared to ‘same’ schedule while keeping the average power con-

sumption at a similar level. The next two metrics provide details on both the

speedup and average power consumption achieved by the two schedules. (2) Av-

erage Weighted Speedup (AWS): This metric captures how fast the workload

runs on the ‘mixed’ schedule compared to ‘same’ schedule. The AWS is based on

a similar metric defined in [91]. It is defined as:

AWS =

∑

V Mi

Tsamei

Talonei
∑

V Mi

Tmixedi

Talonei

− 1 (5.1)

where, Talonei
is the execution time of VMi when it runs alone on a PM, and Tsamei

and Tmixedi
are its execution time as part of a VM combination with ‘same’ and

‘mixed’ schedules respectively. To calculate AWS, we normalize Tsamei
and Tmixedi

against Talonei
for each VM, and then take ratio of the sum of these normalized

times across all the VMs in the combination as shown in equation 5.1. AWS > 0

implies that the VM combination runs faster with ‘mixed’ schedule and vice versa.

Figure 5.1d clearly shows, that the ‘mixed’ schedule is able to achieve significant

speedup. The AWS reaches as high as 57% due to efficient resource sharing and

contributes significantly to the energy savings discussed above. (3) Increase in

power consumption: This metric captures the difference between the average

power consumption of the PMs under the ‘mixed’ and ‘same’ schedule. This is

important, since we need to make sure that the speedup achieved does not result in

much higher average power consumption across the cluster. Figure 5.1d shows that

the increase in system power consumption is trivial (<3%) across all the utilization

levels. Thus, high speedups at almost similar average power consumption results

in significant energy savings illustrated in Figure 5.1d.

In summary, this discussion provides us key insights into the VM manage-

ment problem: (1) VM characteristics provide invaluable information on both the

power as well as performance profile of VMs. (2) VM scheduling policies should

try to co-schedule VMs with heterogeneous characteristics on the same PM. This

results in efficient sharing of resources across the cluster and as a consequence
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is beneficial from both energy efficiency and performance point of view. This is

achievable in virtualized environments, since VMs can be dynamically migrated at

runtime across PMs at low overhead using ‘live migration’ [23].

This provides strong motivation to use online characterization of VMs for

system wide VM management. In the next section, we describe the overall ar-

chitecture of vGreen, and present details on how it constructs VM characteristics

dynamically at run time using a novel hierarchical approach.

5.5 vGreen Design

In this section, we present the details on the design, architecture and imple-

mentation of our system, vGreen. Building upon the discussion in the last section,

we show how the system is structured to capture the CPU and memory utilization

rates of individual VMs, and how it uses it to manage the VMs in an efficient

fashion across a PM cluster.

Figure 5.2: Overall Architecutre of vGreen system.

Figure 5.2 illustrates the overall architecture of vGreen, which is based on a

client-server model. Each PM in the cluster is referred to as a vGreen client/node

(vgnode). There is one central vGreen server (vgserv), which manages VM schedul-

ing across the vgnodes based on a policy (vgpolicy) running on the vgserv. The

vgpolicy decisions are based on the value of different metrics, which capture MPC,

IPC, and utilization of different VMs, that it receives as updates from the vgnodes
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Figure 5.3: An example of Hierarchical Workload Characterization in vGreen.

running those VMs. The metrics are evaluated and updated dynamically by the

vGreen modules in Xen (vgxen) and Dom-0 (vgdom) on each vgnode. Regular

updates from the vgnodes on the metrics allow the vgpolicy to balance both the

power consumption and overall performance across the PMs. We now describe the

vGreen components and the metrics employed in detail.

vgnode A vgnode refers to an individual PM in the cluster. A vgnode might

have multiple VMs running on it at any given point in time as shown in Figure

5.2. Each vgnode has vGreen modules (vgxen and vgdom) installed on them.

vgxen: The vgxen is a module compiled into Xen (see Figure 5.2) and is

responsible for characterizing the CPU and memory behavior (specifically IPC and

MPC) of running VMs. Since multiple VMs with possibly multiple vCPUs might

be active concurrently, it is important to cleanly isolate the characteristics of each

of these different entities. vGreen adopts a hierarchical approach for this purpose

as illustrated in Figure 5.3. The lowest level of the hierarchy is the vCPU level,

which is the fundamental unit of execution and scheduling in Xen. When a vCPU

is scheduled on a PCPU by the Xen scheduler, vgxen starts the CPU performance

counters of that PCPU to count the following events: (1) Instructions Retired

(INST), (2) Clock cycles (CLK), and (3) Memory accesses (MEM).

When that vCPU consumes its time slice (or blocks) and is removed from

the PCPU, vgxen reads the performance counter values and estimates its MPC
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(MEM/CLK) and IPC (INST/CLK) for the period it executed. This process is

performed for every vCPU executing in the system across all the PCPUs. To

effectively estimate the impact of these metrics on the vCPU power consumption

and performance, vgxen also keeps track of the CPU utilization (util) of each

vCPU, i.e. how much time it actually spends executing on a PCPU over a period

of time. This is important, since even a high IPC benchmark will cause high power

consumption only if it is executing continuously on the PCPU. Hence, the metric

derived for each vCPU is weighted by its util, and is referred to as the current

weighted MPC and IPC (wMPCcur and wIPCcur) as shown below:

wMPCcur = MPC · util

wIPCcur = IPC · util (5.2)

They are referred to as ‘current’, since they are estimated based on the IPC/MPC

values from the latest run of a vCPU. To also take into account the previous value

of these metrics, we maintain them as running exponential averages. The equation

below shows how weighted MPC is estimated:

wMPC = α · wMPCcur + (1− α) · wMPCprev (5.3)

where, the new value of weighted MPC (wMPC) is calculated as an exponential

average of wMPCprev, the previous value of wMPC, and wMPCcur (equation

5.2). The factor α determines the weight of current value (wMPCcur) and history

(wMPCprev). In our implementation we use α=0.5, thus giving equal weight to

both. The IPC metric is computed in a similar fashion as discussed above. We

store these averaged metrics in the Xen vCPU structure to preserve them faithfully

across vCPU context switches. This constitutes the metric estimation at the lowest

level of the hierarchy as shown in Figure 5.3.

At the next level, vgxen estimates the aggregate metrics (vMPC, vIPC,

vutil) for each VM by adding up the corresponding metrics of its constituent

vCPUs, as shown in the middle level of Figure 5.3. This information is stored in

VM structure of Xen to personalize metrics at per VM level and is exported to

Dom-0 through a shared page, which is allocated by vgxen at the boot-up time.
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vgdom: The second vGreen module of vgnode is the vgdom (see Figure

5.2). Its main role is to periodically (Tup period) read the shared page exported

by vgxen to get the latest characteristics metrics for all the VMs running on the

vgnode, and update the vgserv with it. In addition, vgdom also acts as an interface

for the vgnode to the vgserv. It is responsible for registering the vgnode with the

vgserv and also for receiving and executing the commands sent by the vgserv as

shown in Figure 5.2.

vgserv The vgserv acts as the cluster controller and is responsible for managing

VM scheduling and power management across the vgnode cluster. The vgpolicy is

the core of vgserv, which makes the scheduling and power management decisions

based on periodic updates on the VM metrics from the vgnodes. The metrics of

each VM are aggregated by the vgpolicy to construct the top level or node level

metrics (nMPC, nIPC, nutil) as shown in Figure 5.3. Thus, the knowledge of both

the node level and VM level metrics allow the vgpolicy to understand not only the

overall power and performance profile of the whole vgnode, but also fine grained

knowhow of the breakdown at VM level.

Based on these metrics, the vgpolicy runs its balancing and power man-

agement algorithm periodically (Tp period). The basic algorithm is motivated by

the fact that VMs with heterogeneous characteristics should be co-scheduled on

the same vgnode (section 5.4). The problem of consolidation of VMs in minimum

possible PMs has been explored in previous work [41, 103], and is similar to bin-

packing problem, which is computationally NP-hard. As discussed in Section 5.3,

the existing solutions perform the consolidation based on just CPU utilization.

Our balancing algorithms build on top of these existing algorithms to perform bal-

ancing based on MPC and IPC as well. The overall algorithm runs in the following

four steps:

(1) MPC balance: This step ensures that nMPC is balanced across all the

vgnodes in the system for better overall performance and energy efficiency across

the cluster. Table 5.1 gives an overview of how the MPC balance algorithm works

for a vgnode n1. The algorithm first of all checks, if the nMPC of n1 is greater

than a threshold nMPCth (step 1 in Table 5.1). This threshold is representative of
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Table 5.1: MPC Balance Algorithm.

Input: vgnode n1

1: if nMPCn1 < nMPCth then

2: return

3: end if

4: pm min← NULL

5: for all vgnodes ni except n1 do

6: if (nMPCni < nMPCth) and (nMPCn1 − nMPCth) > (nMPCth − nMPCni)

then

7: if !pm min or nMPCpm min > nMPCni then

8: pm min← ni

9: end if

10: end if

11: end for

12: vmmig ← NULL

13: for all vmi in n1 do

14: if (nMPCth−nMPCpm min) > vMPCvmi and vMPCvmi > vMPCvmmig then

15: vMPCvmmig ← vMPCvmi

16: end if

17: end for

18: if pm min and vmmig then

19: do migrate(vmmig , n1, pm min)

20: end if
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whether high MPC is affecting the performance of the VMs in that vgnode. This is

based on the observation in section 5.4, that for lower MPC workloads (like eon),

the memory subsystem is lightly loaded and has little impact on the performance

of the workload. Hence, if nMPC is smaller, the function returns, since there is

no MPC balancing required for n1 (step 2 in Table 5.1). If it is higher, then in

steps 4-11, the algorithm tries to find the target vgnode with the minimum nMPC

(pm min) to which a VM from n1 could be migrated to resolve the MPC imbalance,

subject to the condition in step 6. The condition states that the target vgnode (ni)

nMPC (nMPCni
) must be below nMPCth by atleast (nMPCn1−nMPCth). This

is required, since otherwise migration of a VM from n1 to ni cannot bring n1 below

the MPC threshold or might make ni go above the MPC threshold. In step 7 and

8, it stores the node ni as target minimum nMPC vgnode (pm min), if its nMPC

(nMPCni
) is lower than the nMPC of the vgnode currently stored as pm min.

This way, once the loop in step 5 completes, it is able to locate the vgnode in the

system with the least nMPC (pm min).

Once the pm min is found, the algorithm finds the VM (vmmig), that could

be migrated to pm min for resolving the MPC imbalance (steps 12-17). For this

purpose it scans the list of VMs on n1 to find the VM with the maximum vMPC,

which if migrated, does not reverse the imbalance by making nMPC of pm min

more than nMPCth (steps 14-15). If such a VM is found, the algorithm invokes

the do migrate function to live migrate vmmig from n1 to pm min [23] in step 19.

The decisions taken by the vgpolicy (updates, migration) are communicated to the

vgnodes in form of commands as shown in Figure 5.2, while the vgdom component

on the vgnode actually accomplishes the migration.

The complexity of the MPC balance algorithm (Table 5.1) is linear (O(n),

where ‘n’ is the number of vgnodes in steps 5-11, and number of VMs on n1 in

steps 13-17) for resolving an MPC bottleneck, since it requires a single scan of

vgnodes and VMs to detect and resolve it. Hence, in terms of implementation and

performance the algorithm is simple and scalable.

(2) IPC balance: This step ensures nIPC is balanced across the vgnodes

for better balance of power consumption across the PMs. The algorithm is similar
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(a) Normalized Execution Time (b) Normalized Energy Consumption

Figure 5.4: Comparison of execution time and energy consumption of mcf and
eon at different frequency levels.

to MPC balance, but uses nIPC instead of nMPC.

(3) Util balance: This step balances the CPU utilization of vgnodes to

ensure there are no overcommitted nodes in the system, if there are other under-

utilized vgnodes. The algorithm is again similar to MPC balance, but uses nutil

instead of nMPC.

(4) Dynamic Voltage Frequency Scaling (DVFS): The vgpolicy may

issue a command to scale the voltage-frequency setting (v-f setting) of a vgnode, if

it deems that it is more energy efficient than VM migration. This may happen, if

there are not enough heterogeneous VMs across the cluster to be able to balance

the resource utilization evenly. The DVFS policy is itself based on state of the

art DVFS policies [29, 56], that exploit the characteristics of the workload to

determine the best suited v-f setting for it. Specifically, it aggressively downscales

the v-f setting if the overall MPC is high (> nMPCth), otherwise keeps the system

at the highest v-f setting.

Figure 5.4 gives the intuition behind the policy using an example of two

benchmarks, mcf and eon, running at 90% CPU utilization level. It plots the

execution time (Figure 5.4a) and energy consumption (Figure 5.4b) at five different

v-f settings. The execution time, energy consumption and the v-f settings are

normalized against the values at the highest v-f setting. We can observe that as the

frequency is decreased, the execution time of eon almost increases in proportion to

the drop in frequency. For instance, at normalized frequency of 0.54, the increase
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in execution time is more than 80% (∼ 1
0.54). This happens since eon has high

IPC, and uses the pipeline of the processor intensively, which makes its execution

time a function of the clock rate of the pipeline or the CPU frequency. This huge

performance degradation has a direct impact on the energy consumption of eon

at lower v-f settings as shown in Figure 5.4b. We can observe that at all the

frequencies the system consumes more energy compared to the highest v-f setting,

reaching as high as 40% more. This implies, that for high IPC workloads, DVFS

is actually energy inefficient.

In contrast, for mcf, which has high MPC, we observe that the execution

time (Figure 5.4a) is actually fairly independent of the CPU frequency. This is

a consequence of the high degree of CPU stalls that occur during its execution

due to frequent memory accesses, which makes its execution time insensitive to

actual CPU frequency. The low performance degradation translates into system

level energy savings (see Figure 5.4b), which reaches 10% at the lowest frequency.

This example further illustrates the fact presented in chapter 3, that the

effectiveness of DVFS for energy savings is not very significant in modern server

class systems. These observations also motivate our approach to focus more on

efficient VM scheduling to achieve higher energy savings rather than on aggressive

DVFS. Rather, the system resorts to DVFS only when no further benefits are

achievable through scheduling and the MPC is high enough to achieve energy

savings. As we show in section 5.7, such an approach enables energy savings under

both heterogeneous and homogeneous workload scenarios through VM scheduling

and aggressive DVFS respectively.

The four steps described above in the overall algorithm have relative prior-

ities to resolve conflicts, if they occur. MPC balance is given the highest priority,

since memory bottleneck severely impacts overall performance and energy effi-

ciency as identified in Section 5.4 (Figure 5.1a). IPC balance results in a more

balanced power consumption profile, which helps create an even thermal profile

across the cluster and hence reduces cooling costs [6], and is next in the priority

order. Finally, Utilization balance results in a fairly loaded system, and is rep-

resentative of the prior state of the art scheduling algorithms. DVFS step (step
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4), as explained above, is invoked only if the system is already balanced from the

perspective of MPC, IPC and CPU utilization, and no further savings are possible

through VM scheduling.

5.6 vGreen Implementation

Our testbed for vGreen includes two state of the art 45nm Dual Intel Quad

Core Xeon X5570 (Intel Nehalem architecture with 16 PCPUs each) based server

machines with 24GB of memory, which act as the vgnodes, and a Core2Duo based

desktop machine that acts as the vgserv. The vgnodes run Xen3.3.1, and use Linux

2.6.30 for Dom-0.

The vgxen module is implemented as part of the Xen credit scheduler (the

default scheduler) to record vCPU and VM level metrics. It stores all the VM

level metrics in a shared page mapped into the address space of Dom-0. It further

exposes a new hypercall, which allows the vgdom to map this shared page into its

address space, when it gets initialized (as explained in section 4.1.1). The vgdom

module is implemented in two parts on Dom-0:

(1) vgdom Driver : A Linux driver that interfaces with vgxen to get the VM

characteristics and exposes it to the application layer. When initialized, it maps

the shared page storing the VM metrics into its address space using the hypercall

discussed above. Such a design makes getting the VM metrics a very low overhead

process, since it is a simple memory read.

(2) vgdom App: An application client module that is responsible for inter-

facing and registering the vgnode with the vgserv. The primary responsibility is

to get the VM metrics data from the driver and pass it on to vgserv as shown

in Figure 5.2. It also accepts vgserv commands for VM migration or DVFS and

processes it.

vGreen requires no modifications to either the OS or the application running

within the VMs. This makes the system non intrusive to customer VMs and

applications and hence easily deployable on existing clusters. The vgserv and

vgpolicy run on Linux 2.6.30, and are implemented as application server modules.
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The system is designed to seamlessly handle dynamic entry and exit of

vgnodes in the system without any disruption to the vgpolicy. On initialization,

vgserv opens a well known port and waits for new vgnodes to register with it.

When vgnodes connect, vgserv instructs them to regularly update it with VM

characteristics (Tup period), and accordingly updates the node and VM level metrics.

It runs the vgpolicy every Tp period and performs balancing or DVFS decisions, which

it communicates to the vgnode through commands as described in section 5.5. If

a vgnode goes offline, the connection between it and the vgserv is broken. This

results in a dynamic cleanup of all the state associated with that vgnode on the

vgserv.

For real world deployments, vGreen can be either installed as a standalone

system for VM management, or as part of bigger infrastructure management sys-

tems like OpenNebula [78] or Grid Virtualization Engine [100] as well. For in-

stance, in context of GVE, vgxen and vgdom can be incorporated into the ‘GVE

agent service layer ’, which is the monitoring layer, while vgserv and vgpolicy can

be implemented as part of the ‘GVE site service layer ’, which is the control layer.

5.7 Evaluation Methodology

For our experiments, we use benchmarks with varying characteristics from

the SPEC-CPU 2000 benchmark suite. The used benchmarks and their charac-

teristics are illustrated in Table 5.2. We run each of these benchmarks inside a

VM, which is initialized with eight vCPUs and 4GB of memory. We generate ex-

perimental workloads by running multiple VMs together, each running one of the

benchmarks. For each combination run we sample the system power consumption

of both the vgnodes every 2s using the power sensors in the PM, which we query

through the IPMI interface [55].

We compare vGreen to a VM scheduler that mimics the Eucalyptus VM

scheduler [76] for our evaluation. Eucalyptus is an open source cloud computing

system, that can manage VM creation and allocation across a cluster of PMs.

The default Eucalyptus VM scheduler assigns VMs using a greedy policy, i.e. it
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Table 5.2: Benchmarks Used.

Benchmark Characteristics

eon High IPC/Low MPC

applu Medium IPC/High MPC

perl High IPC/Low MPC

bzip2 Medium IPC/Low MPC

equake Low IPC/High MPC

gcc High IPC/Low MPC

swim Low IPC/High MPC

mesa High IPC/Low MPC

art Medium IPC/High MPC

mcf Low IPC/High MPC

allocates VMs to a PM until its resources (number of CPUs and memory) are

full. However, this assignment is static, and it does not perform any dynamic

VM migration based on actual PM utilization at runtime. For fair comparison,

we augment the Eucalyptus scheduler with the CPU utilization metrics and algo-

rithm proposed in the previous section, which allow it to redistribute/consolidate

VMs dynamically at run-time. This enhancement is representative of the metrics

employed by the existing state of the art policies, which use CPU utilization for

balancing (see section 5.3). We refer to this enhanced scheduler as E+. For further

fairness in comparison, we use the same initial assignment of VMs to PMs as done

by the default Eucalyptus scheduler for both E+ and vGreen.

We report the comparative results of vGreen and E+ for two primary pa-

rameters:

(1) System Level Energy savings: We estimate the energy reduction in

executing each combination of VMs using vGreen over E+. This is calculated by

measuring the total system level energy consumption for a VM combination with

E+ and vGreen, and then taking their difference. Note, that the combinations

may execute for different times with E+ and vGreen, and since we do not know

the state of the system after the execution (could be active if there are more jobs,
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or be in sleep state if nothing to do), we only compare the energy consumed during

active execution of each combination.

(2) Average Weighted Speedup: We also estimate the average speedup

of each VM combination with vGreen. For this, we use the weighted speedup

(AWS) based on a similar metric defined earlier in section 5.4 (refer to equation

5.1). It is defined as:

AWS =

∑

V Mi

Te+i

Talonei
∑

V Mi

Tvgreeni

Talonei

− 1 (5.4)

where, Talonei
is the execution time of VMi when it runs alone on a PM, and Te+i

and Tvgreeni
are its execution time as part of a VM combination with E+ and

vGreen respectively. AWS > 0 implies that the VM combination runs faster with

vGreen and vice versa.

For all our experiments, we use Pp period and Pup period as 5s. Based on our

experiments across different benchmarks, we choose nMPCth as 0.02 and nIPCth

as 8. These threshold values allowed us to cleanly separate memory and CPU

intensive VMs from each other.

5.8 Results

5.8.1 Heterogeneous Workloads

In the first set of experiments, we use combinations of VMs running bench-

marks with heterogeneous characteristics. Each VM consists of multiple instances

of the benchmark to generate different CPU utilization levels. In total, we run four

VMs, varying the overall CPU utilization of vgnodes between 50% to 100%. We

choose this range of CPU utilization, since it is representative of a consolidated

environment, where multiple VMs are consolidated to get higher overall resource

utilization across the cluster [103]. We run CPU intensive benchmarks in two VMs,

and memory intensive benchmarks in the other two. We did experiments across all

possible heterogeneous VM combinations, but for the sake of clarity and brevity,

have included results for 19 workloads in the following discussion. The excluded
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(a) System Level Energy Savings

(b) Average Weighted Speedup

Figure 5.5: Comparison of E+ and vGreen. The results are normalized against
E+ system.
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results lead to similar average metrics and conclusions as reported below.

Figure 5.5 shows the overall results across different utilization levels for the

vGreen system normalized to that with E+. The x-axis on the graphs shows the

initial distribution of VMs on the physical machines by the default Eucalyptus

scheduler. For instance, 2gcc/2art means that two VMs running gcc are on the

first PM, while the two VMs running art are on the second. We can observe in

Figure 5.5a, that vGreen achieves an average of between 30-40% system level energy

savings across all the utilization levels, reaching as high as 60%. The high energy

savings are a result of the fact that vGreen schedules the VMs in a much more

efficient fashion resulting in higher speedups while maintaining similar average

power consumption. This results in energy savings, since now the benchmarks run

and consume active power for a smaller duration.

Figure 5.5b shows that vGreen achieves an average of 30-40% speedup over

E+ across all the combinations at all utilization levels, reaching as high as 100%.

The reason for this is that E+ co-locates the high IPC VMs on one vgnode, and the

high MPC ones on the second one. Thereafter, since the CPU utilization of both

the vgnodes is balanced, no dynamic relocation of VMs is done. With vGreen,

although the initial assignment of the VMs is same as with E+, the dynamic

characterization of VMs allows the vgserv to detect a heavy MPC imbalance. This

initiates migration of a high MPC VM to the second vgnode running the high IPC

VMs. This results in an IPC and utilization imbalance between the two vgnodes,

since the second vgnode now runs a total of three high utilization VMs. This is

detected by vgserv and it responds by migrating a high IPC VM to the first vgnode.

This creates a perfect balance in terms of MPC, IPC and utilization across both

the vgnodes. This results in significant speedup as observed in Figure 5.5b. We

can see in Figure 5.5b, that some combinations achieve higher weighted speedup

compared to others. For instance, for 2eon/2applu combination it is around 30%,

while for 2eon/2art it is over 100%. This difference is due to the fact that co-

location of art and eon VMs significantly benefits art from the point of view of

larger cache and memory bandwidth availability, since it has very high MPC. In

contrast, applu benefits lesser due to its lower overall MPC compared to art, which
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Figure 5.6: Power consumption imbalance in E+: The difference in power con-
sumption between the two PMs under the E+ scheduling algorithm.

results in relatively smaller weighted speedup.

Another disadvantage of not taking the characteristics of the workload into

account for scheduling is that there could be significant imbalance in power con-

sumption across the nodes in a cluster. For instance, the node running high IPC

workloads might have much higher power consumption compared to the node run-

ning high MPC workloads (as observed in section 5.4). This can create power hot

spots on certain nodes in the cluster, and be detrimental to the overall cooling

energy costs [6]. Figure 5.6 illustrates the imbalance in power consumption across

the two vgnodes under the E+ system. We can see that the average imbalance in

power consumption could be as high as 30W, with the highest imbalance close to

45W. With vGreen system, this imbalance is almost negligible due to the better

balance of IPC and utilization across the machines. This results in a better overall

thermal and power profile and reduces power hotspots in the cluster.

Comparison with DVFS policies: A possible way for saving energy

with the E+ system is to augment it with a DVFS policy. For comparison, we

consider two policies for the E+ system:

(1) The ‘naive’ policy: This policy simply resorts to throttling the CPU in

order to reduce the energy consumption in the system. We refer to the system

with the ‘naive’ policy as E+nDVFS.

(2) The ‘smart’ policy: This policy is the same as incorporated into the
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(a) Normalized Average Weighted Speedup

(b) Normalized Energy Consumption

Figure 5.7: Comparison of E+, E+nDVFS, E+sDVFS and vGreen. The results
are baselined against the E+ system.
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vGreen system (see section 5.5). The policy throttles the CPU only if it deems it

would result in lower performance impact and higher energy savings. We refer to

the system with the ‘smart’ policy as E+sDVFS.

Figure 5.7 shows the average weighted speedup and energy consumption

results for the E+sDVFS, E+nDVFS and the vGreen system normalized against

the results for the E+ system. Figure 5.7a illustrates the average weighted speedup

results across all the combinations at 100% CPU utilization. The vGreen results

are the same as those plotted in Figure 5.5b, but have been included for the sake

of comparison. We can observe that across all the combinations, both the DVFS

policies perform slower than the baseline E+ system. This is intuitive, since the

DVFS policies run the system at a lower frequency. However, the E+sDVFS

clearly outperforms the E+nDVFS system across all the workload combinations.

While the E+sDVFS system is on an average always within 2% of the E+ system,

E+nDVFS system is on average 22% slower than the E+ system. This happens,

since the E+sDVFS system exploits the characteristics of the VMs, and performs

aggressive throttling only on the nodes running VMs with high MPC. As discussed

in the section 5.5, this results in minimal performance degradation, since such

high MPC workloads are highly stall intensive and have little dependence on CPU

frequency. In contrast, the E+nDVFS system naively throttles even the nodes

running high IPC VMs, resulting in the high performance slowdown as observed

in Figure 5.7a.

The average weighted speedups have a direct impact on the energy savings

as illustrated in Figure 5.7b. The E+nDVFS system gets an average of just 1%

energy savings across all the combinations. For some workloads, like 2mesa/2art,

it infact consumes more energy than the baseline system. This indicates that the

power reduction due to E+nDVFS system is outweighed by the huge performance

slowdown. The E+sDVFS system does better by achieving around 9% energy

savings due to the small performance slowdown. However, both are clearly out-

performed by the vGreen system, which achieves close to 35% energy savings. This

shows that efficient resource utilization across a cluster is key to energy efficient

computing in virtualized environments.
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(a) Average Weighted Speedup (b) System Level Energy Savings

Figure 5.8: Comparison of E+ and vGreen with homogeneous workloads. The
results are baselined against the E+ system.

5.8.2 Homogeneous Workloads

We also experimented with combination of VMs running homogeneous

benchmarks to evaluate the performance of our system under cases, where there is

no heterogeneity across VMs. We did experiments for all the benchmarks in Table

5.2, where all the four VMs ran the same benchmark. We observed that in all the

experiments, there was no possibility of rebalancing based on characteristics, since

the MPC and IPC of the VMs were already balanced. However, for the case of

high MPC workloads, the vGreen system effectively applies DVFS to get energy

savings. Figure 5.8 illustrates the average weighted speedup and energy savings

achieved across the homogeneous set of high MPC workloads. We can observe,

that vGreen achieves average system level energy savings of between 6-9% across

all the utilization levels. The slowdown due to DVFS is between 2-5% as indicated

in Figure 5.8a. For high IPC workloads, the results were identical to E+ system,

since vGreen neither does any VM migration nor DVFS.

5.8.3 Different Machine Architecture and Configurations

To verify the scalability of our system and ideas, we also experiment on

a machine with a different microarchitecture and configuration. Table 5.3 com-

pares the configurations of the two machines: Machine-1 refers to the Intel Ne-
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Table 5.3: Comparison of Machines.

Characteristic Machine-1 Machine-2

Microarchitecture Intel Nehalem Intel Core

CPU Xeon X5570 Xeon E5440

# of PCPUs 16 8

Caches L1-L2-L3 L1-L2

Thermal Design Power 95W 80W

Memory 24GB 8GB

Memory Type DDR3 DDR2

Memory Controller On-Die (2.93GHz) Off-Chip (1.33GHz)

Memory Channels 3 2

halem based machine, which we used in the earlier parts of the evaluation section;

Machine-2 refers to the other machine, for which we present results in this sec-

tion. A quick look at Table 5.3 shows, that the two machines significantly vary

from each other in terms of CPU microarchitecture (Intel Nehalem vs Intel Core),

power characteristics (different TDP), caches (L3 vs L2) as well as the memory

technology (DDR3 vs DDR2 and on-die vs off-chip memory controller).

The methodology for experiments on Machine-2 was the same as that for

Machine-1 with small changes: (1) We use 2GB as the memory size for each

VM due to less memory in Machine-2; (2) We do experiments for 75% and 100%

utilization only, since the machine has 8 PCPUs. The 62% and 87% workloads on

this machine would need a total of 5 and 7 threads respectively, which cannot be

evenly divided across two VMs.

Figure 5.9 shows the average weighted speedup and energy savings results

across the heterogeneous set of workloads. We can observe that vGreen achieves

close to 22% average weighted speedup across both the utilization levels. Similar to

Figure 5.5, we can observe that for some workloads (eg. 70% for 2eon/2mcf ), the

speedup is more than others (eg. 45% for 2eon/2swim). This is again due to the

fact that some workloads benefit more due to the efficient resource utilization than

others due to their higher aggregate MPC (mcf having higher MPC than swim in

this case). This speedup results in around 25% system level energy savings across
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(a) Average Weighted Speedup

(b) System Level Energy Savings

Figure 5.9: Comparison of E+ and vGreen on the Intel Core based Machine. The
results are baselined against E+ system.
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both the utilization levels.

A quick comparison of overall results with Figure 5.5 indicates that both

the average weighted speedup and energy savings are higher on the Machine-1 by

around 10%. This is explained by the faster memory technology (DDR3), memory

controller (on-die) and higher number of channels (3) of Machine-1 compared to

Machine-2 (refer to Table 5.3). As a consequence of a faster memory subsystem,

the high MPC workloads benefit more on Machine-1 than Machine-2, when the

memory subsystem load is relieved, i.e. they run much faster on Machine-1. Since

vGreen balances the aggregate MPC of workloads across the machines, it results in

higher weighted speedup on Machine-1 compared to Machine-2. In future systems,

the machine architectures are going to move towards even faster memory technol-

ogy and architectures, and these results indicate that a vGreen like system is even

more beneficial for exploiting their design, and delivering higher performance and

energy efficiency.

5.8.4 Overhead

In our experiments we observed negligible runtime overhead due to vGreen.

On the vgnodes, vgxen is implemented as a small module, which does simple per-

formance counter operations and vCPU and VM metric updates. The performance

counters are hardware entities with negligible cost (order of 100 cycles) on soft-

ware execution as accessing them is just a simple register read/write operation.

The vgdom executes every Tup period (5s in our experiments), and as explained in

section 5.5 just reads and transmits the VM metrics information to the vgserv.

In our experiments, we observed negligible difference in execution time of all the

benchmarks (< 1%) with and without vgxen and vgdom.

vGreen achieves energy efficiency through VM scheduling, which requires

VM migration. We observed negligible overhead of VM live migration on execution

times of benchmarks, which is consistent with the findings in [23]. VM migration,

however, involves extra activity in the system on both the source and the desti-

nation PMs. The primary source of activity is the processing of network packets

of VM data, and processing associated with creating new VM on the destination
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and cleanup on the source. However, our methodology takes all of these costs into

account. As described in section 5.1, we record the performance of the benchmarks

within the VMs and sample power consumption of the whole server in a power log

every 2s for the entire run. If a VM migration occurs in between, the extra power

consumption due to VM migration related processing (discussed above) on the

network card, Dom0 and the hypervisor is taken in to account in the power log.

The impact of extra processing due to VM migration on the performance of the

benchmark is also taken in to account, since we record the execution times of the

benchmarks. These recorded power and performance numbers are used to estimate

the energy savings and average weighted speedup (equation 4) for vGreen. Hence,

all our results in section 5 already incorporate these power and performance over-

heads, which indicate that the cost is clearly overwhelmed by the benefits of VM

migration.

5.9 Conclusion

In this chapter we presented vGreen, a system for energy efficient VM man-

agement across a cluster of machines. The key idea behind vGreen is linking work-

load characterization of VMs to VM scheduling and power management decisions

to achieve better performance, energy efficiency and power balance in the system.

We designed novel hierarchical metrics to capture VM characteristics, and devel-

oped scheduling and DVFS policies to achieve the above mentioned benefits. We

implemented vGreen on a real life testbed of state of the art server machines, and

showed with benchmarks with varying characteristics, that it can achieve improve-

ment in average performance and system level energy savings of up to 55% over

state of the art policies at a very low overhead. We further demonstrated the ap-

plicability and scalability of the system across machines with different architecture

and configurations.

However, the focus of vGreen is only on batch workloads, where the primary

goal is to maximize the overall instruction throughput of the workload within a

given power budget. Next chapter explores challenges involved in managing both

throughput intensive batch and latency sensitive service workloads in a data cen-
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ter. It shows that the vGreen system by itself is not sufficient enough to maximize

the energy efficiency if there is a constraint of guaranteeing the performance objec-

tives of the latency sensitive workloads, and introduces novel resource management

algorithms to alleviate this problem.

Chapter 5, in part, is a reprint of the material as it appears in Proceedings

of the 14th ACM/IEEE International Symposium on Low Power Electronics and

Design, 2009. Dhiman, G.; Marchetti, G. and Rosing, T.S. The dissertation author

was the primary investigator and author of this paper.

Chapter 5, in part, is a reprint of the material as it appears in ACM Transac-

tions on Design Automation of Electronic Systems, 2010. Dhiman, G.; Marchetti,

G. and Rosing, T.S. The dissertation author was the primary investigator and

author of this paper.



Chapter 6

Energy Efficient Consolidation of

Batch and Service Workloads

6.1 Introduction

The vGreen system maximizes both the overall energy and performance

efficiency of the cluster by balancing the resource utilization of all the PMs in the

cluster. However, the objective of all the workloads considered in the system is

identical – higher overall instruction throughput or IPC/MIPS (million instruc-

tions per second). As discussed before, there may be some workloads running in

the cluster for whom the instruction throughput is not the most important met-

ric. For such service workloads responsiveness is more important than the actual

instruction throughput achieved.

In modern data centers, if a mix of batch and service jobs are present, it

is common for them to be partitioned into separate areas [42]. This is primarily

because we lack a mechanism for managing the diverse performance requirements

of the two types of jobs. Service jobs typically have strict response time guarantees

and the cost of violating those agreements is high [42]. Batch jobs often have long-

term performance targets, where immediate response is not vital. Thus, due to

the high risk factor associated with the service-job performance, mechanisms for

effective consolidation with batch jobs have received little attention. Recent work

110
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on VM consolidation and resource management has primarily focused on one class

of applications, i.e. either assuming only services (research in [103, 79]) or only

batch jobs (the vGreen system and the research in [70, 73]) in the data center.

This chapter demonstrates that the opportunity for consolidating these di-

verse job types is large. Even when an application server is carefully configured

to minimize energy while meeting the service level agreements of the service jobs

(using, for example, the minimum number of CPU cores), there are still significant

resources available to run batch jobs due to the typically diverse resource demands

of the two workloads. By using these available resources, we can achieve signifi-

cant throughput of the batch jobs with marginal energy costs that are much lower

than running the batch jobs on a separate server. To capture this phenomenon,

we introduce a new metric for heterogeneous workloads called qMIPS/Watt. This

metric captures the overall work done per joule for the batch jobs, derated by any

negative effect they have on the ability of the service jobs to meet their perfor-

mance goals. If qMIPS/Watt is higher than a baseline system where the batch jobs

run alone, we have gained overall system energy efficiency through consolidation.

We further show that state of the art techniques that focus on consolidating

homogeneous workloads (like vGreen and research in [73, 79, 103, 70]) do not scale

well for resource management with heterogeneous workload consolidation. This

happens due to the contrasting requirements of these workloads in terms of both

computation and QoS (quality of service). Towards this end we present Themis1,

a system for VM resource management in virtualized clusters. Themis includes

a monitoring and management infrastructure which allows it to actively monitor

and manage both the performance and QoS requirements of different kinds of

consolidated applications within the cluster.

6.2 Batch and Service Workload Comparison

In this section, we discuss the QoS and resource requirements of the batch

and service workloads, and its implication on their scheduling and management.

1Themis is the name of the Greek goddess of justice, typically depicted with scales to judge
between opposing parties, which represents the contrasting workloads in the context of this work.
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6.2.1 Workload Performance and QoS requirements

The objective of the two types of workloads is quite different. Batch jobs

tend to have straightforward requirements and seek to maximize throughput and,

therefore, minimize total job completion time. Service jobs have much more com-

plex performance metrics, focused on the response times of a multitude of indi-

vidual requests, and thus represent the bulk of our discussion in this section. An

interactive service job’s QoS requirement is defined in terms of end user or client

response time for a request or service. However, there could be different services

running in the data center concurrently, each with very different response time ex-

pectations. For instance, Olio has some requests that involve heavy database and

file store activity, like photo uploads or event tagging, for which the expected re-

sponse time is longer than for simple web browsing requests. RUBiS is dominated

by the latter.

Expected response time requirement In this chapter we assume that the

client expected response time is defined in terms of the target 90th%ile of response

time. It must be noted that the ideas presented in this chapter are independent of

the target response time requirement. The value of 90th%ile is representative of

realistic data center response time requirement and has been used in prior research

as well [31, 69, 13]. As described above, RUBiS and Olio represent two very

different sample points in this regard. For Olio, the target 90th%ile response times

are hard-coded in the benchmark. Since the request types in Olio are diverse, each

request type has its own target, which varies from 1s to as much as 4s. For RUBiS,

the target response time has been set for all requests at 150ms.

Metric to monitor QoS The expected response time, as defined above, rep-

resents the QoS requirement of a service workload. However, different service

workloads in the data center can have different response time expectation or re-

quirement (as is the case with RUBiS and Olio). To represent and monitor the

QoS requirement of diverse service workloads in a uniform fashion, we further
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Figure 6.1: Average active time across 5s samples for RUBiS web server config-
ured with 2 vCPUs.

define the QoS ratio as a metric:

QoSratio =
CurrentQoS

TargetQoS

(6.1)

where the current and target QoS requirements are application specific targets in

terms of the 90th%ile response time. This metric has two advantages – (1) as

discussed above, it allows us to combine varied response time expectations in a

single ratio, and (2) gives us a continuous metric (as opposed to a binary pass/fail

QoS result) which tells us how much slack we have to work with before we start

failing to meet the requirements. If this ratio exceeds 1, it implies that the QoS

requirement has been violated.

For the batch jobs, the goal is typically to maximize executed instruction

throughput (e.g., million instructions committed per second or MIPS) or minimize

the overall execution time.

Workload Resource Usage The way services and batch workloads use the

CPU resources tends to vary significantly. For interactive services, the primary

CPU usage is in accepting and servicing user requests. Since most of the servers

are implemented as multi-process or multi-threading modules, the number of active

processes/threads is directly proportional to the number of concurrently active
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Figure 6.2: Memory accesses per cycle (MPC) for different batch and service
applications.

requests, which in turn determines the CPU usage at any point in time. Service

threads tend to be I/O intensive with short occupancy times on the CPU.

Figure 6.1 plots samples of average active time of all vCPUs of a service VM

running RUBiS web server (configured with 2 vCPUs) averaged over 5s periods

on the first y-axis. The second y-axis plots the QoS ratio achieved by RUBiS

over the course of the experiment. The experiments were done on a dual quad

core Intel Nehalem based server machine. The ‘active time’ is the duration for

which a vCPU actively runs on a physical CPU before going idle – it goes idle

when all queued jobs have completed or are stalled for I/O (disk, communication,

etc.). Each sample point in the plot represents the averaged active times over

5s time intervals. We collected this information using SystemTap [83], a Linux

tool to dynamically instrument the kernel. We used the context switch probes of

SystemTap to gather the information shown in Figure 6.1.

We can observe that the QoS ratio is comfortably met for this run (i.e.,

is less than 1). A close look at the figure indicates that the CPU activity of the

VM is very fine grained, running very short jobs. The average activity period for

vCPUs is around 700µs. The CPU occupancy time for individual requests was

even lower, as the active time typically includes the time for multiple requests

to be handled before the runqueue is emptied. When we changed the number of

vCPUs to 3 and 4, the average activity time went down almost proportionally.
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With 4 vCPUs the average active time dropped to around 350µs – runqueues are

shorter and empty more quickly. This resulted in a reduction in QoS ratio, as well

(to ∼0.15). This implies that the service workload is easily distributed, and in fact

will quickly adapt to changes in the number of vCPUs – for example if we wish to

reduce the QoS ratio by increasing vCPUS, or possibly increase energy efficiency

by decreasing vCPUs when sufficient QoS ratio headroom exists.

In contrast, the CPU usage pattern of the batch workloads we are running

is very different. They are primarily throughput and CPU intensive, and they

rarely relinquish the CPU. They make extensive use of pipeline, cache and memory

bandwidth. The batch jobs do vary significantly in how they stress the memory

hierarchy, which will determine in large part how much they interfere with other

jobs (e.g. service job threads) when running. Figure 6.2 shows the memory accesses

per cycle for VMs running different batch and services applications alone. We see

that the batch jobs can differ by more than an order of magnitude in this respect.

For instance, in our experiments we observed batch jobs like streamcluster and

mcf to have 5-6x more memory accesses per cycle (MPC) compared to RUBiS

and Olio web and database servers. At the same time for workloads like perl and

bodytrack the MPC was 5-6x lower than the services. Thus, while the batch jobs

tend to occupy the CPU at full utilization, they vary widely in whether the CPU

is spending most of its time on computation or waiting for memory. Additionally,

unlike the services, they do not adapt to make use of additional resources, if they

are already sufficiently provisioned. For instance, if we run a single instance of our

batch workload in a VM with either 1 or 2 vCPUs, it would not affect the MIPS it

commits. This is in sharp contrast to what we observed for the service jobs above,

where adding more vCPUs changes the way they are utilized and also affects the

QoS ratio.

6.3 Energy Efficiency of Diverse Workloads

Increased resource utilization and energy efficiency through VM consolida-

tion is a big reason virtualization has gained prominence in modern data center
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Figure 6.3: Impact of batch VM consolidation on MIPS. The plot shows the MIPS
of each workload in a consolidated combination normalized against the MIPS it
had when running alone. For each combination b1:b2, the gray bar shows the
normalized MIPS of b1 and the black bar shows the normalized MIPS of b2.

deployments. The energy efficiency is largely a consequence of the fact that modern

servers have a very non-energy proportional profile [9, 42], i.e. their power con-

sumption does not scale down linearly with decreasing utilization. Even at close

to 0% utilization, the systems consume nearly 50% of what they consume at 100%

utilization [9] due to a number of non-linear, non-energy proportional components

like power supply, memory, etc. Thus, higher utilization rates represent the most

energy efficient zone for these servers. This implies that aggressive consolidation of

VMs in a cluster not only frees up machines (which could be either moved to low

power states or used to do additional work), but also pushes the active machines

towards operation in the more energy efficient zone.

6.3.1 Why consolidate batch and services VMs?

Most resource management and VM scheduling algorithms focus on only

one class of workloads. They may be used to manage heterogeneous workloads as

well by independently consolidating server and batch VMs on separate machines.

However, this can lead to poor performance and bottlenecks as we show next.
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Figure 6.4: Impact of I/O bottleneck on the QoS ratio of RUBiS web server.

Poor throughput due to batch VM consolidation Batch applications tend

to use the PM resources very intensively. Since modern machines have shared

resources across the hierarchy such as last level cache, memory bandwidth etc.,

it can lead to severe contention, which can significantly deteriorate the MIPS

achieved by the batch VMs – even when the batch jobs do not share a CPU

core. We ran experiments that consolidate memory intensive batch VMs running

different workloads, and estimate the MIPS of the VMs when running alone and

then run as part of the combination. Figure 6.3 shows the MIPS of workloads

when running in consolidated environment normalized against the case when they

run alone. In some cases the drop in MIPS due to the consolidation is very high (as

high as 40%), even though they are running on separate cores of the machine. This

is inline with the observations and analysis in the previous chapter when memory

intensive VMs were co-scheduled on a PM (see section 5.4).

I/O bottleneck from services consolidation Services VMs share the CPU

and memory resources of a PM well. First, services VMs are on the modestly

intensive side while using shared resources, as indicated by the MPC values shown

in Figure 6.2. Second, they multiplex the CPU resources very well among each

other due to the small residency time for each request as indicated in Figure

6.1. However, the primary problem in putting them together comes from the I/O

resources (like network) they share on the PM. Figure 6.4 shows an example of the



118

impact of a network bottleneck on QoS. In this example, we run two similar RUBiS

web-servers on two different sockets of the same machine, so that they do not share

any CPU or memory resources. We can see that although ample CPU headroom is

available (∼40%), the QoS is severely compromised due to the network bottleneck.

However, when running alone the same web-server has a similar CPU utilization

of around 60% and comfortably meets the QoS.

This study motivates consolidation of services and batch VMs, since their

heterogeneous resource usage profiles (see section 6.2) complement each other –

neither workload seriously exacerbates the bottleneck resource of the other. The

next section addresses the challenges in accomplishing heterogeneous VM consoli-

dation.

6.3.2 Diverse Workload Challenges

There are many potential challenges to creating a system that effectively

merges both interactive and throughput-oriented workloads, from the difficulty of

predicting the interactions between the two classes of jobs when consolidated to

the inability of current software systems to properly time-share the system in the

presence of heterogeneous jobs. In this section, we will discuss the challenges in

consolidation of services and batch workloads.

Lack of QoS support in Proportional Share Schedulers Most of the mod-

ern hypervisor schedulers are based on proportional sharing of CPU resources. For

instance, Xen makes use of a credit scheduler, where each VM’s proportional share

is specified through a ‘weight’. The minimum value of the weight is 256, while the

maximum possible is 65535. Based on the weight, the CPU resources (or credits)

are distributed to the virtual CPUs (vCPUs) of the VMs in proportion to their

weight, and the vCPU priority (or task priority) is also recalculated based on the

credits the task has. There are three priority levels: (1) ‘Over’: When a task

exhausts its credits, its priority is set to ‘over’, which represents a low priority. (2)

‘Under’: When it still has credits, it is set to ‘under’, which represents a higher

priority. (3) ‘Boost’: To accommodate low latency, the scheduler supports a boost
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(a) Olio-db without QoS priority state

(b) Olio-db with QoS priority state

Figure 6.5: Illustration of lack of QoS support in Xen.

priority, where blocked task waiting for an I/O event are boosted upon receiving

an event/interrupt. It has the highest priority.

Such a model works well if VM workloads use the CPU resources in a

homogeneous fashion. However, the coarse grained priority levels of the scheduler

are not designed to accommodate urgency of CPU requirement, which is very

important for services. From the discussion in the section 6.2, we know that the

CPU residency times of services workloads is very low (see Figure 6.1). But at

the same time it is important for them to get the CPU when they are ready to

run. The mechanisms provided by the proportional schedulers fail to achieve that,
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since proportional sharing only promises a higher proportion of CPU without any

timing guarantees. Figure 6.5(a) illustrates the problem with a plot of samples

of CPU utilization and QoS ratio taken every 2s of the run. We run a 2 vCPU

batch VM with equake as the workload and a 4 vCPU service VM running Olio

database and share the same quad-core socket. We give the lowest weight of 256

to the batch VM, and the highest possible 65535 weight to the service VM. We can

observe in Figure 6.5a that despite having ample CPU headroom, and no resource

bottleneck, the QoS ratio of Olio is poor. This happens due to lack of guarantee

of timely access to CPU resources for the service VM.

The lack of QoS support in proportional schedulers has been identified as a

problem in conventional OS schedulers like Linux (Stanford SMART scheduler [75]

and QLinux [93]) as well as hypervisor schedulers like Xen in recent research [64].

To solve this problem, we adopt a solution similar to the QLinux [93] approach by

introducing real time scheduling for services, while retaining default proportional

scheduling for batch VMs. We introduce a new priority state in the scheduler,

referred to as the ‘QoS’ state, which sits between the Boost and Under states. The

VMs with QoS priority state always get a real time priority and get scheduled

ahead of other non QoS state VMs. The QoS state can be configured through

Xen-API for any VM, which has a QoS requirement. Figure 6.5b shows the QoS

ratio results for the same experiment with the QoS state enabled for Olio VM. We

can see that it comfortably meets the QoS requirement, since the scheduler gives a

real time priority to the service vCPUs whenever they are ready to run. However,

as we show next, providing real time priority is not sufficient by itself to guarantee

QoS for the services under consolidated virtualized environments.

Impact of Interference Effects Most of the state of the art VM consolidation

algorithms [103, 41] assume that when VMs get consolidated, their CPU utilization

adds up. This is true for batch and batch consolidation [73], since their CPU uti-

lization is fairly static, as well as services and services, as they contend more on I/O

resources rather than CPU or memory resources. However, when we consolidate

batch VM and service VM, the assumption does not necessarily hold true. Due to

high utilization of shared resource like memory bandwidth and last level cache, the
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(a) RUBiS -web running alone

(b) RUBiS -web with batch VM running ‘swim’

Figure 6.6: Impact of interference effects on the QoS ratio of service VM (RUBiS
web server).

batch VM can slow down the service VM and hence increase its CPU utilization

to possibly generate a CPU bottleneck. Figure 6.6 illustrates an example of this

phenomenon with a plot of CPU utilization and QoS ratio samples collected every

2s. In Figure 6.6a, we run RUBiS web server configured with 2 vCPUs on the

quad core Nehalem machine, and we can observe that the application comfortably

meets the QoS ratio. In Figure 6.6b, we repeat the same experiment with a batch

VM (with 2 vCPUs) running swim as the workload consolidated on the same quad

core machine. We assign the QoS state to the RUBiS web server to guarantee
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timely access to the CPU resources. The interference effects due to the batch VM

slows down the web server, even though they do not share a physical core, only

portions of the memory hierarchy and interconnect. This consequently increases

the CPU utilization of the web server VM, and creates a CPU bottleneck where

there previously was none, and worsens the QoS ratio of the application.

This example shows that just guaranteeing real time priority is not sufficient

to ensure QoS for service VMs in consolidated environments. The interference

effects due to shared resource usage can dramatically impact the QoS level even

when CPU resources are not shared, and must be explicitly accounted for. These

interference effects are a function of how the workloads interact with each other,

and as we show in later sections, is difficult to model. Consequently, our approach,

as described in the next section, is to rather infer the interference effects through

CPU utilization and QoS ratio feedback from the service VMs, and to adaptively

provision their resource allocation in order to alleviate the problem.

6.4 System Design

In this section we provide details of the design and implementation of our

system, Themis, for managing diverse workloads in the data center. The objective

of the system is three-fold – (1) satisfy the QoS requirement of the service jobs;

(2) maximize the batch job throughput; (3) minimize the power consumption. To

capture all these goals, we define a new metric to capture the system level energy

efficiency.

6.4.1 Energy efficiency metric

In a data center running a heterogeneous workload mix comprised of both

batch and services VMs, VM consolidation policies may co-schedule any combi-

nation of workloads across the physical machines. However, to understand the

effectiveness of these policies, it is extremely important to take into account how

it maximizes the batch job throughput, while ensuring the QoS requirements of

services are met while minimizing the energy cost. To quantify energy efficiency
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in such environments, we introduce a new metric. It measures the batch job

throughput/Watt, multiplied by a factor that reflects whether we are still meeting

the services QoS requirement. The point being that batch throughput only has

value when it still allows services agreements to be met.

qMIPS/Watt = q ∗ (batchjobMIPS)/SystemWatts (6.2)

Here, q is either 0 or 1, depending on whether the QoS ratio is below 1.

Since the batch job performance is being measured in terms of MIPS, equation

6.2 actually represents work done per Joule over a period of 1s (Joule = Watt ×

time). For instance, a value of 10 qMIPS/Watt over a time interval implies that

an average 10 million batch job instructions were committed, while meeting the

QoS requirement of the service VM, using 1 Joule of energy per second.

Maximizing qMIPS/Watt implies that it is acceptable to sacrifice some

services performance as long as we still meet our strict service level agreements,

increase batch throughput, and increase the overall energy-efficiency of the system.

6.4.2 Themis Design

The overall objective of Themis is to manage diverse workloads in the data

center with the goal of maximizing qMIPS/Watt. For this purpose, the system

implements a monitoring framework for dynamic VM profiling and policies for

dynamic resource management of VMs. Figure 6.7 gives an overview of Themis.

The overall design is similar to vGreen and is composed of three primary entities:

(1) Themis Nodes: These are the physical machines in the data center that run the

actual workloads, which can be a batch VM, service VM or both. They are similar

to vgnodes in vGreen. (2) Services Clients: These are the machine(s) that are

running applications requesting service from a service VM (which can be a single

or multi-tier service) running on the Themis clients. (3) Themis Server: This is the

cluster manager and is responsible for implementing policies for node level resource

management and VM scheduling. This is similar to the vGreen vgserv. We now

present these entities in greater detail.
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Figure 6.7: Overall Themis Architecture.

Themis Nodes

Themis nodes (referred to as tNodes hereafter) are the physical machines

populating the data center for running the actual workloads. The workloads could

be either a batch VM or a service VM as shown in Figure 6.7. The tNode contains

vgdom and vgxen, which are the same as in the vGreen system.

Services Clients

Services clients (referred to as sClients hereafter) are the applications being

serviced by the service VM(s) running across the tNodes. Figure 6.7 shows an

example of a sClient being serviced by a multi-tier service (like RUBiS and Olio)

comprised of web and database servers (sWeb and sDb) running across two tNodes.

The sClients use appProfiler to dynamically communicate QoS ratio to the Themis

server. We instrumented the workload generators of RUBiS and Olio to implement

the appProfilers. We assume that it is feasible to implement such appProfilers

for all the services running in the data center. The QoS ratio is dynamically

communicated by the appProfiler to the Themis server.
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Themis Server

Themis server (referred to as tServer hereafter) is the cluster manager, and

is responsible for resource management across the cluster with the objective of

maximizing the qMIPS/Watt. The tServer registers all the tNodes and sClients,

and periodically collects the metric updates and QoS ratio from them, and feeds

it to the management policies running on the system. The policies convey their

management decisions to the vgdom, which physically implements them on the

intended tNode as illustrated in Figure 6.7.

The tServer employs vgpolicy just like vGreen vgserv that now consolidates

batch and service VMs based on the CPU utilization metrics of the individual

VMs running across the cluster provided by the vgdom. However, as identified in

the previous section, when we co-locate batch VM and service VM on a tNode,

the interference effects can impact the QoS ratio of the services. For solving this

problem Themis employs a novel resource management policy, referred to as the

Node Controller (see Figure 6.7), which exploits the heterogeneity of the batch and

service workloads.

Node Controller (tController) As identified in the previous sections, the CPU

requirements of the batch and service workloads are complementary. While batch

VMs need CPU resources to maximize their throughput, the service VMs only

need the CPU resources for long enough to service the client request within the

required time frame. The batch VMs do not benefit from additional CPU resources

if their requirement is already met, while the service VMs can benefit from addi-

tional CPU resources by spreading their workload more. Consequently, if we can

dynamically shrink or expand the CPU resources for the service VMs to converge

to a value where the QoS is just satisfied then we can safely commit the remainder

to the batch VMs. This observation motivates the design of a resource manage-

ment policy, referred to as the ‘Node Controller’ or the‘tController’ to dynamically

control the CPU resource allocation to the service VMs.

The objective of the tController policy is two-fold: (1) Converge to the

optimal number of vCPUs sufficient to meet QoS ratio for the service VMs, while
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Table 6.1: Performance Model (nref Estimation).

Input: QoScur, utilcur and ncur

1: if QoScur < QoSth then

2: nnext ← ncur − 1

3: utilnext ← (utilcur × ncur)/nnext

4: if utilnext > utilth then

5: return ncur

6: end if

7: else

8: nnext ← ncur + 1

9: end if

10: return nnext

maximizing the CPU headroom for batch VMs; (2) Guarantee a stable system. We

implement tController using a formal feedback control which is provably stable and

can meet the desired objectives. The tController operates at discrete time intervals

or periods, when it is periodically fed with metric and QoS ratio updates from

the tNodes and the sClients respectively. Every interval, the tController assigns

vCPUs to the VMs in a way that guarantees convergence to their desired QoS

ratio. There is a tController for every service VM, and operates independently

based on the metric and QoS inputs.

The tController is based on a performance model that tries to predict at

every time interval what is the projected requirement in terms of number of CPUs

(which we refer to as nref) for the next interval based on the CPU utilization and

QoS ratio input. We describe it below:

Performance model Table 6.1 describes the algorithm to estimate nref at every

time interval (for the upcoming interval). The algorithm takes as the input the

current QoS ratio (QoScur), CPU utilization (utilcur) and the vCPU allocation

(ncur) for the service VM the tController is managing. In step one of the algorithm,

it compares the QoScur with the QoSth, which is a threshold to determine if the
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Figure 6.8: Approximate linear scaling of CPU utilization with vCPUs for RUBiS
web server.

QoS ratio is progressing towards 1. If QoScur is below the threshold, then the

algorithm concludes that the service VM is currently over-provisioned in terms of

CPU resources. Consequently, in steps 2 and 3 it tries to predict what its CPU

utilization would be, if it reduced the vCPUs allocated to the service VM by 1. The

prediction (step 3) uses a linear extrapolation model based on utilcur, ncur and nnext

(vCPU allocation for next interval). If the predicted CPU utilization (utilnext)

is greater than a CPU utilization threshold (utilth), which is representative of

a bottleneck (step 4), then the algorithm returns ncur as the nref (step 5). If

that is not the case, then the algorithm returns nnext as the nref (step 10). The

motivation for using linear scaling is based on modeling of CPU utilization of

service workloads from real experiments running with and without interference

effects. While the model is simple, Themis’ control system allows it to adapt to

errors in the model. For instance, Figure 6.8 shows the CPU utilization of a RUBiS

web server configured with 2, 3 and 4 vCPUs running identical load. The three

plots correspond to runs where the web server runs alone (no consolidation), and

with batch VM running perl and mcf as workloads. We can clearly see that in

each case the CPU utilization can be roughly modeled as linear with the change in

number of vCPUs both with (mcf ) and without/little (alone and perl) interference.

If QoScur is greater than QoSth (step 7), then the system concludes that the

current CPU allocation for the service VM is not enough to meet the QoS ratio.
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Consequently, it adds 1 more vCPU on top of the current allocation, and returns it

as nref (steps 8 and 10). The performance model described above is simple, but is

not precise due to the following reasons: (1) The model assumes the CPU usage

profile of the service VM stays constant, which might not always be true. (2) The

characteristics and the interference effects of the co-located batch VM might also

change, resulting in imprecise predictions.

Controller It is important to keep track of the deviations in the behavior of

the performance model to converge to a desirable and stable allocation. These

deviations aggregate over time and they can be modeled as a state. We model the

error in selecting the number of vCPUs for each service VM as a state which is

related to the input, the number of vCPUs, as below:

δn(k + 1) = δn(k) + (n(k)− nref(k)) (6.3)

where n(k) is the currently assigned number of vCPUs and δn(k) represents

the error accumulated in selecting the number of vCPUs until the current time or

the kth interval. The value of nref(k) is the target number of vCPUs estimated

using the performance model described above (refer Table 6.1). In this equation,

the value of δn(k + 1) represents the sum of the accumulated errors over the past

k time intervals (δn(k)) and the error generated during the period between k

and k + 1 which equals n(k) − nref(k). To maximize the qMIPS/Watt, we must

guarantee the convergence of δn(k + 1) to zero, since that would imply we give

minimum possible CPU resources to the service VM at any point in time to meet

its QoS ratio, hence maximizing the achievable MIPS for the batch VM. This

model can be easily extended to multiple service VMs where each VM needs to

meet its respective QoS ratio.

We use closed loop feedback to dynamically manage the number of assigned

vCPUs with the objective of converging the value of δ(k) to zero. We achieve this

by using the control law which is the linear feedback of the states under control:

ni(k) = −Giδni(k) + nrefi
(k) (6.4)

where Gi is the state feedback gain for the ith service VM and ni(k) is

the number of vCPUs for that service VM to meet the desired QoS ratio. The
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controller is stable when the gain values are within the range of 1 > Gi ≥ 0 where

the value of Gi determines the convergence time of the controller.

The controller is guaranteed to converge to the optimal number of vCPUs

for the service VMs, which can satisfy its QoS requirement. For instance, if we con-

sider the example of Figure 6.6, the controller would be able to identify the CPU

bottleneck through the feedback of CPU utilization and QoS ratio, and would in-

crease the vCPU allocation in response, to resolve the bottleneck. However, the

timeliness of such a response is important to ensure that the QoS ratio always

stays below 1. This is a function of the granularity of identifying the bottleneck,

which is determined by the interval length (Ts) across which we collect metrics and

QoS ratio feedback and QoSth. If Ts is too coarse such that the system is not able

to capture worsening QoS ratio due to a bottleneck between two consecutive QoS

ratio samples, it might lead to QoS violations. On the other hand, if it is too fine,

it would cause avoidable overhead. The QoSth is the function of Ts and the worst

case rate of QoS ratio degradation in the presence of a bottleneck. We determined

these parameters through experiments with micro-benchmarks designed to create

bottlenecks for the service VMs, which allowed us to capture the worst case wors-

ening rate of QoS ratio. We verify that different sets of these parameters work well

for our system, but use QoSth of 0.6, Ts of 2s and utilth of 95% as representative

parameters in our experiments.

6.5 Evaluation Methodology

We conduct experiments on a testbed of four state of the art dual Quad core

Nehalem based machines with 24GB memory. Two machines act as the tNodes,

and run the service and batch VMs. The third machine, used as the sClient,

generates the workload for the services. The sClient is representative of the end

users of the services that can be located either inside or outside of the datacenter.

The last machine acts as the tServer and is responsible for scheduling and resource

management of the VMs.

The Cluster Scheduler on the tServer consolidates the VMs on the basis of
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either CPU utilization [103, 41], workload characteristics in terms of MPC [28, 70],

or does not consolidate at all to avoid interference effects. The Node Manager on

the tServer can dynamically alter the resource allocation of VMs in terms of CPU

cap available [73, 79] or number of vCPUs allocated to ensure that the QoS ratio

is satisfied for the service VMs. The primary policy of Themis is consolidation

based on CPU utilization, and resource management based on the tController, as

discussed in the previous section. In order to evaluate Themis against existing

state of the art systems, we consider the following policies:

(1) Baseline: This policy runs the service VMs and the batch VMs on

separate tNodes to avoid any interference effects.

(2) Consolidation: This policy consolidates the service VMs and the batch

VMs on the basis of CPU utilization [103, 41] (if the sum of their CPU utilization

is less than utilth, the parameter that indicates CPU bottleneck in Table 6.1) but

does not perform any resource management using the Node Controller.

(3) Ideal-tChar: vGreen and similar systems proposed in [70] are capable

of identifying the memory intensiveness of the batch VMs, and employ dynamic

VM scheduling policies that try to distribute VMs across physical machines to

avoid MIPS degradation that can happen due to their consolidation. However,

these policies assume there are only batch workloads running in the cluster, and

focus on maximizing the overall MIPS/Watt. We extrapolate such policies for

Themis so that they only consolidate non memory intensive batch VMs with the

service VMs. If the batch VM is memory intensive, they let the VMs run inde-

pendently on separate tNodes. Such a policy ensures the QoS ratio is satisfied

by limiting the degree of consolidation. We refer to this policy as ‘tChar’. We

pre-pend it with Ideal, as we make it perform consolidation only if it is guaranteed

that the QoS ratio is satisfied, which we determine offline. It does not perform any

dynamic resource management of the service VMs using the Node Controller.

(4) Ideal-tCap: Systems proposed in [79, 73] are capable of dynamic re-

source management to manage QoS on consolidated machine through CPU cap-

ping. They do so by placing a CPU cap on the lower priority VM to ensure that

the higher priority VM meets its QoS requirements. For instance, a cap of 40%
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on a low priority VM implies that it cannot run more than 40% of the time even

if it is runnable and has CPU resources available. A CPU cap limits the amount

of time the lower priority VM can spend running, hence reducing the interference

effects. This policy can be interpreted in our system as placing a CPU cap on the

batch VM based on the QoS ratio feedback of the application being serviced by

the service VM to ensure that the QoS requirements are met. We refer to this

policy as ‘tCap’, where it first consolidates the batch and service VMs based on

their CPU utilization [103, 41] and then uses CPU capping to ensure that the QoS

ratio of the service is satisfied. We again refer to it as the Ideal, since we determine

the minimum cap required to be imposed on the batch VM so that the QoS ratio

is satisfied offline, and use it for this policy.

(5) Controller: This is the default Themis policy. It consolidates batch

and service VMs based on their CPU utilization [103, 41], but uses the tController

described in the previous section for QoS ratio management.

For all our experiments, initially one tNode runs the service VMs (for in-

stance the RUBiS web and database servers) and the other tNode runs the batch

VM. We then monitor the MIPS of the batch VM, QoS ratio for the service VMs

and the power consumption of the active tNodes every two seconds (Ts) for the

whole duration of the run of the sClient, i.e. the workload generator. The power

consumption is recorded from the power sensors on the machines, which are ac-

cessible through an Integrated Power Management Interface (IPMI) [55]. Using

these numbers, we estimate the qMIPS/Watt for a particular run. We use only the

power consumption of the active tNodes for qMIPS/Watt estimation, since that

captures how energy efficient the policies are in terms of resource usage. We refer

to it as the ‘active power consumption’ for a given run.

We report results for all these policies across different workloads running

inside the batch VM. For fairness, the initial configuration of the batch and service

VMs is identical for all policies. All the VMs run Linux as the guest OS, and are

configured with 2 vCPUs and 4GB of memory. The service VMs are assigned the

‘QoS priority state’ (see section 6.3) with all the policies to ensure timely access to

the CPU. The RUBiS and Olio workload generators are configured such that the
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(a) RUBiS and Batch VM

(b) Olio and Batch VM

Figure 6.9: Comparison of all the policies for overall qMIPS/Watt. The results
are normalized against the Baseline policy.

service VMs comfortably meet the QoS ratio when running alone (RUBiS : 7000

users, Olio: 550 users). For the batch VM, we always have as many threads of the

benchmark as the number of vCPUs to represent a fully utilized VM. The mix of

our batch jobs has an equal number of CPU and memory intensive benchmarks.
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(a) RUBiS and Batch VM

(b) Olio and Batch VM

Figure 6.10: Comparison of all the policies for Batch VM MIPS. The results are
normalized against the Baseline policy.

6.6 Results

Figures 6.9 illustrates the overall results in qMIPS/Watt for all the policies,

normalized against the baseline policy, with different workloads running inside the

batch VM. The different combinations are sorted from left to right according to the

level of expected interference between service and batch VMs. The more memory

intensive the batch job, the more it impacts the execution of service jobs.
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(a) RUBiS and Batch VM

(b) Olio and Batch VM

Figure 6.11: Comparison of all the policies for active power consumption. The
results are normalized against the Baseline policy.

The Baseline policy gives the best MIPS for the batch jobs but is inher-

ently energy inefficient, since it constantly keeps two machines active, resulting in

the highest active power consumption (see Figure 6.11). The Consolidation policy

saves active power (∼40%) through VM consolidation. However, it results in poor

qMIPS/Watt because consolidation with memory intensive batch VMs results in

bottlenecks for the service VMs (as shown in Figure 6.6), and consequently viola-

tions of their QoS (failure to meet the QoS requirements corresponds to 0 value
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of qMIPS/WATT). So although the policy is reducing the active power consump-

tion across the tNodes though consolidation (see Figure 6.11), it often violates the

performance objectives of the system, resulting in average qMIPS/Watt similar to

that of the Baseline policy.

The Ideal-tChar policy combines the best of the two previous policies. This

policy, based on oracle knowledge, consolidates the VMs when the their QoS is

maintained and keeps them separate when not. Ideal-tChar gets a 40% increase in

qMIPS/WATT over the baseline for RUBiS and 50% increase for Olio. The policy

however, misses out on the opportunity to save energy through consolidation for

more memory intensive batch VM workloads (like mcf, art etc.) as evident in

Figure 6.11. The Ideal-tCap policy, on the other hand, accomplishes consolidation

under all circumstances. To guarantee the QoS of the service VM, it places a limit

or cap on the CPU utilization of the batch VM such that the service VM just meets

it QoS requirement. A cap on CPU allocation results in lesser time spent by batch

VM on the CPU, which reduces the interference effects. However, Ideal-tCap not

only fails to improve the useful work done per joule but actually results in its slight

reduction. This is explained in Figure 6.10, where we observe that the MIPS of the

batch VM because of capping drops considerably. Figure 6.13 shows the details of

actual cap values employed by the Ideal-tCap policy on the memory intensive batch

VMs, when co-scheduled with RUBiS and Olio. In some cases like mcf, equake,

which cause a lot of interference effects, the cap applied is ≤50%, which implies

more than 50% of the time it is not allowed to run. This implies that the benefit

of consolidation in terms of energy savings is more than offset by compromising

the MIPS of the batch VM. This results in the Ideal-tCap policy performing even

worse than the Baseline policy in terms of qMIPS/Watt for some very memory

intensive batch VMs. For less memory intensive batch VMs it performs very well

and thus achieves average qMIPS/Watts similar to the Ideal-tChar policy.

Our Controller policy outperforms all the other policies for both the service

workloads. For RUBiS, the Controller policy does on average 70% better than

the Baseline in qMIPS/WATT and ∼35% better than the Ideal policies, while

for Olio it is 70% better than the baseline and ∼25% better than Ideal policies.
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The large gains in qMIPS/Watt of the Controller policy over the Ideal policies is

a consequence of the fact that it is able to exploit the heterogeneity in the way

they use their CPU resources. It resorts to scaling the number of vCPUs of the

service VM as a way to control the interference between the two types of VMs,

which exactly exploits the heterogeneity. For example, Figure 6.12 shows how the

Controller adapts to converge to an optimal number of vCPUs for RUBiS web

server, when running with streamcluster as the workload inside the batch VM. It

plots the vCPU selection and QoS ratio of RUBiS over the samples collected by

the system. We can see that the system initially starts with 2 vCPUs for web

server. The interference effects of streamcluster results in a CPU bottleneck – this

manifests in the form of a poor QoS ratio, which when crosses the QoSth (0.6),

makes the Controller switch to 4 vCPUs. Beyond that it reaches a steady state,

where it converges to 3 vCPUs, which as we see in Figure 6.12, is a stable solution

for satisfying the QoS of RUBiS. It sticks with 3 vCPUs even though the QoS ratio

is below QoSth since the performance model predicts the CPU utilization of the

service VM would cross the utilth if increased. Thus, using a combined QoS ratio

and CPU utilization based feedback, the Controller is able to converge to a stable

solution.

Figure 6.10 demonstrates that the raw MIPS achieved by the Controller is

on an average within ∼7% of the maximum possible, i.e. the Baseline, and in the

worst case 17% and 22% below the maximum with RUBiS and Olio respectively.

At the same time it is able to dramatically reduce the active power consumption of

the system (∼50%) compared to the Baseline case (see Figure 6.11). Hence, overall

the Controller is able to maximize the energy efficiency while limiting the impact

on the raw performance of the batch VMs. In contrast, the Ideal-tCap policy is

on an average ∼30% below and in the worst case almost 70% below the Baseline.

The results of the Controller further highlight the importance of heterogeneous

consolidation – with batch-only consolidation the worst case drop in MIPS is 40%,

while the average is ∼20% (see Figure 6.3).

A close examination of the qMIPS/Watt results of the Ideal policies for Olio

and RUBiS shows some differences even for the same batch VM workloads in Figure
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6.9. There are two primary reasons for that: (1) The way the Ideal-tChar classifies

facerec and wupwise benchmarks. When co-scheduled with RUBiS, these two

workloads generate enough interference effects to violate the QoS requirement of

RUBiS. As a consequence, they are not consolidated by Oracle-tChar with RUBiS,

as evident from Figure 6.9. However, with Olio, the interference effects are limited,

which allows successful consolidation. This results in higher qMIPS/Watt for the

Ideal-tChar policy with Olio compared to with RUBiS. (2) Difference in average

cap allocation by Ideal-tCap for batch VMs. This observation is highlighted by

Figure 6.13, where we clearly see that the same workload needs different amount

of capping across RUBiS and Olio. As mentioned above, since there are limited

interference effects between Olio, and wupwise and facerec, they do not need any

cap to be applied. For the other memory intensive workloads as well, the required

cap is higher than with RUBiS, which allows the Ideal-tCap policy to get a higher

qMIPS/Watt when running with Olio.

This behavior also demonstrates the difficulty in predicting interference

effects between applications when sharing elements of the memory hierarchy. It

can be deduced that CPU intensive batch VMs consolidate well with service VMs as

long as there is sufficient headroom for both, while very memory intensive batch

VMs degrade the QoS of co-scheduled service VMs. However, in between these

two extremes, it becomes more difficult to predict what the consolidation outcome

would be. This observation validates the use of dynamic QoS feedback for effective

resource management, which the Controller policy employs.

6.6.1 Controller Adaptability

In order to study how the proposed Controller policy adapts to changing

workload and QoS requirements, we did the following two experiments: (1) Co-

schedule service VM with batch VM of alternating characteristics and (2) Co-

schedule service VM with batch VM when the load of the former dynamically

changes.

Figure 6.14 illustrates the adaptability of the Controller when co-scheduling

RUBiS web server VM with a batch VM that is memory intensive at the beginning
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Figure 6.12: vCPU selection timeline of Controller for the RUBiS web server
with streamcluster as the consolidated batch VM.

Figure 6.13: % cap applied by the Capping policy on the different batch VMs
with both RUBiS and Olio.

of the experiment (swim), CPU intensive in the middle (perl) and then memory

intensive again at the end (equake). The plot shows the vCPU selection for the RU-

BiS VM on the left y-axis and the QoS ratio achieved on the right y-axis. We can

see that the Controller manages to adapt with the changing levels of interference

between the different workloads and finds the best allocation of vCPUs in order to

satisfy the QoS requirement. When QoS ratio increases because 2 vCPUs is not

sufficient for service VM the controller reacts and increases the number of vCPUs

to 3 (just like it did in Figure 6.12 when running with streamcluster). However,

when the interference effects drop, the Controller is able to infer that through the
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Figure 6.14: Adaptability with changing batch VM workloads (RUBiS web server
in the service VM).

drop in the CPU utilization of the web server VM, and decreases the number of

vCPUs to increase the MIPS the batch VM can get. Similarly, when the batch

VM again becomes memory intensive, the Controller again assigns another vCPU

to resolve the bottleneck.

In the next experiment (see Figure 6.15), we dynamically change the load

on the Olio service VM by changing the number of user sessions emulated by

the sClient and co-schedule it with perl running as the batch VM. For the first

200 seconds of the experiment Olio services 550 users, just like the experiments

presented earlier in Figure 6.9; for the next 200 seconds the workload increases

to 650 users, and for the last 200 secs returns to 550. Initially, the controller

converges to 2 vCPUs since perl and Olio co-exist without interfering and the QoS

is comfortably met. As soon as the number of users increases to 650, 2 vCPUs for

serviceVM do not suffice and the QoS ratio increases. In response, the Controller

increases the number of vCPUs and finally converges to 3 vCPUs to ensure that

the QoS ratio is satisfied. In the last part of the experiment the CPU bottleneck

is alleviated through reduction in load on the service VM and the controller again

downsizes the vCPU allocation to 2 in response.

These experiments highlight the robustness of the Controller and show that

its decision-making and stability is independent of workloads or their configuration.
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Figure 6.15: Adaptability with changing number of service VM users (Olio is the
service VM and perl is the batch VM).

6.7 Conclusions

The last two chapters evaluated mechanisms and policies to achieve energy

efficiency in server class systems using workload consolidation. In the last chap-

ter we showed how workload characterization is extremely important for achieving

both performance and energy efficiency in consolidated environments, and dis-

cussed the design, implementation and evaluation of vGreen system to accomplish

that. However, the system considered only throughput-oriented intensive batch

jobs as the workloads managed by it.

This chapter explored the challenges in managing both latency sensitive

service and batch jobs within a consolidated environment in data centers. We

identified qMIPS/WATT as the proper metric to capture the amount of work

done per joule while maintaining a pre-specified level of QoS, and showed that

consolidating batch and services workloads provides a compelling opportunity for

maximizing it. The evaluation demonstrated that existing state-of-the-art resource

management techniques that employ CPU capping or selective VM consolidation

(like vGreen) fail to maximize qMIPS/WATT. In contrast the Themis controller,

which leverages the heterogeneous characteristics of the workloads in terms of their

CPU requirements outperforms an ideal implementation of these policies by up to

35% on average.

Chapter 6, in part, is a reprint of the material under submission at Inter-

national Conference for High Performance Computing, Networking, Storage and
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Analysis, 2011. Dhiman, G.; Kontorinis, V.; Ayoub, R.; Sadler, C.; Tullsen, D.

and Rosing, T.S. The dissertation author is the primary investigator and author

of this paper.



Chapter 7

Conclusion and Future Work

Energy management is a critical issue in the design of computing systems

today in both mobile as well as enterprise space. For the mobile systems it is

extremely important from the perspective of battery life, while for the large scale

systems it directly impacts the cost of operation.

Towards this end, this thesis identifies and explores three mechanisms to

achieve system level energy efficiency: (1) Active power management (DPM and

DVFS): An online learning based policy is proposed that can manage devices

with different power management capabilities across varying workload profiles. (2)

Energy Proportional Design: A hardware design and runtime software solution to

dynamically manage a novel memory hierarchy comprising of PRAM and DRAM

is proposed. The new hierarchy converts an inherently non energy proportional

conventional DRAM based memory into a more energy proportional component.

(3) VM based Workload Consolidation: Efficient VM management policies are

presented to achieve high energy savings through intelligent workload consolidation

and resource management.

The key idea that all the proposed policies in this thesis exploit is ‘work-

load characterization’, i.e. an understanding of how the workloads use the system

resources. Active power management policies use this knowledge to determine

the best possible power state for the workload. The PDRAM system exploits

this knowledge to intelligently allocate the pages of a workload across PRAM and

DRAM to leverage benefits of both, while the vGreen and Themis systems develop
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VM scheduling and resource management algorithms based on the resource require-

ments of the workloads. Consequently, it allows them to out perform policies that

do not take this knowledge into account. The following sections summarize the

contributions of the thesis and discuss some ideas on future research directions.

7.1 Thesis Summary

7.1.1 Active Power Management

DPM and DVFS policies achieve energy savings by reducing the power

consumption during the idle and busy periods of operation respectively. While a

number of heuristic and stochastic DPM policies have been proposed in the past,

we found that no single policy solution could adapt well under varying workload

conditions. Additionally, for devices like CPU that support both DPM and DVFS,

existing work failed to take into account the interplay between the two. This, as

we show in this thesis, is extremely important since the energy savings based on

DVFS come at the cost of increased execution time, which implies greater leakage

energy consumption and shortened idle periods for using DPM.

This thesis proposes a novel setup of performing active power management

where online learning [34] is applied to select among a set of DPM policies and

v-f settings. The online learning algorithm or the controller has a set of experts

(DPM policies/v-f settings) to choose from and selects an expert that has the best

chance to perform well based on the controller’s characterization of the current

workload. The selection takes into account energy savings, performance delay as

well as the user specified energy-performance tradeoff (referred to as e/p tradeoff).

The algorithm is guaranteed to converge to best performing expert in the set, thus

delivering performance atleast as good as the best expert in the set, across different

workloads.

As we show in this thesis, active power management is well suited for en-

ergy savings on mobile systems primarily due to their usage pattern that allows

aggressive power management [42]. However, due to the energy proportionality

problem, it is not that effective for server class systems. We identify two means of
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achieving energy efficiency for such systems: (1) Energy proportional design and

(2) Workload consolidation using virtualization.

7.1.2 Energy Proportional Design

Lack of energy proportional components in the server systems reduces the

effectiveness of active power management techniques for system level energy sav-

ings. Although the CPU is highly energy proportional, its contribution to the total

power consumption of the system is just around 30%. Consequently, the server

systems consume as much 50% of their peak power even when their utilization

is negligible due to non energy proportional components like fans, power supply,

memory etc. In modern data center deployments, due to increasing data intensive-

ness of the applications, memory energy consumption has become a big problem,

as it contributes 30-40% to the total power consumption [42].

To this end, this thesis proposes a novel memory architecture, which can

significantly reduce the memory energy consumption, hence making the memory

subsystem more energy proportional than the conventional DRAM based systems.

The new architecture leverages the low read and static power of PRAM, and the

high write endurance of DRAM to build a hybrid memory hierarchy comprising

of both PRAM and DRAM. By exploiting the characteristics of the workloads in

terms of how they use the memory (read and write intensity), the proposed system

is able to take advantages of both the technologies to achieves much higher energy

savings compared to DRAM based memory systems for both memory as well as

non memory intensive workloads.

7.1.3 Workload Consolidation

For large scale deployments like data centers and cloud computing infras-

tructures, another way to achieve energy proportionality is by consolidating work-

loads into fewer machines. This pushes the active machines into an energy efficient

zone of operation (higher utilization; see Figure 1.1), while the freed up machine

could be switched off to achieve an energy proportional state of operation. Virtu-
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alization has gained a lot of traction is recent years, since it facilitates workload

consolidation through ease of dynamic workload and resource management. Poli-

cies for performing dynamic virtual machine consolidation and management have

been proposed in previous research [86, 74, 103]. However, most of them rely on

overall CPU utilization of the physical machines and its VMs as an indicator of

their respective power consumption and resource utilization, and use it for guiding

the VM management policy decisions.

This thesis shows that based on the characteristics of these different co-

located VMs, the overall power consumption and performance of the VMs can vary

a lot even at similar CPU utilization levels, which can mislead the VM management

policies into making decisions that can create hotspots of activity, violate QoS

requirements and degrade overall performance and energy efficiency. Based on this

observation, VM scheduling and resource management policies are proposed that

can maximize energy efficiency while ensuring that the performance requirements

of the workloads within the VM are satisfied as well.

7.2 Future Research Directions

7.2.1 I/O Resource Management in Virtualized Environ-

ments

This thesis highlights the importance of CPU resource management in vir-

tualized environments in Chapter 6 for avoiding CPU bottlenecks and facilitating

VM consolidation for energy efficiency. However, aggressive VM consolidation can

also result in bottlenecks of I/O resources (network, disk etc.). The Themis system

in Chapter 6 prevents this by consolidating batch and services workloads, as they

complement each other in I/O resource usage.

However, there could be batch jobs like MapReduce [25], which can have

phases that are more intensive on I/O than the SPEC and PARSEC workloads

assumed by the Themis system. In the presence of such batch jobs, it is impor-

tant to also take into account I/O resource management to ensure that the QoS
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requirements of services is not violated in case of any bottlenecks. The batch and

services consolidation would still be beneficial, since if the I/O bandwidth required

by the services to just satisfy its QoS ratio is guaranteed, the excess could be safely

granted to the batch jobs.

7.2.2 Energy Proportionality for Storage

With virtualization becoming ubiquitous in data centers and cloud com-

puting, energy consumption of storage, that typically host the disk images of the

different VMs running across the data centers is becoming very important. The

disk images could be residing either on enterprise storage servers or even on cluster

of commodity servers, where computation and storage are co-located on the same

nodes. Recent work has looked into how to achieve energy proportionality for

storage under both the cases. The research in [98] proposes SRCMap, a storage

virtualization layer, that dynamically consolidates cumulative workload of VMs

on a subset of physical volumes of a storage server. This allows the system to

spin down the remaining volumes to achieve energy proportionality. On the other

hand, the research in [95] proposes Sierra, a system to achieve energy proportion-

ality in distributed storage subsystems based on commodity servers. They propose

a power-aware layout to allow a significant fraction of servers to be powered down

without losing availability or fault tolerance.

A complementary approach towards solving the energy proportionality prob-

lem in storage could be to re-design the storage hierarchy by adding non volatile

technologies like flash and PRAM. These memory technologies cannot match disk

in terms of GB/$, but can provide much faster lower power consumption and faster

access times. This motivates a new hierarchy where flash or PRAM could act as a

cache of hot pages, which allows longer idle periods for the disk to be spun down.

Besides, due to redundancy present across VM disk images (OS and application

code for instance), techniques to de-duplicate them can free up physical volumes

that could be either spun down or used for additional work to increase the overall

energy efficiency.
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