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Abstract—The Industrial Internet of Things (I-IoT) enables
a smarter maintenance approach for various industrial appli-
cations, such as manufacturing, logistics, etc. This approach is
based on continuously observing system data to predict device
failures and increase device efficiency. This smart maintenance,
also known as predictive maintenance (PDM), finds an optimal
maintenance schedule to reduce operational and capital costs.
Accurate remaining useful life (RUL) prediction is critical for an
effective PDM system. Data-driven RUL estimation methods are
quite popular owing to their easier implementation. We observe
that the performance of data-driven methods varies drastically
based on the data set and underlying system parameters, thus
making it difficult to have a single algorithm and a parameter
set that work best for all settings. We propose an ensemble
learning framework where accurate and diverse base learners
are selected out of 20 different state-of-the-art deep learning
models. For accuracy, we discover the optimal weights of base
learners by constructing an optimization problem. For diversity,
we measure the similarity among base learner predictions and
iteratively select the most diversified set of models while keeping
the accuracy at a certain level. We show that our approach can
have 39.2% faster retraining compared to an accuracy-based
ensemble with only 3.4% loss in accuracy.

Index Terms—Industrial internet of things (I-IoT), industry
4.0, predictive maintenance, remaining useful life prediction,
deep learning, ensemble learning, mathematical optimization

I. INTRODUCTION

INDUSTRY 4.0 or fourth industrial revolution is an impor-
tant milestone in factories and production systems, where

smart manufacturing has become an essential component.
This leverages the adaptation of traditional Internet of Things
(IoT) for industrial manufacturing, creating the Industrial
IoT (I-IoT) notion. The I-IoT enables the interconnection
of anything (e.g. sensors, actuators), anywhere, and at any
time in the context of industrial applications [1]. This allows
better automation, higher reliability, and more fine-grained
control, utilizing computer networks to collect enormous
amount of data from the connected machines and convert
this data into actionable information [2]. To optimize the
performance of these smart and automated systems, timely
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and correct maintenance decisions are necessary, eliminating
unplanned downtime, and better inventory management. The
focus of I-IoT is the appropriate management of industrial
assets along with predictive maintenance [3]. For example,
BOSCH maintains quality management through predictive
maintenance based on its use of big data analysis, smart
sensors, and AI [4]. Predictive maintenance (PDM), or prog-
nostics, predicts time-to-failure (i.e. lifetime) of a machine by
employing copious mathematical approaches. PDM finds an
optimum time to schedule a maintenance before any failure
occurs. It has a burgeoning interest in the industry. The global
predictive maintenance market size is expected to grow from
$3.0 billion in 2019 to $10.7 billion by 2024 [5].

Remaining useful life (RUL) is defined as the remaining
time of a machine to perform its functions until it fails.
RUL prediction is an important PDM application [6], which
can significantly improve the overall system performance and
efficiency. Even the slightest improve in the RUL prediction
performance can lead to enormous cost gains via increased
production efficiency, reduced parts replacement costs, etc.
Recently, data-driven RUL prediction methods have become
popular with the abundance of available data. These machine
learning (ML) oriented methods find a mapping between
historical data and RUL. One robotic manufacturing company
reduced downtime by 50% and increased performance by
25% by utilizing an ML algorithm for failure prediction [7].
Among these, deep learning (DL) methods are more prefer-
able due to their superior performance. However, industrial
systems consist of large number of individual systems and
components, and finding a single method that works best in
these various settings is a difficult task. Also, since PDM
data might show extreme variations in early vs. late phases
(e.g. machines do not fail early), these ML models may need
retraining with the new incoming data. The retraining phase is
the performance bottleneck of these models, with significant
computation time overhead. To achieve the vision of I-IoT
and utilizing from the huge data generated by I-IoT devices,
there is a need for lightweight prediction approaches [3].

Approaches for big data analytics play a primary role in
next-generation I-IoT systems [3]. Instead of a single method,
ensemble learning combines multiple algorithms (i.e. base
learners) and improves base learner performance. This results
in more successful data analytics methodology, increasing
system robustness and decreasing maintenance costs of I-
IoT systems. Ensemble learning eliminates single method
selection but may create additional overhead as multiple



Fig. 1: Proposed Framework for RUL Prediction

methods need to be trained (and retrained with new data).
Previous works generally use a small number of base learners,
around 5-7, to avoid this issue [8]. However, there may
be other methods performing better. Thus, the main issues
with ensemble learning-based RUL prediction become 1) how
many learners to consider for best performance and 2) how
to select from them to minimize the retraining overhead.

To address these issues, we propose a diversity-induced
optimally-weighted ensemble learner for RUL prediction
(OPTDIV). To address the first issue, we dramatically increase
the set of base learners to 20 methods, more than 2x compared
to the state-of-the-art. We show single method performance
on NASA C-MAPSS data set [9]. Some of these methods (e.g.
layer normalized RNN, Wavenet) are used for RUL prediction
for the first time. We observe that the best performing algo-
rithm changes with data set. Next, our ensemble learner uses a
quadratic programming model to find the base learner optimal
weights. This optimizes the accuracy of our ensemble learner.
Finally, we consider model diversity to reduce base learner
set, by calculating the Euclidean distance among base learner
predictions. This step selectively reduces the base learner set,
reducing the computation overhead of the retraining phase.
We compare our proposed model OPTDIV against optimally
weighted ensemble learner OPT (without diversity) and see
that OPTDIV has 39.2% faster retraining than OPT with only
3.4% loss in accuracy. This enables OPTDIV to adapt to
changing conditions faster with high accuracy.

II. RELATED WORK

Predictive Maintenance (PDM) uses predictive tools to
determine when maintenance actions are necessary based
on continuous monitoring [21]. Accurate RUL estimation
is extremely beneficial to PDM. Accordingly, the research
on improving RUL prediction performance gained popular-
ity owing to advances in condition and health monitoring
techniques. We can categorize the RUL prediction approaches
under three main categories: experience based, model-driven

(physical) and data-driven. Experience based models rely
solely on expert knowledge and they are specific to a machine,
that is why they are really hard to generalize. Physical models
incorporate the physics of failure into RUL estimation [22].
The failure mechanism, e.g. fatigue, wear, is included in a
mathematical model, establishing a relationship between the
usage of a system to a lifetime prediction. It is arduous to
create these models and they are machine specific.

Huge amounts of data are collected in I-IoT environments
on a regular basis by connecting every machine and activity
through network a sensors to the Internet [23]. Processing and
analyzing this data plays a significant role in obtaining more
effective I-IoT systems. Accordingly, data-driven models (the
ML approach) use historical data to learn a model of system
behavior [24]. ML methods play a vital role in I-IoT with use
cases in quality control, maintenance cost optimization, and
manufacturing process improvement. [25]. Since traditional
ML models require extensive feature extraction, deep learning
(DL) recently became more popular in order to provide end-
to-end RUL prediction [26]. For instance, Hyundai Motors
Co., a car manufacturer, recently developed a DL-based car
fault diagnosis system that is superior to expert analysis [4]. It
is also shown DL provides better prediction performance than
traditional ML methods. There are numerous DL methods
adopted for RUL prediction: recurrent neural network [27],
convolutional neural network [13], long short-term memory
[28], [29], auto-encoders [30], [31], and etc. There are also
hybrid models which combine two or more models for better
prediction such as CNN and LSTM [18].

Best performing algorithm may change across different sys-
tems (and thus data sets) [32]. An ensemble learner combines
predictions from multiple models for more generalizable and
robust models. In general, ensemble models perform better
than the single methods. Thus, this brings more sophisticated
predictive data analytics towards advanced and state-of-the-art
I-IoT systems. To fulfill the theoretical requirements of good
ensembles, base learners should be both accurate and diverse



TABLE I: Selected Deep Learning Models
Architecture Category Sub-category Abbreviation Explanation

Recurrent

Recurrent Neural
Network(RNN) [10]

Vanilla RNN Simple RNN

Layer Normalized LNRNN Normalization across the
features dimension

Long Short-Term Memory (LSTM) [11]

Gated Recurrent Unit (GRU) [12]

Vanilla LSTM
GRU Special memory cells

Bi-directional BLSTM
BGRU

Backward direction
(future and past data)

Parallel PLSTM
PGRU Two parallel paths

Convolutional 1-D Convolutional
Neural Network (CNN) [13]–[16]

Vanilla CNN Simple 1D
convolution

Depthwise separable DSEPCNN Single input channel convolution

Wavenet WAVE
Dilated and causal convolutions,

residual and parameterized
skip connections

Temporal Convolutional
Networks TCN Dilated and causal convolutions

Hybrid

CNN-RNN [17] Vanilla
Parallel

CRNN
PCRNN

Serially and in parallel connected
CNN and RNN layers

CNN-LSTM [18] Vanilla
Parallel

CLSTM
PCLSTM

Serially and in parallel connected
CNN and LSTM layers

CNN-GRU [19] Vanilla
Parallel

CGRU
PCGRU

Serially and in parallel connected
CNN and GRU layers

CNN-LSTM-GRU [20] Parallel CLG In parallel connected
CNN, LSTM, and GRU layers

CNN-RNN-LSTM-GRU Parallel CRLG
In parallel connected

CNN, RNN,
LSTM, and GRU layers

[33]. In our work, we incorporate these two components into
our ensemble learner by proposing an iterative framework.
For RUL prediction, there are different ensemble learning
approaches. Li et al. [34] combine multiple traditional ML-
based learners by using particle swarm optimization and
sequential quadratic programming to determine their weights.
Shi et al. [35] utilize ensemble learning to predict RUL of
bearings. Li et al. [36] assign an optimized, degradation-
dependent weight to each learner to obtain better prediction
accuracy. All these works do not reach great prediction
performance since they did not use DL methods (i.e. they
solely consider traditional ML methods). They also did not
consider the diversity aspect of the base learners. In our work,
we utilize from a variety of DL-based methods and improve
their single prediction performance by proposing a diversity-
induced ensemble learner framework.

III. PROPOSED FRAMEWORK

Deep learning (DL) uses nonlinear processing layers to
discover data representations. DL is particularly useful for
I-IoT applications since it can model a complex production
environment with high prediction accuracy. However, a sin-
gle DL model may not provide accurate RUL predictions.
Alternatively, distinctive models can be combined (ensemble
learner) for better prediction. Similarly, it is onerous to choose
the base learners. Mistakenly selected base learners may lead
to deficient performance. To solve this problem, we create
a diversity-induced optimally weighted ensemble learner. We
present our framework in Fig. 1. First, we start with data pre-
processing module where we normalize the data and select the
most useful features. In DL module, we create a DL library
where we consider 20 state-of-the-art models ranging from
vanilla recurrent neural networks to temporal convolutional
networks. In our last module, we create our ensemble model
by following two steps: accuracy and diversity. In accuracy,
we formulate an optimization problem to find the optimal
weights of the base learners, then we eliminate the models
which have zero weight. In diversity, we first create a diversity
matrix to measure similarity among selected base learner

predictions. Afterwards, we select the most diverse models
and discover their optimal weights while keeping ensemble
accuracy at a certain level by introducing error tolerance level.

A. Data pre-processing Module

We normalize the input sensor data using min-max nor-
malization. For the feature selection, we utilize the Random
Forest (RF) algorithm to discover variable importance which
is calculated based on the reduction in residual sum of
squares. Based on the calculated feature importance values,
we keep the features that take positive importance values.

B. Deep Learning Module

Deep learning module outputs single prediction model RUL
values using the input sensor data. We implement 20 DL pre-
diction methods. We employ sliding time window approach
to convert time series sensor data into a regression problem.
The time window represents the number of past observations
and we slide this window from the first observation to the last.
Accordingly, 2-D input (selected features and time sequence
of each feature) is provided to DL models. Table I presents the
selected deep learning models. We categorize those models
under three different architectures.

1) Recurrent Architectures: For recurrent models, hid-
den state can represent everything that has been seen so
far. Recently, they become popular in RUL prediction and
demonstrated good performance [28]. All models contain 3
recurrent layers (e.g. RNN, LSTM) having 64, 32, and 16
units. After recurrent layers, all models are connected to 2
fully connected feed forward neural networks (each with 8
units) and final 1-dimensional output layer.

2) Convolutional Architectures: Convolutional neural
networks (CNN) use multiple feature extraction stages that
can automatically learn hidden representations. Particularly,
for RUL prediction, many CNN models has shown a great
success [13]. Especially, 1-D CNN is common for time series
applications, making it a suitable model for RUL prediction.
Our CNN network structures contains five consecutive CNN



layers, Flatten (Dropout) layer, one fully-connected layer
(with 100 nodes) and an output layer with 1 node.

3) Hybrid Architectures: Hybrid models blend two or
more methods to integrate strong aspects of different methods
and to create more powerful estimator. For instance, combin-
ing CNN and LSTM can be useful since CNN can handle
feature extraction, and LSTM can build long term time de-
pendencies. Based on the previously selected vanilla recurrent
and convolutional models, we construct hybrid models. We
consider both in series and in parallel connection.

C. Ensemble Module

A theoretically good ensemble method should include both
accurate and diverse base learners [33]. In our ensemble
module, we satisfy this condition by considering accuracy and
diversity steps consecutively. In accuracy, we find the optimal
weights for our base learners by solving an optimization
problem. Then we eliminate the zero-weighted models to keep
the most important ones. In diversity, we measure similarity
among remaining models based on Euclidean distance and
select the smallest model subset that is able to meet the
desired threshold criteria. The threshold level measures how
much worse performance our diversified subset can tolerate
than the optimally weighted ensemble learner.

1) Accuracy: The goal of the accuracy step is to discover
the most important methods in RUL prediction. The impor-
tance is measured by the optimal weights assigned to the base
learners. To find those weights, we formulate a mathematical
optimization problem where we minimize the mean squared
error (MSE). Mathematically, MSE is formulated using the
variance and bias of an estimator θ̂:

MSE(θ̂) = V ariance(θ̂) +Bias2(θ̂) (1)

We specifically consider MSE since minimization of MSE
is equivalent to minimizing bias and variance simultaneously
which is shown in Equation 1. Accordingly, we formulate the
following mathematical optimization model:

minimize
1

N

N∑
i=1

(yi−
∑M

j=1 wj ŷij)
2 (2)

subject to
M∑
j=1

wj = 1 (3)

wj ≥ 0 ∀j = 1, . . . ,M (4)

where N is the number of observations, M is the number
of base learners, yi is the true values for an observation i
(i = 1, . . . ,N ), ŷij is the predicted values for an observation
i by the base learner j (j = 1, . . . ,M). wj is the weight
corresponding to the base learner j. The objective function
(2) minimizes the MSE, constraint (3) ensures that weights
sum up to 1, and constraints (4) restrict all weights to be
non-negative. The constructed model has a convex quadratic
objective function. We prove this by showing that Hessian
(i.e. matrix that organizes all the second partial derivatives of
a function) of our objective function is positive semidefinite

Fig. 2: Combination of base learner predictions with their
optimal weights using a dot product operation

(PSD). Without loss of generality, objective function (2) can
be reformulated using L2 norm and matrix notation:

‖y − Ŷ w‖22 (5)

where y is an N dimensional vector storing real values, Ŷ
is an N ×M prediction matrix and w is an M dimensional
weight vector. For simpler notation, let ψ be a function that
maps w to ‖y − Ŷ w‖22:

ψ : w 7→ ‖y − Ŷ w‖22 = ‖y‖22 − 2yT Ŷ w + ‖Ŷ w‖22 (6)

Note that ψ is twice differentiable. The first and second
partial derivatives of ψ with respect to w and wT are:

∂ψ

∂w
= −2yT Ŷ + 2wT Ŷ T Ŷ (7)

∂2ψ

∂w∂wT
= 2Ŷ T Ŷ (8)

We also need to show Ŷ T Ŷ is a PSD matrix. Let ξ be an
M dimensional vector. We prove that Ŷ T Ŷ is PSD:

ξT (Ŷ T Ŷ )ξ = (Ŷ ξ)T (Ŷ ξ) = ‖Ŷ ξ‖22 ≥ 0 (9)

We proved that our objective function is convex and it is
also quadratic. We also have affine constraints. Thus, above
model is a quadratic program (QP) for which there is a
guarantee that a local minimum is also the global minimum
[37]. Solving this QP yields the optimal weights w∗ for each
DL model. Based on discovered w∗, we eliminate the models
which have 0 weight. This means that unimportant models
are eliminated from the larger set. Most importantly, we can
achieve the optimal ensemble prediction performance using
the base learner predictions and their corresponding weights.
Fig. 2 demonstrates our approach to combine the base learner
predictions with their optimal weights. Here, we perform a
dot product operation which takes single algorithm RUL pre-
dictions and optimal weights, and outputs RUL predictions.
To exemplify, consider the first row of the ensemble learner
RUL predictions (blue table) in Fig. 2. In order to obtain
the RUL prediction value as 44 (corresponding to the first
aircraft engine), we multiply the first column of base learner
RUL predictions (orange table) with the base learner optimal
weights (green table) and round to the nearest integer. That
is, (44×0.374)+(43×0.214)+(42×0.198)+(50×0.096)+
(49×0.091)+(45×0.027) ≈ 44. This optimization procedure



considers solely accuracy of the base learners. We call this
ensemble learner OPT for the rest of this paper and we denote
the number of models in OPT as τ . We shrink the number
of models by including diversity in our ensemble learner.

2) Diversity: There is a trade-off between accuracy and
diversity in ensemble learners. Adding diversity leads to
worse prediction performance and vice versa. Our main goal
of adding diversity is to obtain the smallest subset of DL
models while preserving the accuracy at a certain level. We
call this diversity-aware optimally weighted ensemble learner
OPTDIV. The main motivation behind adding diversity is the
reduced retraining overhead. This overhead becomes crucial
when new data arrives. In that case, there is a need to retrain
the selected models. Since OPTDIV has smaller number of
models, it would be faster to retrain than OPT approach.

To measure diversity, there is no generally accepted metric
to be used [33]. In a regression problem, covariance between
individual estimators’ outputs can be used for instance. We
choose to utilize Minkowski distance to measure the similarity
among methods’ predictions of OPT. Minkowski distance
measures the similarity between two points in the normed
vector space. Consider an N dimensional vector space and
two points: X = (x1, x2, ..., xN ) and Y = (y1, y2, ..., yN ).
Minkowski distance D(X,Y ) of order p is formulated as:

D(X,Y ) =

( N∑
i=1

|xi − yi|p
)1/p

(10)

When p = 2, Euclidean distance is obtained:√√√√ N∑
i=1

(xi − yi)2 (11)

Here, any p value can be used without loss of generality.
We calculate Euclidean distance among all possible pair
of models and create a distance matrix Ξτ×τ . This matrix
demonstrates diversity among selected model predictions. For
instance, Ξ(TCN,GRU) denotes the distance between predic-
tion vectors of temporal convolutional network and vanilla
GRU. If the distance is bigger, we expect those two models
to be more diverse (since their predictions are less similar).

First, we create the smallest subset of models by selecting
the two most diverse models (OPTDIV). This is achieved
by finding the maximum value in Ξ and its corresponding
models. Afterwards, we solve previously formulated QP to
calculate the optimal weights for those base learners and mea-
sure prediction performance. At this point, we check whether
OPTDIV prediction performance is within desired threshold.
We determine the threshold based on error tolerance level
(δ) which is a parameter in [0,1]. Based on selected δ, we
determine allowable performance difference between OPT
and OPTDIV. To put more concretely, assume that in OPT,
we found optimal ensemble RMSE to be 20. If we select error
tolerance level δ to be 1%, then our proposed approach iterates
until we reach an RMSE of 20.2 or less. At each iteration,
we expand OPTDIV by selecting the next most diverse model
(i.e. select the model that has the second highest element in
Ξ and so on). Overall, our approach starts by selecting the

two most diverse models, and increases the number of models
until it meets the desired threshold level.

Let υ denote the number of models in OPTDIV. Observe
that for any δ, we have υ ≤ τ . Without loss of generality,
we can assume that this inequality is strict. This assumption
reveals the trade-off between computational overhead and
accuracy. Since OPTDIV has smaller number of models, when
the new data comes, retraining will be less costly than OPT.
However, its accuracy would be worse (but not worse than
δ). If we need much faster training and sub-optimal accuracy,
OPTDIV would be a better choice.

IV. EXPERIMENTAL ANALYSIS

A. Experimental Setup

Dataset Description: NASA C-MAPSS (Commercial
Modular Aero-Propulsion System Simulation) is a commonly
used data set for RUL prediction. The simplified engine
diagram in Fig. 3 demonstrates the major components (e.g.
fan, combustor) of an aircraft engine [9]. Input data is created
by different sensors (e.g. temperature, pressure) placed on
these components. NASA C-MAPSS has four sets of data:
FD001∼FD004. Each data has different complexity levels
(e.g. operating conditions, fault conditions) as shown in Table
II. While FD001 is the simplest data set, FD004 is the
most complicated (i.e. the highest number of operating and
fault conditions) one. Each data set has separate training and
testing sets. The training data contains the entire lifetime of
an engine, yet test data is terminated at some point before
engine failure. Each row corresponds to a single operating
time cycle with 26 columns: the engine ID, cycle index,
three operational settings, and 21 sensor measurements. At
the beginning, the engine is operating normally and develops
a fault at some point in the future. The real RUL values
are provided for the test data, and the goal is to estimate
the RUL before a failure occurs. RUL prediction of aircraft
engines is crucial in aviation industry. For instance, Rolls
Royce, an aircraft engine manufacturer, recently began using
big data (collected from an I-IoT environment) to maintain
aircraft engines. This company prevents flight delays through
predictive maintenance of their aircraft engines [4].

Fig. 3: Engine Diagram Simulated in C-MAPSS [9]

TABLE II: C-MAPSS Data Set
Data Set FD001 FD002 FD003 FD004

Train trajectories 100 260 100 249
Test trajectories 100 259 100 248

Max/Min cycles for train 362/128 378/128 525/145 543/128
Max/Min cycles for test 303/31 367/21 475/38 486/19

Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

RUL Target Function: The easiest and the most common
approach to model RUL is linear where its value decreases



Fig. 4: Random Forest Feature Importance

with time. Nonetheless, it is hard to observe an apparent
degradation behavior of an engine in the beginning of its
lifetime. In general, an engine degrades more as it approaches
its end of life. For the C-MAPSS data set, it is shown that
piece-wise linear degradation model is more appropriate than
linear model [38]. Thus, we adopt a piece-wise linear RUL
target function where we set the maximum RUL limit constant
(the break point) to 125-time cycles as in [39].

Performance Evaluation Metric: Prediction error (ε) is
the difference between the estimated RUL (RULest) and the
true RUL (RULtrue) (i.e. ε = RULest −RULtrue). We use
Root Mean Square Error (RMSE) for evaluation:

RMSE =

√√√√ 1

N

N∑
i=1

ε2i (12)

B. Data pre-processing

We select the most important features in predicting RUL
for (1) better prediction performance, (2) decreased computa-
tional complexity, and (3) preventing overfitting. We perform
feature selection for FD001 and FD003 because specifically
these two demonstrate explicit health degradation behaviors.
We use Random Forest (RF) algorithm to find the feature
importance. Fig. 4 illustrates nonzero feature importance
values for the FD001 and FD003 training data sets. X-axis has
feature importance values in [0,1] and y-axis shows different
features. We observe that the most informative feature is
sensor 11 for both data sets. It is important to note that this
process is fully automatized meaning that we do not need to
visually inspect coming data. When the new data comes, RF
will update itself to calculate new feature importance values.
Based on that, the most useful features will be updated.

C. Deep Learning Models Performance

All experiments are run on a PC with 16 GB RAM and an
8-core 2.3 GHz Intel Core i9 processor. We run all models
with the same parameter configuration: Adam optimizer with
learning rate 0.001, elu activation function, He initialization,
batch size of 512, and a max number of epochs of 250 where
callback is activated (patience is set to 10 for validation data).

(a) FD001 (b) FD002

(c) FD003 (d) FD004

Fig. 5: Deep Learning Models Prediction Performace

(a) FD001 (b) FD002

(c) FD003 (d) FD004

Fig. 6: Base Learner Optimal Weights

We replicate each experiment 10 times and report average
values. We adopt a sliding time window approach for better
prediction performance. Here, we select the time window
based on the minimum number of cycles for the test data
since only sequences that meet the window-length is possible
to consider. To use the entire test data, the window size is
selected as 30, 20, 35, and 15 respectively from FD001 to
FD004. Fig. 5 depicts the best performing 10 models across
the data sets. At each sub-figure, horizontal axis represents
RMSE value, and vertical axis provides specific DL model.
The smaller the RMSE value, the better the model is. One
important observation is that best algorithm varies depending
on data set. Specifically, CLG, WAVE, PCLSTM, and PCGRU
are the best algorithms with RMSE values 12.42, 17.24, 12.52,
and 19.62 respectively. We can also observe that hybrid and
convolutional models perform better than recurrent ones.



D. Ensemble Learner Performance

Accuracy: To discover the most important models, we
formulate and solve the previously formulated quadratic opti-
mization problem in YALMIP [40] using the solver MOSEK
[41]. As an output, we obtain the optimal weights w∗ corre-
sponding to each base learner. In Fig. 6, we share the models
which take non-zero weights. In each sub-figure, on the x-
axis, we have optimal weights w∗, and on the y-axis we have
corresponding DL models. CRNN, WAVE, PCLSTM, and
PCGRU takes the greatest weights with 0.27, 0.39, 0.37, and
0.49 respectively. The number of models that have positive
weights is different at FD002 where we have 6 models (τ = 6)
as opposed to 5 (τ = 5) as in the remaining data sets. We also
examine the relationship between base learner RMSEs and
their optimal weights. Intuitively, we expect the base learner
with the smallest RMSE to take the largest weight. However,
this cannot be observed at FD001. Besides, even though some
methods do not perform really well by themselves, they can
still take a positive weight, e.g. PCRNN at FD004. In terms of
optimal weights, we again cannot see one algorithm to be the
best across all data sets (i.e. no dominant algorithm). When
we multiply w∗ with the corresponding learner predictions,
we obtain OPT predictions. RMSE values of OPT are 11.95,
16.08, 12.04, and 19.17 respectively. Compared to the best
single estimators, OPT brings 3.7%, 6.7%, 3.9%, and 2.3%
accuracy improvement. Note that OPT has the most accurate
predictions since we solve an optimization problem. Adding
diversity degrades the estimation accuracy (trade-off between
accuracy and diversity), yet it decreases the number of models
which leads to lower computational overhead.

Comparison with State-of-the-Art Ensemble Methods:
To verify the performance of our ensemble approach (OPT),
we compare it with the state-of-the-art ensemble methods
where we select Bagging, Gradient Boosting, AdaBoost, and
Stacking [42]. We select these methods since these are the
most well-known and successful ensemble approaches. As
an input, 20 single method predictions are provided to these
ensemble methods. We implement these methods using scikit-
learn library in Python [43]. For the optimal hyper-parameter
selection, we utilize GridSearch which builds model on each
parameter combination possible and finds the best hyper-
parameter configuration [44]. Accordingly, we use the follow-
ing hyper-parameters: AdaBoost 7→ number of estimators: 30,
learning rate: 1, loss: linear; Gradient Boosting 7→ number of
estimators: 90, learning rate: 0.1, loss: least squares; Bagging
7→ number of estimators: 20, max samples: 2, max features:
1; Stacking 7→ averaging the predictions of all base learners.
We make a prediction performance comparison based on
test data error. Fig. 7 shows this comparative analysis where
our method OPT (represented with green color) outperforms
selected ensemble methods in all data sets. Specifically, OPT
improves the prediction performance of the best ensemble
method by up to 7.3% and 4.6% on average.

Diversity: We create the diversity matrix Ξτ×τ based
on Euclidean distance between OPT model predictions. For
demonstration purposes, we share a sub-matrix of Ξ3×3:

Fig. 7: State-of-the-art Ensemble Comparison

(a) FD001 (b) FD002

(c) FD003 (d) FD004

Fig. 8: OPTDIV Performance for Different υ

Ξ3×3 =

CRNN CRLG CNN 0 7 3 CRNN
7 0 1 CRLG
3 1 0 CNN

where we have a symmetric matrix with zero diagonal.
Here, each cell represents a normalized diversity score. For
instance, the most two diverse models are CRNN, and CRLG
since the distance between those two points is the maximum.
We start with the 2 most diverse models and expand this
set until we reach desired error tolerance level δ. To provide
better understanding, we consider all the models in OPT and
create OPTDIV until υ = τ − 1. To exemplify, for FD001,
we have τ = 6, so we consider the most diverse models
until υ = 5. For each υ value, we calculate its RMSE
and its performance degradation compared to OPT. Fig. 8
demonstrates OPTDIV performance under varying υ values.

At each sub-figure, on the x-axis, we have υ values, on
the y-axis we depict two different measurements: on the left
we have RMSE values and on the right we have performance
degradation measurements. Performance degradation is calcu-
lated by measuring how much accuracy difference there are
between OPTDIV and OPT. For example, when we only use
the two most diverse models in FD001, OPTDIV is 3.1% less
accurate than OPT. Naturally, the more models we add, the
more accurate OPTDIV becomes. However, at some instances
increasing υ does not bring significant advantage, e.g. in



Fig. 9: Effect of δ on υ

FD003, going from υ = 4 to υ = 5 increases accuracy only
by 0.05%. Hence, we bring the idea of error tolerance level
δ to select the smallest model subset for OPTDIV while not
losing a significant accuracy. To exemplify, given δ = 0.01,
OPTDIV has 4 models (υ = 4) at all data sets except FD004.
If we select a bigger δ, then we end up with smaller υ values
and vice versa. Fig. 9 demonstrates this relationship. This
figure shows selected υ values based on varying δ ∈ [0.04,
0.02, 0.01]. In general, we can observe that as δ value gets
larger, υ values become smaller. It means that OPTDIV has
to select more models to obtain desired accuracy level. As
we observed previously, adding more models may not bring
a significant advantage at some cases.

E. Analysis on Retraining

This section analyzes the retraining performance and over-
head of OPT, OPTDIV, and single ML methods when there
is new data and retraining is required. For OPT and OPTDIV,
we retrain only τ and υ number of models respectively.
For single ML method, we have two approaches: BEST and
REBEST. Both methods use a single ML method but the
former uses the previously-identified best method, whereas
REBEST retrains all methods to find whether the best method
has changed with new incoming data. BEST eliminates the
high retraining overhead, but has the risk to perform worse
with new data. REBEST can update the best single model
but with a much greater computation cost. We compare OPT,
OPTDIV, BEST, and REBEST in terms of retraining time and
prediction accuracy. To make that comparison, we use trained
models of FD001, and treat FD003 as newly arrived data. We
retrain the selected methods (pre-trained on FD001) based on
FD003 train data, and test performance using FD003 test data.
This represents that newly coming data can be different from
the old data, i.e. FD003 has 2× fault conditions than FD001.
Fig. 10 shows the results for this analysis: the top figure
has RMSE values and the bottom figure compares retraining
time, normalized against BEST. We consider three OPTDIV
configurations with varying δ values.

Accuracy comparison: When we compare OPT and OPT-
DIV with δ = 0.01, we observe that they perform equally.
However, this was not the case on FD001 training where we
observed 0.84% accuracy difference (see Fig. 8). This means
that performance difference has disappeared when we retrain

(a) RMSE

(b) Normalized Retraining Time

Fig. 10: Retraining Approach Comparison

these two approaches. Similarly, there is a 0.1% difference
between OPTDIV (δ = 0.02) and OPT which was previously
1.54%. This proves that adding diversity leads to better
generalization, which is helpful when the data change. We
should also note that OPTDIV with any δ value outperforms
BEST and REBEST approaches significantly.

Overhead comparison: Between OPT and OPTDIV, re-
training overhead difference becomes apparent when we
compare OPTDIV (δ = 0.04), and OPT approaches. As
OPTDIV’s error tolerance increases, it becomes much faster
than OPT. OPTDIV (δ = 0.04) is 39.2% faster with only
a 3.4% loss in accuracy. We also discover that OPTDIV
is 92% faster than REBEST. Compared to BEST, OPTDIV
brings 5.7% performance improvement while only needing
8.5% slower retraining. In summary, OPTDIV can adapt to
changing data much faster, with small loss in accuracy.

V. CONCLUSIONS AND FUTURE WORK

One of the major objectives of I-IoT is the better manage-
ment of industrial assets through their predictive maintenance
[3]. Accordingly, predictive maintenance (PDM) systems can
utilize accurate remaining useful life (RUL) prediction to
obtain the best performance from a production system. Deep
learning based data-driven RUL prediction methods become
prevalent due to their high accuracy and easy implementation.
However, choosing one algorithm may not provide accurate
predictions across different settings and data sets. Hence,
we propose diversity included accurate ensemble learner. We
discover the smallest subset of learners out of 20 different DL
methods while keeping accuracy at a certain level. We include
accuracy by finding optimal weights of the base learners. We
then measure the similarity among base learner predictions
and select the most diversified set of models. We show that
our approach can have 39.2% faster retraining compared to
an accuracy-based ensemble learner with only 3.4% loss in
accuracy. In the future, we are planning to improve our



method considering the real-time aspects of data collection,
where the base learners, their optimal weights, and diversity
calculations are evaluated and updated as new data arrive.
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