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Abstract—In this work, we propose a lightweight ensemble
learner for individual house level electricity consumption pre-
diction. We first implement five different prediction algorithms:
ARIMA, Holt-Winters, TESLA, LSTM and Persistence. Among
single prediction algorithms, LSTM performs best with 0.0195
MSE value on average. Then, we combine these predictions
using neural network based ensemble learner which improves
performance of best algorithm (LSTM) on average by 72.84%
and by up to 99.13%. Finally, we apply pruning to the weights
of our ensemble network to decrease the computational cost of
our model. Applying pruning leads to 10.9% less error and 27%
fewer number of parameters. We show that our pruned ensemble
learner outperforms state-of-the-art ensemble methods.

I. INTRODUCTION

According to the energy trend report of International Energy
Agency (IEA) [1], by 2040 total electricity demand will
reach 44 thousand TWh and remarkably residential electricity
demand will constitute 25% of this total. Hence, it is essential
for electricity providers/utilities to match electricity supply and
demand at all times to reduce their operational costs and keep
safe operation of their infrastructure. To do this, the utility
providers rely on short- (or long) term predictions [2].

We can categorize electricity demand forecasting into three
classes based on the forecast horizon. In short-term prediction,
the electricity demand forecast is performed for a few minutes
up to a few days ahead. Medium-term forecast can make
predictions from a few days to a few months ahead. Lastly,
long-term forecasting can predict in months, quarters or even
years [3]. These three type of predictions can be used at
different sectors and for different purposes. Besides, they
all have an important role in reducing the total cost of an
electric utility where even small improvements in prediction
performance can lead to huge gains. To illustrate, a rough
estimate of savings from a 1% reduction in the total prediction
error for a utility with 1GW peak load is $500K per year due to
long-term load forecasting, $300K per year due to short-term
load forecasting, and $600K per year due to short-term load
and price forecasting [4]. In our work, we focus on medium-
term electricity prediction where we predict 14-day ahead.

Utilities previously perform aggregate level predictions
where they combine many individual house data. Neverthe-
less, focusing on individual houses is now possible with the
advancements in smart technology (e.g. smart meters, smart

appliances). This also brings deeper understanding about each
house, allowing the electricity providers to have targeted
programs for each customer (such as reduce your use day
[5] etc.). Additionally, with the rise of smaller and more
independent energy systems (e.g. micro grids), it has become
more relevant to perform these predictions at the house-level,
rather than at the aggregate level.

For electricity consumption prediction, there are distinctive
number of approaches ranging from simple time series algo-
rithms to complex machine learning approaches [6]. Using
only one prediction algorithm across all houses may not lead
to accurate predictions since each house represents a different
system with distinct characteristics (e.g. number of people,
their appliance usage habits, their employment status, the
physical properties of the house etc.).

Hence, there is a need for a systematic approach where
there are multiple prediction algorithms available and eval-
uated for suitability. For instance, Gungor et al. [7] show
that choosing one algorithm to perform prediction across all
houses might be severely under-performing, and they propose
an algorithm selection methodology which selects the best
prediction algorithm for a house given the house charac-
teristics. In general, ensemble methods are preferred where
different model’s predictions are combined in an algorithmic
manner. The advantage of these methods is that they break
the assumptions inherent in single prediction algorithms and
provide more generalizable models.

Neural networks are used as ensemble models [8]. The main
issue with neural networks is that they are computationally
expensive models since they have millions of parameters and
costly matrix multiplications. Especially, in neural-network
based ensemble models there is a need to alleviate this
burden on the model by shrinking the network. There are
different approaches to have smaller networks such as product
quantization [9] and pruning [10]. In this work, we implement
pruning to eliminate negligible weights from our ensemble net-
work, which leads to increased prediction accuracy and fewer
number of parameters, reducing the computational burden of
neural networks significantly.

In this paper, we propose a lightweight ensemble learner
to predict individual house level electricity consumption. We
use residential electricity consumption data from Office of



Energy Efficiency & Renewable Energy (EERE) [11]. We first
implement single prediction algorithms (namely ARIMA [12],
Holt-Winters [13], TESLA [14], LSTM [15], and Persistence).
Among single prediction algorithms, LSTM performs best
with 0.0195 MSE value on average. Afterwards, we combine
these predictions using a neural network based ensemble
learner. Our ensemble learner improves best single prediction
algorithm’s (LSTM) performance on average by 72.84% and
up to 99.13%. The improvement over other prediction algo-
rithms is much higher. Finally, we apply pruning to the individ-
ual weights of our ensemble network to decrease the number of
parameters of our model. Applying pruning on average leads
to 10.9% less error and 27% fewer number of parameters. We
also demonstrate that our pruned ensemble learner performs
better than state-of-the-art ensemble methods.

II. RELATED WORK

There are variety of methods used in energy consump-
tion prediction. Many works focus on implementing single
algorithm for prediction. Machine-learning based prediction
methods extract features using time series data. Examples
can be support vector machine [16], LSTM [17] etc. Time
series forecasting methods are also very popular in prediction.
ARIMA [18], Holt-Winters [19] are some examples for these
type of models. For residential individual house level energy
prediction, using single method may not be the best option
since each house represents different systems fundamentally.
Therefore, hybrid approaches such as ensemble models should
be considered for better prediction.

Ensemble learning models utilize the predictions of different
methods with a given learning algorithm to improve the robust-
ness over a single method [20]. These models are heavily used
in time series forecasting for different kind of predictions. The
reason why these methods are used is twofold 1) better gener-
alization (i.e. less over-fitting) 2) higher prediction accuracy.
Alobaidi et al. [21] propose an ensemble method to predict
day-ahead average energy consumption. The authors in [22]
propose Stacking Multi-Learning Ensemble to predict global
oil consumption. Avand et al. [23] propose a tree-based intel-
ligence ensemble approach for spatial prediction of potential
groundwater. Shan et al. [24] use ensemble prediction model
called gravity gated recurrent unit electricity consumption
model to predict electricity consumption of a five-star hotel
building in Shanghai, China. Lee et al. [25] combine stacking
ensemble learning method (SELM) and self-organizing map
for electric load forecasting. Yao et al. [26] combine extreme
gradient boosting, extreme learning machine, multiple linear
regression with support vector regression. Al-Rakhami et al.
[27] use extreme gradient boosting (XGBoost) for cooling and
heating load predictions in a residential building.

Pruning in neural networks is one method to shrink the
network size. Essentially, this method eliminates the insignif-
icant weights. There are several examples from different
applications such as deep learning [28], and convolutional
neural networks [29]. To the best of our knowledge, there is

no prior work combining both ensemble models and pruning
to alleviate the computational complexity.

In our work, we combine all these three aspects (single
prediction algorithms, ensemble models and pruning) into
one framework where we present our readers to create a
lightweight ensemble model for medium-term electricity con-
sumption prediction.

III. TIME SERIES FORECASTING METHODS

Electricity consumption data is uni-variate which is com-
posed of pairs of a time stamp and a value. Time stamp
granularity can be a second, a minute, or an hour. Value
is the corresponding electricity consumption between two
consecutive time steps. Since this uni-variate data is a type of
time series data, it is cogent to utilize time series prediction
algorithms. Essentially, these methods find repeating patterns
in the past data for forecasting. In our work, we use 5 different
state-of-the-art methods with varying complexities:

Holt-Winters: This model is formed by the combination
of three parameters: mean, trend and seasonality. Mean (α)
considers the average of data points; trend (β) estimates
increasing or decreasing direction (i.e. positive or negative
slope) in the provided data; seasonality (γ) finds recursively
observed pattern [13]. There are multiplicative and additive
versions of Holt-Winters. We select additive version of Holt-
Winters with the following formulation:

Yt = α+ βt + γt + εt (1)

where α is mean, β is trend, γ is the seasonality factor
which all can take any value in [0,1]. Random error, ε are
assumed to be independently and identically distributed with
a mean of zero and a constant variance of σ2.

ARIMA: Auto regressive Integrated Moving Average is
composed of three components: number of previous time
periods (p), degree of difference (d) and number of previous
time periods of error term (q). Equation (2) formulates an
ARIMA model [12]:

yt = θ0 + φ1 ∗ yt−1 + φ2 ∗ yt−2 + ...+ φp ∗ yt−p

+ εt − θ1 ∗ εt−1 − θ2 ∗ εt−2 − ...− θq ∗ εt−q
(2)

where y and ε are the actual value and random error at
time period t, respectively; φ and θ are model parameters.
p and q are integers and often referred to as orders of the
model. Random errors, ε, are assumed to be independently
and identically distributed with a mean of zero and a constant
variance of σ2.

TESLA: Taylor Expanded Solar Analog Forecasting predicts
solar energy availability which can be used for any kind of
time series energy prediction. It finds the relation between
data points and the desired prediction data using Taylor
expansion. Hence, complex relationships (such as logarithmic,
exponential, etc.) can be easily reduced to simple polynomials.
TESLA can use first, second, or third-degree polynomials in
accordance with the available data size and desired accuracy
level. The model is trained by providing time window (i.e. how
many previous days our model is going to use) and prediction



window (i.e. how many subsequent days our model is going
to predict) [14]. Generic formulation of TESLA is as follows:

n∑
i=o

Cixi (1storder)

n∑
i=0

i∑
j=0

Cijxixj (2ndorder), etc.

(3)

where Cij represents coefficients learned with observations,
and x0 = 1 (the constant factor). The resulting equation is
Ax = B, where A is the matrix of input observations; x
is the vector of coefficients, and B is the vector of output
observations, each entry correlating with the corresponding
row of A, and solved by least squares estimation.

LSTM: Long Short-Term Memory network is a specific type
of recurrent neural networks (RNN). RNNs are capable of
keeping past information over time. Distinctly, LSTM has a
special memory cell which is able to store information over
longer periods of time. Updates in this cell can happen by the
activation of three various gates: 1) forget gate (the memory
cell is cleared completely), 2) input gate (memory cell stores
the received input), and 3) output gate (next neurons obtain
the stored knowledge from memory cell) [30].

Persistence: This model constitutes our baseline for compar-
ison purposes. The main idea of persistence is that tomorrow’s
prediction is equal to what we observe today. To illustrate, if
we measure today’s temperature as 27°C then it means that
tomorrow is also going to be 27°C [31]. This approach can
be extended by selecting different time frames, such as using
previous 12 hours to predict next 12 hours. In our work, we
select the portion before our test data to predict whole test
data. We specifically match the time stamps in this method.

IV. LIGHTWEIGHT ENSEMBLE LEARNER

A. Base Ensemble Learner

Fig. 1. Lightweight Ensemble Learner Framework

We utilize ensemble learner for hourly electricity consump-
tion prediction. Given predictions of different methods, ensem-
ble models blend these predictions systematically. These mod-
els are mostly used in classification tasks where bagging and
boosting are really effective in developing single classifier’s
performance [32]. We focus on regression-based ensemble
model where our goal is to predict residential electricity

consumption values. We present our framework in Figure 1.
First, we pre-process the electricity consumption data, then
separate this data into training and test data sets. We train
the prediction algorithms using the training data and make
prediction on the test data. At this step, we give prediction
values (obtained from single prediction algorithms) and real
test data to our ensemble learner. Our ensemble learner is a
fully connected neural network where it learns the importance
of different algorithms, i.e. ensemble learner finds the optimal
weights for each prediction method. Ensemble model finally
provides prediction values for test data set.

As our ensemble learner, we select dense (i.e. fully con-
nected) neural network which is composed of 1 input, 2
hidden and 1 output layers. Input layer has 5 neurons which
represent our five different prediction methods, in both hidden
layers we have 256 neurons, in output layer we have 1
neuron symbolizing the ultimate prediction value. As indicated
in our framework, for ensemble learner we use test data.
For ensemble learner training, this data (i.e. test data) is
again divided into training and test and we perform error
calculations over newly generated test data. Specifically, our
ensemble learner uses 59 day data to predict 14 day electricity
consumption. We call this model base ensemble learner which
is going to be pruned in the following subsection.

Fig. 2. Pruning Phase

B. Pruned Ensemble Learner

After we obtain predictions from our base ensemble learner,
we initiate the pruning phase to decrease the complexity
(and possible redundancy) of our ensemble model. Pruning,
in its most basic explanation, is a process which eliminates
redundant weights from the network. Redundant in any neural
network signifies a value which is below a certain threshold.
We eliminate small-valued weights from our network while
keeping the same or better accuracy values. In other words, we
get rid of the unimportant connections from the network. After
elimination of redundant weights, we fine-tune the lighter
model to adapt the weights. Pruning brings the advantage
of smaller networks, faster training and lower total energy
consumption for devices. To the extreme, for small amounts of
compression, pruning can sometimes increase accuracy [33].
The most convoluted part of our network is between first and
second hidden layer where we have 65,536 (256*256) weight
values. Hence, we focus on the weights between these two
layers to alleviate the computational complexity. The main
concern is to select an appropriate pruning ratio which is equal
to the number of pruned weights divided by total number of



weights. In order to find a proper pruning ratio, we define
pruning robustness degree which identifies how much worse
total test error can be. Accordingly, we select the maximum
pruning ratio (among set of ratios) conforming to the selected
pruning robustness degree. For example, if we select pruning
robustness degree as 10% and total test error before pruning
is 0.02 then we can tolerate an error up to 0.022. After we
find maximum pruning ratio, we reconstruct the pruned model
by eliminating corresponding weights. Afterwards, we fine-
tune whole network’s weights to minimize the total error.
After fine-tuning, we can obtain error values of our pruned
ensemble learner. Our pruning phase is summarized in Figure
2 for more clarity. To summarize, it is composed of three
consecutive steps: 1) conversion of regular dense layers into
prunable versions 2) determination of maximum pruning ratio
given pruning robustness degree 3) fine-tuning.

V. EXPERIMENTAL ANALYSIS

A. Dataset

We use residential electricity consumption data from the
Office of Energy Efficiency & Renewable Energy (EERE)
[11]. We use 936 houses from 50 states across the US. At each
house, we have hourly electricity consumption information in
kW, from year 2013. In total, we have 8760 data points per
house. For each house, We divide our complete data set of
8760 data points into training and test sets, using a 80-20
training/test ratio, creating training1 and test1 sets. Then, we
feed test1 data set into the ensemble methods to construct the
networks. We again use a 80-20 training/test ratio, creating
training2 and test2 sets. For consistency among the individual
algorithms and our ensemble methods, we present error values
measured in the test2 set, which corresponds to 14 days (i.e.
medium-term horizon for energy consumption prediction).

B. Base Ensemble Learner

For our single prediction algorithms, we use 5 different
methods: Holt-Winters, ARIMA, TESLA, LSTM, and per-
sistence forecast. The prediction values obtained from these
algorithms are given to the ensemble learner, that learns the
importance of each method. We select our ensemble learner
to be 4-layer dense neural network, i.e. all neurons in two
consecutive layers are connected to each other. Particularly,
our neural network consists of 5 neuron input layer, two 256
neuron hidden layers and 1 neuron output layer. The reason
for the number of neurons selected in input and output layers
is trivial (i.e. we have 5 prediction algorithms and 1 ultimate
output prediction value). For the number of hidden layers, we
select 2 since it can approximate any smooth mapping to any
accuracy [34]. For the number of neurons in the hidden layers,
we use a specific approximation function as following [34]
which is suitable for dense neural networks:

Nh =
Ns

(α ∗ (Ni +No))
(4)

where Ni is the number of input neurons, No is the number
of output neurons, Ns is the number of samples in training

TABLE I
BASE ENSEMBLE LEARNER’S AVERAGE AND MAXIMUM IMPROVEMENT

OVER SINGLE PREDICTION ALGORITHMS

Prediction Method Average (%) Maximum (%)
Persistence 98.03 99.94

ARIMA 95.80 99.98
Holt-Winters 94.16 99.98

TESLA 88.86 99.26
LSTM 72.84 99.13

data set, and α is a scaling factor between 2 and 10. For our
ensemble learner, we select 2 as α value and we round up
the obtained value to comply with 2n format (e.g. 64, 128,
256). We select 256 neurons for both hidden layers. With this
neural network, we calculate prediction values and average
error for our ensemble learner. We measure the performance of
the prediction using the mean squared error (MSE) metric. For
each house, we calculate its MSE value based on the deviation
between predictions and actual values over its test data set.
Then, for each algorithm, we calculate average MSE using
Equation 5 where h denotes the index of the house and t
denotes the instance of the time prediction over all houses.

1

m

m∑
h=1

(
1

n

n∑
t=1

(Y t
hreal − Y t

hprediction)
2) (5)

where Y t
hreal is real electricity consumption, Y t

h is our
model’s electricity consumption prediction at hour t and house
h, m is the total number of houses in our test data and n is
the total number of hours in our test data per house.

The following are MSE values with standard errors for
our base ensemble learner and the individual prediction al-
gorithms:

1) Ensemble: 0.00746±0.00052
2) LSTM: 0.0195±0.00059
3) TESLA: 0.04954±0.0008
4) Persistence: 0.31369±0.01299
5) ARIMA: 0.34268±0.02825
6) Holt-Winters: 0.34511±0.029831
These results show that as a single prediction method LSTM

outperforms other methods. However, LSTM’s computational
complexity is much higher than the other methods (see Section
V-F). Our ensemble learner outperforms single prediction algo-
rithms by a great margin. To demonstrate this statistically, we
calculate the average and maximum improvement over single
prediction algorithms, shown in Table I. Our ensemble learner
enhances the performance of single prediction algorithms by
up to 99.98%. Our base ensemble learner obtains up to 99.13%
(72.84% on average) improvement against LSTM, the best
individual prediction algorithm.

C. Pruned Ensemble Learner

We obtain the following average and maximum pruning
ratios given 0.1 pruning robustness degree over all houses:

• Average Maximum Pruning Ratio (%): 27±0.41
• Highest Maximum Pruning Ratio (%): 45



By performing pruning, our aim is to decrease the number
of parameters while keeping base ensemble model’s average
error (or obtain smaller error value). After we obtain maximum
pruning ratios, we fine-tune the weights of the model. In 96.3%
of the houses, we observe that the maximum pruning ratio
is greater than zero, which clearly shows that some weights
are indeed redundant. Among the houses where pruning is
applied, we obtain smaller error values in 71% of the houses
after pruning and fine-tuning. Overall, we have the following
average and maximum improvement percentages over our base
ensemble model using pruning:

• Average Improvement (%): 10.9±0.83
• Maximum Improvement (%): 67.88

D. Comparison with State-of-the-art Models

We compare our ensemble learners with an online expert
selection methodology [35], and four state-of-the-art ensemble
models: AdaBoost , gradient tree boosting, random forest
regression, and voting regressor [36]. Over the entire set of
houses, our ensemble learners outperform the state-of-the-art
ensemble methods in 80% of the houses. We further analyze
the improvement of our pruned ensemble model over the state-
of-the-art ensemble models in more detail, as shown in Table
II. Random forest regression’s performance is the closest to
our pruned ensemble learner, where our method is still 22%
better (and up to 98%) on average.

TABLE II
PRUNED ENSEMBLE LEARNER’S AVERAGE AND MAXIMUM

IMPROVEMENT OVER STATE-OF-THE-ART MODELS

Prediction Method Average (%) Maximum (%)
Online Expert Selection 72.45 98.70

AdaBoost 66.43 99.09
Voting 49.94 98.40

Gradient 49.87 98.24
Random Forest 22.11 98.30

E. Sensitivity Analysis

Next, we want to understand the impact of each individual
method on the performance of our ensemble mechanism. We
remove each method and rerun our model with the remaining
input set, and compare the obtained performance against the
individual methods as well as the full (base) ensemble model
in Table III. In this table, each removed method column
denotes an experiment where the corresponding method is
removed from the original model and compared against the
individual and the full ensemble methods. For example, the
first column shows the experiment where LSTM is removed
from the original input set, and the resulting ensemble model
performs 35.8%, 23.92%, 78,8%, 89.26%, and 95.61% bet-
ter as compared to individual LSTM, ARIMA, Tesla, HW,
and Persistence algorithms, respectively; and 49.66% worse
than the original full ensemble model. The other columns
can be read similarly. We see that removing LSTM and
TESLA makes our method perform worse (most important
input algorithms), whereas removing the others improves the

performance. Then, we conduct another experiment, where the
input set consists of only LSTM and TESLA, as they are the
most important inputs in the original set, shown as the last
column of Table III. Interestingly, this case does not lead to
better performance than the full ensemble model, with 40.25%
worse values. This shows that having a diverse set of input
algorithms is a key factor to obtain good performance with our
ensemble model [37]. Even though individual algorithms may
not seem important one by one, removing them all together
does not make the performance better, but significantly worse.

F. Computational Complexity Analysis

LSTM, ARIMA, TESLA, Persistence, and Holt-Winters
take 200.08, 130.38, 2.33, 1, and 0.13 seconds to complete
per house, respectively. LSTM takes 100X more time than
TESLA and 1500X more time than Holt-Winters. Even though
LSTM is the best algorithm among these (with respect to
average MSE), it is also the most computationally intensive
one. For our ensemble learners (i.e. base and pruned versions)
we demonstrate pruned ensemble learner’s lightweight char-
acteristic through reduced number of parameters. On average,
we eliminate 17,694 parameters for each house from our
base ensemble learner network, corresponding to a reduction
of 1.7M parameters over all houses. Since our network is
not extremely large (4-layer network), we do not observe
training or inference time difference between base and pruned
ensemble models, where the training time in both learners is
approximately 20 seconds per house. Thus, we are adding only
a 10% execution time increase over the LSTM method, but
with a huge performance gain, i.e. 72% average and up to
99% maximum improvement in prediction performance.

VI. CONCLUSION

We propose our readers to create a lightweight ensemble
learner for individual house level electricity consumption pre-
diction. To reach this goal, we first implement five distinctive
prediction algorithms: ARIMA, Holt-Winters, TESLA, LSTM
and Persistence. Among these algorithms, LSTM performs
best. Afterwards, we create our intial ensemble learner by
combining prediction values of single prediction algorithms
using 4-layer dense neural network. Initial ensemble learner
improves the LSTM’s performance on average by 72.84% and
by up to 99.13%. Finally, we apply pruning to the weights
of our ensemble network to eliminate insignificant weights.
Doing this leads to 10.9% less error and 27% less number of
parameters. All in all, we show that pruned ensemble model
reaches the minimum error value.
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TABLE III
SENSITIVITY ANALYSIS OF OUR ENSEMBLE METHOD WHEN INDIVIDUAL METHODS ARE REMOVED

Removed method Only
LSTM+TESLALSTM ARIMA TESLA HW Persistence

Compared

against

LSTM 35.8% 73.61% 65.7% 73.17% 75.99% 54.83%
ARIMA 23.92% 94.56% 94.96% 96.25% 96.67% 90.62%
TESLA 78.8% 88.4% 84.35% 88.35% 89.58% 82.03%

HW 89.26% 95.37% 93.37% 92.95% 95.63% 87.21%
Persistence 95.61% 97.95% 97.22% 97.97% 97.78% 95.79%

Full ensemble -49.66% 21.17% -20.16% 36.36% 30.63% -40.25%
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combining multiple learners for residential energy prediction,” Future
Generation Computer Systems, vol. 99, pp. 391–400, 2019.

[8] K. Kasiviswanathan, J. He, K. Sudheer, and J.-H. Tay, “Potential
application of wavelet neural network ensemble to forecast streamflow
for flood management,” Journal of Hydrology, vol. 536, pp. 161–173,
2016.

[9] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convolutional
neural networks for mobile devices,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4820–
4828, 2016.

[10] S. Han, J. Pool, J. Tran, and W. Dally, “Learning both weights and con-
nections for efficient neural network,” in Advances in neural information
processing systems, pp. 1135–1143, 2015.

[11] Eric Wilson, “Commercial and residential hourly load profiles
for all tmy3 locations in the united states.” https://openei.org/doe-
opendata/dataset/commercial-and-residential-hourly-load-profiles-for-
all-tmy3-locations-in-the-united-states, 2013.

[12] G. P. Zhang, “Time series forecasting using a hybrid arima and neural
network model,” Neurocomputing, vol. 50, pp. 159–175, 2003.

[13] C. Chatfield, “The holt-winters forecasting procedure,” Journal of the
Royal Statistical Society: Series C (Applied Statistics), vol. 27, no. 3,
pp. 264–279, 1978.

[14] B. O. Akyurek, A. S. Akyurek, J. Kleissl, and T. Š. Rosing, “Tesla:
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