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Abstract—Stochastic computing (SC) reduces the complexity
of computation by representing numbers with long independent
bit-streams. However, increasing performance in SC comes with
increase in area and loss in accuracy. Processing in memory
(PIM) with non-volatile memories (NVMs) computes data in-
place, while having high memory density and supporting bit-
parallel operations with low energy. In this paper, we propose
SCRIMP for stochastic computing acceleration with resistive
RAM (ReRAM) in-memory processing, which enables SC in
memory. SCRIMP can be used for a wide range of applications.
It supports all SC encodings and operations in memory. It max-
imizes the performance and energy efficiency of implementing
SC by introducing novel in-memory parallel stochastic number
generation and efficient implication-based logic in memory. To
show the efficiency of our stochastic architecture, we implement
image processing on the proposed hardware.

I. INTRODUCTION

The era of Internet of Things (IoT) is expected to create
billions of inter-connected devices which are expected to be
doubled every year [1], [2]. To ensure network scalability,
security, and system efficiency, much of IoT data processing
need to run at least partly on the devices at the edge of
the internet [3]. However, running data intensive workloads
with large datasets on traditional cores results in high energy
consumption and slow processing speed due to the large
amount of data movement between memory and processing
units. Interestingly, new computing paradigms have shown the
capability to perform complex computations at lower area and
power costs [?], [4], [5]. Stochastic Computing (SC) [6] is one
such paradigm, which represents each data point in the form of
a bit-stream, where the probability of having ‘1’s corresponds
to the value of the data [7], [8]. Representing data in such a
format does increase the size of data, with SC requiring 2n bits
to precisely represent an n-bit number. However, it comes with
the benefit of extremely simplified computations and tolerance
to noise [7], [9]. However, with all its positives, SC comes
with some disadvantages. (i) Generating stochastic numbers is
expensive and is a key bottleneck in SC designs, consuming
as much as 80% [10] of total design area. (ii) Increasing
the accuracy of SC requires increasing the bit-stream length,
resulting in higher latency and area. (iii) Increasing the speed
of SC comes at the expense of more logic gates, resulting in
larger area. These pose a big challenge which cannot be solved
with today’s CMOS technology.

Processing In-Memory (PIM) is an implementation approach
that uses high-density memory cells as computing elements
[11]. Specifically, PIM with non-volatile memories (NVMs)
like resistive random accessible memory (ReRAM) has shown
great potential for performing in-place computations and
hence, achieving huge benefits over conventional computing
architectures [12], [13], [14], [15], [16], [17]. ReRAM boast
of (i) small cell sizes, making it suitable to store and process
large bit-streams [18], (ii) low energy consumption for binary
computations, making it suitable for huge number of bitwise
operations in SC, (iii) high bit-level parallelism, making it
suitable for bit-independent operations in memory, and (iv)
stochastic nature at sub-threshold level, making it suitable for
generating stochastic numbers.

SCRIMP combines the basic properties of ReRAM and SC
to make implementation of SC on PIM highly efficient. First,
SCRIMP exploits the stochastic nature of ReRAM devices
to propose a new stochastic number generation scheme. This
completely eliminates the use of stochastic number generators
which can consume up to 80% area on a SC chip. It implements,
for the first time, implication logic in regular crossbars. This
enables SCRIMP to combine various logic families to execute
logic operations more efficiently. SCRIMP implementation of
basic SC operators using implication logic are faster and more
efficient than state-of-the-art. We evaluate SCRIMP over six
general image processing applications.

II. RELATED WORK

A. Stochastic Computing

Stochastic computing (SC) represents numbers in terms of
probabilities in long independent bit-streams. Unlike multipli-
cation, stochastic addition, or accumulation, is not a simple
operation. Several methods have been proposed which involve
a direct trade-off between the accuracy and complexity of
operation [19], [20], [21]. Many arithmetic functions like
trigonometric, logarithmic, and exponential functions can be
approximated in stochastic domain with acceptable accuracy
[10], [22]. Stochastic computing is enabled by stochastic
number generators (SNGs), which perform binary to stochastic
conversion.

SC re-emerged as an active area of research with the
introduction of IoT, where devices are small, less complex,
and need low latent results. There are recent work in multiple
directions. Some try to improve the efficiency of SC operations
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Fig. 1. Implementing operations using digital PIM.

by proposing new approximate implementations [20], [21]. The
work in [23], [24], [25] propose new encoding schemes for
SC which are more accurate than traditional encoding. Some
work also optimize SC for different applications [8], [24], [25],
[26], [27].

B. Digital Processing In Memory

A large number of recent designs enabling PIM in ReRAM
are based on analog computing [12], [13], [14]. Some recent
work has demonstrated ways to implement logic using ReRAM
switching [28], [29]. Digital processing in-memory exploits
variable switching of memristor to implement a variety of
logic functions inside memory [29], [30]. Figure 1 shows how
the output of operation changes with the applied voltage [29].
The output device switches whenever the voltage across it
exceeds a threshold [28]. As shown, these operations can be
implemented in parallel over multi-bits, even the entire row of
memory. Digital PIM allows high density operations within
memory without reading out the data. In this paper, we utilize
digital PIM to implement a majority of stochastic operations.
In addition, we also introduce, for the first time, support for
an entire class of digital logic, i.e. implication logic, in regular
crossbar memory using digital PIM.

III. STOCHASTIC PIM

In this section, we present the hardware innovations which
make SCRIMP efficient for SC. First, we present a PIM-B2S
conversion technique. Then, we propose a new way to compute
logic in memory. Next, we show how we bypass the physical
limitations of previous PIM designs to achieve a highly parallel
architecture. Last, we show the implementation different SC
operations in SCRIMP.

A. Stochastic Number Generation

The ReRAM device switching is probabilistic at sub-
threshold voltages, with the switching time following a Poisson
distribution [31]. For a fixed voltage, the switching probability
of a memristor can be controlled by varying the width of
the programming pulse. The group write technique presented
in [32] showed that stochastic numbers of large sizes can
be generated over multiple bits of a column in parallel It
first deterministically programs all the memory cells to zero
(RESET) and then stochastically, based on the input number,
programs them to one (SET). However, since digital PIM is
row-parallel, it is desirable to generate such a number over a
row. This can be achieved in two ways:
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Fig. 2. Generation of stochastic numbers using (a) group write [32], (b)
SCRIMP row-parallel generation.

ON→OFF Group Write: To generate a stochastic number
over a row, we need to apply the same programming pulse to
the row. As shown before in Figure 1, the bipolar nature of
memristor allows it to switch only to ‘0’ by applying a voltage
at the wordline. Hence, a ON→OFF group write is needed.
Stochastic numbers can be generated over rows by applying
stochastic programming pulses at wordlines instead of bitlines.
However, a successful stochastic number generation requires
us to SET all the rows initially. This results in a large number
of SET operations. The SET phase is both slower as well as
more energy consuming than the RESET phase, making this
approach very inefficient. Hence, we propose a new generation
method.

SCRIMP Row-Parallel Generation: The switching of
memristor is based on the effective voltage across its terminals.
In order to achieve low static energy for initialization, we
RESET all the rows like the original group write. However,
instead of applying different voltage pulses, vt1,vt2, ...vtn, to
different bitlines, we apply a common pulse, vt ′ , to all the
bitlines. A pulse, vtx, applies a voltage v with a time width of
tx. Now, we apply pulses, vt1′ ,vt2′ , ...vtn′ , to different wordlines
such that vtx = vt ′ − vtx′ . It generates stochastic numbers over
multiple rows in parallel as shown in Figure 2b.

B. Efficient PIM Operations

SC multiplication with bipolar (unipolar, SM-SC) numbers
involves XNOR (AND).While the digital PIM discussed in
Section II-B implements these functions, they are inefficient
in terms of latency, energy consumption, memory requirement,
number of device switches. We propose to use a implication-
based logic. Implication (→, where A→ B = A′+B) combined
with false (always zero) presents a complete logic family.
XNOR and AND are implemented using implication very
efficiently as described in Table I. Some previous work
implemented implication in ReRAM [33]. However, they
required additional resistors of specific value to be added to the
memory crossbar. Instead, SCRIMP enables, for the first time,
implication-based logic in conventional crossbar memory, with
the same components as the basic digital PIM. Hence, SCRIMP
supports both implication and basic digital PIM operations.

SCRIMP Implication in-memory: As discussed in Section
II-B, a memristor requires a voltage greater than vo f f (−von)
to switch from ‘1’ (‘0’) to ‘0’ (‘1’) to high resistive state
(HRS, logical ‘0’). We exploit this switching mechanism to
implement implication logic in-memory. Consider three cells,
two input cells and an output cell, in a row of crossbar memory
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Fig. 3. (a) Implication in a column/row, (b) XNOR in a column.

TABLE I
COMPARISON OF THE PROPOSED XNOR AND AND WITH

STATE-OF-THE-ART.

Latency Energy Memory Req. Device Sw.
(cycles) (fJ) (# of cells) (# of cells)

XNOR AND XNOR AND XNOR AND XNOR AND
SCRIMP 2 2 37.1 45.2 1 2 ≤2 ≤2

FELIX [29] 3 2 53.7 48.8 2 2 ≤3 ≤2
MAGIC [30] 5 3 120.29 64.1 5 3 ≤5 ≤5

as shown in Figure 3a. We apply an execution voltage, V0,
at the bitline corresponding to one of the inputs (in1), while
ground the other input (in2) and the output cell (out). Let out
be initialized to ‘1’. In this configuration, out switches to ‘0’
only when the voltage across it is greater or equal to vo f f . For
all the cases when in1 is ’0,’ most of the voltage drop is across
in1, resulting in a negligible voltage across out. In case in1
is ‘1,’ the voltage across out is ˜V0/3 and ˜V0/2 when in2 is
‘1’ and ‘0’ respectively. If 2 ∗ vo f f ≤ V0 < 3 ∗ vo f f , then out
switches only when in1 is ‘1’ and in2 is ‘0’. This results in
the truth table shown in Figure 3a, corresponding to in1→ in2.
To execute in2→ in1, V0 is applied to in2 while in1 and out
are grounded.

SCRIMP XNOR in-memory: XNOR (�) can be repre-
sented as, A�B = (A→ B).(B→ A). Instead of calculating
in1 → in2 and in2 → in1 separately and then ANDing them,
we first calculate in1 → in2 and then use its output cell to
implement in2→ in1 as shown in Figure 3b. In this way, we
eliminate separate execution of AND operation.

SCRIMP AND in-memory: AND (.) is represented as,
A.B = (A→ B′)′. The inversion uses NOT presented in [33].

C. SC Arithmetic Operations in SCRIMP

Here, we explain how SCRIMP implements SC operations.
The operands are either generated using the B2S conversion
technique in Section III-A or are pre-stored in memory as
outputs of previous operations. They are present in different
rows of the memory, with their bits aligned. The output is
generated in the output row, bit-aligned with the inputs.

Multiplication: As explained in Section II, multiplication
of two numbers in stochastic domain involves a bitwise XNOR
(AND) between bipolar (unipolar, SM-SC) numbers across the
bit-stream length. This is implemented in SCRIMP using the
PIM technique explained in Section III-B.

Conventional Addition/Subtraction/Accumulation: Im-
plementations of different stochastic N-input accumulation
techniques (OR, MUX, and count-based) discussed in Section
II can be generalized to addition by setting the number of
inputs to two. In case of subtraction, the subtrahend is first
inverted using a single digital PIM NOT cycle. Then, any
addition technique can be used. The OR operation is supported
by SCRIMP using the digital PIM operations [29], generating
OR of N bits in single cycle. The operation can be executed in
parallel for the entire bit-stream, bl , and takes just one cycle to
compute the final output. To implement MUX-based addition
in memory, we first stochastically generate bl random numbers
between 1 to N using B2S conversion in Section III-A. Each
random number selects one of the N inputs for a bit position.
The selected input bit is read using the memory sense amplifiers
and stored in the output register. Hence, MUX-based addition
takes one cycle to generate one output bit, consuming bl cycles
for all the output bits. To implement parallel count (PC)-based
addition in memory, one input bit-stream (bl bits) is read out
by the sense amplifier every cycle and sent to counters. This
is done for N inputs sequentially, consuming N cycles. In the
end, counters store the number of ones at each bit position.

Other Arithmetic Operations: SCRIMP supports trigono-
metric, logarithmic, and exponential functions using truncated
Maclaurin Series expansion [22]. The expansion approximates
these functions using a series of multiplications and additions.
With just 2-5 expansion terms, it produces more accurate results
[22] than most other stochastic methods [10], [19].

IV. EVALUATION

A. Experimental Setup

We develop C++-based cycle-accurate simulator which
emulates the functionalities of SCRIMP. The simulator uses
the performance and energy characteristics of the hardware
are obtained from circuit level simulations for a 45nm CMOS
process technology using Cadence Virtuoso. We use VTEAM
memristor model [28] for our memory design simulation
with RON and ROFF of 10kΩ and 10MΩ respectively. As
workload, we consider SCRIMP efficiency on four general
image processing applications including: Sobel, Robert, Prewitt,
and BoxSharp. We use images from Caltech 101 [34] library.

B. SCRIMP Trade-offs

To evaluate the effect at application level, we implement
the general applications listed above using SCRIMP with an
input dataset of size 1kB. The results shown here use unipolar
encoding with AND-based multiplication, SCRIMP addition,
and Maclaurin series-based other arithmetic functions. Since
all these operations are scalable with the bit-stream length, the
latency of the operations doesn’t change. The minor increase in
the latency at application level with the length is due to the time
taken by stochastic-to-binary conversion circuits. However, this
change is negligible. Figure 4 shows the impact of bit-stream
length on different applications. On an average, both the area
and energy consumption of the applications increase by 8×,
when the bit-stream length increases from 512 to 4096, with



P
S

N
R

 (
d

B
)

N
o

rm
. 

E
n

e
rg

y

Bit Stream Length Bit Stream Length

Fig. 4. Effect of bit-stream length on the accuracy and energy consumption
for different applications.

Exact bl=4096 bl=512 bl=32

32dB 27dB 15dB

11dB22dB29dB

Fig. 5. Visualization of quality of computation in Sobel application.

an average 6.1dB PSNR gain. As shown in Figure 5, with a
PSNR of 29dB, the output of Sobel filter with bit-stream length
of 4096 is visibly similar to that of the exact computation.

C. SCRIMP and Memory Non-Idealities

Bit-Flips: Here, we evaluate the quality loss in SCRIMP
with increase in the number of bit-flips. We evaluate the general
applications with the same configuration as in Section IV-B
with a bit-stream length of 1024. The quality loss is measured
as the difference between accuracy with and without bit-flips.
Figure 6a shows that with 10% bit-flips, the average quality
loss is meagre 0.27%. When the bit-flips increase to 25%,
applications lose only 0.66% in accuracy.

Memory Lifetime: Previous work [14], [33], [35] uses
iterative process to implement multiplication and other complex
operations. The more the iterations, higher is the number of
operations and so is the per cell switching count. SCRIMP
reduces this complex iterative process to just one logic gate,
in case of multiplication, while it breaks down other complex
operations into a series of simple operations. Hence, achieving
less switching count per cell. Figure 6b shows that for
multiplication, SCRIMP increases the lifetime of memory by
5.9× and 6.6× as compared to [14] and [35] respectively.

V. CONCLUSION

In this paper, we proposed SCRIMP, a general in memory
processing architecture for stochastic computing on ReRAM.
SCRIMP is a highly parallel architecture which scales with
the size of stochastic computing. To achieve this, SCRIMP
proposes novel in-memory stochastic number generation and
implication in memory scheme. It supports all SC encoding
schemes and operations fully in memory.
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