
DNA Sequencing using Brain-inspired
Hyperdimensional Computing

Mohsen Imani, Tarek Nassar, Justin Morris, and Tajana Rosing

Computer Science and Engineering, UC San Diego, La Jolla, CA 92093, USA

Abstract—DNA sequencing has a vast number of applications
in a multitude of applied fields including, but not limited to,
medical diagnosis and biotechnology. In this paper, we propose
HDNA to apply the concepts of hyperdimensional (HD) comput-
ing (computing with hypervectors) to DNA sequencing. HDNA
first assigns holographic and (pseudo)random hypervectors to
DNA bases. Using an encoder, it then exploits the orthogonality
of these hypervectors to represent a DNA sequence by generating
a class hypervector. The class hypervector keeps the information
of combined individual hypervectors (i.e., the DNA bases) with
high probability. HDNA uses the same encoding to map a
DNA sequence with unknown labels to a query hypervectors
and performs the classification task by checking the similarity
of the query hypervector against all class hypervectors. Our
experimental evaluation shows that HDNA can achieve 99.7%
classification accuracy for Empirical dataset which is 5.2%
higher than state-of-the-art techniques for the same dataset.
Moreover, our HDNA can improve the execution time and energy
consumption of classification by 4.32× and 2.05× respectively,
when compared against prior techniques.

I. INTRODUCTION

The process of determining the order of nucleotides present

in a DNA molecule is called DNA sequencing; there are four

bases in strand DNA: adenine (A), guanine (G), cytosine (C),

and thymine (T). The goal of DNA sequencing is to determine

the physical order of these bases in a molecule of DNA.

On the application level, DNA sequencing can be used to

determine the sequences of individual genes, clusters of genes,

and entire genomes of any organism [1]. In molecular biology

sequencing allows researcher to study genomes and proteins

and use this information to detect and identify any possible

changes within genes [2]. In medicine, sequencing can help

extract and identify the sequence of genes from patients to

determine if there may be a risk of any number of genetic

diseases [3].

In this paper, we propose the idea of Hyperdimensional

(HD) DNA sequencing, called HDNA, which significantly im-

proves the accuracy and efficiency of DNA classification [4].

Brain-inspired HDNA algorithm emulates cognitive tasks by

computing with hypervectors as opposed to computing with

numbers [5], [6], [7], [8], [9]. Instead of the traditional use

of numerical representations, HD computations are defined

by patterns that mimick the activity of neurons. HDNA as-

signs holographic and (pseudo)random hypervectors with i.i.d.

components to DNA bases, then exploits the orthogonality of

these hypervectors in order to generate hypervectors corre-

sponding to DNA sequences, while keeping the information of

the combined individual vectors with high probability. After

training class hypervectors, our design uses the same encoding

to map an unknown DNA sequence to a new hypervector,

called a query hypervector. The inference is then made by

checking for the similarity of these query hypervectors against

all available class hypervectors, and returning the class with

the highest Hamming distance similarity. Our experimental

evaluations over well-known datasets show that HDNA can

achieve 99.7% accuracy classifying Empirical dataset which

is 5.2% higher than state-of-the-art techniques classifying the

same task. Moreover, our HDNA can improve the execution

time and energy consumption of classification by 4.32× and

2.05× respectively, when compared against prior techniques.

A. Hyperdimensional Computing

Hyperdimensional (HD) computing captures and imitates

the idea of pattern recognition implemented with massive

circuits in the form of hypervectors, which are vectors with

dimensionality in the thousands. HD computing is built on a

well-defined set of operations and offers a complete computa-

tional paradigm that can be applied to a vast number of learn-

ing problems. Examples include analogy-based reasoning,

sequence memory, language recognition, biosignal processing,

and predictions from multimodal sensor fusion [10], [7], [9].

These applications use HD computing to encode temporal

analog signals. In contrast, in this paper we focus on mapping

DNA sequences into HD space for classification/recognition

task.

II. HYPERDIMENSIONAL DNA SEQUENCING

In this paper we propose a hyperdimensional DNA classifier,

which encodes DNA sequences to hypervectors, and applies

the inference task over incoming query hypervectors. On the

higher level, HDNA consists of two main blocks: encoder and

associative memory. The encoder maps DNA sequences to

hypervectors and combines them together in order to generate

a single model representing each output class. These class

models are then stored in the associative memory. In test mode,

unknown input data is mapped onto high-dimensional space

using the same encoding, and associative memory performs

the classification task by searching for a class model which

has the largest similarity to the input hypervector.

For simplicity, we will explain the functionality of the

proposed design using an implementation of classification

over an Empirical dataset [11]. This dataset consists of eight

classes of species within the animal, fungi and plant kingdoms,

each contains several DNA sequences corresponding to their
DISTRIBUTION STATEMENT A.
Approved for public release: distribution is unlimited.

935

respective class. The goal of DNA sequencing is to learn the

patterns of the DNAs in each class, such that if a new DNA

sequence was introduced, our design can recognize the class

which it belongs to. Traditionally, researchers use supervised

machine learning algorithms for classification tasks such as K-

NN and SVM, however, these algorithms do not provide good

enough accuracy for classifying longer sequences of DNA.

A. DNA in High-Dimensional Space

In this work, we propose a novel hyperdimensional DNA se-

quencing technique, called HDNA, consisting of encoder and

associative memory. The encoder module learns the patterns

of all DNA sequences that exist within a class and encodes

them into a single hypervector with D dimensions. Each

class is then associated with a hypevector which is encoded

using all the information from that class. When considering

a single sequence of DNA with length m, our goal is to map

this sequence to a hypervector which not only allows us to

save the bases stored on the sequence, but also allows us to

store some information about the position of each base in

the sequence. To this end, HDNA assigns holographic and

(pseudo)random hypervector with i.i.d. components and D
dimensions to DNA bases (LA, LC, LG, LT). Each element

within a hypervector is assigned a 0 or 1 value randomly.

This along with long dimensionality makes these hypervectors

semi-orthogonal such that:

δ (Li, L j)< D/2, i, j ∈ {A, C, G, T} & i �= j

where δ measures the similarity between the hypervectors.

We will propose two encoding schemes for HDNA to map

and classify data to high-dimensional spaces: (i) Encoder I, a

Ngram-based encoding which uses permutation and addition to

encode the DNA sequences to hypervectors and (ii) Encoder II,

a record-based encoding which maps DNA sequences to high-

dimensional space using multiplication and addition. Through

this section, we will first explain the functionality of these two

encoding schemes. In section IV, we explore the accuracy,

efficiency and robustness which these two encoding schemes

can provide.

B. Encoder I: Ngram-based encoding

Encoding Module: HDNA combines base hypervectors in

order to generate a hypervector representing a DNA sequence.

The goal of DNA sequencing is to find the sequence patterns

by determining the exact position of bases in a sequence.

HDNA considers the impact of positions in generating the

sequence hypervector by applying a unique number of permu-

tations for bases in each position. Each permutation generates

a hypervector which is unrelated to the given hypervector

δ (ρ(LA), LA) ≈ D/2. This operation is commonly used for

storing a sequence of tokens in a single hypervector. In the

geometrical sense, the permutation rotates the hypervector in

the space. To encode DNA sequences of length m, HDNA

looks at the the sequence in an n-gram windows (n = 2,3, . . .).
The hypervectors in an n-gram is combined as follows:

S1 = [L1 +ρ(L2)+ρρ(L3)+ · · ·+ρ...ρ(LN)]

{L1, L2, . . . ,LN} ∈ {LA, LC, LG, LT}
Using this encoding, the first element in n-gram takes no

permutation. The second element gets a single permutation and

in general ith position in n-gram is permuted by n−1 position.

This technique differentiates the impact of bits, as well as

their physical position on the final sequence hypervector. Next,

an n-gram window shifts by a single position over DNA

sequence and encodes the new sequence in n-gram windows

to a binarized hypervector(S2). This process continues until

n-gram windows cover all elements in DNA sequence and

generate the last n-gram hypervector (Sm−n+1).

All generated n-gram hypervectors are added together

(element-wise) in order to generate a new hypervector repre-

senting the DNA sequence. The generated sequence hypervec-

tor can have integer elements. Hypervectors with integer ele-

ments increase the cost of HDNA computation. Hence, HDNA

binarizes such hypervector by applying majority function over

each dimension of S1.

S = [S1+S2+ · · ·+Sm−n+1]

In this equation, Majority is denoted as [+] and it checks

each dimension of all hypervectors combined together. If

there exists more 1s than 0s on that dimension, the binarized

hypervector sets to 1 on that dimension, otherwise it assigns

to 0. The result of the majority function preserves similarity to

its component hypervectors i.e., δ ([LA+LC +LT], LA)< D/2.

Hence, the majority function is well suited for representing

sets. Since each class can have multiple DNA sequence within

it, our design generates a DNA hypervector using the same

encoding and then adds these hypervectors to generate a

unique hypervector representing each class. HDNA generate

all class hypervectors in the same way.

In training, HDNA generates the class hypervectors and

then stores them in an associative memory module. During

test/inference, HDNA uses the same encoding scheme to

encode an unknown DNA sequence to a query hypervector. To

perform classification task, associative memory measures the

similarity of query hypervector to all class hypervectors and

selects a class with the maximum similarity. This similarity

is defined as Hamming distance between the query and class

hypervectors.

C. Encoder II:Record-based encoding

Encoding Module: Although HDNA using Encoder I

achieves classification accuracy of 96%, this accuracy can

be further improved using a unique signature for each base

that exists within the DNA sequence. The Encoder I saves the

sequence of the bases within each n-gram using permutation,

however, it cannot store the order of the n-grams in the final

sequence hypervector. This is important in DNA sequencing as

DNAs can often span over long lengths. In order to consider

the order of n-grams in the encoded DNA hypervector, we

propose another encoding scheme which considers a unique

identifier for each DNA position within the sequence. This

encoding assigns a unique identification (ID) hypervector

936

ρ

ρ … ρ

(a)

Query hypervector

Class1 hypervector

Query
hypervector

Similarity measurement

n-1

Bi
na

ri
za

tio
n

Letter1 hypervector

Shifted Lettern

Lettern hypervector

Shifted Letter2

Letter2 hypervector

Accumulation

Com Com

AC AC
THR=

n*(m-n+1)/2

+

+
n-gram hypervector

Sequence hypervector

Letter hypervector

IDm hypervector
Letterm hypervector

ID1 hypervector
Letter1 hypervector

ID memory
(ID1, ID2,…, IDm)

Letter2 hypervector
*

*

*

Query hypervector

Class2 hypervector
Similarity measurement

Query hypervector

ClassC hypervector
Similarity measurement

Add

Add

Add

Tr
ee

-b
as

ed
 C

om
pa

ra
to

r

ID2 hypervector

Minimum Hamming
Distance Detector

(b) (c)
Item memory

(LA, LC, LG, LT)
Item memory

(LA, LC, LG, LT)

D

D
Query

hypervector

Sequence hypervector

D

Sequence hypervector
Comparation

Com Com THR=m/2Comparation

Fig. 1. Overview of HDNA architecture consisting of: (a) Encoder I architecture, (b) Encoder II architecture and (c) associative memory.

to each base position. These ID hypervectors are generated

randomly such that each base position in sequence will get a

unique hypervector {ID1, ID2, . . . , IDm}. These hypervectors

are semi-orthogonal as they are generated in fully random

manner.

δ (IDi, ID j)< D/2, 1 � i, j & i �= j

The m is defined by the length of the longest DNA sequence

in the training dataset. Using these positional hypervectors,

the DNA sequence can be generated in a single step using the

following equations:

S = [ID1 ∗L1 + ID2 ∗L2 + ID3 ∗L3 + · · ·+ IDm ∗ (Lm)]

{L1, L2, . . . ,Lm} ∈ {LA, LC, LG, LT}
Encoder II requires element-wise multiplication of the posi-

tion hypervectors with the base associated hypervectors. This

technique differentiates the impact of each base on the final

sequence hypervector depending on the position of such base

in the sequence. Similar to Encoder I, the sequence hypervec-

tor is binarized using majority function over each dimension.

This encoder uses the same associative memory explained

above. Our evaluation shows that using this encoding improves

the classification accuracy of HDNA to 99%. In terms of

hardware efficiency, this encoding would have higher memory

requirement and energy cost compare to scheme.

III. HARDWARE IMPLEMENTATION

In this section, we describe the digital hardware imple-

mentation of the HDNA accelerator and the trade-off of

HDNA using Encoder I and Encoder II. Figure 1 shows

the overview architecture of proposed HDNA consisting of

encoder (Encoder I or Encoder II) and associative memory.

1) Encoder I: Figure 1a shows the structure of the En-

coder I. Encoder I works based on permutation and addi-

tion. Encoders use an item memory block to store four pre-

generated base hypervectors ({LA, LC, LG, LT}). During

the test/inference, Encoder I reads the DNA sequences and

accordingly fetches a base hypervector from the item memory.

The encoder applies a permutation to each vector in n-gram

depending on their physical positions. Next, all permuted

hypervectors within the n-gram add together element-wise

in order to generate a unique sequence hypervector. Finally,

a DNA hypervectors are binarized using comaprator block,

which compares each hypervector element with half of the

maximum possible value that elements can get (T HR = n ∗
(m−n+1)/2). In each dimension, if the sequence value is less

than T HR, the value in that dimension will go to 0, otherwise

it will be assigned to 1 bit.

2) Encoder II: Figure 1b shows the overview of Encoder II

architecture. This encoder has two memory blocks: item

memory and position memory. Similar to Encoder I, item

memory stores the base hypervectors while position memory

stores a unique hypervector corresponding to each position

in a sequence. In comparison to item memory, the size of

required position memory is very large and is determined by

the maximum length of DNA sequence in the dataset. This

memory increases the cost of Encoder II. In Encoder II, the

encoding happens by multiplying the position and base hy-

pervectors over the whole DNA sequence. This multiplication

in hardware is implemented using an XOR array. Then, the m
generated hypervectors are accumulated element-wise using a

counter block. Finally, comparator blocks binarizes the vector

by comparing each element with half of a maximum value

each element can get (T HR = m/2). In any dimension, if the

value is larger than m/2, it will be assigned to 1, otherwise it

will be set to 0.

3) Associative Memory: As Figure 1c shows, both pro-

posed encoding schemes use the same associative memory

architecture for classification. In hardware, Hamming distance

similarity implements using an XOR array. XOR gates compare

bit similarity of the query and class hypervectors. An adder

block counts the number of 1s at the output of XORs comparing

two vectors. Finally, a comparator block in tree structure

compares the Hamming distance similarities and selects a class

which has the minimum distance with a query hypervector.

937

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We describe the functionality of the proposed HDNA using

a Python implementation. We compare the power consumption

and execution time of the HDNA architectures running on

traditional CPU cores. We used an Intel core i7 7600 processor

with 16 GB memory (4-core, 2.8GHz) to test different designs.

Power consumption is measured by Hioki 3334 power meter.

To estimate the cost of digital design, we also use a standard

cell-based flow to design dedicated hardware for HDNA. We

describe the proposed designs using RTL System-Verilog. For

the synthesis, we use Synopsys Design Compiler with the

TSMC 45 nm technology library, the general purpose process

with high VT H cells. We measured the power consumption of

HD designs using Synopsys PrimeTime at (1 V, 25◦C, TT)

corner.

To assess the efficiency of proposed design, we apply the

application of HDNA over two popular DNA classification

datasets, Empirical [11] and Molecular Biology [12] datasets.

Both datasets are split into two parts: 80% per species for

training and 20% for testing.

B. HDNA Accuracy

We compare the classification accuracy of of HDNA and

the state-of-the-art classification techniques over Empirical and

Molecular biology dataset [13], listed in Table I and Table II

respectively. HDNA using Encoder I ad Encoder II can achieve

at least 5.21% and 4.87% higher classification accuracy as

compared to prior techniques. For molecular biology dataset,

our evaluation shows that HDNA using Encoder I can achieve

comparable accuracy as other classification techniques while

Encoder II can provide 100% classification accuracy. This

accuracy is 5.87% higher than other classification algorithms.

In addition, we compare the efficiency of HDNA designs

with SVM and K-NN designs. We run all algorithms

implemented in python code on CPU over Empirical and

Molecular biology datasets. Table I and Table II show the

average energy consumption and execution times of different

designs when a query runs on CPU cores. All algorithms

are written to provide the maximum parallelism. Comparing

HDNA design with prior work shows that HDNA using

Encoder I (Encoder II) can achieve at least 2.98× (4.32×)

speedup and 3.26× (2.05×) energy efficiency improvement

over empirical dataset. Similarly, over molecular biology

dataset, Encoder I (Encoder II) provides at least 4.38×
(5.44%) speedup and 4.34× (2.47×) energy efficiency

improvement as compare to other classification techniques.

As traditional cores have not been designed to work with

long hypervectors, we expect HDNA provides much more

efficiency when it implements on digital RTL design. The

following sections show the efficiency of HDNA design over

digital implementation.

TABLE I
ACCURACY AND EFFICIENCY OF SVM, BAYES AND THE PROPOSED

HDNA OVER EMPIRICAL DATASET (ENCODER I WITH n = 12).

Classes SVM Bayes Encoder I Encoder II

Accuracy

Cypraeidae 94.3% 93.2% 100% 100%
Drosophila 98.3% 96.5% 100% 100%

Inga 89.8% 91.5% 100% 100%
Bats 100.0% 100.0 98.2% 100%

Fishes 95.5% 97.3% 100% 95.2%
Birds 98.4% 94.3% 99.7% 100%
Fungi 80.0% 70.0% 100% 100%
Algae 100.0% 100.0% 100% 100%

Average 94.53% 92.85% 99.74% 99.40%
Energy Consumption (mJ) 62.03 47.51 14.53 23.16

Execution Time (ms) 2.77 1.73 0.58 0.44

TABLE II
ACCURACY AND EFFICIENCY OF K-NN, KBANN AND HDNA OVER

MOLECULAR BIOLOGY DATASET (ENCODER I WITH n = 10)

Classes K-NN KBANN Encoder I Encoder II

Accuracy

Exon/Intron 94.3% 93.2% 100% 96.7%
Intron/Exon 98.3% 96.5% 100% 91.5%

Neither 89.8% 91.5% 100% 92.15%
Average 94.13% 93.7% 100% 93.4%

Energy Consumption (mJ) 46.60 42.56 9.79 17.21
Execution Time (ms) 2.07 1.36 0.31 0.25

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six

centers in JUMP, an SRC program sponsored by DARPA, and

also NSF grants #1730158 and #1527034.

DISTRIBUTION STATEMENT A. Approved for public re-

lease: distribution is unlimited.

REFERENCES

[1] A. McKenna et al., “The genome analysis toolkit: a mapreduce framework for
analyzing next-generation dna sequencing data,” Genome research, vol. 20,
no. 9, pp. 1297–1303, 2010.

[2] H. Erlich, PCR technology: principles and applications for DNA amplifica-
tion. Springer, 2015.

[3] R. C. Green et al., “Acmg recommendations for reporting of incidental
findings in clinical exome and genome sequencing,” Genetics in medicine:
official journal of the American College of Medical Genetics, vol. 15, no. 7,
p. 565, 2013.

[4] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “Hdna: Energy-efficient
dna sequencing using hyperdimensional computing,” in Biomedical & Health
Informatics (BHI), 2018 IEEE EMBS International Conference on, pp. 271–
274, IEEE, 2018.

[5] P. Kanerva, “Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors,” Cognitive
Computation, vol. 1, no. 2, pp. 139–159, 2009.

[6] P. Kanerva et al., “Random indexing of text samples for latent semantic
analysis,” in Proceedings of the 22nd annual conference of the cognitive
science society, vol. 1036, Citeseer, 2000.

[7] M. Imani et al., “Voicehd: Hyperdimensional computing for efficient speech
recognition,” in IEEE International Conference on Rebooting Computing
(ICRC), IEEE, 2017.

[8] M. Imani, C. Huang, D. Kong, and T. Rosing, “Hierarchical hyperdimensional
computing for energy efficient classification,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC), pp. 1–6, IEEE, 2018.

[9] M. Imani et al., “Exploring hyperdimensional associative memory,” in High
Performance Computer Architecture (HPCA), 2017 IEEE International Sym-
posium on, pp. 445–456, IEEE, 2017.

[10] M. Imani et al., “Low-power sparse hyperdimensional encoder for language
recognition,” IEEE Design & Test, vol. 34, no. 6, pp. 94–101, 2017.

[11] “Empirical datasets:.” http://dmb.iasi.cnr.it/supbarcodes.php.
[12] “Molecular Biology datasets.” https://archive.ics.uci.edu/ml/datasets/

Molecular+Biology+(Splice-junction+Gene+Sequences).
[13] E. Weitschek et al., “Supervised dna barcodes species classification: analysis,

comparisons and results,” BioData mining, vol. 7, no. 1, p. 4, 2014.

938

