
2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

Multi-stage Tunable Approximate Search in
Resistive Associative Memory

Mohsen Imani, Student Member, IEEE, Abbas Rahimi, Member, IEEE, Pietro Mercati, Student
Member, IEEE, and Tajana Rosing, Senior Member, IEEE

Abstract—General-purpose graphics processing units (GPGPUs), as programmable accelerators, improve energy efficiency by
integrating a large number of relatively small cores. In this paper, we focus on improving energy efficiency of such processing core by
integrating an associative memory where function responses are prestored. Associative memories can search and recall function
responses for a subset of input values therefore avoiding the actual function execution on the processing core that leads to energy
saving. We propose a novel low-energy Resistive Multi-stage Associative Memory (ReMAM) architecture to significantly reduce energy
of a search operation by employing selective row activation and in-advance precharging techniques. ReMAM splits the search
operations in a ternary content addressable memory (TCAM) to a number of shorter searches in consecutive stages. Then, it
selectively activates TCAM rows at each stage based on the hits of previous stages, thus enabling energy savings. The proposed
in-advance precharging technique mitigates the delay of the sequential TCAM search and limits the number of precharges to two
low-cost steps. ReMAM further implements approximation on the selective TCAM blocks to reduce the search energy that relaxes the
function output in a fine-grained granularity with very low impact on accuracy of the results. Its multi-stage search operation makes
ReMAM applicable to many applications such as search engines, sorting, image coding, pattern recognition, query processing,
machine learning. In this work, we show an application of proposed ReMAM on AMD Southern Island GPUs. Our experimental
evaluation shows that ReMAM reduces on average GPGPU energy consumption by 35% in the exact mode, and 58% in approximate
mode with average relative error lower than 10%. These energy savings are 1.8× and 1.5× higher than state-of-the-art associative
memories used in GPGPUs in exact and approximate modes.

Index Terms—Associative memory, Approximate computing, Resistive Memory, GPUs, Ternary content addressable memory (TCAM),
Non-volatile memory

F

1 INTRODUCTION

B IG data computation demands for massive parallel processing
with extremely high energy efficiency [1], [2], [3]. The idea

of associative memory has been introduced to reduce the energy
consumption of a processing core by recalling a function result
and avoiding the actual function execution on the core [4], [5], [6].
An associative memory compares the function inputs with a set of
prestored input patterns and readily returns the related result if any.
When a match is found during the search operation, the associative
memory clock-gates the function execution on the core, enabling
energy saving. Associative memories can be implemented in both
software and hardware. Software solutions are based on a hashing
where frequent patterns can be stored and retrieved from a table
using a set of keys [7]. In hardware, they are implemented with
Ternary Content Addressable Memory (TCAM) blocks [5], [6],
[8]. Associative memories today are directly used in a broad
spectrum of applications including query processing [9], search
engines, text and image processing, pattern recognition and data
mining [10], [11].
CMOS-based TCAM designs have high energy consumption

• M.Imani, P. Mercati and T. Rosing are with the department of computer
science and engineering, University of California San Diego, La Jolla, CA,
92093.
E-mail: moimani, dperoni, tajana@ucsd.edu

• A. Rahimi is with the department of electrical engineering and computer
science, University of California Berkeley, Berkley, CA, 94720.
E-mail: abbas@eecs.berkeley.edu

which limits their usage to network and classification applica-
tions [12]. Smaller versions of such TCAMs have been used
for memoization memoization [13] facilitating instruction reuse
in GPGPUs. On the other hand, non-volatile memory (NVM)-
based TCAMs offer an opportunity for building more energy-
efficient associative memories by providing higher density and
lower leakage power [14], [15], [16]. The use of NVM-based
TCAMs with approximate search can further reduce energy con-
sumption by voltage overscaling (VOS) [6]. Such VOS produces
controllable approximation by accepting a Hamming distance of
1 or 2 between the inputs and the prestored patterns in NVM-
based TCAMs that simply cannot be realized in CMOS-based
TCAMs due to rapid timing errors [6]. However, during every
search operation all TCAM lines are precharged and discharged
draining large amount of current.

In this paper we propose Resistive Multistage Associative
Memory (ReMAM), a new associative memory architecture that
significantly decreases search energy consumption by employing
two novel techniques: selective row activation and in-advance
precharging. With selective row activation, ReMAM splits the
TCAM search into a set of shorter searches and selectively ac-
tivates rows based on the hit of the previous stages, thus reducing
the overall energy consumption. At the same time, in-advance
precharging mitigates the delay of such sequential TCAM access.
This limits the number of precharges to only two for ReMAM with
arbitrary number of stages. Our experimental evaluation on AMD
Southern Island GPU archi-tecture running five OpenCL applica-
tions shows that the proposed ReMAM architecture reduces the
energy consumption of the GPGPU by 35% on average. We also

mailto:moimani, pimercat, tajana@ucsd.edu
mailto:abbas@eecs.berkeley.edu

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 2

implement selective fine-grained approximation on TCAM blocks
to reduce both ReMAM and processing energy consumption while
ensuring low impact on accuracy. Our evaluation shows that
GPGPU using approximate ReMAM achieves 58% energy savings
on average with an acceptable average relative error lower than
10%. Energy savings are 1.5× and 1.8× higher for exact and
approximate ReMAM compared to GPGPU using conventional
single-stage associative memory.

The reminder of the paper is organized as follows. Section 2
reviews the related work. Section 3 describes the architecture of
NVM-based associative memories and related challenges. Section
4 presents the proposed ReMAM architecture. Section 5 describes
two techniques to enable ReMAM approximation. The experimen-
tal results are presented in Section 6. Finally, Section 6 concludes
this paper.

2 RELATED WORK

Associative memories in the form of TCAM blocks can exploit
pattern similarities of parallel workloads to decrease the amount
of redundant computations in GPGPUs or CPU [6], [17], [18],
[19], [20], [21]. TCAMs in CMOS technology suffer from low
density and high energy consumption [4], [22].

Recent research work uses NVMs as a replacement for
CMOS-based TCAMs due to their low search energy, low leakage
power and high density [23], [24], [25]. Resistive RAM (ReRAM)
and Spin-transfer Torque RAM (STT-RAM) are two types of
NVMs based on memristive devices and magnetic tunneling
junctions (MTJ) respectively [23], [26], [27]. The endurance of
the ReRAMs is limited to 106-107 write operations while STT-
RAMs show an endurance of 1015 [28], [29]. Li, et al. designed
a 1Mb energy efficient 2T-2R (2-Transistor/2-Memristor) TCAM,
which is 10× smaller than SRAM-based TCAM [14]. Chang, et
al. [30] proposed 3T-1R TCAM cell which performs a search in
less than 1-ns using 0.61fJ/search/bit. An efficient 2Kb 4T-2MTJ
cell is proposed in [31]. This cell is for standby-power-free
TCAM and has 86% area reduction with respect to SRAM-based
design. Hanyu, et al. in [32] introduced a 5T-4MTJ TCAM
cell with very low energy and high sense merging. Although
MTJ-based TCAMs have higher endurance, the ReRAM-based
TCAMs have better search speed (ON/OFF resistive ratio) and
area efficiency, which makes them more suitable for low energy
associative memories. Hence, in this paper we focus on ReRAM
technology rather than STT-RAMs. We solely need to program
our ReMAM design before executing a new kernel that maximizes
device endurance.

Although TCAMs are used in various architectures, we focus
on its application for GPGPUs. Various memoization techniques
reduce the energy overhead of error recovery by exploiting data
locality. For instance, in [13], a single cycle look-up table has
been implemented alongside each Floating Point Unit (FPU) to
maintain error-free execution. Zhang, et al. [17] leverage VOS for
imprecise FPUs in GPU computation suffering from high error
rate under VOS. Similarly, many prior work used associative
memory for enabling approximate computing on GPU [6], [18],
[19], [20], [21], [33]. An approximate associative memristive
memory architecture is introduced in [34] to reduce the TCAM
energy consumption by applying VOS. Work in [6] applied
uniform voltage overscaling on the selected least significant

Fig. 1. Working mechanism of ReRAM structure.

bits/blocks to have low-est accuracy degradation. However, the
granularity of approximation is fixed and precise bits still consume
huge energy. The above publications show that approximation
techniques may severely degrade the computation quality of
service (QoS). Work in [35] propose an online learning technique,
which considers both data and temporal locality to fill associative
memories approximately on runtime.

Our proposed multi-stage associative memory architecture
complements to other TCAM energy reduction techniques, such
as VOS. In contrast to the previous designs, ReMAM reduces the
energy consumption by decreasing the number of active lines.
The proposed architecture gradually reduces the number of active
rows with selective row activation. It also mitigates the delay
of the multi-stage TCAM block using in-advance precharging
technique.

3 BACKGROUND

3.1 Memristive Devices and TCAM

Resistive memory technology (ReRAM) has shown a great
potential to build high performance NVMs [36]. Figure 1 shows
the structure of memristor device and a 1T-1R memory cell
designed by memristor. To enable fast switching, ReRAMs
use CMOS-based access transistors. The memristor device has
alternate layers of metal/oxide/metal. Two metal layers (e.g. Pt)
sandwich an oxide layer based on Ta,Ti or HF [37], [38]. The
metal TiO2−x connection on the top behaves like a resistance,
while the TiO2/metal connection on the bottom behaves like a
diode. It is possible to improve endurance and reduce switching
delay to as low as 1-ns by using different combinations of
materials, such as Pd/Ta2O5−x/TaOy/Pd [38].

Data is pre-stored on cells based on the memristor resistance
state. The device can be switched ON by applying negative bias
and OFF by applying positive voltage across the device. The
search operation is performed by applying a small voltage across
the BL and SL and reading the output using a sense amplifier.

3.2 Resistive Associative Memory

Resistive Associative Memory (ReAM) consists of two main
blocks: TCAM and resistive 1T-1R memory. A set of frequent
input patterns and their corresponding results are pre-stored on

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 3

SLr

SLp

SLn

M1

M2

M3

DLp

DLn

ML

Signals in search operation

vdd

Vp

SLn

M1

M2

Vdd

DLn

M3

0

M1

M20

M30

0

Vp

3T-1R TCAM Cell Search 0 Search 1

ML ML

Barier

WL

RON ~ 0 ROFF >>

Value 1 Value 0

M
em

r
isto

r

BL

SL

_

+

Metal

Metal

M
em

r
isto

r

BL: Read Bitline

SL: Source Line

WL: Wordline

BL

WL

SL

Fig. 2. 3T-1R TCAM cell and search control signals.

TCAM and 1T-1R memory respectively. Resistive 1T-1R memory
has cells with one memristor and one access transistor. When a
computation is issued, the operands are searched in parallel on
the TCAM. If there is match, the computing unit is clock-gated,
enabling energy saving, and the corresponding result stored in the
1T-1R memory is returned.
TCAMs are the main components of associative memories. In
NVM-based TCAMs, values are pre-stored on the cells based
on the NVMs resistance state (Low or High). During the search
operation, an input operand is compared with all the pre-stored
TCAM patterns at the same time. If the data is found, a charged
Match Line (ML) interrupts the processor computation by
clock-gating. The small ON/OFF current ratio along with large
match line capacitance increase both search energy and delay.
There should be a significant difference between match and
mismatch currents to have an efficient and reliable search in
TCAM. Thus, in this work we use 3T-1R TCAM structure [30]
which has advantages over the previous TCAM cells [14], [39].
Figure 2 shows the resistive 3T-1R TCAM cell structure and its
control signals during the search operation. In 3T-1R TCAM,
cells are connected to ML with only one junction to decrease the
effective capacitance of ML. Connecting the resistance indirectly
to ML (using M3 transistor) has positive impact on increasing the
MLs ON/OFF current ratio. This significantly improves the cell
stability and makes it more robust against resistance variations.
Figure 2 shows the state of the M1 and M2 transistors during
searching 0 and 1. To search for 0 value, TCAM control signals
deactivate M1 transistor. Then based on the resistance value, the
gate of M3 will bias with zero or vdd voltages. Similarly, to search
for 1 value, M2 transistor becomes deactivated and the ON or
OFF current path through M3 based on the competition between
M1 and resistance.

3.3 Challenges of Resistive Associative Memory

Several associative memory applications require a TCAM with
both large word size and high number of rows to store long
keys and improve the hit rate. However, having a large TCAM
exacerbates the following issues:
(i) Large word size decreases the stability of the TCAM because

Fig. 3. Normalized FPU+ReAM energy consumption vs. number of
TCAM rows.

of the high leakage currents of cells connected to the match-
line (ML). These leakage currents can result in wrong search
operations [30], [32], [39]. One solution is to split the TCAM
into multiple shorter searches which can be either sequential or
parallel. Sequential access increases the search delay and degrades
the average time that the processor can be clock-gated. A parallel
search requires an OR gate to find the line corresponding to all
partial TCAM matches. This results in energy and area overhead.

(ii) A TCAM with a large number of rows requires big and
power hungry input buffers to distribute the input signals to all
rows. The delay introduced by big buffers prevents searching the
entire block in a single cycle and degrades the energy efficiency.

(iii) The search operation is energy hungry because of the large
ML switching activity which limits efficiency and applications
of using associative memories [4], [5]. For example, in GPGPUs
there is a tradeoff between the energy consumption of associative
memory and FPUs depending on the size of the TCAM. Figure 3
shows the energy consumption of ReAM, effective FPU and
FPU+ReAM for Sobel OpenCL benchmark with different TCAM
sizes. The effective FPU energy consumption is calculated based
on TCAM hit rate and delay for each TCAM size. Graph lines
are normalized based on the FPU energy consumption. The result
show that in small TCAMs FPU energy dominates GPGPU energy
consumption. Doubling TCAM size improves ReAM hit rate,
which results in higher effective FPU computation due to clock
gating. However, the high energy consumption of ReAM degrades
total FPU+ReAM energy for TCAMs with more than 8 rows. The
results show that the minimum energy consumption of the ReAM
is obtained for an 8-row TCAM, with 24% of energy saving. Any
technique to reduce ReRAM energy improves the GPGPU energy
consumption and shifts the minimum GPGPU energy point to the
larger TCAM size.

Our proposed ReMAM architecture addresses the main
limitations of associative memory by adopting a multi-stage
structure with sequential access. ReMAM allows us to have a
larger number of shorter rows arranged in consecutive stages.
In the following section we explain the details of our proposed
ReMAM and how our design lowers the energy consumption
and mitigates the delay associated with sequential access with
selective row activation and in-advance precharging.

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 4

4 PROPOSED REMAM
4.1 ReMAM Architecture

Figure 4 shows that ReMAM consists of a multi-stage TCAM
and a 1T-1R memory block. While standard associative memory
has a single TCAM block, ReMAM splits it into m shorter stages.
When the computing unit is running, the first N/m bits of each
operand are searched in the first stage, where N is the size of
the input. In case of a hit, the architecture employs selective row
activation by sending EnL1 signal to the next stage to enable
(precharge) only the corresponding lines. Then, it searches the
following N/m bits of the input data in the second stage just
on the selected rows. This procedure is repeated until the last
stage. This technique gradually reduces the number of active
rows from 2nd to mth stage. Reducing the number of precharge on
active rows saves energy. After traversing all TCAM stages, if the
pattern exists in the TCAM, one of the MLs in the mth stage stays
high and activates the Enlm signal. A hit in the mth stage stops
the computation by clock gating. At the same time, the hit rows
of mth stage activate the corresponding row of 1T-1R memory in
order to read the pre-stored results of computation.

Sequential row activation on the TCAM causes a large search
delay, because each stage needs to wait for the following one to
precharge before moving on. To considerably reduce the delay,
we propose in-advance precharging. This technique precharges
each row per stage (row driver activation) based on the hit of
the second previous stage. For example, in a m-stage TCAM,
when data is searched in the kth TCAM stage, the (k+1)th stage
precharges the rows based on (k−1)th stage hit (2 < k < m+1).
ReMAM still has some delay due to the precharge of the first two
stages. The delay reduction achieved by in-advance precharging
starts with the third stage. However, these two initial precharging
steps can be done quickly for short word size TCAM, with
negligible impact.

The application of the proposed low energy associative
memory is not limited to GPU processing. ReMAMs multistage
operation makes it ideal for a wide variety of applications,
such as search engines, searching and sorting, image coding,
pattern recognition, query processing and machine learning
based processing, as well as other applications of associative
memories [10], [11], [20], [40], [41]. In most of these applications,
the goal is to search a long key in TCAM. If the first digit is
not available, there is no need to go further. For this reason, we
consider ReMAM as a promising solution for a broad range of
applications.

Figure 5 shows a comparison of an 8-row, 4-stage ReMAM
in which selective row activation and in-advance precharging are
disabled (Figure 5.a) and enabled (Figure 5.b). The goal is to
search for A B C D string in TCAM. Each digit can be stored
in one stage. In the first case, the TCAM row activation does not
depend on previous TCAM hits, and all stages are precharged at
the same time. The proposed ReMAM, instead, activates the rows
based on the hit of previous stages. The row activation of the 3rd ,
4th and 1T-1R memory is done based on the hits of 1st , 2nd and
3rd stages respectively. The selective row activation significantly
reduces the number of active rows, and consequently ReMAM
energy consumption. At the same time, in-advance precharging
guarantees a consistent delay reduction. The graph shows that

the proposed ReMAM has 16 active rows while in conventional
TCAM all 32 rows are active and consuming energy. Therefore,
we expect about 50% TCAM search energy savings.

4.2 ReMAM & Number of Stages

The number of TCAM stages has a major impact on the
associative memory energy consumption. Splitting the TCAM
increases the number of partial hits on the first stages and
progressively reduces the number of active rows on the following
stages and resistive memory. Moreover, it reduces the energy
consumption of the first TCAM stages by shortening the word
size. However, our evolution shows that to achieve noticeable
advantage of selective row activation, we should not split the
first TCAM stage to less than 4-bit. Having short block size
in first stage, results in too many active rows on next TCAM
stages and thus large energy inefficiency. We consider the
average normalized switch activity on the TCAM energy when
the first TCAM stage is split to different number of bits. Our
evaluation shows than in 16-stage ReMAM, our design consumes
23%, 14% and 19% energy consumption when the first stage is
2-bit, 4-bit and 8-bit widths. Indeed, increasing the first TCAM
bitline at first improves computation accuracy. However, for
TCAM with larger bitline than 4-bit, the TCAM energy starts
degrading. In this work, we set a lower bound on the size of
bitline of the first stage TCAM to 4-bit for any partitioned TCAM.

A TCAM with a high number of rows improves the hit rate
and the average time that FPU can be clock-gated. In the proposed
ReMAM architecture, the energy consumption has been decreased
by utilizing selective row activation and in-advance precharging
techniques. Figure 6 compares the TCAM delay and search energy
consumption for a single-stage and for the proposed multi-stage
TCAM in different sizes for the Sobel application. The search
energy consumption of a conventional TCAM is application
independent, because all lines are activated at each search. On
the other hand, in the proposed multi-stage TCAM the number of
activated rows, and thus the energy consumption, depends on hit
rate and application type. In ReMAM, the energy consumption is
lower than ReAM since it just consumes maximum energy on the
first TCAM stage and the rest of the stages and resistive memory
have fewer active rows. Such energy consumption decreases
further if we split TCAM into more stages.
TCAM delay consists of two terms, precharging and evaluation
(search) latency. Precharging the ML is usually long portion of
TCAM search delay. Although our design searches sequentially,
in-advance precharging deletes the precharging term from all
stages. Because when the kth stage is in evaluating mode, the
k + 1th stage is in precharging state (based on the hit in k − 1th

stage). In summary the total search latency of TCAM can be
written as follows:

Delay = TPre +N ∗TEval

Where TPre and TEval are precharging and evaluation delays
respectively. Going from 8 to 15 stages increases the TCAM delay
dramatically with only a small energy improvement. This happens
because our design sets a lower bound on the first TCAM stage to
4-bit word size. At 64-row, TCAM splitting to 2-stage, 4-stage and
8-stage achieves respectively 1.8×,2.7× and 5.1× energy savings

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 5

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

...

Buffer

S
en

se A
m

p
lifier

Input Key

R
o

w
 D

riv
er

Clk

EnL_1

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

Buffer

S
en

se A
m

p
lifier

R
o
w

 D
riv

er

EnL_2
TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

Buffer

S
en

se A
m

p
lifier

R
o
w

 D
riv

er

EnL_m

...

1
st
 Stage 2

nd
 Stage

TCAM

m
th

 Stage

TCAM

EnL_1 EnL_m-2

1T-1R Memory row

Resistive Memory

1T-1R Memory row

1T-1R Memory row

1T-1R Memory row

R
o

w
 D

riv
er

EnL_m-1

Sense Amplifier

(m+1)
th

 Stage

TCAM

N

N/m
N/m

N/m

Sense circuitry

ML

Precharger

ML

EnL_1

E
n

L
s

Sense Amplifiers

Bit Lines
Buffer

S
en

se
 A

m
p

li
fi

er
s

MLs

E
n

L
s

Key

DLn

DLp

SLn

SLp

......

Fig. 4. Overview of the proposed ReMAM architecture.

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

...

Encoder

S
en

se A
m

p
lifier

Input Key

R
o

w
 D

riv
er

Clk

EnL_S1

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

Encoder

S
en

se A
m

p
lifier

R
o

w
 D

riv
er

EnL_S2

TCAM Row 0

TCAM Row 1

TCAM Row 2

TCAM Row N

Encoder

S
en

se A
m

p
lifier

R
o
w

 D
riv

er

EnL_Sm

...

1
st
 Stage 2

nd
 Stage

TCAM

m
th

 Stage

TCAM

EnL_1 EnL_m-2

Row 1

R
o

w
 D

riv
er

EnL_m-1

TCAM

N

N/m N/m
N/m

Clk

Clk

Clk

Sense circuitry

ML

Pre

Precharger

ML

EnL_1

Encoder

S
e

n
s

e
 A

m
p

li
fi

e
rs

MLs

E
n

L
s

Key

E
n

L
s

Sense Amplifiers

Bit Lines
Encoder

S
en

se
 A

m
p

li
fi

er
s

MLs

E
n

L
s

Key

DLn

DLp

SLn

SLp

......

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Active Row

Inactive Row Inactive line

All Partial TCAM hit

(a) Conventional Multi-cycle TCAM

(b) ReMAM

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Active line (hit)

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

1T-1R MemoryTCAMTCAMTCAMTCAM

TCAM TCAM TCAMTCAM 1T-1R Memory

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

D

A

B

B

C

A

B

F

B

C

C

C

A

F

C

D

B

F

A

A

D

F

C

B

D

A

B

B

C

A

B

F

B

C

C

C

A

F

C

D

Active Row

Inactive Row Inactive line

All Partial TCAM hit

(a)

(b)

A

C

D

B

F

D

F

D

A

C

D

B

F

D

F

D

Active line (hit)

B

F

A

A

D

F

C

B

Row 1

Row 2

Row 3

Row 6

Row 4

Row 5

Row 8

Row 7

1T-1R MemoryTCAMTCAMTCAMTCAM

TCAM TCAM TCAMTCAM 1T-1R Memory

1T-1R MemoryTCAMTCAMTCAMTCAM

100%50%

TCAM

25%(1/m-1)%
Always in Exact

Computation

(1/m)%

...

m-block

R
o
w

 D
r
iv

e
r

SS1SS2SS3 SSm-1SSm

R
o
w

 D
r
iv

e
r

R
o
w

 D
r
iv

e
r

R
o
w

 D
r
iv

e
r

R
o
w

 D
r
iv

e
r

1
st
 Block2

nd
 Block3

rd
 Blockm-1

th
 Blockm

th
 Blcok

R
o
w

 D
r
iv

e
r

ShortStop

... Boost

Gnd

C
B

o
o

st

Dirty_Gnd

Cap

Dirty

High

High

Cap

Low

Dirty

SS3

Fig. 5. Example of searching ABCD string on 4-stage ReMAM (a)
without and (b) with selective row activation and in-advance precharging
techniques.

compared to single-stage TCAM. The delay overhead less than
0.1ns, 0.3ns and 0.5ns.

Our evaluation also shows that the energy ratio of the ReMAM
to single-stage TCAM increases for large TCAM sizes. This
increases the hit rate by including a large number of undesired
activations. Thus, the proposed ReMAM is well-suited for large
associative memories. In addition, in ReMAM the TCAM and
resistive memory rows are activated based on the hits in the
previous stages. Therefore, as Figure 6 shows, a large ReMAM
delay changes relatively small compared to conventional ReAM.

5 REMAM APPROXIMATION

Although ReMAM reduces the search energy of associative
memories, the hit rate of ReMAM has not changed as compared
to conventional associative memories. The same size single
stage associative memory has a similar hit rate as ReMAM. The
minimum GPGPU energy point using ReMAM happens for small
ReMAM size, e.g. 16-row, where the FPU is a dominant energy
term. Therefore, to improve GPGPU energy consumption, we
need to increases the ReMAM hit rate.
To address the low hit rate of associative memories, we proposed
segmented and weighted approximation techniques. Segmented

1−row 2−row 4−row 8−row 16−row 32−row 64−row
0

200

400

600

800

1000

1200

TCAM Size

E
n

er
g
y
 C

o
n

su
m

p
ti

o
n

 (
fJ

)

Single−stage

2−stage

4−stage

8−stage

15−stage

0

1

2

3

4

5

6

T
C

A
M

 D
el

a
y
 (

n
s)

1−stage latency

2−stage latency

4−stage latency

8−stage latency

15−stage latency

Fig. 6. Energy consumption of the proposed multi-stage and conven-
tional single-stage TCAMs in different size.

approximation relaxes the FPU computation of the selective
bits in order to increases the associative memory hit rate. Bit
relaxation happens by applying voltage overscaling (VOS) on
selective TCAM blocks. The level of supply voltage determines
the Hamming distance error that ReMAM accepts.
Weighted approximation considers the impact of each block on
approximate mode. This technique addresses the search delay
issue of ReMAM by reducing the number of serial stages. In
weighted approximate ReMAM, the search operation on the LSB
blocks performs in a single stage, since these stages do not have
large switching activity. This accelerates the search operation by
reducing the number of serial stages. In the following subsections,
we explain the details of the proposed designs.

5.1 Segmented Approximation

When the workload changes, our TCAM must be able to effi-
ciently change the TCAM configuration. Based on our previous
work [6], we use ShortStop [42], [43] to apply voltage overscaling
on partial TCAM blocks. Short-Stop transitions selected blocks
into approximate mode in less than 5ns. Figure 7 shows the details
of its implementation for multiple TCAM stages. This technique
uses a dirty line to switch between high and low supply voltage

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 6

1T-1R Memory

R
o

w
 D

r
iv

e
r

Boost

Gnd

C
B

o
o

st

Dirty_Gnd

Cap

Dirty

High

High

Cap

Low

Dirty

Low

Dirty

TCAM

R
o

w
 D

riv
er

1
st
 Block

TCAM

R
o

w
 D

riv
er

m-1
th

 Block

TCAM

R
o

w
 D

riv
er

m
th

 Block

TCAM

R
o

w
 D

riv
er

m-2
th

 Block

Fig. 7. ShortStop technique used to support voltage overscaling.

TABLE 1
Supply voltage (V) for putting different TCAM size in exact and

approximate mode.

Configuration 2-bit 4-bit 8-bit 16-bit 32-bit

Exact 0.78V 0.80V 0.83V 0.85V 0.90V
1-HD 0.51V 0.54V 0.59V 0.63V 0.67V
2-HD 0.47V 0.49V 0.55V 0.58V 0.62V

at very small latency penalty. The functionality of voltage in
ShortStop can be summarized in three steps. Before boosting, all
blocks are connected to the high Vdd voltage. During boosting,
a block which is going to be boosted disconnects from the low
voltage line and connect to the dirty bitline. The dirty line uses
boost capacitors to prevent disturbances on the supply voltages.
Finally, the control signals disconnect the selected block from
low dirty bitline and connect it to high Vdd. In each iteration
multiple blocks can change from low to high Vdd or vice versa.
In our evaluation, we account for the switching energy overhead
of ShortStop on the total energy consumption.

Table 5.1 shows the level of supply voltage at which the
TCAM can work in exact, 1-bit Hamming distance (1-HD) and
2-HD approximation modes. However, this voltage is different for
TCAMs with different word-sizes. Our evaluation shows that a
TCAM with a short word size can be approximated at significantly
lower supply voltage compared to a large word size TCAM. For
example, 4-bit TCAM achieves 1-HD and 2-HD approximation at
540mV and 490mV while these values are 630mV and 580mV
for the 16-bit block. Using small size blocks can result in larger
energy savings in partial blocks. However, since each block can
separately add 1-2 mismatches to computation, the number of
relaxed blocks should be limited. A TCAM with wide word size
(e.g. 2-stage ReMAM) cannot reduce the energy consumption
significantly due to (i) a higher supply voltage for VOS and (ii) a
less tunable structure which does not put large portions of TCAM
blocks into approximate mode.
To obtain significant energy reduction, we need to implement
VOS on TCAM stages that have a low impact on computation
accuracy. Error sensitive applications need a high percentage
of exact matches to satisfy QoS, while other applications such
as Robert and Sharpen image processing applications accept
multiple mismatches on entire TCAM bitline. Take into account
two key issues:

• Stored bits do not have the same impact on approximation.
The most significant bits (MSBs) have a higher impact
on the result of computation as compared to the least
significant bits (LSBs). To control the computation error
rate, we implement approximation on the TCAM blocks
starting from the least significant bits. and put the LSB
stages on approximation.

• Different configurations of ReMAM provide approxima-
tion at varying granularity. For example, ReMAM with
15-stages has the opportunity to put several partial blocks
in approximate mode, while a 2-stage ReMAM can apply
voltage relaxation only to two 8-bit blocks. Therefore,
the ReMAM with 15 stages can achieve a higher energy
efficiency than 2-stage, 4-stage and 8-stage ReMAM.

In order to achieve higher energy savings in approximate
mode, proposed design starts the search operation from the least
significant blocks so that the last search operation is on MSB
blocks. Because a miss on the LSBs has lower impact on the
arithmetic value compared to a miss on MSBs, we can relax a
few of least significant blocks while delivering acceptable QoS.
For each application the number of blocks in approximate mode
is based on the ReMAM configuration. The number of blocks in
approximate mode should not be too high, since in ReMAM each
partial block adds 1 or 2 bits Hamming distance (HD).

5.2 Weighted Approximation
Although ReMAM improves GPGPU energy consumption, there
are still two issues to resolve:

• ReMAM with many stages requires peripheral circuity
(row driver and sense amplifier) for each partial stage
which makes ReMAM inefficient in case of cost and area.
In addition, in last ReMAM stages we do not require serial
search, since ReMAM has active rows in the first stages.

• The search operation in ReMAM is slower than single
stage associative memory. It slows down the FPU com-
putation, since it needs to be searched in a single cycle of
the FPU. Thus FPUs have to finish in the same clock cycle
as ReMAM search.

To address these issues, our ReMAM uses multistage search
TCAMs in the first ReMAM stages where partial TCAMs have
many active rows. However, the rest of TCAMs have low number
of active rows and can search only through a single stage, thus
speeding up the overall process and enabling better energy savings.
The number of serial stages in ReMAM is determined as a
function of the acceptable ReMAM search delay for different
configurations. To ensure ReMAM works at the same speed as
FPU clock cycle, we merge the last stages of ReMAM into a
single weighted TCAM stage. The number of stages is determined
based on ReMAM configurations. For example, in 4-stage, 8-stage
and 15-stage ReMAM our design merges last 2, 3 and 10 stages
respectively to guarantee the ReMAM search performance.
Weighted TCAM is partitioned into m stages, (i.e. B1,B2, ,Bm),
where each block can accept different number of Hamming
distances based on the position of bits on computation. In weighted
TCAM each block is put on approximate mode 2× less than the
adjacent MSB blocks. For example, when Bi block accepts S-bit
mismatches, the Bi−1 and Bi−2 blocks accept S/2, and S/4 bit
Hamming distances (HD) respectively. In general, for two stages i
and j, the Hamming distances accepted are defined as:

HDi = HD j/2i− j

where, HDi is the maximum acceptable Hamming distance of
block Bi.

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 7

TABLE 2
Discharging current and time of weighted TCAM during the search

operation.

Single Mismatch B1 B2 B3 B4

ML Discharging Current (mA) 6.5 3.2 1.7 0.9
Discharging time(ns) 0.3 0.4 0.5 0.6

TABLE 3
The ratio of running CNN on in different sizes, ensuring less than 2%

quality loss.

Approximate
Mode Voltage B1 B2 B3 B4

Exact 0.85V Exact Exact Exact Exact
Approx1 0.78V Exact Exact Exact 1-HD
Approx2 0.68V Exact Exact 1-HD 2-HD
Approx3 0.78V Exact 1-HD 2-HD 4-HD
Approx4 0.59V 1-HD 2-HD 4-HD 8-HD

We implement the idea of weighted TCAM using cells with
larger access transistors in MSB bits. The access transistors size
needs to be set based on the impact of that bit on accuracy.
Our design works based on the timing characteristic of the
ML discharging current. Using CAM with high small access
transistor shows that any mismatches discharge TCAM ML very
slowly. However, small RON or large access transistor of most
significant blocks immediately discharge the ML. Table 2 shows
the discharging current and times of ML when a single mismatch
happens in each partial block (B1, B2, B3, B4). ML discharging
current is not sensitive to mismatch on the first TCAM block. A
mismatch of the cells with large access transistors (e.g. second,
third and fourth) has a higher impact on ML discharge. Selecting a
more aggressive approximation level (e.g. Approx4) improves the
computational energy at the cost of lower accuracy, as expected.
Table 2 shows that a mismatch in the MSB block, B1, has ˜7×
higher discharge current as compared to a mismatch in the LSB
block, B4. This large current increases the discharging speed, so
that a mismatch on B1 discharges the ML in 0.3ns, while for less
significant blocks it is slower. We exploit this timing differential
during search to prioritize mismatches of different bit indices.

All partial TCAM blocks can do exact matching with
sampling time of TExact (1.5ns for 32-row TCAM). If we instead
enable ML voltage sampling at T4 time, TCAM accepts a single
bit Hamming distance in the B4 block. Similarly, sampling at T3
time is equivalent of accepting a single Hamming bit distance
in the B3 or similarly a 2-bit Hamming distance in the B4. This
weighted approximation encourages mismatches to be in the
least significant blocks. Table 5.2 shows five configurations of
4-stage TCAM at different supply voltages. Instead of changing
the sampling time, we can apply voltage overscaling to slow
down search. As Table 5.2 shows, if we reduce the supply voltage
of entire TCAM from 0.85V to 0.78V, the dropping voltage for
1-bit Hamming distance shifts to T4 time. Therefore, TCAM
matches rows with 1-bit Hamming distance in the first block.
Further reducing the supply voltage shifts sampling time from T3
to TExact , which means accepting 2-bit Hamming distance in the
first block or a single bit Hamming distance in the second block.

Each application satisfies accuracy at potentially different
approximation levels. Therefore, ReMAM should be able to
change the level of approximation quickly and efficiently. In
contrast to segmented approximation, which uses complex
peripheral circuitry for approximation, weighted ReMAM reduces
switching activity and requires small, fast and scalable peripheral
circuitry for approximation. In our design a sense amplifier is
aware of both number and place of mismatches in bitline. For
example, when TCAM is in Approx2 mode, it can accept 1-HD on
B3 or 2-HD on the B4. However, having 1-bit Hamming distance
on B4 and B3 is not acceptable, since it creates ML discharging
current larger than Approx2 mode. This significantly improves the
ReMAM energy efficiency, since i) it allows TCAM to work with
deep VOS while minimizing the computation inaccuracy and ii)
we can put more portion of TCAM bitline on approximate mode.

6 EXPERIMENTAL RESULTS

6.1 Experimental Setup
We implemented the proposed ReMAM architecture on the AMD
Southern Island GPU, Radeon HD 7970 device, which is one of
the most recent GPU architectures. The benchmark applications
have been adopted from AMD APP SDK v2.5 in OpenCL, to
make it suitable for stream processing [44]. We run five popular
OpenCL applications, to test the efficiency of ReMAM: Sobel,
Robert, Sharpen, BlackScholes (Black), DwtHaar1D (DwtH),
and MatrixMul (Matrix). The first three are image processing
benchmarks, while the last two are general purpose applications.
We use Multi2sim to simulate the described device [45]. This
is a cycle accurate CPU-GPU simulator of which we modified
the kernel code to enable profiling and runtime simulation.
We extracted the most frequent patterns for adder (ADD),
multiplier (MUL), multiplier-accumulator (MAC) and SQRT FPU
computations. To obtain energy and delay, the 6-stage balanced
FPUs are designed using Synopsys Design Compiler in 45-nm
ASIC ow [46]. FPUs are optimized for power, based on measured
delay of the TCAM in different sizes. We use memristor model
in [47] for our memory design simulation with RON and ROFF of
10kΩ and 10MΩ respectively.
In GPGPUs, the FPUs have a different number of input operands.
The ADD and MUL accept two 32-bit, SQRT a 32-bit and MAD
three 32-bit input operands. Therefore, their related TCAMs need
to have 64-bit, 32-bit and 96-bit word sizes respectively. The
circuit level simulation of TCAM design has been performed with
HSPICE simulator for 45nm technology. For sizing, capacitors
and resistors we used data from [33].
The execution flow of ReMAM has two main steps: design time
profiling and runtime reuse. In profiling, we use an OpenCL
kernel and host code to train the associative memory values
based on an input dataset. We used 100 random images from
Caltech 101 computer vision [48] as input for image processing
applications (Sobel, Robert and Sharpen). For the remaining two
applications, we test them on a sequence of input numbers with
100 different size. The training is done on 10% of the input
dataset, randomly extracted. After that, the host code starts to save
and rank the input patterns for each FPU based on their frequency
of occurrence. In this state, the AMD compute abstraction layer
provides a runtime device driver library and allows a host program
to work with the stream cores at lowest level. The programming
of TCAMs is done with software by using the host code. All

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 8

TCAMs associated with instances of the same kind of FPUs are
programmed concurrently with the same data. To evaluate the
computation accuracy of the proposed ReMAM in approximate
mode, our framework compares the output file of each application
with the golden output obtained from exact matching. We use
10% average relative error as an acceptable quality of service
similar to other state of the art [49].

6.2 ReMAM and TCAM size
Figure 8 compares the normalized energy consumption of GPGPU
using the proposed ReMAM and the conventional ReAM. The
FPU energy is calculated based on the measured delay obtained for
each TCAM size and the power consumption. The GPGPU energy
is normalized to the FPU energy consumption at each point. The
results in Figure 8 indicates that there is a tradeoff between TCAM
and FPU energy consumption as a function of different TCAM
sizes. There are a few reasons for this as explained below.

Figure 8 compares the normalized energy consumption of
GPGPU using the proposed ReMAM and the conventional ReAM.
The FPU energy is calculated based on the measured delay
obtained for each TCAM size and the power consumption. The
GPGPU energy is normalized to the FPU energy consumption at
each point. The results in Figure 8 indicates that there is a tradeoff
between TCAM and FPU energy consumption as a function of
different TCAM sizes. Such tradeoff can be explained as follows:

FPU energy: large TCAMs have a higher hit rate. The hit
rate improvement is not linear with the TCAM size. For example,
going from 2-row to 4-row TCAM has more impact on the hit rate
improvement than going from 64-row to 128-row. Figure 8 shows
the impact of higher hit rate on the effective FPU energy. Higher
hit rate increases the amount of time that FPU is in clock gated
mode. However, longer delay of larger TCAMs increases the FPU
clock cycle and reduces the energy advantage that we can achieve
with FPU clock gating.

TCAM energy: a large size TCAM is a dominant contributor
to the total energy consumption. As a result, GPGPU using con-
ventional ReAM has a minimum energy point with 8-row TCAM.
Decreasing TCAM energy is an effective way to improve the total
GPGPU energy consumption. This not only affects the TCAM
energy, but also allows the system to use larger TCAMs with a
higher hit rate to decrease the effective FPU energy consumption.
Average GPGPU energy savings with respect to FPU are 37.5%
and 22.9% with ReMAM and ReAM respectively.

Figure 9 shows the normalized GPGPU energy consumption
for TCAMs with different number of stages. Each line in the graph
is normalized to the FPU energy using a single stage TCAM. At
larger sizes, splitting the TCAM increases the number of undesired
hits, and thus limits energy savings. At smaller sizes GPGPU
energy is not sensitive to TCAM partitioning. Therefore, as it is
shown in Figure 9, it is better to split the small size TCAMs into
more stages. However, too much partitioning increases the number
of undesired active rows and results in higher GPGPU energy
consumption. Our evaluation indicates that in all applications
GPGPU with 64-row ReMAM has a better energy improvement
with respect to 4 and 16-row ReMAM.

6.3 ReMAM Approximation
6.3.1 Segmented ReMAM Approximation
For error sensitive applications using ReMAM with highly
tunable granularity can result in higher energy savings since

this configuration puts maximum number of non-critical blocks
in approximate mode (see explanation in Section 5.1). For
applications less sensitive to approximation, using ReMAM
with coarse tuning granularity results in the best energy savings.
Table 4 shows the impact of ReMAM on the overall GPGPU
computation energy considering both floating point and integer
units. The results show that for all tested applications, the FPUs
are the main source of GPGPU energy consumption, where they
consume about 92% of overall energy. As Table 4 shows, for exact
matching (0-HD) the applications have the minimum energy point
with 8-stage TCAM. For 1-HD and 2-HD approximation, the less
sensitive applications, such as Robert, Sharpe and MatrixMult,
prefer 2-stage and 4-stage ReMAM to achieve minimum energy
point at coarse granularity.

For small TCAM sizes, our framework puts more partial
blocks in approximate mode due to a few inexact matching in
small TCAM. In contrast, in large TCAM size the number of
inexact matching increases significantly which results low com-
putational accuracy. The same tradeoff between energy can be
observed in 2-HD approximation. Figure 10 shows the GPGPU
energy savings and ReMAM hit rate improvements for different
TCAM sizes. Our evaluation shows that, in most cases the GPGPU
using 8-row or 16-row ReRAM can achieve the best minimum
energy point. ReMAM hit rate improvement due to approximation
is proportional to the number of TCAM rows. This fact is more
observable on 2-HD ReMAM where the input can pre-store values
with 2-HD. Finally, our results show that GPGPU using 4-stage,
16-row ReMAM can achieve minimum energy point of 48%
and 51% in 1-HD and 2-HD approximation with an acceptable
QoS. This large energy gain that ReMAM achieve in approximate
mode is with the penalty of reducing GPU performance. Because,
FPUs work with the same speed as their alongside TCAMs.
This performance reduction is related to TCAM size and number
of stages that determine the clock cycle of FPUs. In 16-row
TCAM, using 4-stage, 8-stage and 15-stage increases the average
computation speed over six running application by 0.5%, 3.5%
and 6% respectively.

6.4 Weighted ReMAM Approximation
To address the performance issue of ReMAM, we merge the
ReMAM stages to a single weighted TCAM stage. In 16-row
TCAM, we set the size of last TCAM stage so that ReMAM works
at the same clock frequency as FPUs. Table ?? lists the minimum
GPGPU energy point and number of approximated blocks for 2,
4 and 8-block TCAM. Using 2-block TCAM gives coarse-grained
approximation granularity and results in large energy savings for
non-sensitive applications that can accept multiple mismatches
on an entire TCAM bitline. Therefore, TCAM applies voltage
relaxation on entire blocks. However, error sensitive applications
do better with fine-grained approximation (4-block 8-block)
with the capability of ensuring that mismatches occur on the
least significant blocks. Our results show that GPGPU using 2,
4 and 8-block TCAM can achieve 55%, 58% and 54% energy
savings on average, while delivering acceptable quality of service.
Figure 11 shows the impact of approximation for the Sobel, Robert
and Sharpen applications. The differences between the image
processed with approximate and exact computation are visually
negligible.

Table 6 compares the energy consumption of proposed Re-
MAM with the approximate associative memristive memory

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 9

Fig. 8. Normalized FPUs energy consumption using ReMAM and conventional ReAM.

Fig. 9. Normalized FPUs energy consumption using ReMAM with different number of stages.

TABLE 4
GPGPU energy savings and performance reduction that ensures QoS in 16 row ReMAM.

Mode Sobel Robert Sharpen BlackScholes DwtHaar1D MatrixMul

0-HD Energy Saving 34% 51% 32% 29% 26% 37%
of Stages 8 8 4 8 4 4

1-HD Energy Saving 44% 63% 43% 39% 51% 45%
of Stages 8 4 4 8 8 4

2-HD Energy Saving 46% 61% 45% 42% 53% 51%
of Stages 4 2 2 8 4 4

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 10

Fig. 10. The GPGPU energy savings and ReRAM hit improvements for 1-HD approximation.

TABLE 5
GPGPU energy saving and number of TCAM blocks in weighted approximation using different configurations.

Mode Sobel Robert Sharpen BlackScholes DwtHaar1D MatrixMul

2-block Norm. Energy 56% 66% 70% 38% 62% 40%
Block under VOS 2 2 2 1 2 2

4-block Norm. Energy 53% 60% 67% 47% 67% 54%
Block under VOS 2 3 3 3 2 2

8-block Norm. Energy 41% 48% 56% 49% 69% 55%
Block under VOS 4 5 5 4 3 3

TABLE 6
GPGPU Energy Saving using different associative memory design.

Different Designs Mode Sobel Robert Sharpen Black Scholes DwtHaar1D MatrixMul

A2M2 [34] Exact 25% 31% 20% 16% 23% 22%
Approximate 30% 38% 24% 27% 34% 38%

ReCAM [6] Exact 25% 31% 20% 16% 23% 22%
Approximate 55% 53% 56% 36% 47% 41%

MASC [20] Exact 28% 34% 27% 21% 25% 30%
Approximate 43% 49% 47% 38% 49% 44%

ReMAM Exact 34% 51% 32% 29% 26% 37%
Approximate 53% 60% 67% 47% 68% 54%

Fig. 11. Output quality comparison for Sobel, Robert, Sharpen applica-
tions.

(A2M2) [34], resistive configurable associative memory (Re-
CAM) [6], multi-stage single charge associative memory [20].
In the CAM level the ReMAM achieves 2.4× lower energy

consumption as compare to the ReCAM and A2M2 design, which
having an acceptable quality of service. Since the ReMAM not
only exploits the voltage overscaling, but also uses selective row
activation to significantly reduce the search energy. We also started
the search operation from least significant bits where the blocks
have large number of active rows. This provides an opportunity for
implementing voltage overscaling on these stages with low impact
on accuracy. In addition, in contrast to ReCAM, our design applies
voltage overscaling in different block granularities on ReMAM.
This opens an opportunity for having ReMAM with different block
granularities, with low impact on approximation. Our evaluation
shows that GPU+ReMAM energy consumption is 1.8× higher
than GPU with ReCAM and A2M2 in exact matching mode. Our
evaluation shows that in approximate mode ReMAM can achieve
1.3× and 1.8× energy saving in average compared to A2M2 and

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 11

TABLE 7
Energy-inaccuracy tradeoff of enhanced GPGPU over all applications.

QoS 0% 2% 4% 6% 8% 10%

Energy Saving 35% 38% 42% 46% 54% 58%

ReCAM using six different applications.
The main advantage of ReMAM compare to other associative

memories (e.g. ReCAM and MASC) is its scalability in a term
of bitline size. Most of previous designs work for processors
with limited input operand word-size (¡128-bit operands), while
the ReMAM address this limitation by having multistage pipeline
search operation. Indeed, the application of ReMAM goes over
the GPU, since it can be an appropriate design for DSPs such as
text processing, search engine, image coding, etc.

To show the tradeoff between energy saving and accuracy,
table 6.4 shows the average energy saving of enhanced GPGPU
using ReMAM when we accept different QoL in applications com-
putation. Having more accurate computation reduces the average
energy that enhanced GPGPU can save. For instance, accepting
6% QoL provides larger energy saving, just 12% less than design
with 10% QoL.

7 CONCLUSION

We propose a low-energy Resistive Multi-stage Associative Mem-
ory architecture, named ReMAM, which splits the TCAM search
into a sequence of shorter stages. The proposed architecture
employs selective row activation and in-advance precharging tech-
niques to reduce the energy consumption and to mitigate the
delay of sequential access. Our experimental results on AMD
Southern Island GPU show that ReMAM decreases the system
energy consumption of GPGPU more than 35% with error-free
computation. We also show that ReMAM is particularly beneficial
for systems with large size associative memories. Implementing
weighted approximation on the proposed ReMAM further im-
proves GPGPU energy savings by 58% on average with less
than 10% average relative error as compared to GPGPU without
associative memory.

ACKNOWLEDGMENT

This work was supported by NSF grant #1527034 and Jacobs
School of Engineering UCSD Powell Fellowship.

REFERENCES

[1] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and
A. H. Byers, “Big data: The next frontier for innovation, competition,
and productivity,” 2011.

[2] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context
aware computing for the internet of things: A survey,” IEEE Communi-
cations Surveys & Tutorials, vol. 16, no. 1, pp. 414–454, 2014.

[3] B. D. Rouhani, E. M. Songhori, A. Mirhoseini, and F. Koushanfar, “Ss-
ketch: An automated framework for streaming sketch-based analysis of
big data on fpga,” in Field-Programmable Custom Computing Machines
(FCCM), 2015 IEEE 23rd Annual International Symposium on, pp. 187–
194, IEEE, 2015.

[4] T. Kohonen, Associative memory: A system-theoretical approach, vol. 17.
Springer Science & Business Media, 2012.

[5] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable memory
(cam) circuits and architectures: A tutorial and survey,” IEEE Journal
of Solid-State Circuits, vol. 41, no. 3, pp. 712–727, 2006.

[6] M. Imani, A. Rahimi, and T. S. Rosing, “Resistive configurable associa-
tive memory for approximate computing,” in 2016 Design, Automation &
Test in Europe Conference & Exhibition (DATE), pp. 1327–1332, IEEE,
2016.

[7] W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: hard-
ware/software ip lookups with incremental updates,” ACM SIGCOMM
Computer Communication Review, vol. 34, no. 2, pp. 97–122, 2004.

[8] S. Li, L. Liu, P. Gu, C. Xu, and Y. Xie, “Nvsim-cam: a circuit-level
simulator for emerging nonvolatile memory based content-addressable
memory,” in Proceedings of the 35th International Conference on
Computer-Aided Design, p. 2, ACM, 2016.

[9] N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi, “Fast data stream
algorithms using associative memories,” in Proceedings of the 2007 ACM
SIGMOD international conference on Management of data, pp. 247–256,
ACM, 2007.

[10] D. S. Vijayasarathi, M. Nourani, M. J. Akhbarizadeh, and P. T. Balsara,
“Ripple-precharge tcam: a low-power solution for network search en-
gines,” in 2005 International Conference on Computer Design, pp. 243–
248, IEEE, 2005.

[11] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C. Kozyrakis,
“Evaluating mapreduce for multi-core and multiprocessor systems,” in
2007 IEEE 13th International Symposium on High Performance Com-
puter Architecture, pp. 13–24, Ieee, 2007.

[12] K. Lakshminarayanan, A. Rangarajan, and S. Venkatachary, “Algorithms
for advanced packet classification with ternary cams,” in ACM SIG-
COMM Computer Communication Review, vol. 35, pp. 193–204, ACM,
2005.

[13] A. Rahimi, L. Benini, and R. K. Gupta, “Spatial memoization: Concur-
rent instruction reuse to correct timing errors in simd architectures,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 60, no. 12,
pp. 847–851, 2013.

[14] J. Li, R. K. Montoye, M. Ishii, and L. Chang, “1 mb 0.41 µm2 2t-2r
cell nonvolatile tcam with two-bit encoding and clocked self-referenced
sensing,” IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 896–
907, 2014.

[15] S. Paul, S. Chatterjee, S. Mukhopadhyay, and S. Bhunia, “Nanoscale
reconfigurable computing using non-volatile 2-d sttram array,” in Nan-
otechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on, pp. 880–
883, IEEE, 2009.

[16] X. Yin and et al, “Design of latches and flip-flops using emerging tunnel-
ing devices,” in 2016 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 367–372, IEEE, 2016.

[17] H. Zhang, M. Putic, and J. Lach, “Low power gpgpu computation with
imprecise hardware,” in 2014 51st ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1–6, IEEE, 2014.

[18] M. Imani, S. Patil, and T. Rosing, “Approximate computing using
multiple-access single-charge associative memory,” 2016.

[19] M. Imani, S. Patil, and T. S. Rosing, “Masc: Ultra-low energy multiple-
access single-charge tcam for approximate computing,” in 2016 Design,
Automation & Test in Europe Conference & Exhibition (DATE), pp. 373–
378, IEEE, 2016.

[20] M. Imani, D. Peroni, A. Rahimi, and T. Rosing, “Resistive cam acceler-
ation for tunable approximate computing,” in Transactions on Emerging
Topics in Computing (TETC), IEEE, 2016.

[21] M. Imani, Y. Cheng, and T. Rosing, “Processing acceleration with
resistive memory-based computation,” in Proceedings of the Second
International Symposium on Memory Systems, pp. 208–210, ACM, 2016.

[22] X. Yin, A. Aziz, J. Nahas, S. Datta, S. Gupta, M. Niemier, and X. S.
Hu, “Exploiting ferroelectric fets for low-power non-volatile logic-in-
memory circuits,” in Proceedings of the 35th International Conference
on Computer-Aided Design, p. 121, ACM, 2016.

[23] N. Khoshavi, X. Chen, J. Wang, and R. F. DeMara, “Bit-upset vulnera-
bility factor for edram last level cache immunity analysis,” in 2016 17th
International Symposium on Quality Electronic Design (ISQED), pp. 6–
11, IEEE, 2016.

[24] M. Saremi, “A physical-based simulation for the dynamic behavior of
photodoping mechanism in chalcogenide materials used in the lateral
programmable metallization cells,” Solid State Ionics, vol. 290, pp. 1–5,
2016.

[25] S. Rajabi, M. Saremi, H. Barnaby, A. Edwards, M. Kozicki, M. Mitkova,
D. Mahalanabis, Y. Gonzalez-Velo, and A. Mahmud, “Static impedance
behavior of programmable metallization cells,” Solid-State Electronics,
vol. 106, pp. 27–33, 2015.

[26] M. Valad Beigi and et al, “Tesla: Using microfluidics to thermally
stabilize 3d stacked stt-ram caches,” in 34th International Conference
on Computer Design (ICCD), 2016.

2332-7766 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMSCS.2017.2665462, IEEE
Transactions on Multi-Scale Computing Systems

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 12

[27] M. Valad Beigi and et al, “Tapas: Temperature-aware adaptive placement
for 3d stacked hybrid caches,” in In international Symposium on Memory
Systems (MEMSYS), 2016.

[28] Y. Kim, M. Imani, S. Patil, and T. S. Rosing, “Cause: critical application
usage-aware memory system using non-volatile memory for mobile
devices,” in Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design, pp. 690–696, IEEE Press, 2015.

[29] N. Khoshavi, X. Chen, J. Wang, and R. F. DeMara, “Read-tuned stt-ram
and edram cache hierarchies for throughput and energy enhancement,”
arXiv preprint arXiv:1607.08086, 2016.

[30] M.-F. Chang, C.-C. Lin, A. Lee, C.-C. Kuo, G.-H. Yang, H.-J. Tsai, T.-F.
Chen, S.-S. Sheu, P.-L. Tseng, H.-Y. Lee, et al., “A 3t1r nonvolatile tcam
using mlc reram with sub-1ns search time,” in 2015 IEEE International
Solid-State Circuits Conference (ISSCC), vol. 58, pp. 318–U449, 2015.

[31] S. Matsunaga, S. Miura, H. Honjou, K. Kinoshita, S. Ikeda, T. Endoh,
H. Ohno, and T. Hanyu, “A 3.14 um 2 4t-2mtj-cell fully parallel tcam
based on nonvolatile logic-in-memory architecture,” in 2012 Symposium
on VLSI Circuits (VLSIC), pp. 44–45, IEEE, 2012.

[32] T. Hanyu, D. Suzuki, N. Onizawa, S. Matsunaga, M. Natsui, and
A. Mochizuki, “Spintronics-based nonvolatile logic-in-memory archi-
tecture towards an ultra-low-power and highly reliable vlsi computing
paradigm,” in 2015 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1006–1011, IEEE, 2015.

[33] M. Imani, P. Mercati, and T. Rosing, “Remam: Low energy resistive
multi-stage associative memory for energy efficient computing,” in 2016
17th International Symposium on Quality Electronic Design (ISQED),
pp. 101–106, IEEE, 2016.

[34] A. Rahimi, A. Ghofrani, K.-T. Cheng, L. Benini, and R. K. Gupta,
“Approximate associative memristive memory for energy-efficient gpus,”
in 2015 Design, Automation & Test in Europe Conference & Exhibition
(DATE), pp. 1497–1502, IEEE, 2015.

[35] M. Imani, Y. Kim, A. Rahimi, and T. Rosing, “Acam: Approximate
computing based on adaptive associative memory with online learning,”
in International Symposium on Low Power Electronics and Design
(ISLPED), 2016.

[36] R. Waser and M. Aono, “Nanoionics-based resistive switching memo-
ries,” Nature materials, vol. 6, no. 11, pp. 833–840, 2007.

[37] J. J. Yang, M. D. Pickett, X. Li, D. A. Ohlberg, D. R. Stewart, and
R. S. Williams, “Memristive switching mechanism for metal/oxide/metal
nanodevices,” Nature nanotechnology, vol. 3, no. 7, pp. 429–433, 2008.

[38] Y. Yang, P. Sheridan, and W. Lu, “Complementary resistive switching in
tantalum oxide-based resistive memory devices,” Applied Physics Letters,
vol. 100, no. 20, p. 203112, 2012.

[39] L.-Y. Huang, M.-F. Chang, C.-H. Chuang, C.-C. Kuo, C.-F. Chen, G.-H.
Yang, H.-J. Tsai, T.-F. Chen, S.-S. Sheu, K.-L. Su, et al., “Reram-based
4t2r nonvolatile tcam with 7x nvm-stress reduction, and 4x improvement
in speed-wordlength-capacity for normally-off instant-on filter-based
search engines used in big-data processing,” in 2014 Symposium on VLSI
Circuits Digest of Technical Papers, pp. 1–2, IEEE, 2014.

[40] M. Imani, D. Kong, A. Rahimi, T. Rosing, and J. Rabaey, “Exploring
hyperdimensional associative memory,” in International Symposium on
High-Performance Computer Architecture (HPCA), IEEE, 2017.

[41] Q. Guo, X. Guo, R. Patel, E. Ipek, and E. G. Friedman, “Ac-dimm:
associative computing with stt-mram,” in ACM SIGARCH Computer
Architecture News, vol. 41, pp. 189–200, ACM, 2013.

[42] C.-H. Hsu, Y. Zhang, M. A. Laurenzano, D. Meisner, T. Wenisch,
J. Mars, L. Tang, and R. G. Dreslinski, “Adrenaline: Pinpointing and
reining in tail queries with quick voltage boosting,” in 2015 IEEE 21st
International Symposium on High Performance Computer Architecture
(HPCA), pp. 271–282, IEEE, 2015.

[43] N. Pinckney, M. Fojtik, B. Giridhar, D. Sylvester, and D. Blaauw, “Short-
stop: An on-chip fast supply boosting technique,” in 2013 Symposium on
VLSI Circuits, pp. C290–C291, IEEE, 2013.

[44] “AMD APP SDK v2.5 [online].” http://www.amd.com/stream.
[45] R. Ubal, B. Jang, P. Mistry, D. Schaa, and D. Kaeli, “Multi2sim: a

simulation framework for cpu-gpu computing,” in Proceedings of the
21st international conference on Parallel architectures and compilation
techniques, pp. 335–344, ACM, 2012.

[46] “Synopsys design compiler,”
[47] S. Kvatinsky et al., “Vteam: a general model for voltage-controlled

memristors,” TCAS II, vol. 62, no. 8, pp. 786–790, 2015.
[48] “Available at.” http://www.vision.caltech.edu/Image Datasets/

Caltech101/.
[49] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural acceler-

ation for general-purpose approximate programs,” in Proceedings of the
2012 45th Annual IEEE/ACM International Symposium on Microarchi-
tecture, pp. 449–460, IEEE Computer Society, 2012.

Mohsen Imani received his M.S. and BCs de-
grees from the School of Electrical and Com-
puter Engineering at the University of Tehran in
March 2014 and September 2011 respectively.
From September 2014, he is a Ph.D. student in
the Department of Computer Science and Engi-
neering at the University of California San Diego,
CA, USA. He is a member of the System En-
ergy Efficient Laboratory (SeeLab), where he is
searching for alternative computer architecture
to address memory bottleneck and computation

cost. Mr. Imani is a Powell Fellow student at UC San Diego. His research
interests include approximate computing, neuromorphic computing and
memory centric computing.

Abbas Rahimi Abbas Rahimi is currently a Post-
doctoral Scholar at the Department of Electri-
cal Engineering and Computer Sciences, Uni-
versity of California Berkeley, Berkeley, CA,
USA. He is a Member of the Berkeley Wire-
less Research Center and collaborating with the
Berkeley Redwood Center for Theoretical Neu-
roscience. Rahimi has a BS in computer engi-
neering from the University of Tehran, Tehran,
Iran (2010) and an MS and a PhD in computer
science and engineering from the University of

California San Diego, La Jolla, CA, USA (2015). His research interests
include brain-inspired computing, massively parallel memory-centric ar-
chitectures, embedded systems and software with an emphasis on im-
proving energy-efficiency and robustness in the presence of variability-
induced errors and approximation opportunities. His doctoral disserta-
tion has been selected to receive the 2015 Outstanding Dissertation
Award in the area of new directions in embedded system design and
embedded software from the European Design and Automation Associ-
ation. He received the Best Paper Candidate at 50th IEEE/ACM Design
Automation Conference.

Pietro Mercati Pietro Mercati received his M.S.
and BCs degrees in Electronics Engineering
from the University of Bologna, Italy in March
2013 and July 2010 respectively. From Septem-
ber 2013, he is a PhD student in the Depart-
ment of Computer Science and Engineering at
the University of California at San Diego, CA,
USA, under the supervision of Professor Tajana
Simunic Rosing. From April 2015 he is a PhD
Candidate in Computer Science. He is a mem-
ber of the System Energy Efficient Laboratory

(SEELAB), University of California at San Diego. His current research
interests include embedded systems, computer architecture, system
energy efficiency and reliability. He is the author of several publications
in peer-reviewed international journals and conferences.

Tajana Simunic Rosing is a Professor, a holder
of the Fratamico Endowed Chair, and a direc-
tor of System Energy Efficiency Lab at UCSD.
She is currently heading the effort in SmartC-
ities as a part of DARPA and industry funded
TerraSwarm center. During 2009-2012 she led
the energy efficient datacenters theme as a part
of the MuSyC center. Her research interests
are energy efficient computing, embedded and
distributed systems. Prior to this she was a full
time researcher at HP Labs while being leading

research part-time at Stanford University. She finished her PhD in 2001
at Stanford University, concurrently with finishing her Masters in En-
gineering Management. Her PhD topic was Dynamic Management of
Power Consumption. Prior to pursuing the PhD, she worked as a Senior
Design Engineer at Altera Corporation.

http://www.amd.com/stream
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/

