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Abstract—Optimal sensor coverage considers where to place
sensors at minimal cost while maximizing coverage. This ap-
proach often overlooks the robustness of the entire system. If
sensors break down, the application performance might severely
be affected. This paper constructs a multi-objective optimiza-
tion model that considers not only optimal coverage, but also
robustness. Our method increases the system robustness by up
to 50% compared to a coverage-only approach with 201% higher
probability of monitoring the entire environment.

I. INTRODUCTION AND RELATED WORK

Sensor placement directly impacts the efficiency of the
allocated resources and system performance [1], considering
coverage and connectivity [2]. For the best performance,
applications should observe and monitor the greatest total
relevant area possible, i.e. high coverage. Previous studies
optimize sensor coverage, with the goal of maximizing sensor
coverage with minimum sensor cost [3], [4], energy consump-
tion [5], or communication bandwidth [6]. Solutions to these
optimization problems include [7] [8]: 1) Exhaustive search
considers all possible locations for sensor placement [9], which
has exponential complexity. 2) Optimization-based approaches
construct integer programming models which can be solved by
conventional solvers, [10]–[12]. but may not obtain a solution
in polynomial time. 3) Heuristics try to find nearly optimal
solution(s) with reasonable execution time [13]–[17].

When a sensor breaks down, anything in its range can
go undetected. Optimizing sensor placement only from a
maximum-coverage perspective can lead to a very sparse
sensor placement, where most areas are covered by a single
sensor. Figure 1 illustrates this issue. The small circles are
sensors that can detect up to 1 unit, and the middle point is the
point-of-interest (PoI). The top-left figure shows a coverage-
only approach where only the sensor at (1,2) can detect the
PoI. If this sensor breaks down (top-right), the PoI becomes
undetectable. The bottom-left figure is a robust method where
all sensors can detect the PoI. If the same sensor breaks
down, the PoI stays detectable by two other sensors (bottom-
right). Some similar works [3], [18]–[22] place sensors by
considering possible sensor failures, but they do not quantify
or verify the robustness.

We formulate a robustness-aware sensor placement problem
and quantify robustness with a metric called “detectability

Figure 1: Coverage-only vs. robustness-aware approaches

degree” for each POI, that measures with how much prob-
ability a location is covered by the deployed sensor(s). We
run experiments with multiple room configurations to compare
our approach with the coverage-only method. By placing
sensors considering the detectability degrees of all locations,
the robustness can be increased by up to 50% compared
to a coverage-only approach. We verify this robustness im-
provement by analyzing system coverage with broken sensors.
Our sensor placement has up to 201% higher probability of
monitoring the entire environment, compared to a coverage-
only approach. Our method leads to a more robust sensor
placement, enabling the application to continue to perform
effectively even when there are non-functional sensors.

II. ROBUST SENSOR PLACEMENT FORMULATION

We represent the area to cover as a 3-D grid. Sensors can be
placed at the grid points and all points should be covered. The
sensing range r indicates the maximum distance a sensor can
cover. A sensor at location (x1, y1, z1) can cover a target at
(x2, y2, z2) if and only if r is greater than or equal to Euclidean
distance between the sensor and the target.
Coverage-only Base Model: We reformulate the coverage-
only problem using maximal covering location problem [23],
with the below parameters:
N = number of sensors to be located
G = set of grid points to be detected
S = set of potential sensor locations
g = index of grid point g∈G
s = index of possible sensor location s∈S



r = sensor sensing range
dsg = euclidean distance between sensor and grid point
ξsg = 1 if dsg ≤ r; 0 otherwise

The decision variables are as follows:
Xs = 1 if sensor is positioned at location s; 0 otherwise
Yg = 1 if grid point g is detected; 0 otherwise
The integer linear programming (ILP) model becomes:

maximize
∑
g∈G

Yg (1)

subject to
∑
s∈S

ξsgXs ≥ Yg ∀g ∈ G (2)

∑
s∈S

Xs = N (3)

Xs = {0, 1} ∀s ∈ S, Yg = {0, 1} ∀g ∈ G (4)

(1) is the objective function which maximizes the number
of grid points covered. Constraints (2) enable a grid point g
to be covered if and only if one or more sensors can detect it.
Constraint (3) forces to place exactly N sensors. Constraints
(4) are binary variable constraints for the decision variables.
Coverage-only Probabilistic Model: The base coverage-
only model assumes that a sensor can only make binary
detection decisions. In reality, there is an uncertainty with
sensor readings. Thus, sensor detection should be based on
a probabilistic model [24], e.g. with respect to the distance
between a sensor and a point. To achieve this, we define psg
as the detection probability of a point g by sensor at point s.
We use a common function [25] for the relationship between
dsg and psg: psg = e−αdsg where α denotes the rate at which
sensor’s detection probability decreases with distance. With
larger α, psg decreases quicker with distance.

We calculate psg values for all possible sensor-grid point
tuples using the above function. We denote the probability of
missing a grid point g with a sensor located at s as 1−psgXs.
We use τg as the maximum allowable miss probability for each
point (between 0 and 1). Larger τg leads to full coverage with
fewer sensors (flexible system), whereas smaller τg requires
more sensors to obtain full coverage (strict system). We
reformulate constraints (2) as:∑

s∈S
ηsgXs ≥ ζgYg ∀g ∈ G (5)

where ηsg = − ln(1 − psg) and ζg = − ln(τg). Here, the
meaning of Yg changes from before, where it measures the
number of points that satisfy constraints (5).
Robustness-Aware Probabilistic Model: In a sensor net-
work, each sensor may not correctly and accurately function
indefinitely. There might be some environmental disruptions
which affect the working condition of a sensor, leading to
malfunctioning, inaccurate readings, or a complete breaking
down. To prevent this, we need to place the sensors in a
way to increase the resilience of the system. We construct
a robust sensor placement model with probabilistic detection.

We define “detectability degree” (δg) as the sum of detection
probabilities from placed sensors to each point:

δg =
∑
s∈S

psgXs ∀g ∈ G (6)

To understand this formulation better, consider Figure 1
where sensor detection is binary (psg is 1 if detected, otherwise
it is 0). In the top-left figure, δg is 1, whereas in bottom-left
it is three (i.e. the point can be detected by three sensors.)
In our case, instead of binary numbers (0 or 1), we use
detection probabilities to find δg . We define the robustness
of a system using average (µ) and minimum (ψ) δg . (10) and
(11) provide mathematical formulations for these variables.
For a location, higher detectability degree means a more robust
system because if some sensor(s) covering that point break
down, there are alternatives to cover that particular point.

We provide a simple sensor placement scenario to explain
these values in more detail. Assume that we have five points to
detect and seven sensors with binary sensor detection, where
{2, 5, 6, 7, 0} gives us the number of sensors that can
detect each point (i.e. first point is detected by two sensors,
etc.) In this set, the average detection value is 4 (20/5), with
minimum as 0. Even though the average value is high, there
are still points with significantly low values, thus making the
system vulnerable to sensor break downs. Thus, we need to
consider both the average and minimum values to obtain a
more equally distributed set. For our formulation, we replace
the number of sensors with detection probabilities. Below is
the multi-objective optimization model with weighted sums
for the average and minimum values [26]:

maximize w1µ+ w2ψ (7)

subject to
∑
s∈S

ηsgXs ≥ ζg ∀g ∈ G (8)

∑
s∈S

Xs = N (9)

µ =

∑
g∈G

∑
s∈S psgXs

|G|
(10)

ψ ≤
∑
s∈S

psgXs ∀g ∈ G (11)

w1 + w2 = 1 (12)

(7) is our objective function which maximizes the sum of
average and minimum detectablity degrees. Constraints (8) are
the probabilistic constraints where ηsg = − ln(1−psg) and ζg
= − ln(τg). Constraint (9) forces to place exactly N number of
sensors. Constraint (10) is an equality constraint for average
detectability degree where |G| denotes cardinality of set G.
Constraint (11) is another equality constraint which denotes
minimum detectability degree. Constraint (12) forces sum of
weights to be equal to 1. In our model, we select the values
of w1 and w2 as 0.5, i.e. we assign equal importance to the
average and minimum detectability degrees.



Table I: Minimum (average) value improvement with 1 broken sensor

# Sensors Small Medium Large Very Large
15 38% (2.7%) 67% (5.4%) 33% (5.9%) 26% (7.8%)
20 196% (0.9%) 146% (0.4%) 101% (3.7%) 82% (7.2%)
25 146% (0.5%) 180% (0.8%) 126% (1.7%) 108% (4.9%)
30 79% (-0.2%) 201% (0.8%) 131% (0.7%) 94% (7.4%)

III. EVALUATION

Experimental Setup: We implement ILP models in CPLEX
12.10 [27] and run experiments on a PC with 16 GB RAM
and an 8-core 2.3 GHz Intel Core i9 processor. We adopt
the setup from [28] with low-resolution thermal sensors. We
consider different room configurations with a fixed height of
3m [29]. The distance between each point is 1.5m. Sensors can
be placed on each point and all points should be covered by
a sensor. Some points are not feasible for sensor placement,
e.g. some middle points (as a sensor cannot be placed in
the air). The room settings are: 1) small: 4.5m×4.5m×3m,
2) medium: 6m×6m×3m, 3) large: 7.5m×7.5m ×3m, 4) very
large: 9m×9m×3m. We use a τg value of 0.4 for the small
room and increase it by 0.05 for each larger setting. We
experimentally determine these τg values to provide a balanced
sensor placement. To find the optimal value of α, we perform
an experiment to measure the probability of detecting a person
with respect to increasing distance. We use curve-fitting on the
measured values and obtain the optimal α as 0.576.
Results: The left hand side (LHS) of Equation 8 for each
point indicates how well the point is covered. As the LHS
gets bigger, the point is covered with higher probability,
less prone to sensor break downs. To illustrate robustness,
we create a scenario where one sensor breaks down. We
calculate the LHS values of Equation 8 for each point for
both coverage-only [3], [30] and robustness-aware models.
We calculate the minimum and average LHS values across
all grid points, excluding the broken sensor. The minimum
value shows the most vulnerable point, while the average
measures the vulnerability across all points. Figure 2 shows
this in detail for the small room with 4 cases, 15 and 30
sensors in a); 20 and 25 sensors in b). For each case, we
calculate the minimum LHS value across all points when a
particular sensor breaks down, for both coverage-only and
robust models. The X-axis indicates different broken sensors,
i.e. each blue (robust)/yellow (coverage-only) column pair
represents a broken sensor. For each case, the right-most two
columns represent no broken sensor case. Our model leads
to significantly higher minimum LHS values when a sensor
breaks down, i.e. the most vulnerable point with our model
has a much higher probability of detection as compared to the
coverage-only case, hence less prone to broken sensors.

We expand this analysis on all room settings with 15, 20,
25, and 30 sensors, comparing the minimum (average) LHS
value improvement of our method in Table I. The average
and minimum value changes are up to 7.8% and 201%,
respectively. The minimum value is more important as it shows
the most vulnerable point and our method makes the most
vulnerable point significantly less prone to broken sensors.

(a) 15 & 30 sensors

(b) 20 & 25 sensors

Figure 2: Small room min detectability degree: Coverage-only [3],
[30] vs. Our Robust Model (a) 15-30 sensors (b) 20-25 sensors

Figure 3: Reliability improvement vs. number of sensors

Next, we calculate Equation 7 to quantify the robustness
of a sensor placement, across all room settings with different
number of sensors in Figure 3. The maximum robustness im-
provement is 50% in medium room with 30 sensors. Average
improvement is 32%, 41%, 31%, and 31% for small, medium,
large, and very large rooms, respectively.

IV. CONCLUSION

Sensors are prone to breaking, thus performance of a
sensor-based application can be heavily impacted by missing
sensors. We propose a new robustness-aware and probabilistic
sensor placement method to maintain the coverage of a sensor
field even with missing sensors. Our method increases the
robustness of a sensor-based system by up to 50% compared to
a coverage-only approach, with up to 201% higher probability
of monitoring the entire area, even with broken sensors.
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