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Abstract—The Internet of Things (IoT) networks are expected
to operate reliably for many years while meeting the needs of a
growing range of applications. However, a dependable operation
may not always be maintained due to the reliability degradation
of IoT devices. From low-power sensors to multi-core platforms,
IoT devices age and degrade, leading to failures that necessitate
maintenance. Reliability-aware design and management were
shown to delay failures and improve the lifetime of individual
devices. Even though the IoT networks can also radically benefit
from this, the unavailability of network simulators that provide
reliability modeling makes it impossible to assess reliability-aware
strategies. To bridge this gap and enable reliability analysis at
an early design phase, we introduce an integrated reliability
framework called RelloT for IoT networks, implemented in
the ns-3 simulator. The framework also includes modeling of
power, performance, and temperature, which are required to
model reliability. We validate the simulations done using our
framework and demonstrate that RelloT accurately captures the
power, temperature, and reliability dynamics of real networked
IoT devices.

I. INTRODUCTION

The emerging paradigm of the Internet of Things (IoT)
connects billions of heterogeneous devices ranging from low-
power sensors with limited computational capabilities to multi-
core platforms on the high-end. The rapid development of IoT
has lead to a tremendous increase in the number of devices
connected to the Internet. By 2025, the IoT is expected to
connect 41 billion devices [1].

The inherent large-scale and heterogeneity of the IoT
brings a maintainability challenge with it. IoT devices, as
any electronic or mechanical system, are prone to failures
due to the aging and degradation of electronic circuits, batter-
ies, and other components. Eventually, these devices require
maintenance for the repair or replacement of defective parts.
According to Cisco, for 100K devices that operate IoT smart
homes, around $6.7M/year will be spent for administration
and technical diagnosis related to system failures, comprising
between 30% to 70% of total costs [2]. Despite being a major
concern, there is a lack of thorough studies on the reliability of
IoT networks in the context of device aging and degradation.

The reliability of IoT networks can be improved with proper
system design and reliability management strategies. Prior
work has studied the management of reliability degradation on
processor-based systems, showing notable gains in the lifetime
of individual devices [3]-[5]. To extend this work and explore
reliability management strategies on a network-level, there is
a need for a convenient tool. Simulators are widely used tools
in research and industry to evaluate and validate networks, but
currently it is not possible to analyze the reliability of IoT net-
works with any of the available network simulators. The most
popular ones, e.g., ns-3 [6], OMNeT++ [7], and OPNET [8],
are designed only for analyzing communication performance
(throughput, delay, utilization, etc.) under different protocols.
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Fig. 1: Reliability framework structure

To enable reliability evaluation and analysis in IoT net-
works, we present a simulation framework, called RelloT,
implemented as a set of modules for the ns-3 [6] network
simulator. The proposed framework, besides reliability mod-
ule, incorporates three other interrelated modules for power,
performance, and temperature. The use of other modules are
required to be able to evaluate reliability. Moreover, with
this design choice, RelloT allows users to explore trade-
offs between power, performance, and reliability of network
devices. The following are the two key aspects of the design
and implementation of RelloT:

o Scalability: RelloT is implemented in ns-3 [6], which
is a simulator with low computational overhead and
low memory demands. Up to one billion nodes can
be simulated with ns-3 [9], [10]. RelloT incurs only
a marginal performance overhead on the default ns-3,
making it scalable for simulating large networks.

« Flexibility: The framework is extensible and enables the
integration of new models as well as the configuration
of existing models. Also, due to the modular design
of RelloT, users can conduct simulations with various
combinations of power, performance, temperature and
reliability models.

To the best of our knowledge, RelloT ' is the first reliability
analysis framework for heterogeneous IoT networks, taking
thermal characteristics as well as power and performance into
account. In this paper, we discuss the design of the framework
and and describe the provided models in detail. We validate
our framework against a real experiment setup, showing
RelloT estimates power, performance and temperature with
errors of less than 3.8%, 4.5% and +1.5°C respectively. We
validate reliability models against the results from existing
literature.

IThe source code of RelloT is publicly available.



II. RELIOT FRAMEWORK: DESIGN AND IMPLEMENTATION

In this section, we describe the overall structure of RelloT,
the functionality of the proposed modules and interfaces, and
present underlying models in detail.

A. Overview of the Proposed Framework

To allow reliability simulation in ns-3, RelloT integrates the
following modules as shown in Fig. 1.

- Performance Module. 10T devices can run some applica-
tions to process the sensed or collected data before sending it
to a central entity. The performance module provides perfor-
mance predictions (e.g., execution time) for these applications.

- Power Module. Estimates power consumption of the device
for various applications with configurable power models.

- Temperature Module. Predicts the temperature of a device
based on its power consumption and ambient temperature.

- Reliability Module. Evaluates the device reliability using
the existing thermal-based degradation models [4], [5], [11].

The modules operate on two different time scales. Perfor-
mance and power values are updated every Short Interval,
which is on the order of milliseconds. The reliability value is
updated every Long Interval, on the order of days, because
reliability estimation is computationally expensive. Therefore,
the reliability module uses the averaged temperature over each
Long Interval. The underlying mechanisms of each module is
explained in more detail in the remainder of the paper.

B. Power Module

The power module encompasses power models and various
functions. The main task of the power module is to update
power values at the predefined period Short Interval. If an
application is designated to run on a device, the power module
sets the state of that device to Busy and calculates the power
value according to the selected power model. If the device is
not running any applications, the state is set to Idle.

In this work, we focus on the power modeling of the CPU of
an IoT device. There are numerous power modeling techniques
from cycle-accurate to functional-level at different levels of
abstraction. Low-level models usually have high computational
complexities because they use a fine-grain representation of
the CPU. Since many nodes should be simulated concurrently
in network simulators, estimation with low-level models is
very time consuming, which is highly undesirable. We offer
two CPU power models in our framework, having low model
complexity while still providing good estimation accuracy.

Frequency & Utilization-based Power Model. We use linear
models to estimate the CPU power consumption based on
CPU frequency and utilization. Similar models were leveraged
previously by many works to a great extent because they
provide sufficient accuracy using easily accessible metrics. For
example, in [12], the authors characterized the CPU power
of a smartphone as a linear combination of frequency and
utilization with an average error less than 2.5%. The CPU
power consumption Popry can be expressed as:

Popy(t)=a- f(t)+b-u(t)+c (1)

where f(t) and u(t) are CPU frequency and utilization at time
t respectively. The coefficients a, b, ¢ are learned through linear
regression based on datasets collected on real devices. The

frequency and utilization traces may not be always available
to the users in practice. In that case a functional-level model
is convenient, presented next.

Application-based Power Model. The CPU power consump-
tion of IoT devices varies depending on the data process-
ing application it is running. If there are only high-level
functional properties available, an application-based power
model is useful. In our framework, we adopt the modeling
methodology proposed in [13], where the authors characterize
and verify power models of running machine learning (ML)
algorithms on edge devices (i.e. Raspberry Pi) and servers.
The observation is that different ML algorithms show different
power trends (i.e. linear, exponential etc.) with increasing input
data size. Besides, the amount and the characteristics of power
consumption resulted by running the same applications alter
for different devices.

We leverage the same methodology to build models for
Raspberry Pi’s, servers, and for microcontrollers such as Ar-
duinos. Taking the size of processed data by applications as the
model input, we train, test and cross-validate four regression
models (linear, polynomial, log and exponential regression),
and select the one that best predicts power consumption. Our
framework delivers the 22 ML algorithms modeled in [13], and
a CPU power model for Multilayer Perceptron (MLP) based
on the number of MAC (multiply-accumulate) operations. The
same modeling approach can further be applied to other neural
network architectures such as Convolutional Neural Networks
(CNNs). To improve the extensibility of the simulator for
custom applications, we have included functionality for users
to add new models to the power module. Parameters of the
power models are configurable through external interfaces.

C. Performance Module

IoT systems need to satisfy various performance require-
ments to provide acceptable Quality of Service (QoS) to users.
The performance module is designed to evaluate and monitor
the performance of applications and hence the overall network
performance. Different metrics can be used to quantify perfor-
mance, e.g., throughput, response time, etc. The performance
metric is application-specific; for example, delay and through-
put are critical in multimedia streaming applications whereas
information accuracy is the main criterion for performance in
some ML applications.

Execution Time Model. We use the input data size of
the application or the number of MAC operations it needs
to perform to estimate the application execution time. To
build the model, we measure the execution times of various
applications on a target device, then fit regression models
to the collected data. Certain performance metrics can be
calculated using the execution time value. For example, if te e
is the execution time of an application, then its throughput can
be obtained as D /t.... where D is the input data size.

D. Temperature Module

The temperature module estimates device temperature
(based on device power consumption and ambient tempera-
ture) and calculates average temperature over a Long Interval.
For thermal modeling, we adopt a strategy that can be used
for any IoT device. To have an acceptable level of complexity



in our simulator, we work on high-level information gathered
from the coarse-grained thermal sensors of the device’s key
heat sources. Such information is available in most of the
devices today like smartphones and single-board computers
(e.g., Raspberry Pi).

Let the number of the heat sources be n and let T}, € R”
represent the vector of temperatures observed by thermal
sensors and P, € R™ be the power consumed by the heat
sources at time instant k. Each heat source is assumed to
have one thermal sensor measuring its temperature. Then,
temperature 7)., at time instant k£ + 1 can be predicted
given the current temperature 7) and power Pj at time k.
The discrete-time state-space model of the device’s thermal
behavior is expressed in Equation (2) [14].

Thy1=A-Tpy+B-P,+C-T;"™ 2

where A, B € R"*" are defined as the state and the input
matrices. T;;"" is the ambient temperature and C' is a vector of
coefficients which weighs the impact of ambient temperature
on each heat source’s internal temperature. We use system
identification methods to derive the model from measured
power and temperature traces. A, B and C parameters are
different for each class of devices, so we offer multiple
device thermal models and made the parameters configurable
through the temperature module API. The order of the model
is equal to the number of the heat sources n. In our initial
work, we have m = 1, where the only source is CPU.
However, the extension to multiple sources is straightforward
in our framework. For example, if a power model for GPU is
provided, then power consumption values from both CPU and
GPU can be used to predict temperature.

The temperature module updates the states in Equation (2)
at a time resolution of Short Interval, the same time granularity
as power estimation updates. On the other hand, average
temperature 1" is calculated for every Long Interval denoted
LI. T is the exponential moving average of past temperature
values in the interval &k to kK + LI.

Thyr = -Tpy—(1—a) - Try 3

where « is a weighing coefficient that is configured depending
on the length of interval LI.

E. Reliability Module

Reliability is defined as the probability of not having failures
before a given time ¢. The effects of different failure mech-
anisms should be combined to obtain the overall reliability
of a processor. We use the sum-of-failure-rates model in
our reliability module, which states that the processor is a
series failure system; the first instance of a failure due to
any mechanism causes the entire processor to fail [11]. The
reliability module computes the single device reliability as a
product of the reliabilities due to different failure mechanisms.
Some examples for these mechanisms are: Time Dependent
Dielectric Breakdown (TDDB), Negative Bias Temperature In-
stability (NBTI), Hot Carrier Injection (HCI), Electromigration
(EM) and Thermal Cycling (TC). In this work, we implement
the TDDB model, but the framework allows the integration of
other models.

Reliability degradation develops by consistent stress over
long time intervals rather than instantaneous stress. Compared
to power and temperature, reliability is a more slowly changing
variable. Since reliability models are usually highly compute-
intensive, we calculate reliability sparsely in our framework.
The reliability module does estimation every Long Interval (on
the order of hours or days), using temperatures averaged over
the interval. Due to the aforementioned properties, the models
do not lose significant accuracy but the simulations speed up.

Time Dependent Dielectric Breakdown (TDDB) Reliability
Model. Due to gate oxide degradation in transistors, which
is a non-reversible mechanism with a cumulatively increasing
impact, there is a risk of breakdown that may shorten the
device’s lifetime. The reliability of a single transistor subject
to oxide degradation can be expressed as [15]:

Ry(t) = e )™ (4)

where t is the time-to-breakdown, z; is the oxide thickness,
a is the device area normalized with respect to the minimum
area, and v and [ are respectively the scale parameter and
shape parameter. The scale parameter ~ represents the charac-
teristic life, which is the time where 63.2% of devices fail, and
it depends on voltage and temperature. The shape parameter
B, instead, is a function of the critical defect density, which
in turn depends on oxide thickness, temperature and applied
voltage. R(t) indicates the probability of the system not failing
before time ¢. It is a monotonically decreasing function with
values in the range of [0, 1].

The reliability of the entire chip R¢ can then be expressed
as the product of single transistor reliabilities:

m Biws

Rc(t) = HRz(t) = e&ri=1 _ai(ﬂ%) (5)
=1

m is the number of transistors on the entire chip. It can be on
the order of millions, which possesses a large complexity on
the computation of Equation (5). However, this complexity can
be reduced by assuming the same scale and shape parameters
over the chip [5] for the reason that different regions of the
chip have similar temperatures.

The Rc expression in Equation (5) is only representative
of static systems because it assumes a constant temperature
applied from time ¢ = 0. To capture the dynamics of reliability
under varying temperature, we discretize the time and calculate
reliability at each time step as shown in Equation (6). The
temperature is assumed to be constant between time steps.

Ry = Ry_1 — (Rc(tkq,qu,k) - RC(tkakal,k» (6)

In Equation (6), k indicates the k" time instant and Th—1,%
is the temperature experienced by the chip between the time
instants £k — 1 and k. We set this interval between adjacent
time steps as the Long Interval and let Tj,_; j be equal to the
average temperature 77; of the corresponding LI.

The reliability module can work with any failure mech-
anism or combination of multiple mechanisms as long as
the mechanism can be described by a function Rq(t), as in
Equation (5). For example, the module can be extended to
include NBTI and HCI if we describe the reliability func-
tions associated with these mechanisms, respectively Ry prr
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Fig. 2: Power and temperature traces for RPi3

and Rpcy. Then, by the sum-of-failure-rates approach, the
reliability module calculates the total system reliability as the
product of the functions associated with the single mechanisms
as Rc(t) = RTDDB(t) . RNBTI(t) . RHCI(t). Equation (6)
would not need any modifications since it is general and does
not depend on a specific R (t).

III. EXPERIMENTS AND RESULTS

In this section, we present validation results on a three-node
network topology, comparing power, performance and temper-
ature measurements in experiments with simulated traces.

A. Validation and Evaluation

We use a simple three-node network to verify the function-
ality of the simulator modules to validate the device models.
The network consists of an ESP8266 WiFi microchip with
microcontroller, a Raspberry Pi 3 (RPi3), and a PC. The
devices communicate with MQTT protocol over WiFi (IEEE
802.11b). The ESP8266 samples data as a sensor node, runs
a data preprocessing application, then sends the preprocessed
data to the RPi3. Data is further processed by an application
on the RPi3, or the computation is offloaded to the PC. This
type of computation offloading is common in IoT edge devices
and is representative of their usual operation [16]. If the
application is chosen to be offloaded, then the RPi3 is only
responsible of relaying incoming data to the PC. In our three-
node experiments, we collected: (i) RPi3 power consumption,
(i1) RPi3 CPU temperature, (iii) ESP8266 power consumption,
(iv) ESP8266 CPU temperature, and (v) ambient temperature
measurements synchronously.

Two example traces from measurements and simulations are
presented in Fig. 2 under two different ambient temperatures.
We here show a temporal view of the simulator output, in
a dynamic case where the simulated device has a varying
workload. In the experiment, the RPi3 runs a data processing

application with incoming data input from ESP8266 for the
first 15-20 seconds. After that, the application is offloaded to
the PC and the RPi3 only relays data while its CPU is Idle. As
shown in Fig. 2, the simulator output follows the real power
and temperature traces with a mean error of 3.42% and 6.19%
in low ambient temperature, and with a mean error of 2.69%
and 3.97% in high ambient temperature. There is a discrepancy
between real and simulated temperatures at the beginning of
each plot because the initial condition set for the temperature
is low (25°C') and it reaches the steady state value after some
time. Overall, we estimate the execution time and energy
consumption of the RPi3 for 23 different ML applications with
average errors of 3.8% and 4.5%, respectively. For the CPU
temperature, the state-space model predictions stays within
+1.5°C of measurements at steady state, for all applications.

IV. CONCLUSION

In this work, we introduced a novel framework for reliability
analysis of IoT networks implemented in the ns-3 network
simulator. RelloT can assist researchers and engineers in ex-
ploring trade-offs between power, performance and reliability
of devices in IoT networks. We are working on leveraging
our framework to do design space exploration (DSE) in
IoT networks. We can simulate, explore, and evaluate the
optimality of different network configurations for different ob-
jectives such as reliability, performace, and energy efficiency.
We believe that RelloT will help researchers to assess the
reliability degradation problems in large-scale networks.
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