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ABSTRACT
In recent years, there has been a spike in interest in the field of fed-
erated learning (FL). As a result, an increasing number of federated
learning algorithms have been developed. Large-scale deployments
to validate these algorithms are often not feasible, resulting in a
need for simulation tools which closely emulate real deployment
conditions. Existing federated learning simulators lack complex
network settings, and instead focus on data and algorithmic de-
velopment. ns-3 is a discrete event network simulator, which has
a plethora of models to represent network components and can
simulate complex networking scenarios. In this paper, we present
ns3-fl, which is a tool that connects an existing FL simulator, flsim,
with ns-3 to produce a federated learning simulator that considers
data, algorithm, and network. We first discuss the learning, net-
work and power models used to develop our tool. We then present
an overview of our implementation, including the Client/Server
ns-3 applications and interprocess communication protocols. A real
Raspberry Pi-based deployment is setup to validate our tool. Fi-
nally, we perform a simulation emulating FL training on 40 clients
throughout the UCSD campus and analyze the performance of our
tool, in terms of real clock execution time for various FL rounds.

CCS CONCEPTS
• Networks → Network simulations; • Computing method-
ologies → Machine learning.
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1 INTRODUCTION
With the growth of computational power among devices in dis-
tributed networks, such as smartphones, smartwatches, and au-
tonomous vehicles, interest in federated learning (FL) has been
increasing among researchers. The number of publications that
include "federated learning" in their title has increased tenfold from
2019 to 20211. In traditional machine learning, clients send raw data
to the server which is used to train the global model. In contrary,
FL has clients train on local datasets, and only send the learned
model to the server for aggregation and global updates. Such learn-
ing paradigm enables distributed training on local dataset while
preserves user privacy [15].

The practical performance of FL depends on an interplay be-
tween data, algorithm, and network. However, none of the existing
simulators consider all of these factors. The existing simulators sup-
port training over various datasets, and focus on propelling forward
algorithmic development, but do not take into consideration com-
plex network behaviors. They assume ideal networks [21] or have
static behaviors to represent network features such as client drop
out and latency of communication [17, 22]. Despite this, the conver-
gence of training is constrained by power budgets and connection
quality of clients, as well as potential over-saturation over network
channels [18]. Thus, the network plays a crucial role in convergence
but usually is ignored in existing simulation tools. Because many
of the open issues in FL are motivated by real-world FL constraints
and settings, overlooking the network behaviors could make a sys-
tem appear to work well in simulation but lack reproducible results
in practice [13]. In our work, we focus on creating a FL simulator
which takes into account the data, algorithm, and network.

The contribution of this paper is as follows:
1This figure was determined through Google Scholar results for key word "federated
learning".
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(1) We create a simulating framework ns3-fl for researchers
to validate their FL algorithms under practical networking
conditions. We implement the framework using a PyTorch-
based FL simulator flsim [22] and ns-3. The data, algorithm
and network models in ns3-fl can be easily extended by the
user. Our source code is accessible online at https://github.
com/eekaireb/ns3-fl.

(2) We validate the framework by comparing the convergence
time and energy consumption results between ns3-fl and a
real deployment of Raspberry Pis. Our results demonstrate
at most 1.63% difference in the accuracy, at most 0.95% dif-
ference in the convergence times and a maximal 10.54% dif-
ference in the energy consumption.

(3) We perform a simulation emulating 40 Raspberry Pis on the
UCSD campus to show how ns3-fl can be used to support de-
cision design for FL deployments, including data distribution,
network quality, and algorithm configuration.

The rest of the paper is organized as follows:We first discuss current
advancements in related literatures. In Section 3, we explain the
learning, network and power models used to develop ns3-fl. Section
4 gives detailed implementation of ns3-fl. In Section 5, we validate
our tool with an evaluation of ns3-fl against a real deployment of
Raspberry Pis, perform a simulation to emulate 40 Raspberry Pis
placed around UCSD under different data, algorithm, and network
configurations, and we analyze the performance of our tool, in
terms of real clock execution time for various FL rounds.

2 RELATEDWORK
2.1 Federated Learning
Federated learning is a type of machine learning which keeps data
local to clients, rather than transmitting data to the server. Only
updates to the learned model are communicated throughout the
network. The baseline for much of the recent research in the field is
FedAvg [16] which is an algorithm for synchronous FL. Recent work
includes developing client selection policies [22] and manipulating
resource allocation to improve convergence [2, 25].

Asynchronous FL is another form of FL which exploits paral-
lelism in the network. The benefit of asynchronous FL over synchro-
nous FL is that the training is not delayed due to stragglers in the
network [24]. FedAsync is a novel FL algorithm with similar con-
vergence performance to FedAvg [24]. Many recent works on asyn-
chronous FL focus on node selection algorithms [5, 12], weighted
aggregation [3, 4], and semi-asynchronous FL [8] to address de-
vice heterogeneity and prevent stale models from decreasing the
accuracy of the global model.

2.2 Federated Learning Simulators
The existing FL simulators provide support for algorithmic devel-
opment, without considering complex network behaviors. Google’s
FedJAX aims to provide ease-of-use for algorithmic development
and provides standard datasets, models, and algorithms for users
[21]. FLPrivacy has configurable privacy scenarios and static net-
work settings, such as which clients will drop out and latencies for
each client [17].

Flsim is a simulator that was developed to support experimental
research, and was created for and first used in [22]. While flsim

does not contain any network elements, we link flsim with the
ns-3 network simulator to consider the effects of real networks
on federated learning, which has not been realized by existing
simulators.

2.3 ns-3 Network Simulator
ns-3 is a discrete event network simulator, created for research and
educational use [10]. It is an open source project that is licensed
under GNU GPLv2. ns-3 supports both ethernet and wireless com-
munication models and can be integrated with testbeds.

Two closely related ns-3 applications to our application are ns3-
gym and ns3-ai. ns3-gym supports the integration of OpenAI gym,
a toolkit for the development of reinforcement learning algorithms,
into ns-3, by using a socket for communication between these
processes [7]. ns3-ai also supports the integration of Python-based
reinforcement learning frameworks into ns-3, by using a shared
memory space for communication between processes [26]. Both ns3-
gym and ns3-ai emulate reinforcement learning-based applications
over wireless networks, while the proposed ns3-fl is designed for
FL applications.

3 MODEL
In this section, we introduce the learning, network and power
models used to develop ns3-fl. Note, that the users can easily extend
these models in the future to match their research needs.

3.1 Learning Model
The canonical setting in FL is a star-topology network. Suppose
there are 𝑁 client nodes connected to the server. The clients each
have a local dataset, which they train on and do not transmit over
the network. The goal of FL is to train the global model𝑤 with the
local data from each client. We define loss function 𝑓 (𝑤 ;𝑥𝑖 , 𝑦𝑖 ) as
an error function of how well the model𝑤 performs with respect
to sample (𝑥𝑖 , 𝑦𝑖 ). The objective of FL is

min
𝑤

𝐹 (𝑤) = 1
𝑁

𝑁∑︁
𝑖=1

𝐹𝑖 (𝑤) = 1
𝑁

𝑁∑︁
𝑖=1

1
𝑛𝑖

𝑛𝑖∑︁
𝑘=1

𝑓 (𝑤 ;𝑥𝑖
𝑘
, 𝑦𝑖

𝑘
) (1)

where 𝐹𝑖 (·) is the local objective that measures the empirical loss
at client 𝑖 holding 𝑛𝑖 local samples.

We support two types of FL algorithms: synchronous and asyn-
chronous. We implement the FedAvg and FedAsync algorithms
[16, 24] with their procedures shown in Algorithm 1 and 2 respec-
tively. In each global round 𝑡 = {1, ...,𝑇 }, both algorithms select a
subset of clients 𝑆𝑡 ⊆ {1, ..., 𝑁 } to perform local training. We use
|𝑆𝑡 | to denote the number of selected clients.

In a synchronous FL training round, the server first transmits the
global model to selected clients. When the selected clients receive
the model, they update the model and send the updated model to
the server. After receiving an updated model from each selected
client, the server aggregates the updated client models and updates
the global model. This concludes a synchronous FL round.

In an asynchronous FL training round, the server selects a subset
of the clients to transmit the global model to. The clients then
update global model and transmit their updates to the server. The
server updates the global model with the client updates as they are
received. The server then transmits the updated global model back

https://github.com/eekaireb/ns3-fl
https://github.com/eekaireb/ns3-fl
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Algorithm 1 FedAvg

1: for t = 0, 1, . . . , T do
2: Server selects a subset 𝑆𝑡 of clients.
3: Server sends𝑤𝑡 to the clients in 𝑆𝑡 .
4: Each client 𝑖 in 𝑆𝑡 updates the𝑤𝑡 for 𝐸 epochs of stochastic

gradient descent (SGD) on 𝐹𝑖 , creating𝑤𝑡+1
𝑖

.
5: Each client 𝑖 in 𝑆𝑡 sends𝑤𝑡+1

𝑖
back to the server.

6: The server aggregates updates from all clients in 𝑆𝑡 , where
𝑤𝑡+1 = 1/|𝑆𝑡 |

∑ |𝑆𝑡 |
𝑖=1 𝑤𝑡+1

𝑖

Algorithm 2 FedAsync

1: for t = 0, 1, . . . , T do
2: Server selects a subset 𝑆𝑡 of clients.
3: Server sends𝑤𝑡 to the clients in 𝑆𝑡 .
4: Each client 𝑖 in 𝑆𝑡 updates the𝑤𝑡 for 𝐸 epochs of SGD on

𝐹𝑖 , creating𝑤𝑡+1
𝑖

.
5: Each client 𝑖 in 𝑆𝑡 sends𝑤𝑡+1

𝑖
back to the server.

6: Server receives𝑤𝑡+1
𝑖

from client 𝑖 , and updates global model,
where𝑤𝑡 ′ = (1−𝛼)𝑤𝑡 +𝛼𝑤𝑡+1

𝑖
, and 𝛼 is a staleness parameter.

7: Server sends 𝑤𝑡 ′ to client 𝑖 , and client 𝑖 repeats process
from line 4.

8: When server receives 𝑤𝑡+1
𝑖

from all clients in 𝑆𝑡 at least
once,𝑤𝑡+1 = 𝑤𝑡 ′

to the client that communicated their update to the server. This
enables faster clients to update the global model multiple times
per round while waiting for stragglers. Once each of the selected
clients have sent an updated model to the server at least once, the
round will end.

3.2 Network Model
ns3-fl relies on ns-3 for network simulations. The pertinent network
data that is sent from ns-3 to flsim is the client id, latency, and
throughput for each client participating in the current round. Both
the ns-3 and flsim processes contain identical networks (i.e. the
same number of clients); thus the client ids are the same across
both networks. To compute the latency of each round for a client 𝑖 ,
we take the latency 𝐿𝑖 (seconds) to be

𝐿𝑖 = 𝑡𝑢 + 𝑡𝑑 + 𝑡𝑐 . (2)

𝑡𝑢 is the uplink time: the time it takes for the client to send the
entire updated model to the server. 𝑡𝑑 is the downlink time: the time
it takes for the client to establish a connection with the server and
receive the full global model from the server. 𝑡𝑐 is the computational
delay: the time it takes for a machine learning algorithm to update
the local model.

ns3-fl evaluates the throughput 𝑇𝑖 (kbps) for a client 𝑖 as one of
the metrics, which is defined as:

𝑇𝑖 = 𝑏𝑟 /𝑡𝑢 . (3)

Here 𝑏𝑟 represents the size of the model to be exchanged between
the server and clients.

3.3 Power Model
We define a power model to calculate the energy consumption
over the FL training process. Different from the well-known CPU
power models based on system variables [1, 27], our model con-
siders machine-learning specific parameters, e.g., the number of
multiply–accumulate (MAC) operations. We model the energy used
by the client to transmit the model to the server, and the client’s
energy consumed during computation. Our model is defined for
two devices, Raspberry Pi (RPi) 4 [20] and 400 [19], which represent
the latest edge computing platforms.

We define the transmission energy 𝐸
𝑡𝑥𝑖

as:

𝐸𝑡𝑥𝑖 = 𝑡𝑡𝑥𝑖 · 𝑃𝑡𝑥𝑖 , (4)

where 𝑡𝑡𝑥𝑖 is the time taken to transmit the model from the client
to the server obtained from ns-3. The value of 𝑃𝑡𝑥𝑖 is based on the
average power during transmission for RPi 4s and 400s.

We define the computational energy 𝐸𝑐𝑖 as:

𝐸𝑐𝑖 = 𝑡𝑐𝑖 · 𝑃𝑐𝑖 , (5)

where 𝑡𝑐𝑖 is the computational time per round for client 𝑖 and 𝑃𝑐𝑖 is
the average power consumed during 𝑡𝑐𝑖 on client 𝑖 .

To calculate the computational energy, we first calculate the
computational time and the computational power. We calculate the
computational time 𝑡𝑐𝑖 for a client 𝑖 with the following equation:

𝑡𝑐𝑖 = 𝑎 ·𝑀𝑖 · 𝑒𝑖/𝑓𝑖 + 𝑏, (6)

where𝑀𝑖 is the number of MAC operations that it takes for client 𝑖
to update their local model over 1 epoch, 𝑒𝑖 is the number of local
epochs, and 𝑓𝑖 is the CPU frequency of client 𝑖 .

Similarly, the computational power 𝑃𝑐𝑖 is calculated with the
following equation:

𝑃𝑐𝑖 = 𝑐 ·𝑀𝑖 · 𝑒𝑖/𝑓𝑖 + 𝑑. (7)

All constants 𝑎, 𝑏, 𝑐 , and 𝑑 in Equation (6) and (7) are derived by
performing a linear regression on the power measurements on RPi
4s and 400s, respectively, when training over various datasets and
machine-learning models at various CPU frequency.

4 IMPLEMENTATION
In this section, we first give an overview of ns3-fl. We then describe
our implementation of the Client/Server ns-3 applications, and
the interprocess communication protocols we use to communicate
between ns-3 and flsim.

4.1 Overview
Figure 1 depicts the architecture of ns3-fl at a high level. ns3-fl
consists of twomain software blocks, flsim and ns-3. Flsim simulates
the data distribution and FL while ns-3 simulates the network.

At the beginning of each FL training round, flsim sends a network
simulation request to ns-3, and lists the selected clients for the round.
ns-3 will then perform the network simulation for that round, and
send back the latency and throughput for each client in the round.
Flsim uses the network statistics for each client when computing the
convergence time and average throughput for the training round.
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Figure 1: Architectural Overview of ns3-fl

Table 1: Summary of Socket Commands

# Command Use
0 RESPONSE Send results from ns-3 sim
1 STARTSIM Schedule a round simulation in ns-3
2 EXIT Terminate ns-3 process
3 ENDSIM For async, alerts that ns-3 round ended

4.2 Network Implementation
To simulate the network, we create a ClientApplication and a Server-
Application.

The ClientApplication has one mode of operation. At the start of
a simulation, the ClientApplication will attempt to connect to the
server. Once connected, the ClientApplication will expect to receive
the global model from the server. When the ClientApplication re-
ceives the full model from the server, we schedule a computational
delay. Once the computational delay concludes, the client begins
sending the full model back to the server.

The ServerApplication has two modes of operation, synchronous
and asynchronous, depending on the type of FL algorithm being
simulated.

For synchronous FL, when a client connects to the ServerApplica-
tion, the ServerApplication will send the global model to the client.
The ServerApplication then waits for the client to send back the
updated model. Upon receiving the updated model, the ServerAp-
plication will close the communication socket. Once all the sockets
are closed, the latency and throughput for each client in the round
will be sent to flsim.

For asynchronous FL, differently, once the ServerApplication
receives the full model from the client, the latency and throughput
for the client will be immediately sent to flsim. If the client was
the slowest client in the round, the simulation will end. Otherwise,
the server will start a new asynchronous round by sending another
model to the client and the process will repeat.

4.3 Communication Protocols
To configure the communication between the ns-3 process and the
flsim process, we define four socket commands. Table 1 summarizes
these commands.

Figure 2: Sync FL Process Communication

Figure 3: Async FL Process Communication

To schedule a simulation in the ns-3 process, flsim will send a
message with a command 𝑆𝑇𝐴𝑅𝑇𝑆𝐼𝑀 and an array of the form

[0, 0, 1, 0, 0]
where the length of the array is the number of clients in the simu-
lation, and the 1s represent selected clients for the communication
round. The flsim process will then wait for results from ns-3. In the
synchronous FL simulation, the ns-3 simulation will send a message
with command 𝑅𝐸𝑆𝑃𝑂𝑁𝑆𝐸, containing the network statistics for
all the selected clients, containing a list of the form

[𝑖, 𝐿𝑖 ,𝑇𝑖 , 𝑗, 𝐿 𝑗 ,𝑇𝑗 , . . . ]
where 𝑖 and 𝑗 represent the IDs of the clients in the round. In the
asynchronous FL simulation, the ns-3 process will send a message
each time the server receives an updated model from the clients,
until the slowest client completes the round. The message will be
of command type 𝑅𝐸𝑆𝑃𝑂𝑁𝑆𝐸, containing the network statistics
for a single client:

[𝑖, 𝑠𝑖 , 𝑒𝑖 ,𝑇𝑖 ]
where 𝑠𝑖 is the start time of the downlink from server to client,
and 𝑒𝑖 is the end time of the uplink from client to server. When
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the slowest client finishes the round, the simulation will send the
slowest client’s data, and then a message of command 𝐸𝑁𝐷𝑆𝐼𝑀 , to
alert the flsim that the round has concluded. When the flsim process
finishes training, a message with command 𝐸𝑋𝐼𝑇 will be sent to
the ns-3 process to alert that the process should terminate. Figures
2 and 3 depict the concrete usage of the different commands.

5 EVALUATION
In this section, we present the experimental setup, the validation
of ns3-fl on a small-scale real deployment based on Raspberry Pis
(RPis) and the simulation results on large-scale deployments on the
UCSD campus.

5.1 Experimental Setup
We validate ns3-fl on a small-scale real deployments with RPis. We
use a RPi400 [19] as the central server, and set up 6 clients consisting
of 4 RPi4’s [20] and 2 RPi400’s. All platforms are equipped with
4GB RAM and connected to the same local Wi-Fi network. Our
implementation is based on FedML [9] which is the state-of-the-art
FL benchmark. The computational and transmit energy is measured
with the Hioki 3334 powermeter [11].

We experiment with ns3-fl under various dataset, learning mod-
els and networks settings.

Dataset. In the evaluation, the training task is image classifica-
tion and we run our simulations with the MNIST [6], FashionM-
NIST [23] and CIFAR-10 [14] datasets. MNIST is a commonly-used
handwriting image classification dataset. FashionMNIST is pro-
posed as a more challenging replacement for MNIST, presenting a
cloth classification task. Both MNIST and FashionMNIST have 10
classes and hold 60k samples of 28×28 gray-scale images. CIFAR-10
consists of 60k 32×32 color images in 10 classes, with 6000 images
per class. For our experiments, we assign 600 samples to each client
following the independently and identically distributed (IID) or
non-IID data distribution. In the IID case, the samples on each
client follow the same distribution as the whole dataset, while in
the non-IID case we only sample from one class on each client with
uniform label distribution. All test data is stored on the server and
is used for accuracy evaluation.

Learning Models. We set up a Convolutional Neural Network
(CNN) for each dataset. The CNN for MNIST consists of two con-
volutional layers with 5×5 kernels and two fully-connected layers.
The CNN used for FashionMNIST consists of two convolutional
layers with 5×5 kernels, each followed by a batch normalization
layer, a Rectified Linear Unit (ReLU) activation layer and a max
pooling layer. The output is reshaped and fed into a fully-connected
layer. Finally, we construct the CNN for CIFAR-10 using two convo-
lutional layers with 5×5 kernels and three fully-connected layers. In
the large-scale simulation, we report the accuracy and throughput
under various local epochs which control the trade-off between
convergence time and communication cost.

Networks Settings in ns-3. We set up a wireless and an eth-
ernet network in ns-3 for the large-scale simulations with detailed
setup summarized in Table 2. To adjust the quality of the network,
we vary the client datarate between 80 kbps to 2048 kps. To add loss
to the Wi-Fi network, we use the RandomPropagationLossModel
and YansErrorRateModel in ns-3.

Table 2: ns-3 Simulation Parameters

Parameter Ethernet Wi-Fi
Routing Protocol Static Routing

MAC Layer CSMA 802.11b
Traffic Type TCP

Client Data Rate 80-2048 kbps
Server Data Rate 100 Mbps

Packet Size 1024 bytes
Loss Model - RandomPropagationLossModel

Error Rate Model - YansErrorRateModel

Figure 4: Convergence Validation of ns3-fl against a Real RPi De-
ployment with 6 Clients and 1 Server on Various Datasets

5.2 Validation with Real Deployment
To demonstrate the validity of ns3-fl, we compare the results of
synchronous FL (i.e., FedAvg) with an IID data distribution on a
real RPi-based deployment with our tool. We configure the same
network and training model in ns3-fl. For both the deployment and
the simulation, we train for 20 rounds and 5 local epochs.

Convergence Validation. The accuracy curves are shown in
Figure 4. For MNIST, when the training concludes, there is a 0.95%
difference between the convergence times and a 0.26% difference
between the accuracies of the global model. For FashionMNIST,
there is a 0.13% difference between the convergence times and a
1.63% difference between the accuracies of the global model. For
CIFAR-10, there is a 0.49% difference between the convergence
times and a 0.74% difference between the accuracies of the global
model.

The difference in convergence time between ns3-fl and the real
deployment can be attributed to variation in the delay of initial
client connection to the server in the real deployment. For MNIST
and FashionMNIST, the accuracy of the global model is lower on
the first round of training for ns3-fl, but the accuracy curves have
the same slope and shape as the real deployment for the remaining
rounds.

Power Validation. To validate our power model, we compare
the computational time, computational energy, and transmit en-
ergy calculated by our simulator against a real deployment with 6
clients. Note, that the transmit time is obtained from ns-3 network
simulations. Tables 3-5 compare the results from ns3-fl and the real
deployment, which shows that ns3-fl is able to approximate the
energy consumption in real deployments.

For the computational time, the computed computation time by
ns3-fl has an 11.47%, 6.65%, 10.64% percent difference compared
to the real deployment when training on a RPi400 over MNIST,
FashionMNIST, and CIFAR-10, respectively. For a RPi4, the percent
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Table 3: The Mean and Standard Deviation of Computational Time
(Seconds) from ns3-fl and Real Measurements on RPi 4 and 400, with
CPU Frequency of 1500 MHz, on Various Datasets

Experiment MNIST FashionMNIST CIFAR-10
Real, RPi 400 18.32 ± 2.12 29.69 ± 1.10 33.86 ± 6.57
ns3-fl, RPi 400 20.55 ± 1.1E-5 27.78 ± 1.9E-5 30.44 ± 1.4E-5
Real, RPi 4 18.91 ± 0.84 27.85 ± 1.17 30.30 ± 1.47
ns3-fl, RPi 4 19.01 ± 1.1E-5 27.44 ± 1.9E-5 30.15± 1.4E-5

Table 4: TheMean and StandardDeviation of Computational Energy
(J) from ns3-fl and Real Measurements on RPi 4 and 400, with CPU
Frequency of 1500 MHz, on Various Datasets

Experiment MNIST FashionMNIST CIFAR-10
Real, RPi 400 81.03 ± 8.92 129.89 ± 5.55 141.00 ± 26.56
ns3-fl, RPi 400 90.05 ± 4.9E-5 125.37 ± 8.5E-5 137.01 ± 6.3E-5
Real, RPi 4 94.10 ± 3.66 136.76 ± 5.02 144.69 ± 6.90
ns3-fl, RPi 4 93.87 ± 5.3E-5 133.25 ± 9.1E-5 143.65 ± 6.7E-5

Table 5: The Mean and Standard Deviation of Transmit Energy (J)
from ns3-fl and Real Measurements on RPi 4 and 400, with CPU
Frequency of 1500 MHz, on Various Datasets

Experiment MNIST FashionMNIST CIFAR-10
Real, RPi 400 4.68 ± 0.02 0.44 ± 0.02 0.74 ± 0.02
ns3-fl, RPi 400 4.62 ± 1.6E-5 0.45 ± 1.7E-5 0.69 ± 1.9E-5
Real, RPi 4 5.42 ± 0.02 0.49 ± 0.06 0.86 ± 0.03
ns3-fl, RPi 4 5.61 ± 1.7E-5 0.47 ± 1.7E-5 0.81 ± 2.3E-5

difference is 0.53%, 1.48%, 0.50% for MNIST, FashionMNIST, and
CIFAR-10, respectively.

The percent difference for the computational energy is 10.54%,
3.54%, 2.87% for a RPi400when training overMNIST, FashionMNIST,
and CIFAR-10. For the RPi4, there is a percent difference of 0.24%,
2.60%, 0.72% when training over MNIST, FashionMNIST, and CIFAR-
10, respectively.

For the transmit energy, the percent difference is 1.29%, 2.25%,
6.99% for an RPi400 when training over MNIST, FashionMNIST, and
CIFAR-10. For the RPi4, there is a percent difference of 3.45%, 4.12%,
5.99% when training over MNIST, FashionMNIST, and CIFAR-10,
respectively.

It can be observed that computational time and energy estimated
by ns3-fl has a greater percent difference for the RPi400. When
creating the power model, computational time measurements for
the RPi400 had an average variance of 6.02 seconds, and the RPi4
had an average variance of 3.10 seconds. Thus, the larger percent
difference in the RPi400 computational time and energy estimations
can be attributed to the variance in the initial measurements.

5.3 Simulation Results on Large-Scale
Deployments

We set up a simulation to emulate training over 40 Raspberry Pis,
placed on the UCSD campus. Our topology is shown in Figure 5. We
utilize ns3-fl to test performance under different data distributions
and network conditions, as well as to refine the learning algorithm
used. All of these configurations are common decisions to be made

Figure 5: UCSD Campus Topology used in Large-Scale Simulation

Figure 6: Convergence of ns3-fl when Training on IID v. Non
IID Data Distribution over a Wi-Fi Network

Figure 7: Convergence of ns3-fl when Training on a Low-Loss,
Medium-Loss and High-Loss Wi-Fi Network

during setting up a federated-learning application. We show that
ns3-fl can assist decision making which involves complex trade-offs
between data, algorithm and network.

IID vs. Non-IID Data Distribution. Figure 6 displays the re-
sults for training on IID and Non-IID data distribution over a Wi-Fi
network. In general, training over IID data leads to a faster conver-
gence time. There is an 83% increase in the convergence time for
training when the data is non-IID for MNIST and a 53% increase
for FashionMNIST. It takes 12 more rounds for both MNIST and
FashionMNIST to converge on non-IID data than IID data. When
the data is non-IID for CIFAR-10, the training does not converge.
ns3-fl captures the converging behavior of FL under different data
distributions.

Network Quality Variations. Figure 7 displays the results of
training over a low loss, medium loss, and high loss Wi-Fi network
with an IID data distribution. When there is more loss in the net-
work, the convergence time increases when training on MNIST,
FashionMNIST, and CIFAR-10. The increase in convergence time
is caused by increased transmission time to send the full model
for each client. In the high loss network, training on CIFAR-10 has
the largest increase in convergence time because converging on
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Figure 8: Convergence of ns3-fl when Varying the Local Epochs
Per Round over a Wi-Fi Network

Figure 9: Convergence of ns3-fl when Selecting 5, 10, or 15
Clients Per Round over a Wi-Fi Network

Figure 10: Convergence of ns3-fl when using Synchronous and
Asynchronous FL over an Ethernet and Wi-Fi Network

CIFAR-10 requires more training rounds than the other datasets,
and thus the transmission delay accumulates. The results prove
ns3-fl’s ability to capture the effect of network quality on FL per-
formance.

Local Epoch Variation. Figure 8 displays the results of vary-
ing the number of local epochs over a Wi-Fi network with an IID
data distribution. More local epochs accelerate FL since less global
communication rounds is needed, but may risk convergence in
challenging datasets. When training over FashionMNIST, the con-
vergence time decreases by roughly 40% when performing 5 or 10
local epochs compared to 1 local epoch. When training over MNIST,
the convergence time decreases by 58.46% when performing 5 local
epochs compared to 1 local epoch, and by 40.08% when perform-
ing 10 local epochs compared to 5 local epochs. When training
over CIFAR-10, the convergence time decreases by 10.91% when
performing 5 local epochs compared to 1 local epoch. When per-
forming 10 local epochs, the training on CIFAR-10 did not converge.
ns3-fl accurately captures the benefits and risks when varying local
epochs in FL.

Selected Clients Per Round. Figure 9 displays the results of
varying the number of selected clients per round over a Wi-Fi net-
work with an IID data distrubution. For both MNIST and FashionM-
NIST, when less clients are selected per round, the convergence time
and the number of training rounds needed increases. For CIFAR-10,

Figure 11: Breakdown of Execution Time (Seconds) of ns3-fl on
a Synchronous FL Round over a Wi-Fi Network and an Ethernet
Network

Figure 12: Breakdown of Execution Time (Seconds) of ns3-fl
on an Asynchronous FL Round over a Wi-Fi Network and an
Ethernet Network

the convergence time increases when more clients are selected.
This is because training on CIFAR-10 takes roughly 50 more rounds
to converge than the other datasets; thus, the transmission delay
for 15 clients outweighs the increase in rounds for 5 clients. The
above results serve as a reference when determining the number of
clients to select in a FL deployment.

Synchronous vs. Asynchronous FL. Figure 10 displays the
results of running the synchronous and asynchronous FL algorithm
over an Ethernet and Wi-Fi network (as shown in Table 5) with
an IID data distribution. When training on MNIST and FashionM-
NIST, on the Ethernet network, the synchronous and asynchronous
FL algorithms have similar performance. For the Wi-Fi network,
the asynchronous FL algorithm outperforms the synchronous FL
algorithm. When training on CIFAR-10, synchronous FL over the
ethernet network significantly outperforms asynchronous FL, and
both algorithms have similar performance over the Wi-Fi network.
The above results can aid in determining whether to use synchro-
nous FL or asynchronous FL in a deployment based on the network
type.

5.4 Simulation Performance
We also evaluate the execution time breakdown of ns3-fl for over-
head analysis. We run the simulations on an Ubuntu Linux system
that has an i7-660U dual-core with 8 GB of RAM, and a CPU fre-
quency of 2.6GHz.

Figures 11 and 12 display the breakdown of execution time be-
tween ns-3 and flsim under different FL scenarios. The bottleneck
in the execution time is the ns-3 simulation for all FL scenarios.
Additionally, the ns-3 simulation takes longer for the MNIST and
CIFAR-10 datasets because they have significantly larger models
than the FashionMNIST dataset. The flsim execution time is similar
across both network types for synchronous and asynchronous FL.
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The overhead time, which consists of data processing for socket
communication and socket communication itself, is minuscule com-
pared to the ns-3 and flsim execution time.

Comparing the breakdowns of the execution time for a FL simu-
lation over a Wi-Fi network and a FL simulation over an Ethernet
network, it is evident that the Wi-Fi network simulation takes
longer to run for both synchronous and asynchronous FL. This
could be attributed to the increased complexity in the Wi-Fi net-
work settings, compared to the Ethernet settings.

For the asynchronous FL simulations, the ns-3 simulation and
flsim simulation are able to run simultaneously. This is because of
the interprocess communication for asynchronous FL which sends
network statistics to flsim as they are generated, instead of waiting
until the end of the network simulation as we do in a synchronous
FL round. The ns-3 simulations take longer for asynchronous FL
because the fastest client in a round must update the global model
up to 10 times before we accept a client has dropped out. In the
synchronous round, the simulation will end when there are no
more scheduled events and we do not dynamically schedule more
transmissions, thus we do not need to consider the effect of client
drop outs on the simulation.

6 CONCLUSION
In this paper, we introduce ns3-fl, a FL simulator that considers
data, algorithm, and network. We build on an existing FL simu-
lator, flsim, and add a network component by connecting flsim
with ns-3. Additionally, we create a power model to calculate the
energy consumption of FL training on clients in a network. We also
demonstrate a use-case of ns3-fl, in aiding decision designs for FL
deployments. Our tool was created with FL researchers in mind. We
believe that ns3-fl will assist in the practical validation of existing
theoretical FL research, strengthening the reliability and tolerance
of FL algorithms under real deployment conditions.
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