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Abstract—Smart manufacturing utilizes a smart maintenance
approach, constantly observing system data to estimate machine
failure. This smart maintenance, also known as predictive main-
tenance (PDM), estimates time-to-failure of a machine in order to
enable advanced maintenance decisions which bring many advan-
tages such as better inventory management and maximization of
equipment lifetime. Predicting remaining useful life (RUL) is cru-
cial to achieving an effective PDM system. Among various RUL
prediction approaches, data-driven methods are more appealing
due to their easier and quicker implementation. We observe that
the performance of data-driven methods varies drastically based
on the data set and underlying system parameters, thus making it
difficult to have a single algorithm and a parameter set that work
best for all settings. Our work proposes an optimally weighted
ensemble learner for RUL prediction. We first pre-process input
data using Kalman filter, then implement five state-of-the-art
deep learning models. We formulate a mathematical optimization
problem which determines optimal weights for the selected deep
learning models. Our ensemble learner increases the prediction
performance by up to 23.4% compared to best single prediction
method, and up to 12.1% against the best ensemble method.

I. INTRODUCTION

Industry 4.0, the fourth industrial revolution, is the inte-
gration of massively deployed smart computing and network
technologies in manufacturing settings [1]. Recent develop-
ments in the Internet of Things (IoT) and Cloud Computing
help revolutionizing these manufacturing systems, creating the
Industrial Internet of Things (I-IoT) notion. I-IoT focuses on
adopting the IoT to enable the interconnection of anything,
anywhere, and at any time in a manufacturing system [1]. This
enables higher automation, reliability, and fine-grained control
using computer networks to gather huge amounts of data from
the connected machines and turn this data into actionable
information [2]. This leads to a closed-loop Cyber Physical
System (CPS) where computers constantly monitor physical
devices and provide feedback on their operating conditions.
In I-IoT systems, machines play an essential role in automat-
ing and optimizing the production process. Maintenance of
physical equipment, machinery, and other infrastructure is a
major process for ensuring successful operation by eliminating
unplanned downtime, better inventory management, and maxi-
mization of device lifetime [3]. The U.S. industry spends $200
billion per year on equipment maintenance and ineffective
maintenance leads to more than $60 billion loss [4].

There are three maintenance strategies: reactive, preventive,
and predictive. Reactive maintenance occurs after a machine
failure. Although it is a preferable method for inexpensive
systems (e.g. light bulb), it may lead to catastrophic outcomes
for critical systems such as an aircraft engine. Preventive
maintenance performs pre-determined regular checks. These
specific control times may not be cost-efficient when it
is extremely early for maintenance. Predictive maintenance
(PDM), or prognostics, estimates time-to-failure of a machine
using a variety of mathematical approaches. PDM aims to
calculate an optimum schedule for maintenance before any
failure occurs. PDM has a growing interest in the industry.
The global predictive maintenance market size is expected to
grow from $3.0 billion in 2019 to $10.7 billion by 2024 [5].

PDM has multiple application domains, including anomaly
detection, real-time prognostics, and remaining useful life
(RUL) prediction [6]. Anomaly detection focuses on discov-
ering sudden changes that can be used for fault source iden-
tification and fault isolation. Real-time prognostics create and
update models on-the-fly. RUL is described as the remaining
time of a machine to perform its functions until it fails. RUL
prediction is achieved via similarity-based, health index (HI)-
based, and direct data mapping approaches. Recent advances in
machine learning (ML) made the last approach very appealing
where related studies use various ML-based methods to find
these mappings. However, it is difficult to find a single method
that works best in different settings to estimate RUL [7]. To
address this issue, we formulate an optimization problem to
identify the optimal combination of different methods.

Implementing a single prediction method for RUL estima-
tion may not be optimal. By combining different methods,
we may obtain better performance. To reach that goal, we
propose an optimally weighted ensemble learner by creating
a quadratic programming optimization model. Our approach
finds the optimal weights for the selected deep learning
models so that enhanced RUL predictions can be obtained.
We use NASA C-MAPSS data set [8] which is a widely
used benchmark data set for PDM [9]. Different than existing
works, we pre-process the input data with Kalman filter which
helps increasing prediction performance by up to 23.4%.
Then, we implement the base deep learning models to obtain
single model RUL predictions. Our ensemble learner increases



prediction performance by up to 23.4% compared to the
best single prediction method, and up to 12.1% against the
best ensemble method. Besides, we show that our proposed
method outperforms all state-of-the-art RUL prediction ap-
proaches. Our proposed solution OPELRUL eliminates the
need for choosing a single method, thus enables combining
the strengths of multiple methods in an optimal way.

II. RELATED WORK

The research on how to estimate RUL has gained popularity
recently due to rapid advances in condition and health monitor-
ing techniques. Fundamentally, RUL prediction methods fall
under three main categories: experience based, model-driven
(physical) and data-driven. Experience based models uti-
lize expert knowledge and engineering experience. Statically-
constructed if-then statements determine the action to be taken
when failure occurs. They are generally created specific to a
machine, that is why they are really hard to generalize. Model-
driven (physical) models incorporate the physics of failure into
RUL assessment [10]. The failure mechanism, e.g. fatigue,
wear, is captured in a mathematical model, relating the usage
of a system or a component to a degradation rate or lifetime
prediction. Building these models is extremely difficult and
time-consuming due to the complexity and noisy working
condition of a machine [11].

Data-driven models use historical sensor data to build ML
models. According to a recent report [12], deploying ML-
based PDM can reduce system downtime by 20-50% and costs
by 5-10%. Traditional ML models require feature extraction
and selection steps. Hence, they rely on domain knowledge.
State-of-the-art includes many examples that implement dif-
ferent ML methods to predict RUL, such as Multi-Layer Per-
ceptron (MLP), Relevance Vector Regression (RVR), Support
Vector Machine (SVM) [6] etc. Recently, deep learning (DL)
became more popular than traditional ML due to its success in
RUL prediction and breaking dependence on domain knowl-
edge [13]. There are studies which employ sophisticated DL
methods such as convolutional neural networks (CNN) [14],
long short-term memory (LSTM) networks [13]. There are also
hybrid models which combine multiple models to combine the
strengths of those, e.g. combination of CNN and LSTM [15].

A single prediction method may not perform the best across
different systems (and thus data sets) [16]. Ensemble learning
solves this problem where predictions from multiple models
are strategically combined. Ensemble methods construct a set
of hypotheses and combine those to improve the prediction
performance. The advantage of these methods is that they
break the assumptions inherent in single prediction algorithms
and provide more generalizable and robust models. There are a
variety of state-of-the-art ensemble models such as AdaBoost,
gradient tree boosting, and random forest regression [17]. We
compare our proposed ensemble learner with these current
ensemble approaches. For RUL prediction, there are different
ensemble model approaches. Li et al. [7] combine multiple tra-
ditional ML-based learners (e.g. random forest, classification
and regression tree) by using particle swarm optimization and

sequential quadratic programming to determine their weights.
Similarly, Shi et al. [18] utilize ensemble learning to predict
RUL of bearings. These ensemble methods lack of two main
elements which lead to limited prediction performance: not
using deep learning based methods and not pre-processing
the input data. Different than these works, after data pre-
processing with discrete Kalman filter, we combine DL based
learners optimally by constructing a quadratic programming
optimization model to find the optimal weights.

III. PROPOSED FRAMEWORK

Traditional ML models require extensive feature extraction
and selection steps and they lack of high prediction accu-
racy. As an alternative, deep learning (DL) allows end-to-end
predictive maintenance without extensive feature extraction or
domain knowledge. It employs consecutive layers of nonlinear
processing to learn the representations of data where the hid-
den patterns are identified and predicted [19]. DL is promising
due to its high prediction accuracy. However, implementing a
single DL model may not provide accurate RUL predictions,
there is still a huge potential of DL we can utilize. This
potential can be reached by an appropriate data pre-processing
step and using an ensemble learner where different DL models
are combined. To reach that goal, after a rigorous data pre-
processing step, we utilize from different DL models and
combine them optimally via our ensemble learning framework,
shown in Figure 1. It consists of three main modules: data pre-
processing, deep learning, and ensemble. Given raw sensor
data, our framework outputs RUL prediction values.

A. Data pre-processing Module

Data pre-processing is an indispensable step in any machine
learning task. It helps us obtaining more accurate RUL pre-
dictions. Provided time series sensor data, this module outputs
de-noised selected sensor data. It consists of discrete Kalman
filter, data normalization and feature selection steps.

1) Discrete Kalman Filter: In PDM applications, the sys-
tem depends highly on a variety of sensor data, collected
continuously. These data can contain significant noise due to
environmental conditions. Thus, it is important to denoise the
data before using it. There are a variety of smoothing algo-
rithms for data denoising [20], such as mean filter, Savitzky-
Golay filter, etc. We assume that our sensor measurements
have additive white Gaussian noise which is a simple and often
sufficiently accurate noise model. Thus, we select discrete
Kalman filter as our data smoothing methodology. Kalman
filter can estimate the state of a dynamic system from a
series of measurements that contain noise. There is a two-step
iterative calculation procedure: time update (i.e. prediction)
and measurement update (i.e. correction). Mathematically,
Kalman filter estimates the state x ∈ Rn based on an affine
transformation of xt−1 with an additive Gaussian noise in the
time update step [21]:

xt = Ξ · xt−1 + εt



Fig. 1: Proposed Framework for RUL Prediction

In the measurement update, we correct the measurement y ∈
Rm (m: number of observations) by an affine transformation
of xt with an additive Gaussian noise:

yt = Ψ · xt + φt

Initial state x0 is distributed according to a Gaussian distri-
bution with the mean µ0 and the covariance Σ0:

x0 ∼ G(µ0,Σ0)

The random variables εt and φt represent the process and
measurement noise, respectively. They are assumed to be inde-
pendent of each other, white, and with Gaussian distributions:

p(ε) ∼ G(0, Q)

p(φ) ∼ G(0, R)

where Q (transition covariance) and R (observation covari-
ance) are process noise and measurement noise covariance
matrices, respectively. The n×n matrix Ξ (transition matrices)
relates the state at the previous time step to the state at the
current step. The m × n matrix Ψ (observation matrices) in
the measurement equation relates the state to the measurement
yt. We utilize pykalman [21] library for the implementation.
To run the filter, we provide sensor measurements y. We
set the transition matrices Ξ, observation matrices Ψ, and
initial state covariance Σ0 to 1 × 1 identity matrices as
well as initial state mean µ0 to the first element of each
sensor measurement. For the rest of the parameters (transition
covariance Q, and observation covariance R), we use the
Expectation-Maximization algorithm which is also available in
pykalman library. As an output, we obtain the state estimates
x which corresponds to denoised sensor measurements.

2) Data Normalization and Feature Selection: After
Kalman filter is applied, we normalize the data using min-
max normalization according to Equation 1 where xi is an
input data to be normalized and ẍi indicates the normalized
data in [0,1]. Data normalization is a fundamental step since
sensor measurements can have different ranges. By changing
the measurement values to a common scale, we eliminate

possible data related problems that can significantly affect the
prediction performance.

ẍi =
xi −minxi

maxxi −minxi
(1)

DL methods do not need extensive domain knowledge,
i.e. the end-to-end structure is able to map raw machinery
data to targets. However, the data might include numerous
features, sometimes making it prohibitively costly to execute
DL methods. To reduce this overhead, we select the most
relevant features in predicting RUL. First, we use Random
Forest (RF) to discover variable importance which is calcu-
lated based on the reduction in residual sum of squares. We
then perform a trend analysis (i.e. apparent upward/downward
change in measurements) to observe whether degradation can
be discovered specific to each feature, and select the features
that demonstrate trendy behavior across time. Lastly, we per-
form correlation analysis to detect possible high correlations
among sensor measurements. We eliminate the least important
features common in selected methodologies (i.e. RF, trend
analysis and correlation analysis).

B. Deep Learning Module

Given selected sensor data, deep learning module outputs
single prediction model RUL values. As our base learners, we
adapt five state-of-the-art deep learning models: BiLSTM [13],
CNNLSTM [22], DCNN [14], DLSTM [11] and HDNN [15]
due to their success in RUL prediction. We use sliding time
window approach to convert time series sensor data into a re-
gression problem. This approach also provides a better feature
extraction. The time window represents the number of past
observations to be considered and we slide this window from
the first observation to the last. To illustrate, provided that the
window size is 30, our first window includes the observations
from 1 to 30, second window includes observations from 2 to
31 and so on. Accordingly, 2-D input is provided to DL models
where the first dimension represents the selected features and
the other one has the time sequence of each feature. Selected
DL models are as follows:



1) Deep LSTM (DLSTM): Long Short-Term Memory
(LSTM) networks are proposed to prevent vanishing and
exploding gradient problem. They are specific types of re-
current neural networks (RNN) with special memory cells to
store information over longer periods of time. Updates in the
memory cell can occur by the activation of three distinctive
gates: 1) forget gate (the memory cell is cleared completely),
2) input gate (memory cell stores the received input), and 3)
output gate (next neurons obtain the stored knowledge from
the memory cell) [23]. Since LSTM can recall information for
long periods of time, it is a good fit for RUL prediction tasks.
Zheng et al. [11] propose a DLSTM network for enhanced
RUL prediction, with 2 consecutive LSTM layers (each with
32 nodes) followed by 2 fully connected feed forward neural
networks (each with 8 nodes). Final 1-dimensional output layer
provides RUL prediction.

2) Deep Convolutional Neural Network (DCNN): DCNNs
use multiple feature extraction stages that can automatically
learn hidden representations. Especially, 1-D CNN is common
for time series applications, making it a suitable model for
RUL prediction. Li et al. [14] propose a DCNN model where
input is represented in 2-D where one dimension is the feature
number and the other is the time sequence of each feature.
They show that the model practically is a 1-D CNN owing to
relationship between spatially neighboring features in the data
sample. Their network structure consists of five consecutive
CNN layers (plus a flattened layer), one fully-connected layer
(with 100 nodes) and an output layer with 1 node.

3) Bidirectional LSTM (BiLSTM): LSTM networks only
consider past data where hidden states are learned in forward
direction. However, in RUL prediction, future sensor data
may be as important as the past, i.e. there is a need to take
full advantage of the collected sensor data. BiLSTM solves
this problem by adding a backward direction to LSTM net-
works. Wang et al. [13] propose a deep BiLSTM network for
RUL prediction. There are two consecutive BiLSTM networks
which have 64 and 32 nodes respectively. These two layers are
connected to 2 fully connected feed forward neural network
layers with 16 and 8 nodes. The final output layer is only one
node calculating the RUL prediction.

4) Convolutional Neural Network LSTM (CNNLSTM):
While CNNs are good at feature extraction, LSTM networks
are capable of building long term time dependencies. By
combining these two, one can utilize the benefits of two
approaches. Jayasinghe et al. [22] connect convolutional layers
with LSTM networks sequentially.

5) Hybrid Deep Neural Network (HDNN): Instead of con-
necting different network architectures sequentially, Al et al.
[15] propose a hybrid deep neural network framework that
integrates CNN and LSTM architectures simultaneously and
in a parallel fashion. The model structure consists of three
paths. The LSTM path (3 LSTM layers) and CNN path (3
CNN layers followed by max pooling layers) are in parallel.
These two paths are connected to the fusion path where 3 fully
connected neural networks provide the final RUL prediction.

C. Ensemble Module

Here, we present our ensemble module which consists of
optimization submodule and ensemble learner. The goal of this
module is to optimally combine predictions from the deep
learning module in an algorithmic manner such that single
prediction performance is improved. Provided deep learn-
ing model RUL predictions, this module learns the optimal
weights corresponding to the base learners and combine them
to obtain OPELRUL predictions.

1) Optimization submodule: To find the optimal weights for
the base learners from the deep learning module, we construct
a mathematical model to minimize the mean squared error
(MSE). MSE can be formulated only using the variance and
bias of an estimator Ŷ :

MSE(Ŷ ) = V ariance(Ŷ ) +Bias2(Ŷ ) (2)

We consider MSE because we can minimize bias and
variance simultaneously by minimizing MSE as shown in
Equation 2. Accordingly, we formulate a mathematical op-
timization model:

minimize
1

N

N∑
i=1

(yi−
∑M

j=1 wj ŷij)
2 (3)

subject to
M∑
j=1

wj = 1 (4)

wj ≥ 0 ∀j = 1, . . . ,M (5)

In this model, N is the number of observations, M is the
number of base learners, yi is the true values for an observation
i (i = 1, . . . ,N ), ŷij is the predicted values for an observation
i by the base learner j (j = 1, . . . ,M). wj is the weight
corresponding to the base learner j. The objective function (3)
minimizes the MSE, constraint (4) ensures that weights sum up
to 1, and constraints (5) restrict all weights to be non-negative.
This model contains a convex quadratic objective function
which can be proven by showing that Hessian (i.e. matrix that
organizes all the second partial derivatives of a function) is
positive semidefinite (PSD). Without loss of generality, we can
rewrite our objective function (3) using L2 norm and matrix
notation:

‖y − Ŷ w‖22
where y is the N dimensional vector holding true values, Ŷ
is the N ×M matrix holding predictions and w is the M
dimensional weight vector. For simpler notation, let ξ be a
function that maps w to ‖y − Ŷ w‖22:

ξ : w 7→ ‖y − Ŷ w‖22 = ‖y‖22 − 2yT Ŷ w + ‖Ŷ w‖22.

Note that ξ is twice differentiable. The first and second partial
derivatives of ξ with respect to w and wT are as follows:

∂ξ

∂w
= −2yT Ŷ + 2wT Ŷ T Ŷ

∂2ξ

∂w∂wT
= 2Ŷ T Ŷ



We also need to show Ŷ T Ŷ is a PSD matrix. Let ζ be an M
dimensional vector. We prove that Ŷ T Ŷ is PSD:

ζT (Ŷ T Ŷ )ζ = (Ŷ ζ)T (Ŷ ζ) = ‖Ŷ ζ‖22 ≥ 0.

We have shown that our objective function is convex which
is also quadratic. Our constraint functions are all affine. Hence,
we have a quadratic program (QP) for which there is a
guarantee that a local minimum is also the global minimum
[24]. As an output of the optimization submodule, we retrieve
the optimal weights (w∗) for each DL model.

2) Ensemble learner: The role of the ensemble learner is to
use the optimal weights and calculate the final RUL prediction
values. This is simply performed by taking the weighted av-
erage of base learner predictions. To put differently, ensemble
learner performs a dot product operation which takes single
algorithm RUL predictions and optimal weights. As an output,
we obtain OPELRUL remaining useful life predictions. En-
semble learner dot product calculation is illustrated in Figure
2. In this figure, we have single prediction RUL values (coming
from the deep learning module) which are multiplied by the
optimal weights (coming from the optimization submodule).

Fig. 2: Ensemble Learner Dot Product Calculation

IV. EXPERIMENTAL ANALYSIS

A. Dataset Description

NASA C-MAPSS (Commercial Modular Aero-Propulsion
System Simulation) data set is a widely used benchmark
for RUL prediction [9]. The engine diagram in Figure 3
depicts the main elements of the engine model [8]. The main
components include: fan, compressor, combustor, and turbine.
Variety of sensors (e.g. temperature, pressure) placed on these
components construct the input data for RUL prediction. More
information about this data set (e.g. aircraft engine physical
details, etc.) can be found at [8]. There exist four sets of data:
FD001∼FD004. Each data set has its own distinctive features
(e.g. operating conditions, fault conditions) as indicated in
Table I. FD004 is the most complicated (i.e. the highest
number of operating and fault conditions) whereas FD001
is the simplest data set. Each data set has separate training
and testing sets. While the training data contains the entire
lifetime of an engine, test data is terminated at some point
before engine failure. Each row represents data during a single
operating time cycle with 26 columns: the engine ID, cycle
index, three operational settings, and 21 sensor measurements.
At the beginning of each time series, the engine is operating
normally and develops a fault at some point in the future. The
ground-truth RUL values are provided for the test data, and
the goal is to predict the RUL before failure on the test data.

Fig. 3: Engine Diagram Simulated in C-MAPSS [8]

TABLE I: C-MAPSS Data Set
Data Set FD001 FD002 FD003 FD004

Train trajectories 100 260 100 249
Test trajectories 100 259 100 248

Max/Min cycles for train 362/128 378/128 525/145 543/128
Max/Min cycles for test 303/31 367/21 475/38 486/19

Operating conditions 1 6 1 6
Fault conditions 1 1 2 2

RUL Target Function: RUL is generally modeled linearly
where its value decreases with time. However, the degradation
of the machine performance is not apparent in the beginning of
its lifetime and increases when a machine approaches its end
of life. For the selected data set, it is proven that piece-wise
linear degradation model is more suitable and effective than
linear model [25]. Hence, we model RUL using a piece-wise
linear function. The maximum RUL limit constant (the break
point) is set to 125-time cycles as in [13]. The dotted line in
Figure 4 shows the selected RUL target function.

Performance Evaluation Metric: Prediction error (ε) is the
difference between the estimated RUL (RULest) and the true
RUL (RULtrue) (i.e. ε = RULest−RULtrue). We use Root
Mean Square Error (RMSE) for evaluation, formulated as:

RMSE =

√√√√ 1

N

N∑
i=1

ε2i

B. Data pre-processing

Discrete Kalman filter: There are large random fluctuations
and noise jamming in CMAPSS dataset, which might impact
the RUL prediction performance [26]. We apply Kalman filter
on the sensor and operational setting data to reduce the noise.
This step is mostly overlooked by the state-of-the-art, but
it improves the overall prediction performance. To illustrate,
Figure 5 depicts raw sensor data and its Kalman filtered
version for the first aircraft engine and sensor 2 from the first
dataset. Kalman filter helps smoothing raw sensor data while
keeping the trend.

Feature Selection: We select the most relevant features
in predicting RUL to (1) increase prediction accuracy, (2)
decrease computational complexity, and (3) avoid overfitting.
Feature selection is performed for FD001 and FD003 since
these two data sets exhibit clear health degradation processes.
We first use random forest (RF) to find the feature importance.
Figure 6 illustrates nonzero feature importance values for
the FD001 and FD003 training data sets. X-axis has feature
importance values in [0,1] and y-axis shows different features.
We observe that the most informative feature is sensor 11 for
both data sets.
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Fig. 5: Kalman Filtered Sensor Data

We also perform a trend analysis to determine which fea-
tures exhibit behavior correlated with time. Figure 7 provides
an example trend analysis where we provide the most informa-
tive sensor (sensor 11) measurements over the last 50 cycles of
the first 5 aircraft engines. X-axis shows the cycle numbers and
the y-axis provides the sensor measurement values. Each color
represents a different aircraft engine. We see trendy behavior
across time where sensor measurement values increase with
time. In this analysis, we detected that some sensor values stay
constant for all engines, providing no useful information in
RUL prediction. Based on RF and trend analysis, we eliminate
the least important 8 features (operational setting 3 and sensor
measurements 1, 5, 6, 10, 16, 18, 19). We also perform a
variety of correlation analysis methods (Pearson, Kendall, and
Spearman) to detect high correlations among sensor values
to remove potential duplicate information. We discovered that
sensors 9 and 14 are highly correlated with each other. Thus,
we remove sensor 14 as it is less correlated with RUL. Overall,
we eliminate 9 features (37% of all features).

C. Deep Learning Models

Model configurations: We select five DL models: BiLSTM,
DCNN, HDNN, DLSTM, and CNNLSTM. For all methods,
we adopt a sliding time window approach where we select
the window size based on the minimum number of cycles for
the test data (in the sliding window approach, only sequences
that meet the window-length are considered). As shown in

Fig. 6: Random Forest Feature Importance
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Fig. 7: Trend Analysis for the Most Informative Sensor

Table I, this value differs across the data sets. To use the
entire test data, the window size is selected as 30, 20, 30,
and 15 respectively from FD001 to FD004. Previously, it
was shown that no considerable further improvement in the
prediction performance is attained when this parameter’s value
is increased [14]. We run all models with the same parameter
configuration: Adam optimizer with learning rate 0.001, elu
activation function, He initialization, batch size of 512, and
a max number of epochs of 250 where callback is activated
(patience is set to 10 for validation data). We replicate each
experiment 10 times and report average values. All experi-
ments are run on a PC with 16 GB RAM and an 8-core 2.3
GHz Intel Core i9 processor. As an output of this module we
obtain single model RUL predictions. Overall, we evaluate the
DL models without (i.e. baseline) and with Kalman filter.

Baseline models and impact of Kalman filter: Baseline
models are the original five DL models with no Kalman
filter applied. For Kalman filter added DL models, we reran
the baseline experiments and added Kalman filter. Figure 8
demonstrates baseline and Kalman filter added DL model
RMSE values with OPELRUL comparison. While x-axis rep-
resents data set, y-axis corresponds to RMSE values. Different
colors represent the selected DL models plus our proposed
approach OPELRUL. For baseline models, we observe that
DCNN is the best across all data sets. Different than the
baseline models, BiLSTM performs best at the first data
set among Kalman filter added DL models. Note that our
proposed approach is the best at all instances. This figure
clearly shows us the benefit of adding Kalman filter where
prediction performance is improved in general. We show the
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Fig. 8: RMSE Comparison

improvement gain of adding Kalman filter in Table II. This
table shows that Kalman filter plays an important role in
improving predictor performance, by up to 23.4%.

TABLE II: Improvement (%) After Kalman Filter
Dataset

FD001 FD002 FD003 FD004
Average 5.1 13.1 8.3 8.5

Maximum 11.3 18.9 23.4 15.9

D. Optimally Weighted Ensemble Learner

Our ensemble learner finds the optimal weights correspond-
ing to the base learners and uses those weights to calculate
OPELRUL predictions. We formulate and solve the quadratic
optimization problem in YALMIP [27] using MOSEK [28] as
the solver. Table III presents the optimal weights of the base
learners with their average values. As expected, the model
assigns more weights to the best model (DCNN) for all data
sets, with an average weight of 0.569. Ensemble learner then
performs a dot product operation between single DL models
RUL predictions and optimal weights.

TABLE III: Optimal Weights for Ensemble Learner
Dataset

Model FD001 FD002 FD003 FD004 Average
BiLSTM 0.222 0.087 0.1 0.005 0.104

CNNLSTM 0.140 0.092 0.002 0.065 0.075
DCNN 0.346 0.471 0.843 0.618 0.569
DLSTM 0.163 0.151 0.01 0.201 0.131
HDNN 0.129 0.199 0.045 0.111 0.121

We visualize the prediction error distribution for all data
sets in Figure 9. On the horizontal axis, we have the error
values between the predicted and the true RUL and on the
vertical axis, we have the number of engines corresponding
to the error region. We can observe that error varies less for
FD001 and FD003, and the corresponding RMSE values are
also lower. This is due to low complexity of these data sets
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Fig. 9: Distribution Histogram of Prediction Error

Fig. 10: Ensemble Model Comparison

(i.e. fewer number of operating and fault conditions). There
are also outlier (i.e. extreme) points in each sub-figure. This
is due to extremely small true RUL values (e.g. 6, 7 cycles)
of some aircraft engines.

We compare the performance of our method against the
selected deep learning models, other well-known ensemble
models, and the state-of-the-art RUL prediction methods.

Comparison with single predictors: We calculate the
improvement over the best single prediction algorithm against
the best algorithm from both baseline and Kalman filter-added
DL models. Table IV shows these results where OPELRUL
outperforms single prediction methods by up to 23.4%.

TABLE IV: Improvement (%) Over Best Baseline and
Kalman Filter Added DL Method

Dataset
FD001 FD002 FD003 FD004

Best Baseline DL Average 12.9 18.2 9.6 11.2
Maximum 17.4 21.8 23.4 16.5

Best Kalman DL Average 8.3 5.9 1.4 2.9
Maximum 10.8 12.4 4.1 6.1

Comparison with other ensembles: Figure 10 compares
OPELRUL with the state-of-the-art ensemble models. OPEL-
RUL is better than other ensemble methods at all data sets, by
up to 12.1%.

Comparison with the state-of-the-art: Table V compares
OPELRUL with various other state-of-the-art models in the
literature [15], [22], [29]. This table directly uses the reported



RMSE values. OPELRUL is the most accurate prediction
model among all RUL prediction methods at all data sets.

TABLE V: RMSE State-of-the-art Comparison

Dataset
Method Year FD001 FD002 FD003 FD004

MLP [29] 2016 37.56 80.03 37.39 77.37
SVR [29] 2016 20.96 42 21.05 45.35
RVR [29] 2016 23.8 31.3 22.37 34.34
CNN [29] 2016 18.45 30.29 19.82 29.16

DLSTM [29] 2017 16.14 24.49 16.18 28.17
ELM [29] 2017 17.27 37.28 18.47 30.96
DBN [29] 2017 15.21 27.12 14.71 29.88

MODBNE [29] 2017 15.04 25.05 12.51 28.66
BLSTM [29] 2018 14.26 21.7 16.33 25.9

RNN [29] 2018 13.44 24.03 13.36 24.02
DCNN [29] 2018 12.61 22.36 12.64 23.31

BiLSTM [29] 2018 13.65 23.18 13.74 24.86
CNNLSTM [22] 2018 23.57 20.45 21.17 21.03

DAG [29] 2019 11.96 20.34 12.46 22.43
HDNN [15] 2019 13.02 15.24 12.22 18.16
OPELRUL 2021 11.57 14.03 11.83 17.67

V. CONCLUSION

Timely maintenance of a machine has become key to
equipment health management. Predictive maintenance (PDM)
and remaining useful life (RUL) prediction play a crucial role
in obtaining the best performance from a production system.
By predicting the RUL of a machine, one can adjust the
mechanical operation and propose a targeted and optimized
maintenance strategy [29]. As a data-driven method, DL
performs better than traditional ML approaches in RUL pre-
diction. This work proposes an optimally weighted ensemble
learner for RUL prediction. Our framework has a rigorous
data pre-processing step and then formulates a mathematical
optimization problem to determine optimal weights of the
selected DL models. Our ensemble learner increases the pre-
diction performance by up to 23.4% compared to best single
prediction method, and up to 12.1% against the best ensemble
method. We also show that OPELRUL outperforms state-of-
the-art RUL prediction methods at all data sets.
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