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Abstract—The reliability and maintainability of the Internet of
Things (IoT) devices become highly important as the number of
“things” grows rapidly. The majority of the IoT devices have
batteries which age, degrade, and eventually require mainte-
nance. Existing work focuses on ensuring that batteries have
sufficient amount of stored charge to operate until they can
recharge, but does not consider battery degradation. This leads to
high replacement and maintenance costs in large IoT networks.
In this paper, we formulate the problem of minimizing battery
degradation to improve the lifetime of IoT networks and solve
it with Model Predictive Control (MPC) leveraging models for
battery dynamics and State of Health (SoH). The battery SoH is
modeled using a realistic non-linear model while taking ambient
temperature into account. We demonstrate that our solution can
improve network lifetime up to 68.5% compared to conventional
energy consumption focused algorithms, which use simple linear
battery models. The proposed approach achieves near-optimal
performance in terms of preserving battery health, staying within
8.7% SoH with respect to an ideal oracle solution on average.

I. INTRODUCTION

The Internet of Things (IoT) is a growing network of

heterogeneous devices that have the ability to process and

transfer data. IoT will connect more than 20 billion “things” by

2020 according to Gartner Inc. [1]. When IoT is fully realized,

the maintenance and diagnostics costs will be enormous, and if

not addressed, it can limit the scalability of IoT solutions [3].

Since the majority of these devices are battery-powered, a part

of these costs is associated with battery maintainability. Even

though battery itself might be cheap, battery replacement,

especially for large-scale IoT systems, is often not feasible due

to logistical constraints. One example is the High-Performance

Wireless Research and Education Network (HPWREN), which

have battery-powered sensors deployed on canyon walls and

mountain peaks with no road access [2]. In such cases battery

replacement involves expensive labor & infrastructure, hence

the battery life should be improved to keep the network

running for as long as possible.

There is often confusion when discussing battery lifetime

because the lifetime for rechargeable and non-rechargeable

batteries are described in different ways. Non-rechargeable

batteries die, and need to be replaced after their initial charge

is completely depleted. Therefore, the indicator for remaining

battery life is the State of Charge (SoC). On the other

hand, rechargeable batteries can withstand hundreds of charge-

recharge cycles, allowing operation for extended periods when

combined with energy harvesting solutions, such as solar cells

or thermal energy. Despite their ability to be recharged, these

batteries still have limited lifetimes, and require replacement

due to aging. In this case, instead of SoC, we need to

consider their State of Health (SoH) which is a figure of

merit of the physical condition of a battery. SoH degrades

due to cycle aging (charge-discharge rate & total amount) and

calendar aging (ambient conditions, e.g. temperature) which

results in deterioration of battery conditions in the form of

internal impedance increase, open voltage decrease, and most

importantly, capacity fading. Depending on its application,

a rechargeable battery reaches its end of life with an SoH

between 70%-80% and needs to be replaced.

Most works in the literature concerning lifetime maximiza-

tion either consider non-rechargeable batteries and deal with

SoC, or assume ideal operation for rechargeable batteries,

neglecting the effects of SoH degradation in their management

strategies. Our main insight is that if maximum lifetime is

targeted in the network, specifically the battery SoH should be

considered. Particularly, we observe that the techniques which

focus on optimizing the energy consumption of a network

do not yield optimal battery life. In this work, we formulate

the problem of determining the data flow that minimizes

SoH degradation of rechargeable batteries for an IoT network

where battery-powered devices have the capability of sensing,

processing, and communicating data. The amount of data

routed through a device affects the power consumed for

communication & computation, which in turn influences the

rate of degradation. In our formulation, we model batteries

from two different perspectives:

• Battery Degradation: The focal point of this paper is the

fact that battery SoH degrades at different rates depending

on how the battery is used. In the light of this, we

can intelligently manage the network to prolong battery

lifetime. Hence, we have a model that relates current rate,

SoC, depth of charge/discharge and temperature to how

SoH degrades.

• Battery Dynamics: We use the Temperature Dependent
Kinetic Battery Model (T-KiBaM) [22], a dynamic model

which can describe the nonlinear characteristics of avail-

able battery capacity. Not just the net amount, but the

way in which the power is consumed, that is, the current-

extraction patterns and the employed current levels play

a significant role in battery depletion [12]. Therefore, to
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realistically capture the influence of power consumption

on the battery, it is inaccurate to assume linear energy

depletion with respect to the power consumed/current

drawn, and a dynamic battery model is needed.

As a result of this dynamic behavior, the solution to our

problem considers the battery state over time and therefore, is

time-dependent rather than fixed. Hence, we adopt an optimal

control formulation and propose a model predictive controller

(MPC) solution to dynamically control data flow rates in

the network to minimize SoH degradation over a predefined

horizon. We evaluate our solution using real-world deployment

in a smart home and a large scale IoT network HPWREN.

We show that our solution can achieve comparable perfor-

mance to an “oracle” solution which knows all future data.

For comparison, we implement a standard network lifetime

maximization method [8] which adopts an ideal battery model

with linear energy depletion. We also investigate the impact of

ambient temperature on SoH degradation and network lifetime.

Furthermore, an example extension to the original problem is

presented by regularizing the objective function with an end-

to-end delay function.

The rest of the paper is organized as follows. In Section

II, we review related work on maximum network lifetime

routing and battery degradation management. In Section III,

we first start with outlining the overall problem and describing

our network model. Next, we build the battery dynamics

and investigate the mechanisms behind battery degradation to

obtain a closed-form, nonlinear mathematical expression for

the SoH of a battery. Lastly, we construct a finite horizon

optimal control problem with the goal of determining the

data flow to minimize the degradation of an IoT network

and present our MPC solution. In Section IV, we provide

experimental results and conclude our work by discussing

these results.

II. RELATED WORK

There is a significant amount of literature addressing

the lifetime of Wireless Sensor Networks (WSNs) and IoT

networks. Publications in that area usually consider non-

rechargeable batteries with limited energy and maximize the

time at which the batteries drain out of energy [8], [17].

A common issue with such techniques is that they do not

consider the battery dynamics and find a static route based

on linear battery energy depletion assumption. Recent studies

[20], [7] involved battery dynamics that are able to capture the

“non-ideal” behavior of actual batteries in their optimization

formulations. Even though they show that one can achieve

a significantly longer lifetime with an optimal routing policy

using a non-ideal battery model, the solution does not suit

systems with rechargeable batteries.

Another set of publications investigate energy harvesting

networks with rechargeable batteries. This work usually tries

to develop control algorithms to optimally utilize available

energy [9], [15]. However, only a handful of studies con-

sider the degradation of batteries, which is the major factor

in determining the lifetime of a network of devices with

rechargeable batteries. A Markov model based mathematical

characterization of harvesting-based battery-powered sensor

devices was provided in [19], particularly focusing on the

impact of battery discharge policy on degradation. The authors

show that by using this model, a degradation-aware policy

significantly improves the lifetime of the sensor compared

to “greedy” policies. We instead search for network-level

controls (i.e. routing) compared to finding a policy for single

sensor node/device. In [23], the issue of battery degrada-

tion is approached from a MAC protocol design perspective.

Random MAC protocols can generate bursts of transmissions

and idleness which may increase battery degradation rate.

To solve this problem, they propose an aging aware binary

exponential backoff algorithm to avoid excessive fluctuations.

This study is tangential to our work since it touches upon

the degradation problem with a small modification on MAC

protocols. More recently, a technique was presented in [14] to

predict SoH in WSN applications from various battery related

parameters, which can contribute to building degradation-

aware management strategies for IoT networks.

The degradation of batteries in a network control problem

is studied primarily in battery energy storage systems, smart

grid, and data centers. In [6], the authors include the bat-

tery degradation processes in the optimization and propose a

linear programming approach for optimization of degradation

& performance in offgrid power systems with solar energy

integration. In [13], a model predictive control (MPC) based

algorithm with an explicit cost function considering battery

degradation is implemented for battery energy storage systems.

A recent paper [5] presents a distributed control method that

can handle multiple batteries connected to the grid using a

high accuracy nonlinear battery model. In the context of data

centers, [4] and [18] use nonlinear Lithium-ion battery health

degradation model for health-aware optimal control. However,

these work are not directly applicable to IoT domain because

of the different structure of the network, and additional con-

straints that the network possesses. In those areas, batteries

are often modeled in aggregate fashion. In IoT networks, the

batteries from different devices are not physically connected

and can only supply energy to the associated device. The

devices work together to accomplish a network-level task, but

their energy demands are individual which differentiates other

domains from IoT.

Network lifetime studies up to this point have been mostly

State of Charge (SoC) optimization for non-rechargeable bat-

teries with ideal linear models for battery dynamics. The ones

that study rechargeable batteries focus on energy management

strategies to optimally utilize energy harvesting solutions.

Along with just a few other works, we investigate the State of

Health (SoH) of batteries. Complimentary to previous works

in this area, we control the network to optimize its lifetime

by minimizing SoH degradation. To perform a more accurate

optimization, we incorporate battery models which capture the

temperature-dependent, nonlinear charging/discharging and

degradation behavior into the system model.
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III. OPTIMAL NONLINEAR BATTERY CONTROL

A. Problem Overview

The goal of this work is to optimize battery health in IoT

networks by controlling data flow rates since each device in the

network consumes energy for communication and computation

as a function of data flow. The energy amount delivered by

the battery depends on both short-term battery dynamics and

long-term battery wear. Therefore, while the battery dynamics

determine the State of Charge, our control algorithm focuses

on optimizing State of Health degradation to ensure long term

operation. In the following sections, we start by describing our

network model, then build the battery dynamics and investigate

the mechanisms behind battery degradation to obtain a closed-

form, nonlinear mathematical expression for the SoH of a

battery. Table I provides the list of symbols that are used

throughout this paper.

TABLE I: Nomenclature

Symbol Definition
Si Set of nodes which node i can send data
di,j Distance between nodes i and j

wi,j(t) Data flow rate from node i to j
Gi(t) Data generation rate of node i

Cr, Ce, Cc Reception, sensing, computation energy constants
Cf , Cs Transmission energy constants
ui(t) Discharge current of battery i
ri(t) Charge current of battery i
ii(t) Net current of battery i
qA(t) Available charge
qB(t) Bounded charge
hA(t) Available charge well height
hB(t) Bounded charge well height

k Conductance parameter
CR Battery rated capacity
δi(t) Difference between heights of two wells of battery i
γi(t) Total charge of battery i

SoCi(t) State of Charge of battery i
Vi Voltage of battery i
T Temperature

DoD Depth of discharge
Tamb Ambient temperature

SoHi(t) State of Health of battery i
Degi(t) SoH degradation of battery i

B. Network Model

We model the IoT networks with three layers: top, middle,

and bottom. The top layer represents the wireless mesh back-

bone of the network. The bottom layer contains sensor nodes

and the middle layer is composed of a wireless network of

gateways. Each gateway node gathers the data coming from

the underlying sensors and delivers it to the backbone layer.

These nodes can also perform data analysis and processing.

We consider a model with multiple source and gateway

nodes, one base station, and fixed topology. The network

consists of N nodes, where nodes from 1 to N-1 denote

source and gateway nodes and N denote the base station.

We assume that the energy supply of the base station is not

constrained but all other nodes have a rechargeable battery that

can store a limited amount of energy. SoHi(t) and SoCi(t)
are respectively the State of Health and State of Charge of the

battery of node i, i = 1, ..., N at time t, and the dynamics

of SoHi(t) is described with details in the next section. The

distance between the nodes i and j are denoted by di,j , and is

time-independent since we assume fixed topology. Note that

relatively infrequent topology changes can be accounted for

by periodically recalculating a new control policy.
Let Si denote the set of nodes to which node i can send

packets. Conditions on Si can be enforced to constrain the

behavior of the network, but we only restrict the transmission

distance in our problem. Then, Si = {j : di,j < dmax},
where dmax is the distance of transmission with maximum

power. The notation j ∈ Si will be used to show node

i can communicate with node j. Let wi,j(t) be the data

flow rate from node i to node j at time t. The vector

w(t) = [w1,2(t), ..., w1,N (t), ..., wN,N (t)]ᵀ defines the control

vector in our problem. Let Gi(t) denote the information

generation rate at node i, then we can express the total

information that needs to be communicated to the gateway

as GN (t) =
∑

i<N Gi(t).
We assume every node in the network has a sensor, CPUs,

digital signal processors and a radio link. Since we are

dealing with nodes that are sensing, computing and receiv-

ing/transmitting, the key energy parameters that contribute to

discharge current u(t) of node’s battery are: the energy needed

to sense a bit Esense, receive a bit Erx, transmit a bit Etx,

and compute a bit Ecomp. For a given distance di,j between

nodes i and j, we compute the energy expenditure as follows:

Etx = p(d), Erx = Cr, Esense = Ce, Ecomp = Cc (1)

where Cr, Ce, Cc are given constants dependent on the

communication, sensing, and computation characteristics of

nodes respectively, and p(d) ≥ 0 is a function monoton-

ically increasing in d; the most common such function is

p(d) = Cf+Csd
β where Cf ,Cs are given constants and β is a

constant dependent on the medium [21]. For each sensor node

i in the network, we can write the discharge current ui(t) as

in (2), where Vi denotes the voltage of the battery .

ui(t) =
1

Vi

∑
j∈Si

wi,j(t)(p(di,j(t)) + Cc)+

1

Vi

∑
j|i∈Sj

wj,i(t)Cr + CeGi(t), (2)

C. Battery Model
1) Battery Dynamics: In this work we use Temperature

Dependent Kinetic Battery Model (T-KiBaM), an extension

to KiBaM [22]. T-KiBaM is able to accurately characterize

the two important effects (Rate Capacity effect, and Recovery

effect) that make battery performance nonlinear [12]. The

effective capacity of a battery drops for higher discharge rates.

This effect is termed as Rate capacity effect. If there are

idle periods in discharging, the battery can partially recover

the capacity lost in previous discharge periods. This effect

is known as Recovery effect. It was shown in [7] that using

battery models which captures these effects results in more

accurate optimization algorithms, and leads to improvements

in network lifetime.
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Fig. 1: Temperature Dependent Kinetic Battery Model

As shown in Fig. 1, T-KiBaM models the batteries with

two wells, respectively the Bound Charge Well (BCW) and the

Available Charge Well (ACW). Three constants are needed for

the model: CR, the rated capacity of the battery; c, the fraction

of capacity that may hold available charge; and k, the rate

constant. Initially, a part qA(0) = cCR of charge is put in the

ACW, and a part qB(0) = (1− c)CR in the BCW. The charge

flow from BCW to ACW through a “valve” with a conductance

k = kArrhenius = Ae
− Ea

RTamb , a temperature dependent rate

constant given by Arrhenius Equation. A is the pre-exponential

factor (in s−1), Ea is the activation energy (in KJ/mol), R is

the universal gas constant (8.314×10−3KJ/mol·K) and Tamb

is the ambient temperature (in Kelvin). The charge flows

creating a current i(t) as long as there is a difference between

the heights of two wells, i.e. δ = hB−hA �= 0 . The heights of

these two wells are given by hA = qA/c and hB = qB/(1−c).
Net current i(t) is the difference between an output u(t)
representing the discharge outflow due to workload, and a

recharge inflow r(t) such that i(t) = u(t)−r(t). The following

system of differential equations describes KiBaM.{
dqA
dt = −i(t) + k(hB − hA)
dqB
dt = −k(hB − hA),

(3)

For this work we found it convenient to apply a coordinate

transformation to variables for using them in the problem

formulation. We transform the variables from qA and qB to

δ = hB − hA (height difference between wells) and γ =
qA+qB (total charge in the battery). Under this transformation,

we can write the new differential equations as:{
dδ
dt = i(t)

c − k′δ
dγ
dt = −i(t), (4)

where k′ = k/c(1 − c), with initial conditions δ(0) = 0 and

γ(0) = CR. In the new coordinate system the condition for

the battery to be empty is: γ(t) = (1 − c)δ(t), meaning that

there is no charge left in the available charge well. The two

equations in (4) constitute the battery dynamics that is used

in optimization problem formulation.

Since batteries provide higher effective capacities at higher

temperatures [22], we use a Correction Factor CF to ad-

just initial battery capacities (CR) according to the ambient

temperature. CF indicates multiplicative gain or loss of the

battery capacity at different temperatures. All parameters (CF ,

c, k, CR) can be obtained using the battery data-sheets, and

through experimental measurements. In this paper, we use the

parameters obtained by experimental measurements obtained

in [22] for Li-Ion batteries.

2) SoH Degradation Model: The State of Health (SoH)

refers to the condition of the battery and the value of SoH

declines from 1 (healthy battery) to 0 (dead battery) over time

due to degradation. For the SoH degradation, we employ the

model from [11]. Over continuous battery charge/discharge

cycles, significant factors that influence the SoH degradation

of a battery are temperature T , open circuit voltage VOC , and

depth of discharge DoD. Knowing that there is a mapping

of VOC from State of Charge (SoC), we can consider three

aspects of the battery for estimating its degradation in this

model: T , DoD, and SoC. SoC is defined as the portion of

available battery capacity at a given time and DoD is used to

describe how deeply a battery is discharged. The formulation

of SoC directly comes from our Kinetic Battery Model, where

we defined γ as the total charge in the battery. The only

difference is that SoC represents the normalized charge level

of the battery, i.e. SoC = γ
CR

∈ [0, 1]. The degradation

model used in this paper makes two assumptions: 1) Each of

these effects is independent of the others, and 2) The effects

themselves are independent of battery age.

Since the effects of T , DoD and SoC on degradation are

assumed to be independent, we can write the total battery

degradation as Degtotal = DegSoC +DegDoD +DegT . The

SoH at a given time t is SoH(t) = SoH(0) − Degtotal(t),
and can be expressed explicitly as shown in (5).

SoH(t) = 1− [φ1SoCavg(t) + φ2] + [θ1(ΔSoC(t))θ2 ]

−
[∫ t

t′=0

σ1e
−σ2(Tamb+σ3|i(t′)|)−1

dt′ + σ4Tamb

]
,

(5)

The first bracket expression is the term representing the

capacity fade degradation attributable to SoC. This is based

on an approximation that a time period during which the

SoC with an average of SoCavg has the same effect on

battery life as simply staying at SoCavg for the same time

period [11]. The second bracket expression is DoD related

degradation which accounts for capacity fade resulting from

SoC swing, i.e. maximum SoC minus the minimum over an

interval. Finally, the last bracket expression is the degradation

due to temperature described with a similar exponential model

to Arrhenius relation. The temperature change in the battery

is given as a linear function of charge current and ambient

temperature (Tamb). The absolute value of the current i(t)
is used so that the expression is both valid for charging and

discharging.

We verified our battery degradation model against NREL Li-

Ion battery aging dataset [10]. The repository contains various

experiment scenarios and physical measurements of cycling

batteries until their capacity is reduced below the industry

standard of 80% of their original capacity, which is the point

where batteries are considered “dead”. The coefficients in the
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expression (5) are obtained by fitting the to the experiments

under different temperatures and charge/discharge profiles. We

selected φ1 = −10−3, φ2 = 10−8, θ1 = 25, θ2 = 0.017,
σ1 = 1.4x10−4, σ2 = −75, σ3 = 0.1, σ4 = 4x10−5. Table II

shows the error compared to the measurements from batteries

tested at 3 different temperatures.

TABLE II: Battery Model Validation

Battery Temperature Error
Li-Ion25 4°C 3.1%
Li-Ion5 24°C 1.6%
Li-Ion49 43°C 4.4%

D. Optimal Control Problem Formulation

Our objective is to minimize the SoH degradation of a

network by controlling data flow rates wi,j(t). As a common

definition, a network is considered dead when any of the

nodes die. To prevent this, we particularly try to minimize the

accumulated degradation on the most degraded node, since it

is the one that will fail the first. Hence, the cost function is

minimize
w(t)

max
i∈N

Degi(T ), where degradation at end of interval

t is decribed by: Degi(t) = SoHi(0)− SoHi(t).
Next, we define constraints to represent the battery’s phys-

ical nature:

• Current Limit: The discharge and charge power of a bat-

tery is limited, thus there are bounds on charge/recharge

current, Lpi ≤ ui(t) ≤ Upi and Lpi ≤ ri(t) ≤ Upi.
• Charge Limit : The charge cannot exceed the maximum

capacity of the battery, and as stated in Section IIIC the

condition for the battery to be empty is: γ(t) = (1 −
c)δ(t). Therefore, the corresponding constraint equation

is given as Lci ≤ γi(t) ≤ Uci where Lci = (1− c)δ(t).

Using the battery model, the network model, and constraint

equations, the discrete-time optimization problem for a finite

interval T is formulated in (6):

minimize
wt

max
i∈N

Degi,T (6)

subject to δi,t+1 = δi,t +
ui,t − ri,t

c
− kδi,t, δi,0 = 0, (7)

γi,t+1 = γi,t + (ri,t − ui,t), γi,0 − C = 0, (8)

ui,t =
1

Vi

∑
j∈Si

wi,j(t)(p(di,j(t)) + Cc)+

1

Vi

∑
j|i∈Sj

wj,i(t)Cr + CeGi(t), (9)

Gi,t =
∑
j∈Si

wi,j,t −
∑
j|i∈Sj

wj,i,t, (10)

0 ≤ wi,j,t ≤Wmax, (11)

Lpi ≤ ui,t ≤ Upi, Lpi ≤ ri,t ≤ Upi, (12)

Lci ≤ γi,t ≤ Uci. (13)

where (7) and (8) are battery dynamic equations with state

variables δi,t and γi,t representing node i’s charge level at the

time instant t. Workload in terms of data flow for each node i is

Fig. 2: Block diagram of the proposed MPC solution

expressed by equation (9). Constraints on the control variable

wt are specified in (10), (11). Finally, (12) and (13) specifies

the constraints due to physical limitations of batteries.

Since the solution is based on a finite horizon, two methods

are applicable: i) the algorithm is executed once for the

complete horizon to get the optimal solution and ii) model

predictive control (MPC), where an optimization algorithm

is executed at each time interval based on the predicted

horizon values and dynamically updated at the next decision

interval. Even though the first method gives us the optimal

solution for the interval T , it requires knowledge of future (e.g.

data generation Gi,t, current generation ri,t, and temperature

Tamb), thus it is not applicable in practice. For this reason,

we employ MPC with the goal of minimizing degradation

across the network, and use the first method as a performance

benchmark to compare our solution.

As depicted in Fig. 2, the main elements of the discrete

time model predictive control are the optimizer and the model.

MPC determines the model outputs for the prediction horizon,

denoted with M . In the same horizon, the optimizer aims to

find the optimal control sequence {wk−1+t, t = 1, ...,M} for

the cost function (6), subject to problem constraints. Only

the first element wk of the optimized control sequence is

applied to the model and the optimization process is repeated

at each time step. It is assumed that we have predictions of

energy generation, data generation, and ambient temperature

for some time into the future within the horizon of the

predictive controller. In other words, given a prediction horizon

M , we assume knowledge of ri,t, Gi,t, and Tambi,t for all

t ∈ {k, ..., k + M − 1}. When the prediction horizon is less

than 24 hours, such an assumption is reasonable as energy

generation (e.g solar energy) tends to follow daily patterns

and one-day ahead weather predictions can be fairly accurate

for ambient temperature.

E. Regularizations

We can regularize the cost function to obtain many different

extensions to the original problem of minimizing degradation.

Consider an utility function φ(w), which can be used to model

power consumption, delay etc. With a trade-off in network

lifetime optimality, the cost function can be regularized as

follows to improve network performance in other aspects.

minimize
wt

max
i∈N

Degi,T + λφ(w) (14)
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In the following, we show the use of a regularization

function for end-to-end delay of a network, although many

different utility functions are possible.

End-to-end delay: The end-to-end packet delay from a

source node to a sink node depends on the number of hops

along its path. As the number of hops increase, the packet will

be received by the sink with a higher delay. Queuing delay on

the nodes can be assumed negligible because the data rate

is low enough for most of the IoT applications to make the

number of hops the dominant factor. Instead of directly using

the number of hops, we create a metric to provide similar

behavior. For a given node i, if its neighbor j ∈ Si is farther

from the sink than another neighbor k ∈ Si, then the delay for

following a path through node j should be greater compared

to node k. Thus, we define:

hi,j =
dj,N
di,N

, i ∈ 1, ..., N − 1, j ∈ Si (15)

To attain the lowest delay, a packet must be forwarded to

the neighbor with the minimum h value; the one closest to the

sink (node N ). A delay function for a node i can be given as:

φi(w) =
∑
j∈Si

hi,jwi,j , i ∈ 1, ..., N − 1, (16)

The regularization function should ensure that most of the

data traffic is routed through the minimum hop path. Since we

are interested in the average delay of the network, the delay

function in (16) is summed up over all nodes and averaged

over time. The regularization function for end-to-end delay is:

φ(w) =
1

T

T∑
t=1

∑
i∈N−1

∑
j∈Si

hi,jwi,j (17)

IV. EVALUATION

A. Experimental Setup

To illustrate the results of our solution, we consider two

examples of real-world deployments: High-Performance Wire-

less Research and Education Network (HPWREN) [2], and a

study on IoT Smart Home developed in our lab. We cover

the frequently used mesh and clustered mesh (hierarchical)

network topologies with HPWREN and Smart Home cases

respectively.

1) HPWREN: HPWREN is a heterogeneous wireless sen-

sor network, deployed in the Southern California area. In

HPWREN, there are many types of computing systems ranging

from the small wireless sensor nodes, single-board comput-

ers, to the high-performance server systems at the UCSD

Supercomputer Center. It comprises several subnetworks, but

we only simulate the Santa Margarita Ecological Reserve

(SMER) network which covers a region of 2500m x 1250m

with a mesh topology. There are a total of 15 cameras and

1 acoustic sensor deployed, each generating data of different

sizes and at different sampling rates. Data sizes range from

20kB to 2MB with a sampling interval 30sec to 1hour. The

devices are equipped with solar panels that supply energy to
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Fig. 3: Temperature and normalized solar generation of 16 nodes in
HPWREN during a day.

recharge batteries. We use real temperature data collected from

Vaisala WXT520 weather sensors in our battery models as

the ambient temperature (Tamb) and real solar radiation data

from Davis solar sensors to determine the of amount solar

power generation (ri,t). Fig. 3 depicts the temperature and

solar generation profiles of 16 nodes in HPWREN during a

day. We estimated the power output of solar panels from solar

radiation and used it as the battery charging value for our

calculations .

2) Smart Home: We have a house instrumented with several

off-the-shelf heterogeneous sensors as shown in Fig. 4. Each

room in the house has several sensors which help in identifying

activities local to that room. These sensors are: (1) kitchen

door contact, (2) fridge door contact, (3) kitchen drawer

contacts 12, (4) teapot smart-plug, (5) kitchen smart bulb,

(6) metasense, (7) airbeam, (8) kitchen angular motion, (9)

kitchen locator beacon 1, (10) kitchen cabinet contact 1, (11)

kitchen cabinet contact 2, (12) kitchen locator beacon 2, (13)

kitchen pantry contact, (14) dining room multi-sensor, (15)

dining room locator beacon, (16) living room locator beacon

1, (17) living room motion 1, (18) TV smart plug, (19) living

room angular motion, (20) living room motion 2, (21) living

room locator beacon 2. There are also two data aggregators

(smart hubs), one covering the kitchen and one covering living

room & dining room, which aggregate data from the different

sensors and send it to the cloud. Since this deployment has

the main goal of studying edge processing, all the sensors

have a Raspberry Pi Zero associated with them which helps

in local processing and data routing. In such a heterogeneous

deployment, different sensors send different types of data at

various sampling frequencies. Sensors such as door contacts,

motion sensors do event based sampling, on the other hand,

smart plugs, smart bulbs, angular motion sensors, and air

quality sensors sample at constant intervals, ranging from 1/10

sec to 5 sec.

For both experimental scenarios, the coefficients for energy

consumption in equation (4) are tuned to fit real sensor

hardware according to specifications of the devices. For the

battery dynamics model, CF and k parameters are calculated

using real ambient temperature data from the temperature

sensors. We took c = 0.5641 based on the analysis in [22] and

set different battery capacities CR for different devices. The

parameters for SoH degradation model is fitted and verified

against NREL Li-Ion battery aging dataset [10], and given in

Section III.C.
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Fig. 4: Sensor deployment in smart home.

B. Experimental Results

In this section, we analyze the amount of SoH degradation

in the batteries for our proposed method. For comparison, we

have selected: i) an “oracle” optimal solution with knowledge

of complete horizon, and ii) an optimization method which

involves no degradation model and adopts a “linear” energy

depletion assumption as presented in [8]. In contrast to our

solution, “oracle” is not applicable in practice, but we use

it as a benchmark since it gives the optimal solution over

the finite horizon. The “linear” solution aims to optimize the

network lifetime by minimizing the total energy consumption

of the node with maximum energy consumption. This strategy

does not consider the dynamics of the battery or the SoH

degradation, and essentially tries to optimize the SoC of the

batteries. We denote this method as “linear” since it assumes

a linear relation between energy consumption and battery life.

We implement all solutions in MATLAB using the YALMIP

[16] toolbox.

The “oracle” method requires the knowledge of energy

generation, data generation and ambient temperature for all

nodes at each time interval in the horizon. The control vector

is of size N · (N − 1) · nT , so the solution becomes

computationally very expensive for large number of nodes

N and long time horizons T , where T consists of nT time

steps. Therefore, we did our simulations over a horizon of

1 month, and time intervals of 1 hour. The SoH value of

the node with maximum degradation at the end of 1 month

horizon for HPWREN and Smart Home scenarios are given in

Table III. Smart Home is divided into kitchen & living room

because each room has their own smart hub, so the nodes

only send data to their respective hubs creating two clusters

in the network. Prediction horizon of 6 hours was used for the

proposed MPC solution.

TABLE III: Minimum SoH in the network

Oracle Proposed (MPC)
HPWREN 0.9986 0.9983

Smart Home (Kitchen) 0.9987 0.9986
Smart Home (Living Room) 0.9985 0.9985

The overall degradation is very small since the simulation

horizon is 1 month (Table III). For the HPWREN experiment,

it was observed that the node with the minimum SoH degrades

19.1% more for proposed solution compared to the “oracle”.

However, the difference is much smaller in Smart Home,

where both methods show nearly identical results.
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Fig. 5: Minimum SoH in the network simulated until the end of
battery life for HPWREN (left) and Smart Home (right)

1) End of battery life simulations: Next, we aim to compare

with the “linear” method for the time it takes for the first

battery to die. In our solution the prediction horizons of MPC

are much smaller than the complete horizon, hence we can

simulate through the end of battery life without being restricted

by computation resources. Since the “linear” method does

not consider energy generation and ambient temperature, it

should only know the data generation rates for the whole

horizon. In both experiment scenarios we have constant data

generation rates which makes the solution time invariant.

Therefore, we solve the problem in a short horizon and use the

same control vector to simulate until end of battery life. The

minimum SoH traces are depicted in Fig. 5 for both HPWREN

and smart home scenarios. The points where batteries are

considered dead (SoH = 0.8) shown with vertical lines. By

using proposed solution to specifically optimize for SoH of

the batteries, we gain 3 months (17.5%) of network lifetime

for HPWREN, 11 months (68.7%) for Smart Home (Kitchen),

and 7 months (25.0%) for Smart Home (Living Room).

2) Influence of Prediction Horizon Length: To study the

effect of prediction horizon length on the MPC performance,

and for the following sections, we simulated a 50-node net-

work distributed randomly in a square region of size 1000m

x 1000m, over 1 month horizon. We assume that we have

perfect predictions for the given horizon. Fig. 6b shows that

the MPC solution approaches the “oracle” solution as we

increase the prediction horizon. If accurate predictions can

be made for the disturbances (e.g. ambient temperature, solar

radiation) over a long horizon, this can be leveraged in the

MPC to improve SoH by increasing the prediction horizon.

However, this heavily depends on the use case. For example,

in a smart home the usage patterns of the IoT devices may

exhibit high variance because of the human factor. In this

case it becomes difficult to predict data generation rates of

the nodes, and a short prediction horizon should be used. The

computation time per MPC update step increases as shown in

Fig. 6b. If an hourly update of the controller is preferred as

in our experiments, the increasing computation times does not

critically affect the choice of the prediction horizon since they

are at least an order of magnitude smaller.

3) Effect of Ambient Temperature on Battery Health:
We compare three cases to analyze the impact of ambient

temperature on network life: 1) all nodes are assumed to

be under same ambient conditions, 2) nodes have chang-

ing ambient temperatures (i.e hourly and daily temperature
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Fig. 6: Influence of prediction horizon length on SoH degradation
(left) and computation time (right)

Fig. 7: Normalized delay and normalized degradation by using end
to end delay regularization

variations), 3) nodes have constant temperatures, but ±15°C
temperature difference with respect to each other. The first

case is going to be our reference for assessing the impact of

ambient temperature. The second case is the closest to a real

life scenario, and the third case may also be plausible if there

is an altitude difference between the nodes of the network (e.g

mountain top), or if there is an obstacle blocking the sun for

one node whereas the other node is exposed to direct sunlight.

The first case with the same constant ambient temperatures

for all nodes results in 0.104% SoH degradation for the most

degraded node. For varying ambient temperature in case 2,

the SoH degradation is 0.118% and very close to the constant

temperature scenario. Compared to these two cases, having

big temperature differences between nodes generates a much

faster degrading network with a SoH degradation of 0.143%.

4) End-to-end delay: The normalized delay and degrada-

tion results with the additional delay regularization term in the

cost function is given in Fig. 7. Results show that there is a

trade-off between degradation and delay for different values of

λ, which controls the level of regularization. Depending on the

application needs, this trade-off can be exploited to design IoT

network routing schemes with desired performance & lifetime.

V. CONCLUSION

In this paper, we formulated the problem of minimizing

battery degradation to improve the lifetime of IoT networks.

We proposed a solution with Model Predictive Control (MPC),

leveraging models for battery dynamics and State of Health

(SoH). Our work includes the effect of ambient temperature

on degradation, and the models we use can accurately capture

the nonlinear behavior of actual batteries.
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