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a b s t r a c t   

Industrial Internet of Things (I-IoT) is a network of devices that focus on monitoring industrial assets and 
continuously collecting data. This data can be utilized by Machine Learning (ML) methods to perform 
Predictive Maintenance (PDM) which identifies an optimal maintenance schedule for the industrial assets. 
The computational systems in the I-IoT are usually not designed with security in mind. Their limited 
computational power creates security vulnerabilities that attackers can exploit to prevent asset availability, 
sabotage communication, and corrupt system data. In this work, we first demonstrate that cyber-attacks 
can impact the performance of ML-based PDM methods significantly, leading up to 120 × prediction per
formance loss. Next, we develop a stacking ensemble learning-based framework that stays resilient against 
various white-box adversarial attacks. The results show that our framework performs well in the presence 
of cyber-attacks and has up to 60% higher resiliency compared to the most resilient individual ML method. 

© 2022 The Authors. Published by Elsevier B.V. 
CC_BY_NC_ND_4.0   

1. Introduction 

Industry 4.0 is the latest industrial revolution aiming to develop 
fully automated production systems. This idea brings the notion of 
Industrial Internet of Things (I-IoT) which paves the way for full 
automation, and higher reliability using computer networks to col
lect big data from the connected machines and convert this data into 
actionable information (Zhao et al., 2016). However, these systems 
are often designed without security in mind or use communication 
protocols that are not sufficiently secure and vulnerable off-the-shelf 
commercial products (Tuptuk and Hailes, 2018; Wu et al., 2018; 
Good practices for security of internet of things in the context of 
smart manufacturing, 2018). I-IoTs numerous small-scale devices, 
with their limited computation and communication capabilities, 
make them vulnerable to potential attacks. An attacker can discover 
these vulnerabilities and exploit them to steal information, sabotage 
communication, prevent asset availability, and corrupt monitoring 
data (Tuptuk and Hailes, 2018). These cyber-attacks might result in 
serious negative financial outcomes, e.g., average estimated loss of 
$10.7 million per breach of data among manufacturing organizations 
in Asia Pacific in 2019 (Understanding the cybersecurity threat 

landscape in asia pacific, 2019). To minimize these costs, cyber-se
curity measures should be taken such as cyber-security awareness 
training, keeping softwares up-to-date, installing a firewall, using 
strong passwords (Thames and Schaefer, 2017; He et al., 2019). 

Predictive maintenance (PDM) goal is to find an optimal main
tenance schedule based on time-to-failure prediction of an asset 
(Khan et al., 2020). It is becoming a more common practice across 
the industry where its global market size is expected to grow from 
$4.0 billion in 2020 to $12.3 billion by 2025 (Predictive maintenance 
market, 2020). Remaining useful life (RUL) estimation is a crucial 
PDM application (Kopuru et al., 2019). Recently, data-driven RUL 
prediction methods (ML approach) became popular since I-IoT- 
based instrumentation has led to abundance of system monitoring 
data. Some of these ML methods include long short-term memory 
(Zheng et al., 2017), auto-encoders (Bampoula et al., 2021), con
volutional neural network (Li et al., 2018) etc. However, the perfor
mance of ML methods relies heavily on input data quality. Thus, 
these methods are quite vulnerable to adversarial attacks where an 
attacker can alter input data or model parameters worsening ML 
prediction performance significantly. Since ML is in the center of 
data-driven RUL prediction, these attacks may have serious con
sequences such as wrong maintenance decisions causing undetected 
failures in a system (Mode and Hoque, 2020). We need novel ML 
solutions that can stay resilient against adversarial attacks. 

The performance of an ML-based application depends also on the 
specific ML algorithm used. Selecting a single ML method is a 
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difficult process since its performance may change drastically based 
on the underlying dataset (Gungor et al., 2019). For adversarial at
tacks, it is easier to decode ML model parameters for a single 
method, reducing the system resiliency against attacks (Mode et al., 
2019). Alternatively, ensemble learning combines multiple in
dividual algorithms (i.e., base learners) and it usually improves base 
learner prediction performance (Shi et al., 2020; Gungor et al., 
2021b). Against adversarial attacks, many ensemble learning studies 
are proposed that are more resilient than a single method (Pang 
et al., 2019; Mirzaeian et al., 2020; Lowe et al., 2021). To the best of 
our knowledge, ensemble learning has not been used previously to 
show its superior resiliency in RUL prediction in an I-IoT setting. 

In this work, we propose a stacking ensemble learning frame
work which can stay resilient against four different adversarial at
tack scenarios: fast gradient sign, basic iterative, momentum 
iterative, and robust optimization. We first train 10 different deep 
learning (DL) methods from three different architectures: recurrent, 
convolutional, and hybrid. Our ensemble learner then combines the 
most resilient DL method predictions based on our iterative selec
tion procedure. Using NASA C-MAPSS (Saxena et al., 2008), and 
UNIBO Powertools (Wong et al., 2021) dataset, we demonstrate that 
adversarial attacks can impact the performance of DL-method con
siderably, leading up to 120 × prediction performance loss which can 
lead to premature replacements or completely missed maintenance 
decisions. We use this performance loss to quantify method re
siliency, where more resilient methods would lead to smaller per
formance loss. Our experiments show that proposed stacking 
ensemble improves resiliency against adversarial attacks by up to 
60% (48% on average) compared to the most resilient single method. 

The rest of the paper is organized as follows: Section 2 lists the 
relevant studies. Section 3 demonstrates our proposed stacking en
semble learner framework. Section 4 presents the main results of 
our study. Section 5 concludes the paper. 

2. Related work 

To understand where possible cyber-attacks can come from an 
adversary in an I-IoT environment, we present Fig. 1 which illustrates 
DL enabled I-IoT architecture and its threat model. It consists of 4 
main layers: physical, edge, cloud, and visualization (Mode and 
Hoque, 2020). Physical layer contains industrial equipments such as 
machinery, actuators, and sensors (Qiu et al., 2020). The collected 
data from multiple sensors are sent to edge layer where gateway 
first collects this data (Wang et al., 2016). Then, it is pre-processed to 

be sent to cloud layer. Note that edge layer also keeps pre-trained DL 
models for data analytics. Cloud layer first collects the data (sent by 
edge layer) and trains DL models. These trained models are sent back 
to the edge layer (thus we have pre-trained models in edge layer). DL 
models in the cloud layer may require retraining when new data 
arrives and retrained models are sent back to the edge layer to keep 
prediction performance at a certain level. According to our archi
tecture, DL model training can only happen at cloud layer, yet there 
are some works where DL training can occur both at edge and cloud 
layers (Thomas et al., 2019). The visualization layer utilizes data from 
both edge and cloud layers and provides a visual representation of 
actionable insights to an engineer. In Fig. 1, we also provide practical 
threat model where an adversary can attack to an I-IoT system. Here, 
we illustrate two different realistic attack scenarios: 1) attacks on 
sensors and sensor networks where an adversary can exploit the 
sensors and the network between sensors and gateway for different 
purposes such as transferring malicious code, capturing sensitive 
information shared between devices (Subramanian et al., 2013). 2) 
attacks on DL models where an attacker exploits pre-trained DL 
model knowledge to create perturbed examples leading to worse 
prediction performance (Anthi et al., 2021). The focus of this paper is 
on the latter since these attacks may have catastrophic con
sequences (e.g., undetected failures) and they are much harder to 
detect by defense mechanisms. 

2.1. Cyber-security in I-IoT 

For I-IoT systems, cyber-security is a great challenge because of 
inadequate standardization, and the lack of required skills to im
plement them (Lezzi et al., 2018). Wu et al. (2018) summarize the 
manufacturing assets that are vulnerable to cyber-attacks under 4 
categories: operating systems or firmware, application software, 
industrial communication protocols, and smart devices. Similarly, 
recent work by Corallo et al. (2021) identify the critical assets to be 
protected against cyber-attacks and make an assessment on the 
business impacts of these cyber-attacks using CNC machines and 3- 
D printers. Corallo et al. (2020) emphasize that these vulnerabilities 
can be exploited by acting on data where data may be improperly 
modified, or their flow may be interrupted. Increasing cyber-security 
awareness is one of the crucial activities towards more secure I-IoT 
systems. Corallo et al. (2022) analyze how the existing works deal 
with cyber-security awareness in the context of I-IoT. They cate
gorize the main elements of cybersecurity awareness under three 
groups: 1) ensuring greater protection of data, information, and 

Fig. 1. I-IoT architecture and threat model.  
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networks, 2) raising knowledge level about security threats, risks, 
and system vulnerabilities, 3) providing knowledge to employees to 
be responsible for information security and to be aware of cyber- 
attacks. We are witnessing an increasing trend in cyber-attacks, e.g., 
cyber-threats against factories increased by more than 200% in 2019 
(Smart futures, 2019). To ensure security in a production environ
ment, it is also important to understand possible cyber-attack types.  
Tuptuk and Hailes (2018) summarize the common attacks in a 
manufacturing environment under 13 different categories: denial of 
service, eavesdropping, man-in-the-middle, false data injection, 
time delay, data tampering, replay, spoofing, side channel, covert- 
channel, zero day, physical, and attacks against machine learning. In 
this paper, we focus on adversarial attacks against ML where an 
adversary corrupts the collected data or model parameters through 
attacks. An attacker exploits ML model information to create mal
icious attacks. These attacks manipulate legitimate inputs (by adding 
really small amount of noise) and force a trained model to produce 
incorrect outputs leading to worse prediction performance. This can 
bring serious negative implications on a production environment 
such as undetected failures in the system. 

2.2. Adversarial attack methods against deep learning 

Deep learning (DL) has become extremely popular for predictive 
maintenance (PDM) due to its superior prediction performance 
(Zhang et al., 2019). Since it is a common ML method, there are a lot 
of potential vulnerabilities such as program errors (leading to soft
ware crashes, an infinite loop, or full memory depletion), and attacks 
at the time of its testing (inserting little noise to test data causing 
worse performance) (Tariq et al., 2020). This creates vulnerabilities 
for data-driven PDM. There are three types of adversarial attacks 
against ML in the literature: evasion, poisoning, and exploratory 
(Chakraborty et al., 2018). Evasion attacks target compromising the 
test data, poisoning attacks contaminate the training data, and ex
ploratory attacks gain knowledge about the learning algorithm 
without changing the data. We focus on evasion attacks since it is 
the most common type of attack in an adversarial setting 
(Chakraborty et al., 2018). Evasion attacks can further be categorized 
into two groups: white-box and black-box attacks. While white-box 
attacks have detailed knowledge about the model, black-box attacks 
assume no knowledge about the underlying model. We consider 
white-box attacks because they are stronger attacks and can be 
considered as worst-case scenarios to evaluate system resiliency. We 
analyze 4 white-box adversarial attack methods: fast gradient sign, 
basic iterative, momentum iterative, and robust optimization. 

2.2.1. Adversarial attack formulation on RUL prediction 
The multivariate time-series input data with its corresponding 

RUL values is illustrated in Fig. 2. In this figure, we have S sensor data 
from N consecutive time stamps where each cell represents in
dividual sensor readings. 

Accordingly, we make the following mathematical definitions: 

1. …Reading Reading Reading: [ , , , ]i
S

i i S i1, 2, , is the vector con
taining all sensor readings for the time stamp i, ∀ i = 1, …, N.  

2. …×T : [ , , , ]S N
N1 2 represents the multivariate time- 

series data. 
3. + ×D RUL RUL RUL: [( , ), ( , ), ...,( , )]S N

N N
( 1)

1 1 2 2 denotes the su
pervised training data.  

4. ×f F(.) : S N N is DL model which maps all sensor readings 
to the remaining useful life prediction values RULˆ .  

5. Lf(. , . ) denotes the loss function of the model f.  
6. = +T T T¨ is the crafted adversarial example. T̈ is obtained by 

adding a perturbation δT with the sample T such that RUL RUL¨ ˆ
and T T¨ where 0 is a maximum perturbation 
magnitude, ∥. ∥ is any norm w.l.o.g (e.g., L∞), =f T RUL( ) ˆ , 
and =f T RUL( ¨) ¨ . 

7. Given a trained DL model f and original data T, adversarial ex
ample T̈ is found as a solution to the following box-constrained 
optimization problem:  

= + +T T T f T T f T¨ argmin { : ( ) ( )}T (1) 

This problem yields the minimum perturbation amount δT while 
ensuring that RUL prediction is altered. 
Most DL models make this formulation (Equation 1) non-linear 
and non-convex, making it hard to find a closed-form solution 
(Chakraborty et al., 2018). Hence, we implement different tech
niques to find an approximate solution to this optimization 
problem. 

2.2.2. Fast Gradient Sign Method (FGSM) 
FGSM was suggested as an efficient attack method to fool the 

GoogLeNet model (Goodfellow et al., 2014). This method initially 
calculates the gradient of the cost function with respect to the input 
of the neural network. Adversarial examples are created based on a 
gradient direction: 

= +T T sign L T RUL¨ * ( ( , ˆ ))f (2) 

where ϵ denotes the amount of the perturbation. 

2.2.3. Basic Iterative Method (BIM) 
BIM is an extension of FGSM where FGSM is applied multiple 

times with really small step size (Kurakin et al., 2016). At each 
iteration of the algorithm, BIM perturbs the original data in the di
rection of the gradient multiplied by the step size α: 

= +T T sign L T RUL¨ * ( ( ¨ , ˆ ))f (3) 

where α is calculated by dividing the amount of perturbation by the 
number of iterations: α = ϵ∕I. Then, BIM clips the obtained time 
series elements to make sure that they are in the ϵ-neighborhood of 
the original time series: 

= +T min T max T T¨ { , { , ¨}} (4)  

2.2.4. Momentum Iterative Mehod (MIM) 
MIM integrates momentum into the BIM to stabilize the update 

directions and to escape from poor local maxima (Dong et al., 2018). 
At each iteration i, the variable gi gathers the gradients with a decay 
factor μ: 

µ= ++g g
L T RUL

L T RUL
*

( ¨ , ˆ )

( ¨ , ˆ )
i i

f i

f i
1

1 (5) 

where the gradient is normalized by the L1 distance. Then, the per
turbed data is generated in the direction of the sign of gi+1 with a 
step size α: 

= ++ +T T sign g¨ ¨ * ( )i i i1 1 (6) 

In MIM, the algorithm also ensures that the crafted adversarial ex
amples T̈ satisfy the L∞ norm bound constraint, i.e. T T¨ . Fig. 2. Multivariate time-series data illustration.  
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2.2.5. Robust Optimization Method (ROM) 
The general goal in a supervised learning problem is to find 

model parameters θ that minimize the empirical risk 
L T RUL~ [ ( , , )]T RUL( , ) where Ξ is the underlying supervised data 

distribution. However, this formulation cannot handle data adver
sary properly. To solve that problem, set of allowed perturbations Δ 
is introduced initially. 

Then, we modify the empirical risk formulation by feeding 
samples from the distribution Ξ directly into the loss L which leads 
to the following min-max optimization formulation (Madry 
et al., 2017): 

= +where L T RULmin ( ), ( ) ~ [max ( , , )].T RUL( , ) (7) 

Here, while inner maximization finds an adversarial version of a 
given data point T that achieves a high loss, outer minimization 
discovers model parameters to minimize the adversarial loss given 
by the inner attack problem. ROM replaces every instance with its 
FGSM-perturbed counterpart to solve this problem. 

While all these four methods use the gradient information of the 
loss function, they modify the test data by adding different amounts 
of perturbation representing separate attack scenarios. An attacker, 
who is able to access the trained DL methods, can implement these 
methods and harm the prediction performance without being de
tected. 

2.3. Adversarial Attacks in Predictive Maintenance (PDM) 

Adversarial attacks targeting PDM applications can bring serious 
outcomes such as delayed maintenance/replacement of a machine 
(Mode & Hoque, 2020). There are few studies that analyze the im
pact of adversarial attacks on data-driven PDM. (Mode et al., 2019) 
focus on false data injection attack (FDIA) on PDM systems which 
alters the collected sensor data by a very small margin. They de
monstrate the impact of different FDIA techniques (e.g., continuous, 
random) on different DL methods e.g., gated recurrent unit (GRU), 
convolutional neural network (CNN) using NASA C-MAPSS (Com
mercial Modular Aero-Propulsion System Simulation) dataset 
(Saxena et al., 2008). Their results show that CNN is extremely 
sensitive to attacks while GRU is the most resilient method. Further 
work by Mode and Hoque (2020) analyze the effect of adversarial 
attacks against ML methods. Specifically, they utilize Fast Gradient 
Sign Method (FGSM) and Basic Iterative Method (BIM) to create 
adversarial examples and compare performances of different DL 
models under those attacks. Again, by using NASA C-MAPSS dataset, 
they show that these attacks can cause up to 5 × worse prediction 
performance. These two similar works consider limited number of 
DL methods and attack scenarios. Besides, their experimental ana
lysis includes the simplest and most predictable data set from C- 
MAPSS. They also did not propose a novel ML solution to increase 
system resiliency against adversarial attacks. 

2.4. Ensemble methods 

Under different adversarial attack scenarios, single ML method 
prediction performance can change significantly (Mode et al., 2019). 
Ensemble learning is an effective solution towards more general
izable and robust models. It combines a variety of ML algorithms 
based on three well-known methods (Polikar, 2012): 1) bagging 
combines similar types of learners from different subsamples of the 
training data (e.g., random forest), 2) boosting fixes the prediction 
errors of a prior model in the sequence of models (e.g., AdaBoost), 3) 
stacking combines the predictions of different types of learners 
using a second-level learner (meta-learner). In PDM domain, there 
are multiple ensemble learning approaches towards more accurate 
predictions. We summarize some of the most recent ensemble 

works in Table 1 including our paper. In this table, we provide the 
authors, publication year, the research goal, and the proposed en
semble method of the corresponding work. Ensemble learners are 
especially useful to provide additional security against cyber-attacks 
since they can learn more robust features (Kurakin et al., 2018; Liao 
et al., 2018). Against adversarial attacks, different ensemble learners 
are proposed for image classification. Pang et al. (2019) present a 
diversity promoting ensemble improving adversarial robustness 
while maintaining state-of-the-art accuracy. Mirzaeian et al. (2020) 
propose a resilient ensemble where each member learns a radically 
distinct latent space through diverse knowledge distillation. This 
method improves security of the state-of-the-art defense methods. 

To the best of our knowledge, our work is the first to use en
semble learning towards more resilient PDM. Our ensemble results 
are also more generalizable since we increase the number of attack 
scenarios, deep learning models, and experimental datasets sig
nificantly compared to the state-of-the-art. 

3. Proposed stacking ensemble learner framework 

3.1. Selected Deep Learning (DL) methods 

We select 10 different DL models from recurrent (RNN, LSTM, 
BLSTM, GRU, BGRU), convolutional (CNN, WAVE), and hybrid archi
tectures (CLSTM, CGRU, GLSTM). With these 10 models, we cover a 
good range of DL methods from different architectures, increasing 
the generalizability of our study. 

1) Recurrent Neural Network (RNN): RNN is a time-aware 
feedforward neural network (Geron, 2019). Our network contains 3 
RNN layers having 64, 32, and 16 units which are consecutively 
connected to 2 fully connected feed forward neural networks (each 
with 8 units). Final 1-dimensional output layer provides the RUL 
prediction. 

2) Long Short-Term Memory (LSTM): LSTM has special memory 
cells to store information for longer. Updates in this cell can happen 
by the activation of three distinctive gates: 1) forget gate (the 
memory cell is cleared completely), 2) input gate (memory cell 
stores the received input), and 3) output gate (next neurons obtain 
the stored knowledge from the memory cell) (Gensler et al., 2016). 
We adapt a similar network structure where RNN layers are replaced 
with LSTM layers. 

3) Bi-directional LSTM (BLSTM): BLSTM also considers future 
data by adding a backward direction to LSTM networks (Wang et al., 
2018). The overall network structure is similar to LSTM model where 
LSTM layers are replaced with BLSTM layers. 

4) Gated Recurrent Unit (GRU): GRU is a simplified version of 
LSTM (Cho et al., 2014). Specifically, forget and input gates are 
controlled by a single gate controller and there is no output gate, 
instead a new gate controller decides which part of the information 
to be transferred. We use the same network structure as LSTM ex
cept we change the LSTM layers to GRU. 

5) Bi-directional GRU (BGRU): Similar to BLSTM, BGRU takes 
future data into consideration (She & Jia, 2021). We construct this 
model by simply replacing BLSTM layers with BGRU layers. 

6) 1-D Convolutional Neural Network (CNN): 1D convolutional 
layer slides kernels across a sequence, producing a 1D feature map 
per kernel and each kernel learns to detect a single very short se
quential pattern (Geron, 2019). We adopt the 1-D CNN network 
proposed by Li et al. Li et al. (2018) which contains five consecutive 
CNN layers, Flatten (Dropout) layer, one fully-connected layer (with 
100 nodes) and an output layer with 1 node. 

7) Wavenet (WAVE): We implement the model proposed by  
Geron (2019) where we stack 4 layers of 1-D causal convolutional 
layers with 1, 2, 4, and 8 dilation rates (with 20 filters of size 2) two 
times. These layers are connected to another convolutional layer 
with 10 filters of size 1 and Flatten layer. Lastly, connection to fully 
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connected neural network (with 100 units) and output layer (with 1 
unit) is performed. 

8) CNN-LSTM (CLSTM): We combine our LSTM architecture with 
1-D CNN where we utilize in parallel connected CNN and LSTM 
layers. These two paths are then concatenated and connected to fully 
connected neural network (with 100 units) and output layer (with 1 
unit). Similar parallel CNN-LSTM structure was recently proposed by  
Al-Dulaimi et al. (2019). 

9) CNN-GRU (CGRU): We connect our CNN and GRU networks in 
parallel. On one path, we have our 1-D CNN architecture, on another 
path we have our GRU model. These are then connected to fully 
connected neural network with 100 units and output layer (with 
1 unit). 

10) GRU-LSTM (GLSTM): We combine our GRU and LSTM models 
in parallel. On one path, we have our GRU architecture, on another 
path we have our LSTM model. These two paths are concatenated 
and connected to fully connected neural network (with 100 units) 
and output layer (with 1 unit). 

3.2. Deep learning methods compromise calculation 

In order to quantify the resiliency of DL models, we use our 
framework presented in Fig. 3. The process starts with training 10 DL 
algorithms with training data (see Section 3.1 for model details). The 
trained models are then evaluated under two different test data: 1) 
normal, and 2) perturbed data. Adversary creates the perturbed data 
by adding imperceptible noise to the normal test data. This noise 
generation process is obtained by using one of the selected adver
sarial methods in Section 2.2. Predictive models output two different 
remaining useful life (RUL) estimations: normal RUL predictions, and 
compromised RUL predictions. Given true RUL values, our error 
metric root mean squared error (RMSE) is calculated for both normal 
and compromised prediction scenarios based on the following for
mulation: 

=
=

RMSE
1

i
i

1

2

N

N

(8) 

where N is the number of samples, ϵ is the difference between the 
estimated RUL (RULest) and the true RUL (RULtrue). Using these error 
values, we calculate the DL model compromise which is for
mulated as: 

=Compromise
RMSE

RMSE
compromised

normal (9) 

where Compromise  >  1 (under the assumption that attacks lead to 
worse prediction performance). The smaller the compromise value, 
the more resilient the model is against the adversarial attack. For 
instance, given two methods CNN and LSTM, and their compromise 
values 8, and 5 respectively, we can conclude that LSTM is more 
resilient against the adversarial attack. If we have M number of 
adversarial attacks (where M  >  1), then we need to calculate the 
mean compromise value for each DL method as follows: 

=
=

Compromise
RMSE

RMSE
Mmean

i

M
compromised
i

normal1 (10) 

Since we have multiple attack techniques (in our case M = 4), this 
metric gives a more accurate idea about single model resilience. 
Overall, we obtain mean compromise values for each DL model from  
Section 3.2. 

3.3. Stacking ensemble learner 

Stacking (short for stacked generalization) is one of the most- 
used ensemble learning methods (other than bagging, and boosting) 
where single method predictions are aggregated using a second- 
level learner, or meta-learner (Geron, 2019). Since our ensemble 
learner combines different DL model predictions, we select stacking 
as the most suitable ensemble approach. 

3.3.1. Ensemble learner training 
We present the general framework for stacking ensemble 

training in Fig. 4. We start the training process by splitting training 
data into two subsets. We use the first subset (subset 1) to train the 
DL models. Here, for the sake of simplicity, the figure shows only two 
methods, namely CNN and RNN. After model training is completed, 

Fig. 3. Framework for DL methods compromise calculation.  

O. Gungor, T. Rosing and B. Aksanli Computers in Industry 140 (2022) 103660 



we obtain our predictive models. These models are used to make 
prediction on the subset 2. Basically, each DL method outputs RUL 
predictions using subset 2. Then, these RUL predictions are given to 
the stacking ensemble training for which different meta-learners are 
trained. This training part is different from DL model training. In DL 
training, as an input we have time series data, yet in ensemble 
training, we have the RUL prediction values obtained from different 
DL methods. As an output of ensemble learner training, we obtain 
our predictive ensemble models. For illustration purposes, linear 
regression (LR) is used as the meta-learner to map single model RUL 
predictions to real RUL values in Fig. 4. Overall, we train 4 different 
meta-learners to find out the most resilient one against adversarial 
attacks: 

1) Linear Regression (LR): This linear model makes a prediction 
by calculating a weighted sum of the input features, plus a bias term 
(Geron, 2019): = + + + +y x x xˆ n n0 1 1 2 2 where ŷ indicates the 
predicted ensemble RUL value, n is the number of DL models, xi is the 
ith DL model RUL prediction, θi( ∀ i = 1, …, n) is the ith DL model 
weight, and θ0 is the bias term. 

2) Random Forest (RF): RF is an ensemble of decision trees 
trained by the bagging method (Geron, 2019). The algorithm con
structs multiple decision trees at training time and outputs the mean 
prediction of the individual trees. 

3) AdaBoost: AdaBoost is one of the most famous boosting ap
proaches where focus is given to the training instances that the 
predecessor underfitted. The weights of instances are adjusted ac
cording to the error of the current prediction (Geron, 2019). That is, 
subsequent estimators focus more on difficult cases. 

4) Extreme Gradient Boosting (XGBoost): XGBoost is an an ef
ficient and effective implementation of the gradient boosting algo
rithm. Gradient boosting, different than AdaBoost, fits the new 
predictor to the residual errors made by the previous predictor 
(Geron, 2019). The two main reasons why XGBoost is heavily used 
are execution speed and model performance. 

3.3.2. Ensemble learner test 
We test our stacking ensemble learner based on the framework 

provided in Fig. 5. Similar to single DL model testing, we obtain the 
compromise value for our ensemble learner as an output. Given 
normal test data and perturbed test data (crafted by the adversary 
using adversarial attack methods described previously), pre-trained 
(predictive) DL models (e.g. CNN, RNN) make normal and 

compromised RUL predictions. These single method predictions are 
then given to our pre-trained (predictive) ensemble model (e.g. LR) 
to generate ensemble normal and compromised RUL predictions. 
Similarly, the compromise value is calculated by dividing the com
promised RMSE by the normal RMSE. Since we have multiple attack 
scenarios, we need to calculate mean compromise for our ensemble 
learner formulated in Equation 10. To show the benefit of our en
semble learner, we calculate the ensemble improvement over single 
method based on the following formulation: 

=Improvement
Compromise Compromise

Compromise
single ensemble

single (11) 

where Compromisesingle denotes the single DL model mean compro
mise value, and Compromiseensemble is the ensemble mean compro
mise value. We report the improvement in percentage (%). Here, 
improvement demonstrates the resiliency of our ensemble learner 
against adversarial attacks compared to a single learner. The higher 
the improvement is, the more resilient our ensemble learner is 
compared to single DL model. 

3.3.3. Most resilient stacking ensemble selection 
In order to determine the most resilient ensemble learner con

figuration, we follow our proposed solution procedure presented in 
Algorithm 1. This algorithm increases the number of base learners 
(to be used in the ensemble) iteratively, and finds the most resilient 
ensemble configuration where resiliency can no longer be improved. 
Given single method mean compromise values C, the algorithm first 
sorts C in an ascending order. We start the ensemble search with the 
2 most resilient methods. We train the ensemble, test it, and cal
culate the ensemble mean compromise value using these two 
methods. The function that calculates ensemble mean compromise 
is also provided in Algorithm 2. This function first trains the en
semble learner given true RUL values and base learner RUL predic
tions (Fig. 4). Then, it makes ensemble RUL predictions for both 
normal and perturbed test data. As an input, it uses single DL 
method normal and perturbed test data RUL predictions. The algo
rithm then calculates the RMSE for both normal and compromised 
scenarios using real RUL values and ensemble RUL predictions. It 
finally finds out the ensemble mean compromise (Fig. 5). After we 
obtain ensemble compromise value, we check if this value is smaller 
than the single best method compromise and update the best 
compromise accordingly. We then continue with the next most 

Fig. 4. Framework for stacking ensemble training.  
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resilient method selection and add this method to our base learner 
subset. For this new ensemble configuration, we calculate its com
promise value (Algorithm 2) and update the best compromise if it 
improves the best compromise value. If there is no improvement, we 
increment the variable worsenedcounter. This variable controls 

whether we should continue or terminate the ensemble search 
process. We allow only a fixed number of iterations with perfor
mance decrease, worsenedtolerance, after which we terminate the 
search process and return the best compromise value. 
Algorithm 1. Most resilient stacking ensemble selection  
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Algorithm 2. Calculate compromise  

4. Experimental analysis 

4.1. Dataset description 

To validate the improved resiliency of our proposed ensemble 
learner framework against adversarial attacks, we use two different 
datasets: NASA C-MAPSS (Saxena et al., 2008), and UNIBO Power
tools (Wong et al., 2021). 

NASA C-MAPSS is a benchmark dataset for remaining useful life 
(RUL) estimation. This dataset includes multiple aircraft engines 
simulated under different operating and fault conditions. Fig. 6 
depicts the simplified version of simulated engine diagram and its 
major components: fan, turbine, compressor, and combustor. The 
data is collected using various sensors (e.g. temperature, pressure) 
placed on these components. NASA C-MAPSS comprises of 4 dif
ferent datasets in increasing complexity: FD001 ~ FD004. Table 2 
presents the dataset and their corresponding features. We can 
observe that while FD001 is the simplest data set, FD004 is the 
most complicated one (i.e. the highest number of operating and 
fault conditions). For each dataset, we have separate training and 
test data where the goal is to predict RUL for the test data. Our 
feature columns include the engine ID, cycle index, three opera
tional settings, and 21 sensor measurements. 

UNIBO Powertools is a lithium-ion (Li-Ion) battery dataset col
lected in a laboratory test by an Italian Equipment producer (Wong 
et al., 2021). It contains 27 batteries which are run until their end of 
life. We use 17 of these batteries for training and 10 of them for 

testing. These batteries have different nominal capacities and they 
are tested under different conditions: 1) standard test: battery was 

discharged at 5A current in main cycles, 2) high current test: battery 
was discharged at 8A current in main cycles, 3) preconditioned test: 
battery cells are stored at 45∘C environment for 90 days before 
conducting the test. The following procedure is used to create the 
dataset where during discharge, the sampling period is set to 10 
seconds (Wong et al., 2021): 1) Charge cycle: Constant Current- 
Constant Voltage (CC-CV) at 1.8A and 4.2V (100mA cut-off), 2) Dis
charge cycle: Constant Current until cut-off voltage (2.5V), 3) Repeat 
steps 1 and 2 (main cycle) 100 times, 4) Capacity measurement: 
charge CC-CV 1A 4.2V (100mA cut-off) and discharge CC 0.1A 2.5V, 5) 
Repeat the previous steps until the battery cell end of life. We have 
different columns in this dataset: battery id, time, voltage, current, 
charging capacity, discharging capacity, watt hour (wh) measure
ments during charge and discharge, temperature, and cycle count. 

4.2. Experimental setup 

4.2.1. Adversarial attack methods 
We use the following parameters for the selected adversarial 

methods fast gradient sign, basic iterative, momentum iterative, and 
robust optimization (Fawaz et al., 2019; Dong et al., 2018; Madry 
et al., 2017): amount of perturbation(ϵ)=0.1, step size(α)=0.001, 
number of iterations(I)=100, decay factor(μ)=1. 

4.2.2. Deep learning methods 
Although we use the same model structures (see Section 3.1 for 

the model details) for both datasets, we select different hyper- 
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Fig. 5. Framework for stacking ensemble testing.  

Fig. 6. Engine Diagram Simulated in C-MAPSS (Saxena et al., 2008).  

Table 1 
Ensemble methods for PDM related work.     

Author Research Goal Proposed Method  

Li et al. (2019) More accurate RUL prediction Combine multiple traditional ML 
methods (e.g., random forest, elastic 
net) using particle swarm 
optimization and sequential 
quadratic programming to discover 
optimal weights of the base 
learners. 

Shi et al. (2020) More accurate RUL prediction Combine multiple traditional ML 
methods (e.g., extra tree, random 
forest) by using the most diverse 
base learners and features from 
different degradation stages. 

Gungor et al. (2021a) Minimize retraining overhead 
while keeping RUL prediction 
accuracy at a certain level 

Combine different DL methods (e.g., 
convolutional neural network, long 
short-term memory) by discovering 
the most accurate and diverse base 
learners iteratively. 

Our paper (STEWART) Resilient stacking ensemble 
learner framework against 
adversarial attacks in RUL 
prediction 

Combine different DL methods (e.g., 
gated recurrent unit, convolutional 
neural network) using a stacking 
ensemble to find the most resilient 
base learners.    

O. Gungor, T. Rosing and B. Aksanli Computers in Industry 140 (2022) 103660 



parameters to run the models so as to obtain the best possible 
performance. We replicate each experiment 10 times and report 
average compromise values where we run all experiments on a PC 
with 16 GB RAM and an 8-core 2.3 GHz Intel Core i9 processor. 

NASA C-MAPSS: Adam optimizer with learning rate 0.001, elu 
activation function, batch size of 128, and a max number of epochs of 
150 where callback is activated (patience is set to 10 for validation 
data), and sliding time window size of 80. 

UNIBO: Adam optimizer with learning rate 0.0001, selu activation 
function, batch size of 256, and a max number of epochs of 100 
where callback is activated (patience is set to 10 for validation data), 
and sliding time window size of 500. 

4.2.3. Stacking ensemble 
For the selected meta-learners, we perform hyperparameter 

optimization using a grid search (Bergstra and Bengio, 2012). This 
gives us the optimal hyper-parameters to combine predictions from 
different DL models using stacking ensemble. For the ensemble 
training, we split training data into two subsets using the ratio 70% 
(subset 1) to 30% (subset 2). We use subset 1 for DL model training, 
and subset 2 for ensemble training. We set worsenedtolerance to 2 
since it leads to the selection of optimal ensemble configuration. 

4.3. Single DL models resiliency 

Table 3 presents mean compromise values for each DL method. In 
this table, each row represents a different DL model and each 
column corresponds to a distinct dataset. We first observe that DL 
model performance is impacted poorly by the adversarial attacks 
where there is up-to 120 × compromise. We also notice that the 
resiliency of a DL method changes with respect to the dataset. Here, 
we present the most resilient methods at the bottom of the table. 
We observe that GRU is the most resilient algorithm at FD001, and 
UNIBO while RNN is the best at the remaining datasets. We can 
conclude that recurrent architectures (e.g., GRU) are superior over 
others. CNN-based methods are extremely sensitive to the attacks 
where the prediction performance degrades by up to 72 × . Hybrid 
methods can be resilient if solely recurrent architectures are com
bined (e.g., GLSTM). For the most resilient ensemble selection, we 
utilize these compromise values. 

4.4. Proposed stacking ensemble learner resiliency 

4.4.1. Meta-learner resiliency analysis 
We first analyze the meta-learner resiliency of our ensemble 

learner. Fig. 7 illustrates the meta-learner mean compromise values 
where each meta-learner is represented with a distinct color. In each 
sub-figure, x-axis shows the number of base learners, and the y-axis 
provides the ensemble compromise. We first note that the meta- 
learner resiliency fluctuates considerably with respect to the 
number of base learners. To illustrate, at FD003 (Fig. 7c), AdaBoost 
(ADA) is the most resilient at 5 and 6 base learner ensemble sce
narios, yet it is the worst if we only select 3 base learners. The best 
performing meta-learner also changes based on the number of base 
learners. However, this is not the case for all datasets. For instance, 
ADA is always the most resilient meta-learner at FD004 (Fig. 7d), and 
UNIBO (Fig. 7e). When we analyze the average performance of each 
meta-learner over all dataset and ensemble learner configurations, 
we obtain 6.43, 4.91, 4.88, and 4.47 compromise values for LR, RF, 
XGB, and ADA respectively. This shows that ADA is the most resilient 
meta-learner while LR being the least resilient (on average). For the 
rest of our ensemble analysis, we select the best meta-learner for 
each ensemble configuration and report those measurements. To 
exemplify, for UNIBO dataset and any ensemble configuration, we 
present the ADA compromise values since its value is the smallest 
(Fig. 7e). However, ADA is not selected for any ensemble configura
tion at FD001. 

4.4.2. Stacking ensemble analysis 
We first analyze the resiliency of ensemble learners having dif

ferent number of base learners. Fig. 8 demonstrates a variety of 
stacking ensemble learner compromise values under the selected 
adversarial attack scenarios. In each sub-figure, x-axis shows the 
attack method, the y-axis denotes the ensemble compromise. Each 
figure shows the best single method and multiple ensemble learner 
configurations for different attack methods. Note that in these fig
ures, EnL represents our ensemble learner with n most resilient 
learners. We consider different number of base learners (from 2 to 7, 

Table 2 
C-MAPSS data set.       

Data Set FD001 FD002 FD003 FD004  

Train trajectories 100 260 100 249 
Test trajectories 100 259 100 248 
Max/Min cycles for train 362/128 378/128 525/145 543/128 
Max/Min cycles for test 303/31 367/21 475/38 486/19 
Operating conditions 1 6 1 6 
Fault conditions 1 1 2 2    

Table 3 
Single DL models mean compromise.        

DL Model / 
Dataset 

FD001 FD002 FD003 FD004 UNIBO  

CLSTM 8.0 120.3 6.8 86.2 27.2 
CNN 20.6 72.0 13.5 12.5 22.6 
WAVE 17.6 25.6 14.4 5.6 7.2 
CGRU 9.0 13.6 7.8 6.5 32.8 
BLSTM 6.7 8.4 8.7 6.0 10.5 
GLSTM 6.4 8.4 7.9 6.2 6.8 
BGRU 6.1 7.4 7.5 5.9 7.5 
LSTM 5.7 7.9 7.2 5.4 6.3 
GRU 5.2 7.7 6.5 7.1 4.5 
RNN 5.3 4.3 5.0 4.6 7.1    
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e.g., ‘E2L’ uses 2 most resilient base learners) and the most resilient 
single method (‘Best Single’). All methods in each figure are re
presented with distinct colors and the legend of each figure shows 
the order in which these methods are presented. Each ensemble 
compromise value in this figure corresponds to the compromise 
value of the best meta-learner. We can find the most resilient en
semble configuration from Fig. 8 which is the right most bar in each 
sub-figure in Fig. 8. For instance, at FD003 (Fig. 8c), E5L (represented 
with yellow color) is the most resilient configuration. E3L (i.e., en
semble learner using 3 most resilient base learners), E2L, E5L, E6L, 
and E4L are the most resilient ensemble configuration for FD001, 
FD002, FD003, FD004, and UNIBO respectively. Besides, we observe 
that increasing the number of base learners does not always lead to 
more resilient learner. To illustrate, the best performing ensemble at 

FD002 only uses 2 base learners (Fig. 8b). This result motivates us for 
a more clever ensemble method selection approach which can both 
terminate the search process early (i.e., it might not be necessary to 
try all base learners) while it can find the most resilient ensemble 
configuration. 

4.4.3. Adversarial attacks compromise analysis 
Based on the results in Fig. 8, we also analyze the impact of an 

adversarial attack on the model compromise. Fig. 9 shows the 
average compromise values for each attack method. On the y-axis, 
we calculate the average compromise over all ensemble and the best 
single method scenarios, x-axis corresponds to the dataset. Mo
mentum iterative method (MIM) leads to highest compromise (up to 
5.8 × ) whereas BIM is the least strong attack among all. 

Fig. 7. Meta-learner compromise analysis.  
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4.4.4. Most resilient stacking ensemble selection 
. Table 4 presents the results of the most resilient ensemble 

configuration search process. In this table, the columns show the 
dataset, best ensemble configuration, mean ensemble compromise, 
best single method mean compromise, and the ensemble resiliency 
improvement over the single method respectively. We can observe 

that the best ensemble configuration is different at each dataset, e.g., 
E3L (i.e., ensemble learner using 3 most resilient base learners) for 
FD001, E2L for FD002, and so on. In Section 4.4.2, we find out the 
most resilient ensemble configurations. We can validate that our 
proposed algorithm is able to select those ensemble configurations 
successfully. While we obtain the best ensemble mean compromise 
at UNIBO (2.34 × ), the smallest single method compromise is ob
tained at FD002 (4.34 × ). Our stacking ensemble approach achieves 

Fig. 8. Stacking ensemble compromise analysis.  

Fig. 9. Adversarial attacks compromise analysis.  

Table 4 
Most resilient stacking ensemble configuration.       

Dataset Ensemble 
Configuration 

Compromise Best Single 
Compromise 

Improvement 
(%)  

FD001 3 Learners (E3L) 3.76 5.21 27.83% 
FD002 2 Learners (E2L) 2.88 4.34 33.64% 
FD003 5 Learners (E5L) 4.49 5.00 10.20% 
FD004 6 Learners (E6L) 3.32 4.63 28.29% 
UNIBO 4 Learners (E4L) 2.34 4.49 47.88%    
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up to 47.9% mean compromise improvement. We also analyze the 
proposed stacking ensemble compromise improvement for the ad
versarial attack methods individually. Table 5 shows our proposed 
ensemble method’s resiliency improvement over the best single 
method under each attack scenario. We reach up-to 59.9% im
provement at UNIBO. For FD001, FD002, FD003, and FD004, the 
maximum improvements are 31.5%, 35%, 16.5%, and 29.8% respec
tively. 

5. Conclusions and future work 

In this work, we propose a stacking ensemble learning frame
work which is more resilient against adversarial attacks compared to 
single deep learning (DL) methods. We use 4 different attack 
methods (fast gradient sign, basic iterative, momentum iterative, 
and robust optimization) and 10 distinct DL models from recurrent, 
convolutional, and hybrid architectures. We find that recurrent 
neural network based architectures provide more resilient learning 
whereas convolutional neural network structures are extremely 
sensitive to the attacks. We observe that the most resilient single ML 
method changes based on the data set or attack method. To address 
this issue, we propose a framework that finds the most resilient 
ensemble configuration against multiple attacks. The results show 
that our proposed ensemble learner framework can improve the 
resiliency of the most resilient single method by up to 60%. From 
research perspective, this means that the proposed ensemble solu
tion can still perform well under adversarial attacks. In management 
level, this leads to more accurate replacement and maintenance 
decisions even under cyber-attacks. 

Limit and Constraints: As we provided in Fig. 1, DL-enabled I-IoT 
systems contain different layers. Cyber-attacks against those sys
tems can target different components such as communication pro
tocols, smart devices, and DL models. Our proposed stacking 
ensemble learning framework can provide a cyber-security solution 
against only DL model attacks, not all type of attacks in an I-IoT 
system. Hence, our proposed method would be a part of wider 
cyber-security solution towards more resilient I-IoT systems. 

Future Work: To overcome these limitations, as a future work, 
we are first planning to add black-box attack methods which do not 
have any knowledge about the attacked models. Thus, we can ana
lyze a more realistic attack scenarios and examine the performance 
of the proposed stacking ensemble learning framework, generalizing 
the resiliency of our approach. 

CRediT authorship contribution statement 

Onat Gungor: Conceptualization, Methodology, Software, 
Validation, Formal analysis, Investigation, Resources, Data Curation, 
Writing - Original Draft, Writing - Review & Editing, Visualization. 
Tajana Rosing: Conceptualization, Methodology, Validation, Formal 
analysis, Investigation, Resources, Writing - Original Draft, Writing - 
Review & Editing, Supervision, Project administration, Funding ac
quisition. Baris Aksanli: Conceptualization, Methodology, 
Validation, Formal analysis, Investigation, Resources, Writing - 

Original Draft, Writing - Review & Editing, Supervision, Project ad
ministration, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing fi
nancial interests or personal relationships that could have appeared 
to influence the work reported in this paper. 

Acknowledgements 

This work has been funded in part by NSF, with award numbers 
#1911095, and #1952225. 

References 

Anthi, Eirini, et al., 2021. Adversarial attacks on machine learning cybersecurity de
fences in industrial control systems. J. Inf. Secur. Appl. 58, 102717. 

Bampoula, Xanthi, et al., 2021. A deep learning model for predictive maintenance in 
cyber-physical production systems using lstm autoencoders. Sensors 21 (3), 972. 

Bergstra, James, Bengio, Yoshua, 2012. Random search for hyper-parameter optimi
zation. J. Mach. Learn. Res. 13 (2). 

Chakraborty, Anirban et al., 2018. Adversarial attacks and defences: A survey, In: 
arXiv:1810.00069. 

Cho, Kyunghyun et al., 2014. Learning phrase representations using rnn encoder-de
coder for statistical machine translation.In: arXiv:preprint. 

Corallo, Angelo, et al., 2020. Cybersecurity in the context of industry 4.0: a structured 
classification of critical assets and business impacts. Comput. Ind. 114, 103165. 

Corallo, Angelo, et al., 2021. Cybersecurity challenges for manufacturing systems 4.0: 
assessment of the business impact level. IEEE Trans. Eng. Manag. 

Corallo, Angelo, et al., 2022. Cybersecurity awareness in the context of the Industrial 
Internet of Things: a systematic literature review. Comput. Ind. 137, 103614. 

Dong, Yinpeng et al., 2018. Boosting adversarial attacks with momentum.In: 
Proceedings of the IEEEconference on computer vision and pattern recognition, 
9185–9193. 

Al-Dulaimi, Ali, et al., 2019. Hybrid deep neural network model for remaining useful 
life estimation. IEEE ICASSP. IEEE, pp. 3872–3876. 

Fawaz, Hassan Ismail, et al., 2019. Adversarial attacks on deep neural networks for 
time series classification. 2019 International Joint Conference on Neural Networks 
(IJCNN). IEEE, pp. 1–8. 

Gensler, André, et al., 2016. Deep learning for solar power forecasting-an approach 
using autoencoder and lstm neural networks. In 2016 IEEE International 
Conference on Systems, Man, and Cybernetics (SMC). IEEE, pp. 002858–002865. 

Géron, Aurélien, 2019. Hands-on Machine Learning with Scikit-Learn, Keras, and 
TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly 
Media. 

Good practices for security of internet of things in the context of smart manu
facturing, 2018. 〈https://www.enisa.europa.eu/publications/good-practices-for- 
security-of-iot〉. 

Goodfellow, Ian J., Jonathon Shlens, Christian Szegedy, 2014. Explaining and harnes
sing adversarial examples.In: arXiv:1412.6572. 

Gungor, Onat, Rosing, Tajana S., Aksanli, Baris, 2021a. DOWELL: diversityinduced 
optimally weighted ensemble learner for predictive maintenance of industrial 
Internet of Things devices. IEEE Internet Things J. 

Gungor, Onat, Rosing, Tajana S., Aksanli, Baris, 2021b. Opelrul: optimally weighted 
ensemble learner for remaining useful life prediction. 2021 IEEE International 
Conference on Prognostics and Health Management (ICPHM). IEEE, pp. 1–8. 

Güngör, Onat, Bariş, Akşanlí, Reyhan, Aydoğan, 2019. Algorithm selection and com
bining multiple learners for residential energy prediction. Fut. Gen. Comput. Syst. 
99, 391–400. 

He, Wu, et al., 2019. Improving employees’ intellectual capacity for cybersecurity 
through evidence-based malware training. J. Intellect. Cap. 

Khan, Wazir Zada, et al., 2020. Industrial internet of things: Recent advances, enabling 
technologies and open challenges. Comput. Electr. Eng. 81, 106522. 

Kopuru, M. Sri Krishna, Rahimi, S., Baghaei, K.T., 2019. Recent Approaches in 
Prognostics: State of the Art. In ICAI, 358-365. 

Kurakin, Alexey, Ian Goodfellow, Samy Bengio, et al., 2016. Adversarial examples in the 
physical world. 

Kurakin, Alexey, Ian, Goodfellow, Samy, Bengio, et al., 2018. Adversarial attacks and 
defences competition. The NIPSa17 Competition: Building Intelligent Systems. 
Springer, pp. 195–231. 

Lezzi, Marianna, et al., 2018. Cybersecurity for industry 4.0 in the current literature: a 
reference framework. Comput. Ind. 103, 97–110. 

Li, Xiang, Ding, Qian, Sun, Jian-Qiao, 2018. Remaining useful life estimation in prog
nostics using deep convolution neural networks. Reliab. Eng. Syst. Saf. 172, 1–11. 

Li, Zhixiong, Goebel, Kai, Wu, Dazhong, 2019. Degradation modeling and remaining 
useful life prediction of aircraft engines using ensemble learning. J. Eng. Gas Turb. 
Power 141 (4). 

Liao, Fangzhou, et al., 2018. Defense against adversarial attacks using high-level re
presentation guided denoiser.In: Proceedings of the IEEE Conference on Computer 
Vision and Pattern Recognition, 1778-1787. 

Table 5 
Proposed stacking ensemble compromise improvement over the most resilient DL 
method (%).       

Dataset / 
Attack 
Method 

FGSM BIM RO MIM  

FD001 27.4 23.6 31.5 27.5 
FD002 35.0 32.6 32.0 34.5 
FD003 5.3 8.4 16.5 10.1 
FD004 28.2 29.8 29.2 26.6 
UNIBO 40.4 45.3 59.9 46.0    

O. Gungor, T. Rosing and B. Aksanli Computers in Industry 140 (2022) 103660 

http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref1
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref1
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref2
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref2
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref3
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref3
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref4
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref4
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref5
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref5
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref6
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref6
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref7
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref7
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref8
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref8
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref8
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref9
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref9
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref9
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref10
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref10
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref10
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
https://www.enisa.europa.eu/publications/good-practices-for-security-of-iot
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref11
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref11
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref11
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref12
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref12
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref12
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref13
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref13
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref13
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref14
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref14
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref15
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref15
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref16
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref16
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref16
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref17
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref17
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref18
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref18
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref19
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref19
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref19


Löwe, Mathias, et al. 2021. Dealing with adversarial player strategies in the neural 
network game innk through ensemble learning. In: The 16th International 
Conference on the Foundations of Digital Games (FDG) 2021, 1-10. 

Madry, Aleksander, et al., 2017. Towards deep learning models resistant to adversarial 
attacks. In: arXiv:1706.06083. 

Mirzaeian, Ali et al., 2020. Learning diverse latent representations for improving the 
resilience to adversarial attacks.In: arXiv e-prints arXiv-2006. 

Mode, Gautam Raj, Prasad Calyam, and Khaza Anuarul Hoque, 2019. False data in
jection attacks in internet of things and deep learning enabled predictive analy
tics.In: arXiv:1910.01716. 

Mode, Gautam Raj and Khaza Anuarul Hoque, 2020. Crafting adversarial examples for 
deep learning based prognostics (extended version).In: arXiv:2009.10149. 

Pang, Tianyu, et al., 2019. Improving adversarial robustness via promoting ensemble 
diversity.In: International Conference on Machine Learning. PMLR, 4970-4979. 

Polikar, Robi, 2012. Ensemble learning. Ensemble Machine Learning. Springer, pp. 
1–34. 

Predictive maintenance market, 2020. 〈https://www.marketsandmarkets.com/ 
PressReleases/operational-predictive-maintenance.asp〉. 

Qiu, Tie, et al., 2020. Edge computing in industrial internet of things: Architecture, 
advances and challenges. IEEE Commun. Surv. Tutor. 22 (4), 2462–2488. 

Saxena, Abhinav, et al., 2008. Damage propagation modeling for aircraft engine run- 
to-failure simulation. IEEE ICPHM. IEEE, pp. 1–9. 

She, Daoming, Jia, Minping, 2021. A bigru method for remaining useful life prediction 
of machinery. Measurement 167, 108277. 

Shi, Junchuan, et al., 2020. Remaining useful life prediction of bearings using en
semble learning: The impact of diversity in base learners and features. J. Comput. 
Inf. Sci. Eng. 1–35. 

Smart futures, 2019. 〈https://smartmachinesandfactories.com/news/fullstory.php/aid/ 
459/Cyber-attacksonsmartfactoriesareontherise.html〉. 

Subramanian, Venkatachalam, et al., 2013. Examining the characteristics and im
plications of sensor side channels. 2013 IEEE International Conference on 
Communications (ICC). IEEE, pp. 2205–2210. 

Tariq, Muhammad Imran, et al., 2020. A review of deep learning security and privacy 
defensive techniques. Mob. Inf. Syst. 2020. 

Thames, Lane, Schaefer, Dirk, 2017. Cybersecurity for Industry 4.0. Springer. 
Thomas, Anthony, et al., 2019. Hierarchical and distributed machine learning in

ference beyond the edge. 2019 IEEE 16th International Conference on Networking, 
Sensing and Control (ICNSC). IEEE, pp. 18–23. 

Tuptuk, Nilufer, Hailes, Stephen, 2018. Security of smart manufacturing systems. J. 
Manuf. Syst. 47, 93–106. 

Understanding the cybersecurity threat landscape in asia pacific, 2019. 〈https://news. 
microsoft.com/apac/features/cybersecurity-in-asia/〉. 

Wang, Jiujian, et al., 2018. Remaining useful life estimation in prognostics using deep 
bidirectional lstm neural network. 2018 Prognostics and System Health 
Management Conference (PHM-Chongqing). IEEE, pp. 1037–1042. 

Wang, Kun, et al., 2016. Green industrial internet of things architecture: an energy- 
efficient perspective. IEEE Commun. Mag. 54 (12), 48–54. 

Wong, Kei Long et al., 2021. Li-ion batteries state-of-charge estimation using deep 
lstm at various battery specifications and discharge cycles.In: Proceedings of the 
Conference on Information Technology for Social Good, 85-90. 

Wu, Dazhong, et al., 2018. Cybersecurity for digital manufacturing. J. Manuf. Syst. 48, 
3–12. 

Zhang, Weiting, Yang, Dong, Wang, Hongchao, 2019. Data-driven methods for pre
dictive maintenance of industrial equipment: a survey. IEEE Syst. J. 13 (3), 
2213–2227. 

Zhao, Rui et al., 2016. Deep learning and its applications to machine health mon
itoring: A survey.arXiv:1612.07640. 

Zheng, Shuai, et al., 2017. Long short-term memory network for remaining useful life 
estimation. IEEE ICPHM. IEEE, pp. 88–95.  

O. Gungor, T. Rosing and B. Aksanli Computers in Industry 140 (2022) 103660 

http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref20
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref20
https://www.marketsandmarkets.com/PressReleases/operational-predictive-maintenance.asp
https://www.marketsandmarkets.com/PressReleases/operational-predictive-maintenance.asp
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref21
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref21
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref22
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref22
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref23
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref23
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref24
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref24
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref24
https://smartmachinesandfactories.com/news/fullstory.php/aid/459/Cyber-attacksonsmartfactoriesareontherise.html
https://smartmachinesandfactories.com/news/fullstory.php/aid/459/Cyber-attacksonsmartfactoriesareontherise.html
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref25
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref25
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref25
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref26
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref26
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref27
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref28
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref28
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref28
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref29
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref29
https://news.microsoft.com/apac/features/cybersecurity-in-asia/
https://news.microsoft.com/apac/features/cybersecurity-in-asia/
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref30
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref30
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref30
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref31
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref31
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref32
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref32
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref33
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref33
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref33
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref34
http://refhub.elsevier.com/S0166-3615(22)00057-4/sbref34

	STEWART: STacking Ensemble for White-Box AdversaRial Attacks Towards more resilient data-driven predictive maintenance
	1. Introduction
	2. Related work
	2.1. Cyber-security in I-IoT
	2.2. Adversarial attack methods against deep learning
	2.2.1. Adversarial attack formulation on RUL prediction
	2.2.2. Fast Gradient Sign Method (FGSM)
	2.2.3. Basic Iterative Method (BIM)
	2.2.4. Momentum Iterative Mehod (MIM)
	2.2.5. Robust Optimization Method (ROM)

	2.3. Adversarial Attacks in Predictive Maintenance (PDM)
	2.4. Ensemble methods

	3. Proposed stacking ensemble learner framework
	3.1. Selected Deep Learning (DL) methods
	3.2. Deep learning methods compromise calculation
	3.3. Stacking ensemble learner
	3.3.1. Ensemble learner training
	3.3.2. Ensemble learner test
	3.3.3. Most resilient stacking ensemble selection


	4. Experimental analysis
	4.1. Dataset description
	4.2. Experimental setup
	4.2.1. Adversarial attack methods
	4.2.2. Deep learning methods
	4.2.3. Stacking ensemble

	4.3. Single DL models resiliency
	4.4. Proposed stacking ensemble learner resiliency
	4.4.1. Meta-learner resiliency analysis
	4.4.2. Stacking ensemble analysis
	4.4.3. Adversarial attacks compromise analysis
	4.4.4. Most resilient stacking ensemble selection


	5. Conclusions and future work
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References




