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Abstract—Fault diagnosis is a key component of predictive
system maintenance. Big data collected from sensors helps
create data-driven fault diagnosis methods. However, it may
be extremely costly to label specific fault types in a collected
dataset. Hence, prediction algorithms should perform well under
limited supervision. Few-shot learning (FSL) can provide a
great prediction performance using very limited labeled data
by discovering similarity among input pairs. But selection of
a single FSL method may be arduous due to changing working
conditions. Ensemble FSL solves this problem by combining a
variety of FSL methods systematically. We propose an ensemble
FSL framework, ENFES, where we combine 5 different Siamese
neural network architectures using an iterative majority voting
classifier. Our transfer learning-oriented experiments show that
ENFES can improve the best algorithm significantly while using
very limited labeled data. We obtain up to 16.4% improvement
over the best algorithm by only using 0.3% of the training data.

Index Terms—fault diagnosis, predictive maintenance, few-shot
learning, siamese neural network, ensemble learning

I. INTRODUCTION AND RELATED WORK

Data-driven predictive maintenance uses sensor data to build
machine learning models to find an optimal time to schedule
maintenance [1]. Sensor data collection and processing is
key to achieving good performance. Fault diagnosis helps
establishing more efficient predictive maintenance systems
by finding and classifying different fault types [2]. Due to
advancements in machine learning, numerous intelligent fault
diagnosis methods have been developed [3]–[5]. These meth-
ods require huge amounts of labeled training data to work
well. However, it might not be feasible to obtain sufficient
training samples for multiple fault types under all working
conditions due to: 1) slowly occurring failure processes, 2)
frequently changing working conditions, and 3) that some
critical industrial systems are not allowed to run into faulty
states [6]. Thus, intelligent fault diagnosis methods should
work with limited data and changing operating conditions.

Few-shot learning (FSL) performs well with limited labeled
data [7]–[9]. FSL-based fault diagnosis learns classifiers given
only a few labeled examples of each fault type where the goal
is to find similarity among input pairs. There are a variety
of FSL approaches such as Siamese neural networks [10],
matching networks [11], model-agnostic meta learning [12],
and memory augmented neural network [13]; and FSL-based

fault diagnosis works [6], [14]–[17]. These studies focus on
using a single method for fault diagnosis. The performance
of an algorithm can change with respect to dataset, working
conditions, etc. [18]. Previous studies found that the best
performing algorithm for a problem changes with respect to
dataset [19], [20]. Thus, we need a systematic methodology to
combine different methods. To achieve this, we utilize ensem-
ble learning which is previously used for different predictive
maintenance domains such as remaining useful life prediction
[20], [21] and fault diagnosis [22], [23]. We also utilize
transfer learning to adapt to changing working conditions.
Transfer learning can enable transferring an already-learned
model in an existing operating condition to a new condition
that was not observed before [24].

This paper proposes an ensemble few-shot learning frame-
work (ENFES) for intelligent fault diagnosis. In contrast to the
state-of-the-art, we use multiple FSL methods and combine
them via our majority voting framework to improve the
prediction performance. We focus on Siamese neural network
owing to its high accuracy in fault diagnosis [6]. Given pairs
of input data, we first train five different Siamese neural
networks. We combine the individual predictions using our
iterative majority voting ensemble learner where the fault
type voted the most by the classifiers is assigned as the final
output. We evaluate our approach using Case Western Reserve
University (CWRU) Bearing Datasets [25], a widely used
benchmark for fault diagnosis. Since the working conditions
can change frequently, we consider different transfer learning
(TL) scenarios, where we train the model in one setting and
test it in another. We observe that the best algorithm changes
based on the underlying transfer learning scenario indicating
that one algorithm would not work the best in all cases. ENFES
can bring a significant performance improvement over the best
algorithm with very limited training data, up to 16.4% and
10.7% improvement over the best method with only 60 and
90 samples (out of 19,800 samples), respectively.

II. PROPOSED FRAMEWORK

Figure 1 depicts our proposed framework for intelligent
fault diagnosis. Given pairs of input sensor data, we first train
different Siamese neural networks. We collect the predictions
of individual methods and then combine them using our



Fig. 1: Our Proposed Framework

majority voting classifier approach where the most voted fault
type by the classifiers becomes the ENFES prediction.

A. Siamese Networks

Although there are several sensors collecting data, it may
not be feasible to label every failure point. Few-shot learning
(FSL) aims to solve this problem by using limited labeled data.
The goal of training an FSL model is to discover similarity
between inputs coming from different fault types. To train an
FSL model, a support set is given containing a small set of
labeled fault types. Given pairs of time series sensor data,
training phase outputs the probability P that two input samples
are the same. For testing, there are two different approaches:
one-shot k-way testing and n-shot k-way testing. In one-shot
k-way testing support set Ψ contains k samples x1, . . . , xk
with distinct labels y1, . . . , yk: Ψ = {(x1, y1), ..., (xk, yk)}.
Given test sample x̃, the goal is to output the class c̃ that
maximizes the similarity probability:

c̃ = argmax
c

(P (x̃, xc)), xc ∈ Ψ (1)

In n-shot k-way testing, support set has n samples from k
classes Ψ1, . . . ,Ψn. Given test sample x̃, we obtain class c̃
that maximizes the similarity probability over n samples:

c̃ = argmax
c

(

n∑
j=1

P (x̃, xcj)), xcj ∈ Ψj (2)

We focus on Siamese Neural Network (SNN) due to its high
accuracy in fault diagnosis [6]. SNNs contain two or more
identical sub-networks (same network architecture and shared
weights). Outputs of these networks are mapped to a high-
dimensional feature vector to calculate the distance between
the inputs. By connecting feature vector to a distance function
and a fully connected neural network, we find the similarity
probability between input pairs. Higher similarity probability
indicates that two inputs are likely in the same category.

There are many alternatives for the sub-network selection,
such as wide deep convolutional neural network (WDCNN)
[26] and long short-term memory (LSTM) [27]. However, a
single prediction method may not perform the best across
different systems [18]. Ensemble learning solves this issue

TABLE I: Single Method Fault Type Predictions
Bearing ID CNN CNNRNN CNNGRU CNNLSTM CNNBLSTM

1 Ball
(0.014 in)

Ball
(0.007 in)

Ball
(0.014 in)

Ball
(0.014 in)

Ball
(0.021 in)

2 Outer Race
(0.021 in)

Outer Race
(0.014 in)

Outer Race
(0.021 in)

Outer Race
(0.014 in)

Outer Race
(0.021 in)

... ... ... ... ... ...

250 Inner Race
(0.007 in)

Inner Race
(0.014 in)

Inner Race
(0.007 in)

Inner Race
(0.021 in)

Inner Race
(0.007 in)

where predictions from multiple models are strategically com-
bined. We create a CNN-based ensemble learning framework
by considering 5 different architectures: convolutional neural
network (CNN), CNN recurrent neural network (CNNRNN),
CNN gated recurrent unit (CNNGRU), CNN long short-term
memory (CNNLSTM), and CNN bi-directional long short-term
memory (CNNBLSTM). We use the same CNN architecture
across all methods as in [6], [26]. For the hybrid models
(where 2 models are combined, e.g. CNNRNN), we connect
CNN with the selected network structure consecutively, e.g.,
for CNNRNN, we connect CNN with 2 RNN layers with 32
and 16 nodes. We replace RNN layers with GRU, LSTM,
and BLSTM for the CNNGRU, CNNLSTM, and CNNBLSTM,
respectively. These SNNs provide single model fault type
predictions for our test data, shown in Table I, where each
model outputs its fault prediction for a given bearing. Then, we
combine these predictions using our majority voting classifier.

B. Majority Voting Classifier

Majority voting classifier (MVC) is an ensemble learner that
combines the class predictions of different methods. Assume
that we have n different classifiers ξ1, ξ2 . . . ξn that map input
data X to class c1, c2 . . . cn. MVC Ξ finds the class c̄ that
maximizes the weighted sum of correct class predictions [28]:

Ξ(X) = c̄ = argmax
c

n∑
j=1

ωjI(ξj(X) = c) (3)

where ω1, ω2 . . . ωn are the classifier weights summing up to 1.
I is the indicator function which is 1 if the classifier prediction
j is class c, and 0 otherwise. If we set all weights equal to each
other (i.e. ωj = 1

n ), this formulation becomes a mode function
which outputs the class most voted by the classifiers. The main
problem occurs when there is a tie among n classifiers. To
break a tie, we propose a method that iteratively eliminates
the least accurate n − 1 methods based on the validation set
accuracy. We continue classifier elimination until there is one
method left to guarantee tie-breaking. We specifically start
with an odd number of methods (5) to reduce possible tie
scenarios among classifiers.

III. EXPERIMENTAL ANALYSIS

Dataset Description: We use Case Western Reserve Uni-
versity (CWRU) Bearing Datasets [25], a widely used bench-
mark for fault diagnosis. Rolling element bearing failure is
one of the most frequent reasons for machine breakdown
[29]. This data was collected at 12k samples/second and at
48k samples/second for drive end bearing experiments. We
use the former data set that contains 19,800 training and



(a) 60 Training Samples (b) 90 Training Samples

(c) 120 Training Samples (d) 150 Training Samples

Fig. 2: Transfer Learning Methods Comparison

750 test samples. Bearing used in this experiment has three
components: rolling element, inner race, and outer race. 9
different fault types are provided in the dataset based on
the fault diameter (0.007, 0.014, and 0.021 inches) and the
component (plus the normal bearing condition). Besides, three
datasets (A, B, and C) are given representing different working
conditions (based on motor speeds). We use transfer learning
(TL) to transfer models across possible working conditions.
For instance, transfer from dataset A to B trains model using
dataset A, and tests this model on dataset B.

Experimental Setup: We construct the same setup in [6]
as it led to great fault diagnosis performance: Sliding window
of size 2048 points sliding with 80 points shift step, L1 dis-
tance to calculate distance between feature vectors, regularized
cross-entropy loss function, Adam optimizer, batch size of 32,
15000 as number of epochs, and five-shot learning scenario.
We repeat each experiment 10 times and report average values.
All experiments are run on a PC with 16 GB RAM and an
8-core 2.3 GHz Intel Core i9 processor.

Results: We analyze the performance of our method under
a transfer learning (TL) setting to represent changing working
conditions. We have three different datasets corresponding
to three working conditions: A, B, and C. We experiment
with pairwise transfer learning scenarios: transfer model from
A to B, A to C, B to A, B to C, C to A, and C to B.
Since our focus is on fault type prediction using limited
amount of data, we only use 60, 90, 120, and 150 samples
from the training data (out of 19,800 samples) while using
the entire test data. Fig. 2 presents the model performance
comparison for different number of training samples and TL
scenarios. In each sub-figure, x-axis represents the transfer
learning scenario (e.g. A 7→ B denotes transfer from dataset
A to B), and y-axis is the accuracy of the methods. Each
color denotes a different method where ENFES is shown with
light blue color. The performance of a single method changes
with respect to TL scenario. For example, using 60 training
samples, CNNBLSTM is the best method for A 7→ B while

TABLE II: ENFES Improvement Over Best Algorithm (%)

Number of Training Samples
TL Scenario 60 90 120 150

A->B 3.86 3.65 3.41 3
A->C 16.4 8.64 1.28 0.93
B->A 9.24 1.38 0.5 -0.99
B->C 0.51 1.67 -0.45 1.08
C->A 7.59 5.06 -2.59 1.05
C->B 11.38 10.65 8 3.33

Average 8.17 5.18 1.69 1.4

CNNRNN being best for the opposite transfer configuration
(i.e. B 7→ A). ENFES utilizes from all 5 methods to improve
the prediction performance. Under 60 and 90 samples, ENFES
outperforms other methods consistently. Table II presents our
proposed approach improvement over the best method for all
TL scenarios. At 60 and 90 training samples, ENFES improves
the best method by up to 16.4% and 10.7% respectively (8.2%
and 5.2% average). As we have more training samples, the
improvement over the best algorithm decreases, yet we still
obtain improvement up to 8% and 3.3% under 120 and 150
training samples (1.7% and 1.4% average).

The reason behind decreasing ENFES improvement with
increasing data is due to the performance of the best algorithm.
For instance, at 60 samples C 7→ B scenario, the best
algorithm CNNLSTM provides 70% accuracy. As we reach
150 samples, the best algorithm CNNGRU can reach 85%
accuracy. In this case, the room for improvement is limited
by this method’s accuracy. Hence, improvement for ENFES
decreases from 11.4% to 3.3%. The performance of a single
algorithm changes with respect to TL scenario, e.g. CNNGRU
is the worst algorithm at C 7→ A scenario under 150 samples.
Our method ENFES provides consistent accurate predictions at
all instances (it is either the best or the second best approach).
ENFES provides an average improvement over the best method
if we use less than 1% of the entire training data. This
result aligns with our claim where ENFES has highly efficient
prediction using limited data.

IV. CONCLUSION

Predictive maintenance determines when maintenance ac-
tions are necessary based on continuous monitoring of ma-
chinery [30]. Fault diagnosis determines which fault occurred
in a production system [2]. By using sensor data, intelligent
fault diagnosis methods can be constructed, yet these methods
require huge amount of labeled data to perform well. Few-
shot learning (FSL) eliminates this restriction by discovering
similarity among input pairs. Nevertheless, selection of a
single FSL method may not provide optimal predictions.
Different methods can be combined by using an ensemble
learner. In this paper, we proposed ensemble few-shot learn-
ing approach for fault diagnosis. We specifically consider 5
different Siamese neural network structure and combine their
fault type predictions via our majority voting classifier. We
show that our approach can improve the classifier accuracy
significantly under different transfer learning scenarios.
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