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RESPIRE++: Robust Indoor Sensor Placement
Optimization under Distance Uncertainty

Onat Gungor, Tajana S. Rosing, Fellow, IEEE , and Baris Aksanli, Member, IEEE

Abstract— Sensor placement in wireless sensor networks (WSN)
aims to maximize coverage while minimizing total deployment cost.
However, existing coverage-only approaches do not consider the
robustness of the entire system where sensors may break down
or malfunction. In this paper, we first propose a robustness-aware
sensor placement approach by constructing a multi-objective op-
timization model. Our experiments demonstrate that this method
increases the robustness of a WSN by up to 50%, with 201% higher
probability of monitoring the entire environment as compared to
the state-of-the-art coverage-only approach. The paper further im-
proves the proposed method by introducing a robust optimization
based sensor placement approach which considers the distance
uncertainty between a sensor and a target. We show that this
improved model increases the probability of target detection by up
to 77% compared to state-of-the-art coverage-only approach.

Index Terms— indoor sensor placement, mathematical optimization, robust optimization, wireless sensor networks

I. INTRODUCTION

SENSORS are used by many applications to monitor an
environment and receive the most up-to-date information

about it. Usually, this is achieved by placing a number of
sensors, forming a Wireless Sensor Network (WSN) in a
specific area, by considering coverage and connectivity. Sensor
placement directly impacts the efficiency of the allocated
resources and system performance [1]. For the best perfor-
mance, applications should observe and monitor the greatest
total relevant area possible. This can be achieved by a large
number of sensors, but the cost of such a solution grows with
more sensors. Some studies formulate an optimization problem
with the goal of maximizing sensor coverage with minimum
total cost, where the cost is the function of the total number
of sensors [2], energy consumption [3], or communication
bandwidth [4].

Sensors are usually small and fragile devices, and thus
susceptible to breaking down or malfunctioning. They also

Onat Gungor is with the Electrical and Computer Engineering Depart-
ment, University of California San Diego and San Diego State University,
La Jolla, CA 92093 USA (e-mail: ogungor@ucsd.edu).

Tajana Rosing is with the Computer Science and Engineering De-
partment, University of California San Diego, La Jolla, CA 92093 USA
(e-mail: tajana@ucsd.edu).

Baris Aksanli is with the Electrical and Computer Engineering Depart-
ment, San Diego State University, San Diego, CA 92182 USA (e-mail:
baksanli@sdsu.edu).

This work has been funded in part by NSF, with award numbers
#1830331, #1911095, #1826967, #1730158, and #1527034. It was also
partially supported by SRC task #2805.001.

An earlier version of this paper was presented at the 2020 IEEE
SENSORS Conference and was published in its Proceedings: https:
//ieeexplore.ieee.org/document/9278821

face the physical environment and their readings can become
unstable or inaccurate. The overall WSN performance can be
affected badly by a possible sensor break-down or an uncertain
sensor reading. Optimizing sensor placement only from a
coverage perspective can cause a very sparse sensor placement,
where most areas are covered by a single sensor. Here, when
a sensor goes down, there is no alternative to take its place to
cover the same range, decreasing the robustness of the system.
Figure 1 creates a scenario to observe this robustness issue.
The four sub-figures monitor an area, shown as 2 × 2 grid.
The small circles are sensors that can detect up to 1 unit, and
the middle point (represented by a face) is the point of interest
(PoI) to be covered. The top-left figure shows a coverage-only
approach where the PoI can be detected only by the sensor at
(1,2). If this sensor breaks down (top-right), the PoI becomes
undetectable. The bottom-left figure is an alternative method
(robust) where the PoI can be detected by all the sensors. If
the same sensor breaks down, the PoI stays detectable by two
other sensors (bottom-right).

Our goal is to apply robustness to the sensor placement
problem. To achieve this, we adopt the setup from [5], where
we place sensors to detect PoIs in a closed room. We represent
the room in 3-D, and divide it into a grid structure. A sensor
can be placed at a grid point and all PoIs should be detectable.
We first formulate a problem to maximize the number of
detected PoIs. Here, a sensor can take only binary decisions
(i.e. detect/not detect), which is not a realistic assumption. A
probabilistic model is required to find the detection probability
of each PoI when sensors placed in specific locations. We
extend the simple model where detection depends on the
distance between sensor(s) and the potential target(s). This
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Fig. 1: Coverage-only vs. robustness-aware approaches

formulation represents the coverage-only approach from the
state of the art [6], [7], our main comparison basis.

Our first contribution is formulating a robustness-aware sen-
sor placement problem (RESPIRE). To quantify robustness, we
define a metric called ”detectability degree” for each PoI, that
measures with how much probability a PoI is covered by the
deployed sensors. We reformulate the coverage-only problem
with respect to the detectability degrees. We run experiments
with multiple room configurations to compare our approach
with the coverage-only method. We show that the robustness
can be increased by up to 50% compared to the coverage-
only approach. We verify this robustness improvement by
analyzing system coverage with broken or malfunctioning
sensors. RESPIRE can reach up to 201% higher probability of
monitoring the entire environment, compared to the coverage-
only approach. This method leads to a more robust sensor
placement, ensures that the application can continue to perform
effectively even when there are non-functional sensors.

State-of-the-art studies and our first formulation (RESPIRE)
both assume that the PoIs are static. This assumption might not
hold in environments where PoIs are expected to move. The
movement of dynamic PoIs can essentially alter the environ-
ment, and worsen the sensor network performance constructed
with respect to static PoIs. We enhance our robustness-aware
model by proposing a robust optimization (RO) extension
for sensor placement (RESPIRE++). This improved model
guarantees that for any realization of the distance between
a sensor and a PoI, our sensor placement solution stays
feasible, i.e. the sensor can still detect the PoI. We compare
the performance of RESPIRE++ against both the coverage-
only approach and our own RESPIRE in terms of detection
capability for different PoIs placed across the test environment.
We observe that for larger room sizes, RESPIRE++ provides a
better solution. Overall, RESPIRE++ performs better than the
coverage-only method by up to 77%.

II. RELATED WORK

Sensor placement has been studied extensively in various
problem setups where coverage and connectivity are two
important performance metrics [8]. While connectivity ensures
reliable information transmission among sensors, coverage
reflects how well a sensor field is monitored [9].

Coverage problems can be classified into three main cate-
gories [10]: point (target) coverage, area coverage and barrier

coverage. Our focus is on target coverage since we have
a set of targets to be detected by the deployed sensors in
an indoor space. There are three main approaches to solve
target coverage problems [9]. Exhaustive search enumerates
all possible sensor placement solutions and chooses the best
one [11]. As it has exponential complexity, it can provide
solutions for only very small instances. Optimization-based
approaches construct integer programming models which can
be solved by conventional solvers [12]–[14]. The drawback of
this method is that for larger instances, we may not obtain a
solution in polynomial time. Lastly, approximation algorithms,
i.e. heuristics, try to find nearly optimal solution(s) with
reasonable execution time [15]. Many heuristics are developed
to solve sensor placement problems [16]–[18].

Indoor sensor placement is another area where the goal is to
place sensors optimally in a closed space. Vlasenko et al. [12]
propose a method to deploy motion sensors to detect individual
activities through mobility modeling. Feng et al. [19] present
a multi-objective, mixed-integer-discrete-continuous optimiza-
tion problem, and solve it by using a divide and conquer-
based genetic algorithm for the optimal placement of binary
sensors. The goal of the work presented by Fanti et al. [7] is
to deploy sensors in a home environment. They propose three
different integer linear programming (ILP) models based on
sensor detection radius, angle, and orientation. In their robust
model, they minimize total deployment cost and maximize
overlapping detection areas simultaneously. This model can
be seen as similar to ours. However, this work does not
quantify overall system robustness or present experimental
results verifying the system robustness.

In any real-life optimization problem, uncertainty in input
data may lead to infeasible solution(s). Robust optimization
(RO) is one approach to stay immune against possible changes
in data. In RO, uncertain data is assumed to be in an
uncertainty set where the solution should stay feasible with
any sample from the uncertainty set. For sensor placement,
RO is mainly used in water distribution systems. Watson
et al. [20] propose robust sensor placement in contamina-
tion warning systems. Sela and Amin [14] suggest robust
sensor placement in intelligent water systems with robust
mixed integer optimization and robust greedy approximation
approaches. Liu et al. [21] propose a more generalized robust
sensor placement approach for large-scale linear time-invariant
systems, based on one sensor node failure and one link failure
as set cover problems. Although these works have a robust
component, they did not explicitly construct and solve a robust
optimization problem. In our work, we consider possible
target movements in a closed space. We model these potential
movements with uncertainty sets, and use them in our robust
optimization based sensor placement model, RESPIRE++.

III. MATHEMATICAL FORMULATION

We represent the target space, that will be covered by a
number of sensors as a 3-D grid. Sensors can be placed at
these grid points and all the grid points (i.e. points of interest
- PoIs) in the system need to be covered. Let the room consist
of nx, ny, nz PoIs in the x, y and z dimensions, respectively.
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The sensor sensing range r indicates the maximum distance
where a sensor is able to cover. A sensor at location (x1, y1, z1)
covers a PoI at (x2, y2, z2) if and only if r is greater than or
equal to the Euclidean distance between the sensor and the
PoI, i.e. r ≥

√
(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

A. Coverage-only Model
We start with an initial model based on maximal covering

location problem (MCLP). In MCLP, given facilities (e.g.
warehouse, depot), possible facility locations, and demand
locations (i.e. customers), the goal is to locate the facilities
to maximize the number of demand points covered [22]. To
adapt our problem to MCLP, we use the following parameters:
N = number of sensors to be located
G = set of PoIs to be detected
S = set of potential sensor locations
g = index of PoI g∈G
s = index of possible sensor location s∈S
r = sensor sensing range
dsg = Euclidean distance between sensor and PoI

ξsg =

{
1, if dsg ≤ r
0, otherwise

The decision variables are as follows:

Xs =

{
1, if sensor is positioned at location s
0, otherwise

Yg =

{
1, if PoI g is detected
0, otherwise

The integer linear programming (ILP) model becomes:

maximize
∑
g∈G

Yg (1)

subject to
∑
s∈S

ξsgXs ≥ Yg ∀g ∈ G (2)

∑
s∈S

Xs = N (3)

Xs = {0, 1} ∀s ∈ S (4)

Yg = {0, 1} ∀g ∈ G (5)

(1) is our objective function which maximizes the number
of PoIs covered. Constraints (2) enable a PoI g to be covered if
and only if one or more sensors are able to detect g. Constraint
(3) forces to place exactly N sensors. Constraints (4) and (5)
are binary variable constraints.

B. Coverage-only Probabilistic Model
The coverage-only model assumes that a sensor can only

make binary detection decisions (i.e. detect or not). In reality,
there is an uncertainty associated with sensor readings. Thus,
sensor detection should be based on a probabilistic model [23].
The probability of sensor detection is related to the distance
between a sensor and a PoI. To achieve this, we define psg
as the detection probability of a PoI g by a sensor located

at point s. We adopt a commonly used exponential detection
probability function as in Dhillon et al. [24] to demonstrate
the relationship between dsg and psg:

psg = e−αdsg (6)

where α ∈ [0, 1] denotes the rate at which sensor’s detection
probability decreases with distance. The bigger the value of
α, the quicker psg will decrease as distance increases. We
calculate psg values for all possible sensor-PoI tuples using
Equation 6. We denote the probability of missing a PoI g with
a sensor located at s as (1 − psg). We denote τg ∈ [0, 1] as
the maximum allowable miss probability for each PoI. Larger
values of τg lead to full coverage of the system using fewer
number of sensors (flexible system), whereas smaller values
of τg require larger number of sensors to obtain full coverage
(strict system). Ultimately, we reformulate constraints (2) as:∑

s∈S
ηsgXs ≥ ζgYg ∀g ∈ G (7)

where ηsg = − ln(1 − psg) and ζg = − ln(τg). In this
model, the semantic meaning of Yg also changes from the
previous section. Here, it measures the number of PoIs that
can satisfy constraints (7). For the rest of the paper, we call
this optimization model Coverage, representing the state of the
art.

C. Robustness-Aware Probabilistic Model (RESPIRE)
In a system with several sensors, we cannot expect every

sensor to correctly and accurately function indefinitely. There
might be some environmental disruptions which affect the
working condition of a sensor. This might lead to sensor
malfunctioning, inaccurate readings, or a complete breaking
down. To exemplify, let us consider a system setup, with some
sensors placed to detect all PoIs, and one PoI is covered by
(binary detection) only one sensor. If this sensor is broken
(or malfunctioning), then this particular PoI can no longer be
covered, which threatens the correct functioning of the entire
system. To prevent this, we need to place sensors in a way to
increase the resilience of the system.

We construct our robust sensor placement model based on
probabilistic sensor detection. We define ”detectability degree”
(δg) of a PoI, as the sum of detection probabilities from all
deployed sensors to the respective PoI. δg is formulated as:

δg =
∑
s∈S

psgXs ∀g ∈ G (8)

To understand this formulation better, consider Figure 1
where sensor detection is binary (psg is 1 if detected, otherwise
it is 0). In the top-left figure, δg is 1, whereas in bottom-
left it is 3 (i.e. PoI can be detected by three sensors.) In our
case, instead of binary numbers (0 or 1), we use detection
probabilities to find δg . We define the robustness of our system
using average and minimum δg . µ denotes the average δg
for all PoIs and ψ denote the minimum detectability degree
among all PoIs where (12) and (13) provide mathematical
formulations for these variables respectively. For a PoI, a
higher detectability degree corresponds to a more robust and



4 IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2017

resilient system. This is because a higher detectability degree
for a PoI means that if some sensor(s) covering that point break
down, there are alternatives to cover that particular point.

To better explain why we choose these two variables to
measure the robustness of a system, we provide a simple
sensor placement scenario. The scenario contains five PoIs
to detect and seven sensors under binary sensor detection
decisions. Assume that {2, 5, 6, 7, 0} gives us the number
of sensors that can detect each PoI (i.e. first point is detected
by two sensors, second point is detected by five sensors and
so on). According to this set, the average detection value
is 4 (20/5), while the minimum is 0. We see that although
the average detection value is high and there are three PoIs
with detection values higher than average, there is a PoI that
cannot be detected by any sensor, reducing the overall system
robustness. Thus, it is not a good idea to maximize only the
average value, but we should also maximize the minimum
value simultaneously to obtain a more balanced distribution
of values. Accordingly, in our formulation, we maximize
a weighted sum of the average and minimum detectability
degrees across all PoIs.

We create a multi-objective optimization model where we
use the weighted sum method [25]:

maximize w1µ+ w2ψ (9)

subject to
∑
s∈S

ηsgXs ≥ ζg ∀g ∈ G (10)

∑
s∈S

Xs = N (11)

µ =

∑
g∈G

∑
s∈S psgXs

|G|
(12)

ψ ≤
∑
s∈S

psgXs ∀g ∈ G (13)

w1 + w2 = 1 (14)

w1, w2 ≥ 0 (15)

(9) is our objective function which maximizes the weighted
sum of average and minimum detectablity degrees. Constraints
(10) are the missing probability constraints where ηsg =
− ln(1−psg) and ζg = − ln(τg). Constraint (11) forces to place
exactly N sensors. Constraint (12) is an equality constraint for
average detectability degree where |G| denotes cardinality of
set G. Constraint (13) is an inequality constraint to denote the
minimum detectability degree. Constraint (14) forces sum of
weights to be equal to 1. Constraint (15) ensures that weights
are non-negative. In our experiments, we select the values of
w1 and w2 as 0.5, i.e. we assign equal importance to the
average and minimum detectability degrees. For the rest of
the paper, we call this model RESPIRE.

Fig. 2: Robust optimization motivating example

D. Robust Optimization Based Model (RESPIRE++)
Robust optimization (RO) is one approach to deal with

the uncertainty inherent in optimization data and parameters.
Uncertain data is represented by a range of values (i.e.
uncertainty set) and the solution proposed by RO stays feasible
for all realizations of the uncertain parameters that lie in this
predetermined uncertainty set. This uncertainty set is then used
to formulate the RO problem.

Previously, we defined detection probability psg depending
on the distance between a sensor and a PoI (see Equation (6)).
Here, each PoI is capable of moving (note that we previously
assumed static PoIs). When a POI moves, the change in
the distance between sensor and PoI affects the detection
probability. Eventually, this change can have an impact on the
constraints (10) in the RESPIRE model, since ηsg depends on
psg (i.e. ηsg = − ln(1− psg)). In the worst-case scenario, this
might even make the obtained solution infeasible. The main
motivation behind the RO formulation under PoI movement
uncertainty is illustrated in Figure 2. Here, there is only one
sensor placed at (1,2) and one PoI at (1,1). On the left sub-
figure, the sensor is able to detect the PoI. After the PoI
moves to the right by a small margin, the PoI can no longer
be detected since the PoI is not within the detectable range
of the sensor. RESPIRE originally considers only static PoI
locations in its formulation. We will show that under possible
PoI movement, detectability degree (δg) changes.

We reformulate dsg as an uncertain input variable where its
value changes based on PoI movement. We know the nominal
values of dsg , representing the distance between a sensor and a
PoI under the static PoI assumption. We need to add the largest
possible magnitude of PoI movement dispersion to create our
RO model. Accordingly, dsg is rewritten as:

dsg = d0sg + d̂sgγsg γsg ∈ [−1, 1] ∀s ∈ S,∀g ∈ G

where d0sg is the nominal distance between a sensor and a PoI,
d̂sg is the largest dispersion amount, and γsg is the primitive
uncertain parameter that resides in [-1,1]. That is, γ ∈ U is
the vector of primitive uncertainties, and U is an uncertainty
set [26]. We can now rewrite the constraints (10):∑
s∈S

ln(1− e−α(d
0
sg+

ˆdsgγsg))Xs ≤ ln(τg) γsg ∈ U ,∀g ∈ G

(16)
where we plug ηsg , ζg , and the reformulated dsg into the

inequality and we multiply both sides by -1 to flip the inequal-
ity sign. Note that this constraint becomes intractable due to
its semi-infinite structure. To obtain a tractable formulation,
we derive the robust counterpart using a box uncertainty set.
In the box uncertainty set, U is selected to be ‖γ‖∞ ≤ 1.
The box uncertainty set contains the full range of realizations
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for each component of the uncertain parameter [27]. One can
think this uncertainty set as the most robust choice due to the
fact that all parameters take their worst-case values at the same
time. Without loss of generality, we may assume the vector of
uncertain parameters is in the unit box. Accordingly, the robust
counterpart of (16) using the box uncertainty set is formulated
as:∑

s∈S
ln(1− e−α(d

0
sg+

ˆdsgγsg))Xs ≤ ln(τg)

γsg ∈ [−1, 1]S×G ,∀g ∈ G
(17)

It is trivial to see that the worst-case realization of the uncer-
tain parameter that maximizes the LHS of (17) is γ∗sg = 1.
Hence (17) can be reformulated as:∑

s∈S
ln(1− e−α(d

0
sg+

ˆdsg))Xs ≤ ln(τg) ∀g ∈ G (18)

which yields the final robust version of constraints (10). Here,
we use nominal d0sg values, and we select d̂sg as 1.5 (PoI can
move from one grid point to another in the worst case), and α
as 0.576 (refer to Section IV-B for the selection of α value).
For the rest of the paper, we call this robust optimization based
model RESPIRE++.

IV. EXPERIMENTAL EVALUATION

A. 3-D Room Representation
We represent the target environment as a 3D room with

height (z) and the base area (x and y). We divide the room into
grids where each grid point can be a potential sensor location
and all grid points should be covered by a sensor (i.e. PoIs).
Notably, some points in a room are not feasible options for
sensor placement, e.g. a middle grid point is infeasible since
the sensor cannot hang in the air. We exclude such grid points
from the set of possible sensor locations. Although we do not
place sensors on the ground due to safety concerns, we allow
ground sensor placement over the bottom edges of the room
to enable full coverage with fewer number of sensors.

B. Experimental Setup
We implement ILP models in YALMIP [28] using the

Gurobi Solver [29]. All presented optimization models (Cov-
erage, RESPIRE, and RESPIRE++) find solutions offline, thus
there is no real-time delay, and their offline execution time is
similar. We run experiments on a PC with 16 GB RAM and an
8-core 2.3 GHz Intel Core i9 processor. For our sensor-based
application, we adopt the setup from [5] with low-resolution
thermal sensors. We consider different room configurations
with a fixed height of 3m since the minimum room height
should be 2.75m, as stated in [30]. The distance between each
grid point in each axis is 1.5m. We use the following room
configurations:
• small room: 4.5m×4.5m×3m
• medium room: 6m×6m×3m
• large room: 7.5m×7.5m×3m
• very large room: 9m×9m×3m

(a) Maximum allowable miss
probability (τg) selection

(b) Best fit function for optimal
α selection

Fig. 3: Experimental analysis for parameter selection

In order to determine maximum allowable miss probability
(τg from section III.B) values, we perform an experiment
where we find the minimum number of sensors for a feasible
solution (i.e. a solution which can satisfy the system’s cover-
age requirement) with varying τg values. Figure 3a illustrates
the results of this analysis where x-axis represents different
τg ∈ [0.1, 0.9], and y-axis provides the minimum number of
sensors for a feasible solution. We observe that the smaller the
τg is, the bigger the number of sensors needed. Accordingly,
we select different τg values for each room setting. For the
small room, we use 0.4 as τg and increment it by 0.05 for
each larger setting (e.g. 0.45 as τg for the medium room, etc.).
The selected τg values provide a balanced sensor placement,
not too strict or flexible.

For the optimal value of α (the rate at which the sensor’s de-
tection probability decreases from Section III.B), we perform
an experiment, using a thermal sensor as in [5]. In this experi-
ment, we measure the probability of detecting the presence of
a PoI with respect to increasing distance. Using the measured
probability values, we use curve-fitting and obtain the optimal
α as 0.576. Figure 3b shows the measured (experiment results)
vs. calculated (curve-fitting results) values.

C. Results

RESPIRE: For both Coverage (state of the art) [6], [7]
and RESPIRE formulations, a feasible solution means that the
number of sensors and their locations can satisfy the system’s
coverage requirement. This is represented by Equation 10,
i.e. for each PoI, the probability of non-detection should be
less than the maximum allowable miss probability, τg . The
minimum number of sensors to obtain the first feasible solution
are 7, 8, 9, and 11 sensors for small, medium, large, and very
large rooms respectively. The left hand side (LHS) of Equation
10 for each PoI indicates how well the point is covered. As
the LHS for each PoI gets bigger, the point is covered with
higher probability, which means that the PoI is less prone to
sensor break downs.

To understand how robust a sensor placement is, we create
a scenario where one of the initially-placed sensor breaks
down. Then, we calculate the LHS values of Equation 10 for
each PoI for both Coverage and RESPIRE. We calculate the
minimum and average LHS values across all points, exclud-
ing the broken sensor. The minimum value shows the most
vulnerable point, while the average measures the vulnerability
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(a) 15 & 30 sensors

(b) 20 & 25 sensors

Fig. 4: Small room minimum detectability degree: Coverage [6],
[7] vs. RESPIRE (a) 15-30 sensors (b) 20-25 sensors

TABLE I: Minimum value improvement with 1 broken sensor

# Sensors Small Medium Large Very Large
15 38% 67% 33% 26%
20 196% 146% 101% 82%
25 146% 180% 126% 108%
30 79% 201% 131% 94%

across all points. We first show this analysis in detail for the
small room in Figure 4. The figure includes 4 cases, with
15 and 30 sensors in a); 20 and 25 sensors in b). For each
case, we calculate the minimum LHS value across all points
when a particular sensor breaks down, for both Coverage
and RESPIRE models. The x-axis indicates different broken
sensor cases, i.e. each blue (RESPIRE) / yellow (Coverage)
column pair represents a particular broken sensor. For each
case, the right-most two columns represent no broken sensor
case. We see that across all sensor configurations, RESPIRE
leads to significantly higher minimum LHS values when a
sensor breaks down, i.e. the most vulnerable point with our
model has a much higher probability of detection as compared
to the Coverage case. This observation signifies that RESPIRE
sensor placement is less affected by broken sensors.

We expand this analysis on all room settings with 15,
20, 25 and 30 sensors, comparing the minimum (Table I)
and average (Table II) LHS value improvement of RESPIRE
against Coverage. We see that the average values change
up to 7.8%, whereas the minimum value change is up to
201%. The minimum value change is more important as the
minimum value shows the most vulnerable point. We see
that RESPIRE sensor placement makes the most vulnerable
point significantly less prone to broken sensors, increasing the
robustness of the overall system.

We further conduct experiments for two broken sensor cases
where we consider all possible sensor tuples as broken for

TABLE II: Average value improvement with 1 broken sensor

# Sensors Small Medium Large Very Large
15 2.7% 5.4% 5.9% 7.8%
20 0.9% 0.4% 3.7% 7.2%
25 0.5% 0.8% 1.7% 4.9%
30 -0.2% 0.8% 0.7% 7.4%

TABLE III: Minimum value improvement with 2 broken sensors

# Sensors Small Medium Large Very Large
15 36% 64% 35% 33%
20 176% 131% 99% 89%
25 131% 158% 119% 102%
30 70% 201% 127% 93%

all room settings. We observe comparable minimum value
improvement values as shown in Table III with respect to the
one sensor case. We obtain very similar average values results
at almost all instances (thus, not included for clarity).

Next, we use Equation 9, the weighted sum of average
and minimum detectability degrees, as a metric to quantify
the robustness of a sensor placement. In the broken sensor
analyses above, we observe that the Coverage model might
obtain high coverage levels, but it neglects the average and
minimum detectability degrees, leading to a more vulnerable
and less robust system. We calculate Equation 9 across all
room settings with different number of sensors, shown in
Figure 5. For the small room, the biggest improvement is with
20 sensors whereas in the medium room it is with 30 sensors
which is the maximum improvement (50%) among all room
and sensor configurations. Table IV provides the improvements
based on the robustness metric (in terms of percentage average
and standard deviations) for all types of room configurations.
We observe that the biggest improvement is with the medium
room, which aligns with the broken sensor analyses, where the
highest minimum LHS difference is with the medium room
again (Table I and III).

RESPIRE++: Due to possible movements of PoIs, the
proposed solution by Coverage or RESPIRE may become in-
efficient or even infeasible. In RESPIRE++, we ensure that the
proposed solution stays immune against the possible changes
in the distance between sensors and PoIs. To demonstrate the
advantage of RESPIRE++, we create an experimental scenario
where PoIs are placed in a room independently, based on a
Normal distribution. Thus, they can be placed not only at
grid points but anywhere in between as well. By using the
sensor placement solutions proposed by Coverage, RESPIRE,
and RESPIRE++, we calculate the detectability degree (δg) for
each PoI.

We first create 10 independent 3-D PoIs (x, y, and z
coordinates) to be distributed across different rooms. Random
variables for x and y coordinates are generated based on the
following Normal distributions N (µ, σ2):
• small room ∼ N (2.25, 0.752)
• medium room: ∼ N (3, 12)
• large room: ∼ N (3.75, 1.252)
• very large room: ∼ G(4.5, 1.52)
For the z coordinate, we use the same distribution

N (1.5, 0.52) across all room types. The reason behind the
Normal distribution and its parameter selection is intuitive.
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Fig. 5: Robustness improvement vs. number of sensors

TABLE IV: Average robustness improvement

Room Configuration Robustness Improvement (%)
Small 32±13

Medium 41±11
Large 31±8

Very Large 31±9

The probability that a PoI is in the center of the room is more
likely than the edges (where this probability is maximum at
the center of the room). For the parameters, we use the 3σ rule
to cover all possible PoIs. For instance, in the small room, we
allow the random variable to take values from 0 to 4.5. We
then solve three different optimization problems: Coverage,
RESPIRE, and RESPIRE++ under different sensor placement
scenarios. Given the solutions by these three models, we
measure the detectability degree δg for each PoI. We then
calculate the average δg values across all PoIs. The higher the
δg value is, the better the model is.

Table V presents the average δg values after 10 PoIs are
distributed across all room types with 30 sensors placed. In
small and medium rooms, RESPIRE++ performance is worse
than Coverage. This is because PoI movement is limited in
those rooms (i.e. there are fewer places to move to due to
the small room size). However, as the room size gets bigger,
RESPIRE++ starts to surpass other methods. Compared to
RESPIRE, for the large room, we obtain 1% average (up to
6%) δg improvement; and for the very large room, we have
6% average (up to 32%) δg improvement. Against Coverage,
RESPIRE++ provides up to 2% improvement on average (up to
10%) in the large room. For the very large room, RESPIRE++
is better than Coverage by 15% on average (up to 34%).

TABLE V: Average δg values for 30 sensor placement

Small Medium Large Very Large
Coverage 5.67 3.84 2.64 1.81
RESPIRE 5.66 3.78 2.68 1.97

RESPIRE++ 5.64 3.79 2.71 2.08

Sheet Metal Shop Floor Sensor Placement: To show
the generalizability of RESPIRE++, we create an Industrial
Internet of Things (I-IoT)-oriented case study, where the goal
is to place sensors optimally in a sheet metal shop floor.
The shop floor is defined as the place in a manufacturing

(a) Sheet metal machinery (b) Sheet metal shop floor plan

Fig. 6: Sheet metal shop floor [31]

Fig. 7: Sheet metal shop floor layout [31]

facility where assembly or production is performed. For the
sheet metal shop floor, we may have different machinery and
equipment as illustrated in Figure 6. We use the sheet metal
shop layout suggested by [31]. This layout is shown in Figure
7. Accordingly, we consider a room in the same size of this
metal shop (15m×7.5m) which has a height value of 7.5m as
stated in [32]. For this experiment, we place 100 sensors using
Coverage, RESPIRE, and RESPIRE++. Similar to previous
experiments, we place 10 PoIs across the room based on
Normal distribution. For the x coordinate, PoI location ∼
N (7.5, 2.5), and for the y, and z coordinates, PoI location
∼ N (3.75, 1.25). Note that each PoI is sampled independently
from each other. In this setup, one can think of the PoIs
as the raw material, work-in-progress, or finished products.
Since these PoIs have a highly dynamic structure (i.e. need
to transfer from one station to another), RESPIRE++ can be
more beneficial than other approaches. Figure 8 demonstrates
the individual PoI detectability degrees for the three different
approaches which are represented with different colors. In
this figure, x-axis represents the PoI number, and the y-axis
has the normalized detectability degree values. We normalize
δg values across each PoI independently. We observe that
RESPIRE++ is the best approach at all PoI instances. On
average, RESPIRE++ improves RESPIRE performance by 4%
(up to 17%). Compared to Coverage, we obtain 48% average
(up to 77%) improvement.

Lastly, we repeat the broken sensor experiment for the sheet
metal shop floor setup (using the same experimental setup) to
further showcase the robustness of RESPIRE++. Similar to
the previous experiments, we assume that one of the initially
placed sensors breaks down. Then, we calculate the LHS val-
ues of Equation 10 and measure the minimum value across all
PoIs. Note that the minimum LHS value across all PoIs shows
how detectable the most vulnerable point is. The bigger this
value is, the more detectable a PoI is. Here, we observe that
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Fig. 8: Detectability degree comparison for sheet metal shop floor
sensor placement

RESPIRE++ provides the largest minimum values under all
possible sensor break-down scenarios. Specifically, Coverage,
RESPIRE, and RESPIRE++ has 0.45, 0.65, and 0.68 minimum
values respectively. This means that RESPIRE++ improves the
robustness of a system by 51.1% over Coverage, and by 4.6%
over RESPIRE. These results show that RESPIRE++ makes
the most vulnerable point significantly less prone to broken
sensors which improves the robustness of the system compared
to both Coverage and RESPIRE.

V. CONCLUSION

Sensors are prone to breaking down and imprecise readings,
thus the performance of a sensor-based application can be
heavily impacted by missing sensors. This paper proposes
two novel sensor placement methods, that can maintain the
coverage of a sensor field even when sensors break down or
malfunction. In our first method, we construct a robustness-
aware, probabilistic, multi-objective integer linear program-
ming model which maximizes the weighted sum of minimum
and average detectability degrees of targets. This method
increases the robustness of a sensor-based system by up to
50% compared to the state-of-the-art coverage-only approach.
It also has up to 201% higher probability of monitoring the
entire environment, compared to state-of-the-art coverage-only
approach. We then improve this model to consider the distance
uncertainty between targets and sensors. To address this un-
certainty, we propose a robust optimization approach which
is guaranteed to stay feasible under any target movement.
We show that this method increases the detection ability of
sensors by up to 77% compared to the state-of-the-art sensor
placement approach.
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