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Abstract—Data-driven predictive maintenance utilizes machine
learning (ML) to map input sensor data to a desired output. How-
ever, security of ML models is vulnerable to adversarial examples
which can impact their prediction performance significantly. En-
semble adversarial training (EAT) is one approach to defending
ML models against adversarial examples where training data is
augmented with perturbations transferred from different pre-
trained methods. Diversity among the ensemble learners plays a
crucial role in reaching overall ensemble robustness. In this work,
we propose a diversity promoting ensemble adversarial training
approach as a defense mechanism for data-driven predictive
maintenance applications. In our framework, we first measure
the loss gradient similarity among pre-trained ML models and
select the most dissimilar ones to promote diversity. Then, we
create perturbed training instances using the selected diverse
base learners and augment those examples into our training data.
In testing, we measure the performance change after adversarial
attacks are introduced. Our experiments on NASA C-MAPSS
dataset show that we can improve the resiliency by up to 97%
(43% on average) compared to state-of-the-art training settings.

Index Terms—sensor data processing, data-driven predictive
maintenance, secure machine learning, adversarial training

I. INTRODUCTION AND RELATED WORK

Remaining useful life (RUL) is defined as the remaining
time of a machine to perform its functions until it fails [1].
RUL estimation is a crucial predictive maintenance application
to schedule an optimal maintenance [2]. Data-driven RUL
estimation utilizes sensor data to build machine learning
(ML) models. Recently, this approach became popular with
abundance of available sensor data where sensor data collec-
tion and processing plays a crucial role to achieving good
prediction performance [3], [4]. Furthermore, performance
of ML methods relies heavily on input sensor data quality.
Thus, these methods are vulnerable to adversarial attacks
where an attacker can modify input data or model parameters
worsening ML prediction performance significantly [5]. Since
ML is in the center of data-driven RUL prediction, these
attacks may lead to wrong maintenance decisions causing
undetected failures in a system [6]. Hence, there is a need for
effective defense mechanisms that can minimize the impact of
adversarial attacks in RUL prediction domain.

Adversarial training is one of the most effective defense
approaches against adversarial attacks [7]. It augments training

data with adversarial examples in each training iteration. How-
ever, this approach converges to a degenerate global minimum
[8]. To solve this problem, ensemble adversarial training (EAT)
is introduced by Tramer et al. [8] where training data is
augmented with adversarial examples generated from different
target models. EAT provides a better defense mechanism since
it is harder for the attacker to trick multiple models in the
ensemble instead of just a single model. To obtain ensemble
robustness against adversarial attacks, the base learners should
be diverse [9]. There are different methods proposed in the lit-
erature that promote diversity in ensemble adversarial training
[9]–[12]. Yang et al. [12] theoretically show that promoting
the orthogonality between gradients of base models leads to
higher robustness. Inspired by this work, we promote diversity
based on loss gradient similarity among base learners.

This paper proposes diversity promoting ensemble adver-
sarial training framework as a defense mechanism. To the
best of our knowledge, our work is the first that proposes en-
semble adversarial training towards more resilient data-driven
predictive maintenance. Given 10 different pre-trained deep
learning (DL) methods, we first calculate pairwise loss gra-
dient similarity. Based on the similarity values, we select the
most dissimilar subset of methods. We then create perturbed
training examples based on the selected methods where we
use Fast Gradient Sign Method [13]. These crafted examples
are augmented to the regular (i.e., non-perturbed) training data.
Given augmented training data, we train a convolutional neural
network (CNN) [14] because of its high accuracy in RUL
prediction. In testing, we first create perturbed test instances
using our trained CNN based on different adversarial attacks.
These instances are then transferred to pre-trained DL methods
to measure the performance change after adversarial attacks
which we refer as resiliency. The less the performance change
is the more resilient a method is. We compare our approach
with two non-adversarial state-of-the-art training settings. Our
experiments on NASA C-MAPSS dataset [15] show that the
proposed ensemble training approach can improve the learner
resiliency by up to 97% (43% on average).

II. PROPOSED FRAMEWORK

Fig. 1 depicts our proposed ensemble adversarial training
framework. Given pre-trained deep learning models, we first



Fig. 1: Our Proposed Framework (DENSE-DEFENSE)

calculate the loss gradient similarity among learners and select
the most dissimilar ones. Using the selected learners and fast
gradient sign method (FGSM), perturbed training examples
are generated and augmented to the training data. Then, we
train a convolutional neural network (CNN) [14] using the
augmented training data. As the output of this framework, we
obtain the trained CNN model. Next, we explain the steps of
our framework in detail:

Pre-trained Models: We used 10 different pre-trained deep
learning models from our previous study [5]: Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM), Bi-
directional LSTM (BLSTM), Gated Recurrent Unit (GRU),
Bi-directional GRU (BGRU), Convolutional Neural Network
(CNN), Wavenet (WAVE), CNN-LSTM (CLSTM), CNN-GRU
(CGRU), GRU-LSTM (GLSTM). We cover a good range of
DL methods, increasing the generalizability of our study.

Loss Gradient Similarity Calculation: To introduce diver-
sity into ensemble adversarial training, we measure pairwise
loss gradient similarity among two different pre-trained models
(F and G) based on the following formulation [12]:∣∣∣∣ (∇xLF )

T (∇xLG)

∥(∇xLF )∥2 · ∥(∇xLG)∥2

∣∣∣∣ (1)

where ∇xLF and ∇xLG denote the loss gradient vectors of
base models F and G on input x. Note that Equation 1 is the
absolute value of cosine similarity between the gradients of
the two loss functions. As a result of this step, we obtain the
gradient similarity table as illustrated in Fig. 1. The smaller the
similarity is, the more diverse the two models are. We then
select the models which are least similar to our pre-trained
CNN since this model structure will be used in adversarial
training. We increment the number of models (thus augmented
data size) until no further resiliency improvement is observed.

Augmented Training Data Generation and Training:
Based on the selected models from the previous step, we
generate perturbed training examples using fast gradient sign
method (FGSM) [13]. FGSM first calculates the gradient of
the cost function with respect to the input of the neural
network. Adversarial examples are then created based on the
gradient direction: ẍ = x + ϵ ∗ sign(∇xL(θ, x, y)) where ẍ
represents the crafted adversarial examples and ϵ denotes the

Fig. 2: Testing Framework

amount of the perturbation. We select FGSM since it can create
adversarial examples efficiently [16]. These crafted examples
are then augmented to the training data. Given augmented
training data, we train convolutional neural network (CNN)
[14] due to its high prediction accuracy in RUL prediction.
As an output, we obtain the trained CNN model.

Testing Framework: Fig. 2 shows our testing framework
where we adapt a transferable black-box attack strategy [17],
[18]. Given test data, we first create perturbed test data using
our trained model (CNN) based on three different adversarial
attacks: fast gradient sign method (FGSM) [13], basic iterative
method (BIM) [19], and momentum iterative method (MIM)
[20]. We then transfer these instances to our pre-trained
models. We measure pre-trained models’ prediction perfor-
mance before (RMSEnormal) and after (RMSEperturbed)
the attacks where RMSE refers to root mean squared error.
To measure the prediction performance change, we define a
metric called mean compromise formulated as:

Compromisemean =

(
M∑
i=1

RMSEi
perturbed

RMSEnormal

)
/M (2)

where Compromisemean > 1 (with the assumption that at-
tacks lead to worse prediction performance) and M denotes the
number of adversarial attacks (i.e., M = 3). The smaller the
mean compromise is, the more resilient the model becomes
against adversarial attacks.

Compared Training Settings: We compare our proposed
method’s resiliency with two different non-adversarial training
settings which directly use the pre-trained models: (i) white-
box setting creates perturbed test instances using a pre-trained
model and use these in the same model’s testing (i.e., no
test example transfer across different models). For instance,
only pre-trained LSTM creates perturbed test instances to be
used in LSTM resiliency measurement, (ii) black-box setting
creates perturbed test examples only using pre-trained CNN
model and transfers the examples to other pre-trained models
in testing time. This setting is similar to our testing strategy,
yet it does not include adversarial training.

III. EXPERIMENTAL ANALYSIS

Dataset Description: We use NASA C-MAPSS [15] which
is a benchmark dataset for RUL estimation. This dataset
includes multiple aircraft engines simulated under different
operating and fault conditions. Fig. 3 depicts the simplified
version of simulated engine diagram. The data is collected



Fig. 3: Engine Diagram Simulated in C-MAPSS [15]

Fig. 4: Impact of Number of Base Learners in Resiliency

using temperature, pressure, and speed sensors. We select the
FD002 dataset which is one of the most complicated (i.e. the
highest number of operating and fault conditions) datasets in
C-MAPSS. We have separate training and test data where the
goal is to predict RUL for the test data. Our feature columns
include the engine ID, cycle index, three operational settings,
and 21 different sensor measurements.

Experimental Setup: We use the following parameters
for the selected adversarial methods [20], [21]: amount of
perturbation (ϵ) = 0.1, step size (α) = 0.001, number of
iterations (I) = 100, decay factor (µ) = 1. For the DL model
training, we use Adam optimizer with learning rate 0.001,
elu activation function, batch size of 128, and a max number
of epochs of 150, and sliding time window size of 80. We
repeat each experiment 10 times and report average values.
All experiments are run on a PC with 16 GB RAM and an
8-core 2.3 GHz Intel Core i9 processor.

Impact of Number of Base Learners in Resiliency: For
our proposed method, we experiment with different number
of diverse base learners and measure their mean compro-
mise across all pre-trained DL models to determine DENSE-
DEFENSE optimal configuration. Fig. 4 shows mean com-
promise values (y-axis) across each DL method (x-axis). We
can observe that switching from 2 to 3 learners increase the
resiliency of the proposed method. However, adding more
models after 3 learner ensemble does not bring a signifi-
cant resiliency benefit (for some models, it even decreases
the resiliency). Specifically, these ensemble configurations (2
learners, 3 learners, and 4 learners) have 6.58, 6.05, and 6.04
average compromise values across all models.

Mean Compromise Comparison: After we selected the
optimal configuration for DENSE-DEFENSE, we compare

TABLE I: Mean Compromise Comparison

DL Model / Approach White-box Black-box DENSE-DEFENSE
CNN 72.31 72.31 7.71

LSTM 7.83 8.46 7.59
GRU 7.50 7.87 6.31

HDNN 122.50 87.25 3.72
RNN 4.36 3.77 2.13

BIGRU 7.22 6.67 5.90
BILSTM 8.30 8.76 7.21

WAVE 25.59 24.45 5.75
CGRU 13.19 11.79 6.69

GLSTM 8.40 9.17 7.39

TABLE II: DENSE-DEFENSE Resiliency Improvement

DL Model / Improvement (%) White-box Black-box
CNN 89.34 89.34

LSTM 3.13 10.28
GRU 15.83 19.72

HDNN 96.96 95.74
RNN 51.09 43.42

BIGRU 18.38 11.56
BILSTM 13.11 17.66

WAVE 77.52 76.47
CGRU 49.25 43.24

GLSTM 11.98 19.42
Average 42.66 42.69

Maximum 96.96 95.74

our approach with two other training settings (white-box and
black-box) explained in Section II-Compared Approaches.
Table I shows the mean compromise values for the 3 se-
lected settings: white-box, black-box and our method DENSE-
DEFENSE. We can observe that for all DL methods, our
approach provides the highest resiliency.

Resiliency Improvement: Based on the values in Ta-
ble I, we also calculate our method’s improvement over
the white-box and black-box settings. Table II presents the
DENSE-DEFENSE resiliency improvement over the selected
approaches. Compared to white-box and black-box settings,
our method improves the resiliency by up-to 96.9% and
95.7% respectively. For both approaches, we obtain 43%
average resiliency improvement. The results show that our
method provides a more resilient learning solution. Hence, our
ensemble training approach is an efficient defense mechanism
against different adversarial attacks.

IV. CONCLUSION

Data-driven remaining useful life (RUL) estimation meth-
ods utilize machine learning (ML) in order to map input
sensor data to real RUL values. However, ML methods are
impacted significantly by small perturbations in input data.
Hence, adversarial attacks against ML methods can lead to
bad outcomes for predictive maintenance applications. To
provide one possible defense against those attacks, in this work
we propose diversity promoting ensemble adversarial training
where selected diverse base learners’ perturbed instances are
included in the training process. Our experiments show that
our method can be a really efficient defense mechanism against
different adversarial attacks where we improve the resiliency
by up to 97% (43% on average) compared to state-of-the-art
training approaches.
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