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Abstract—Brain-inspired HyperDimensional (HD) computing
emulates cognitive tasks by computing with long binary vectors–
aka hypervectors–as opposed to computing with numbers. How-
ever, we observed that in order to provide acceptable classification
accuracy on practical applications, HD algorithms need to be
trained and tested on non-binary hypervectors. In this paper,
we propose SearcHD, a fully binarized HD computing algorithm
with a fully binary training. SearcHD maps every data points to a
high-dimensional space with binary elements. Instead of training
an HD model with non-binary elements, SearcHD implements
a full binary training method which generates multiple binary
hypervectors for each class. We also use the analog character-
istic of non-volatile memories (NVMs) to perform all encoding,
training, and inference computations in memory. We evaluate
the efficiency and accuracy of SearcHD on a wide range of
classification applications. Our evaluation shows that SearcHD
can provide on average 31.1× higher energy efficiency and 12.8×
faster training as compared to the state-of-the-art HD computing
algorithms.

Index Terms—Brain-inspired computing, Hyperdimensional
computing, Processing in-memory

I. INTRODUCTION

The existing learning algorithms have been shown to be
effective for many different tasks, e.g., object tracking [1],
speech recognition [2], [3], image classification [4], [5], etc.
For instance, Deep Neural Networks (DNNs) have shown great
potential to be used for complicated classification problems.
DNN architectures such as AlexNet [4] and GoogleNet [6]
provide high classification accuracy for complex image classi-
fication tasks, e.g., ImageNet dataset [7]. However, the compu-
tational complexity and memory requirement of DNNs makes
them inefficient for a broad variety of real-life (embedded)
applications where the device resources and power budget is
limited.

Brain-inspired computing models in conjunction with re-
cent advancements in memory technologies have opened new
avenues for efficient execution of a wide variety of cognitive
tasks on nano-scale fabrics [8]–[11]. Hyperdimensional (HD)
computing is based on the understanding that brains compute
with patterns of neural activity that are not readily associated
with numbers [12]. HD computing builds upon a well-defined
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set of operations with random HD vectors and is extremely
robust in the presence of hardware failures. HD computing
offers a computational paradigm that can be easily applied
to learning problems [12]–[19]. Its main differentiation from
conventional computing system is that in HD computing, data
is represented as approximate patterns, which can favorably
scale for many learning applications.

HD computation runs in three steps: encoding, training, and
inference [20].

• The encoding module maps input data into high-
dimensional space using a set of randomly generated
hypervectors.

• In training, a traditional HD algorithm combines the
encoded hypervectors in order to generate a hypervector
representing each class. The algorithm simply performs
element-wise additions on the hypervectors which belong
to the same class.

• In inference, an associative search checks the similarity
of an encoded test hypervector with all trained class hy-
pervectors and returns the class with the highest similarity
score.

While HD computing can be implemented in conventional
digital hardware, implementation on approximate hardware
can yield substantial efficiency gains with minimal to zero
loss in accuracy [21].

Processing in-memory (PIM) is a promising solution to ac-
celerate HD computations running for memory-centric appli-
cations by enabling parallelism [22]–[30]. PIM performs some
or all of a set of computation tasks (e.g., bit-wise or search
computations) inside the memory without using any process-
ing cores. Thus application performance may be accelerated
significantly by avoiding the memory access bottleneck. In
addition, PIM architectures enable analog-based computation
in order to perform approximate but ultra-fast computation
(i.e., existing PIM architectures perform computation with
binary vectors stored in memory rows [31]). Past efforts have
tried to accelerate HD computing via PIM. For example, work
in [8], [32] designed in-memory hardware to accelerate the
encoding module. Work in [21] designed a content-addressable
memory which can perform the associative search operations
for inference over binary hypervectors using a Hamming
distance metric. However, the aforementioned accelerators can
only work with binary vectors, which in turns only provide
high classification accuracies on simpler problems, e.g., lan-
guage recognition which uses small n-gram windows of size
five to detect words in a language. In this work, we observed
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Fig. 1. Overview of HD computing in performing the classification task.

that acceptable classification accuracy can be achieved using
non-binary encoded hypervectors, non-binary training, and
associative search on a non-binary model using metrics such
as cosine similarity. This hinders the implementation of many
steps of the existing HD computing algorithms using in-
memory operations.

In order to fully exploit the advantage of in-memory archi-
tecture, we propose SearcHD, a fully binary HD computing
algorithm with probability-based training. SearcHD maps ev-
ery data point to high-dimensional space with binary elements
and then it assigns multiple vectors representing each class.
Instead of performing addition, SearcHD performs binary
training by changing each class hypervector depending on how
well it matches with a class that it belongs to. Unlike most
recent learning algorithms, e.g., neural networks, SearcHD
supports a single-pass training, where it trains a model by one
time passing through a training dataset. The inference step is
performed by using a Hamming distance similarity check of
a binary query with all pre-stored class hypervectors. All HD
computing blocks including encoding, training, and inference
are implemented fully in memory without using any non-
binary operation. SearcHD exploits the analog characteristic of
ReRAMs to perform the encoding functionalities such as XOR
and majority functions, and training/inference functionalities
such as the associative search on ReRAMs.

We have tested the accuracy and efficiency of the pro-
posed SearcHD on four practical classification applications.
Our evaluation shows that SearcHD can provide on average
31.1× higher energy efficiency and 12.8× faster training as
compared to the state-of-the-art HD computing algorithms.
In addition, during inference, SearcHD can achieve 178.7×
higher energy efficiency and 14.1× faster computation while
providing 6.5% higher classification accuracy than state-of-
the-art HD computing algorithms.

II. BACKGROUND AND MOTIVATION

Hyperdimensional computation is a novel computational
paradigm inspired by how the brain represents data. HD
computing has previously shown to address energy bounds

which plague deterministic computing [12], [33]. HD com-
puting replaces the conventional computing approach with
patterns of neural activity that are not readily associated with
numbers. Due to the large size of brain circuits, this neurons
pattern can be represented using vectors in thousands of
dimensions, which are called hypervectors. Hypervectors are
holographic and (pseudo) random with i.i.d. components. Each
hypervector stores the information across all its components,
where no component has more responsibility to store any
piece of information than another. This makes HD computing
extremely robust against failures. HD computing supports a
well-defined set of operations such as binding that forms a new
hypervector which associates two hypervectors, and bundling
that combines several hypervectors into a single composite
hypervector. Reasoning in HD computing is based on the
similarity between the hypervectors.

Prior work applied HD computing to a wide range of
applications including: analogy-based reasoning [34], latent
semantic analysis [35], language recognition [36], [37], text
classification [38], gesture recognition [39], prediction from
multimodal sensor fusion [14], [40], robotics [41], and speech
recognition [15], [42]. Figure 1 shows an overview of how HD
computing performs a classification task. The first step in HD
computing is to map (encode) raw data into a high-dimensional
space. Various encoding methods have been proposed to
handle different data types such as time series, text-like data,
and feature vectors [13], [15]–[17], [20], [42]. Regardless
of the data type, the encoded data is represented with a D
dimensional vector (H ∈ND) [15], [42]. Training is performed
by computing the element-wise sum of all hypervectors corre-
sponding to the same class ({C1, . . . ,CK},Ci ∈ ND), as shown
in Figure 1. For example, in an application with k classes, the
ith class hypervector can be computed as:

Ci = ∑
∀ j∈classi

H j

This training operation involves many integer (non-binary)
additions, which makes the HD computation costly. During
inference, we simply compare a similarity score between
an encoded query hypervector and each class hypervector,
returning the most similar class. Prior work has typically
used the cosine similarity (inner product) which involves a
large number of non-binary additions and multiplications. For
example, for an application with k classes, this similarity check
involves k×D multiplication and addition operations, where
the hypervector dimension is D, commonly 10,000.

In terms of hardware acceleration, prior work tried to
binarize the HD trained model in order to simplify HD com-
puting inference [20], [42]. Thanks to the inherent memory-
centric operations of HD computing, several works design in-
memory architectures to accelerate HD computing [8], [21],
[32]. The work in [8] fabricated a 3D VRRAM/CMOS to
support the central operations of HD computing on 4-layer 3D
VRRAM/FinFET. Work in [21] designed three popular digital,
resistive and analog associative memories in order to accelerate
Hamming distance similarity in HD computing inference. The
work in [32] exploited carbon nanotube FETs and resistive
memory to design an HD computing algorithm for text clas-
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sification. However, these methods only support Hamming
distance similarity between binarized hypervectors. In this
paper, we observe that HD computing algorithms require the
use of integer values and cosine similarity metrics in order
to provide acceptable accuracies on practical classification
problems.

Table I shows the classification accuracy and the inference
efficiency of HD computing on four practical applications
(large feature size) when using binary and non-binary models.
All efficiency results are reported for running the applications
on digital ASIC hardware [15], [20]. Our evaluation shows
that HD computing with the binary model has 4% lower
classification accuracy than the non-binary model. However,
in terms of efficiency, HD computing with the binary model
can achieve on average 6.1× faster computation than the non-
binary model. In addition, HD computing with the binary
model can use Hamming distance for similarity check of
a query and class hypervectors which can be accelerated
in a content addressable memory (CAM) [21], [47]. Our
evaluation shows that such analog design can further speedup
the inference performance by 6.9× as compared to digital
design. This motivates us to design a novel HD computing
algorithm which can achieve the efficiency of a binary model
as well as the accuracy of the non-binary model.

III. SEARCHD: A FULLY BINARY HD COMPUTING

We propose SearcHD, a fully binary HD computing al-
gorithm, which can perform all HD computing operations,
i.e., encoding, training, and inference, using binary operations.
In the rest of the section, we explain the details of the
proposed approach. We first explain the functionality of the
encoding, training, and inference modules, and then illustrate
how module functionality can be supported in hardware.

A. SearcHD Encoding

There are different types of encoding methods to map
data points into an HD space. For a general form of feature
vectors, there are two popular encoding approaches; (i) record-
based and (ii) Ngram-based encoding [15]. Although SearcHD
functionality is independent of the encoding module, here we
use a record-based encoding which is more hardware friendly
and only involves bitwise operations as shown in Figure 2a.
This encoding maps any feature vector F = { f1, f2, . . . , fn}
with n features ( fi ∈ N), into H = {h1, h2, . . . , hD} with D
dimensions (hi ∈ {0,1}) [15], [48]. This encoding finds the
minimum and maximum feature values and quantizes that
range linearly into m levels. Then, it assigns a random binary
hypervector with D dimensions to each of the quantized level
{L1, . . . ,Lm}. The level hypervectors need to have correlation,
such that the neighbor levels are assigned to similar hypervec-
tors. For example, we generate the first level hypervector, L1,
by sampling uniformly at random from 0 or 1 values. The next
level hypervectors are created by flipping D/m random bits of
the previous level. As a result, the level hypervectors have
similar values if the corresponding original data are closer,
while L1 and Lm will be nearly orthogonal. The orthogonality
between the bipolar/binary hypervectors defines when two
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Fig. 2. Overview of SearcHD encoding and stochastic training.

vectors have exactly 50% similar bits. This results in a zero
cosine similarity between the orthogonal vectors.

Similarly, the encoding module assigns a random binary
hypervector to each existing feature index, {ID1, . . . , IDn},
where ID ∈ {0,1}D. The encoding linearly combines the
feature values over different indices:

H = ID1⊕L1 + ID2⊕ L2 + . . . + IDn⊕Ln.

where H is the non-binary encoded hypervector, ⊕ is XOR
operation, and Li ∈ {L1, . . . ,Lm} is the binary hypervector cor-
responding to the i-th feature of vector F . In this encoding, IDs
preserve the position of each feature value in a combined set.
SearcHD encodes this hypervector by passing each dimension
through a majority function. This approach compares each
dimension with a threshold value, where a threshold value
is equal to half of the number of features (T HR = n/2).

B. Binary Stochastic Training

In HD computing, when two data hypervectors are ran-
domly generated, the probability that their hypervectors are
orthogonal to each other is high. In training, hypervectors
of data in the same class are made appropriately more or
less similar to each other. In more recent HD computing
algorithms [15], [20], [39], training consists of additions of
the encoded hypervectors, thus requiring a large number of
arithmetic operations to generate non-binary class hypervec-
tors. Our proposed SearcHD is a framework for binarization
of the HD computing algorithm during both training and
inference. SearcHD removes the addition operation from train-
ing by exploiting bitwise substitution which trains a model
by stochastically sharing the query hypervectors elements
with each class hypervector. Since HD computing with a
binary model provides low classification accuracy, SearcHD
exploits vector quantization to represent an HD model using
multiple vectors per class. This enables SearcHD to store more
information in each class while keeping the model as binary
vectors.

1) SearcHD Bitwise Substitution: SearcHD removes all
arithmetic operations from training by replacing addition with
bitwise substitution. Assume A and B are two randomly
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TABLE I
CLASSIFICATION ACCURACY AND EFFICIENCY OF HD COMPUTING USING BINARY AND NON-BINARY MODELS.

Applications Accuracy Inference Execution (ms)
Non-Binary Binary Non-Binary Binary Analog [21]

Speech Recognition [43] 83.4% 78.6% 3240.5 538.4 74.1
Cardiotocograms [44] 78.7% 73.5% 791.0 131.8 18.2

Activity Recognition [45] 82.3% 79.2% 2025.2 337.7 50.9
Security Prediction [46] 94.0% 91.4% 494.3 272.9 13.2

generated vectors. In order to bring vector A closer to vector
B, a random (typically small) subset of vector B’s indices
is forced onto vector A by setting those indices in vector
A to match the bits in vector B. Therefore, the Hamming
distance between vector A and B is made smaller through
partial cloning. When vector A and B are already similar, then
indices selected probably contain the same bits, and thus the
information in A does not change. This operation is blind
since we do not search for indices where A and B differ,
and then ”fix” those indices. Indices are chosen randomly
and independently of whatever is in vector A or vector B.
In addition, the operation is one directional. Only the bits in
vector A are transformed to match those in vector B, while
the bits in vector B stay the same. In this sense, A inherits
an arbitrary section of vector B. We call vector A the binary
accumulator and vector B the operand. We refer to this process
as bitwise substitution.

2) SearcHD Vector Quantization: Here, we present our
fully binary stochastic training approach, which enables the
entire HD training process to be performed in the binary
domain. Similar to traditional HD computing algorithms,
SearcHD trains a model by combining the encoded training
hypervectors. As we explained in Section II, HD computing
using binary model results in very low classification accuracy.
In addition, moving to the non-binary domain makes HD
computing significantly more costly and inefficient. In this
work, we propose vector quantization We exploit multiple
vectors to represent each class in the training of SearcHD. The
training keeps distinct information of each class in separated
hypervectors, resulting in the learning of a more complex
model when using multiple vectors per class. For each class,
we generate N models (where N is generally between 4 and
64). Below we explain the details of the proposed algorithm:

• Initialize the N model vectors to a class by randomly sam-
pling from the encoded training hypervector of that class
as shown in Figure 2b. For an application with k classes,
the approach needs to store N×k binary hypervectors as
the HD model. For example, we can represent the with

class using N initial binary hypervectors {Ci
1,C

i
2, · · · ,Ci

N},
where Ci ∈ {0,1}D

• The training in HD computing starts by checking the sim-
ilarity of each encoded data point (training dataset) to the
initial model. The similarity check only happens between
the encoded data and N class hypervectors corresponding
to that label. For each piece of training data Q in a class,
find the model with the lowest Hamming distance and
update the model using bitwise substitution (explained

in Section III-B1). For example, in the ith class, if Ci
k

is selected as a class with the highest similarity, we can
update the model using:

Ci
k =Ci

k (+) Q

In the above equation, (+) is the bitwise substitution operation,
Q is the operand, and Ci

k is the binary accumulator. This algo-
rithm helps reduce the memory access overhead introduced by
using bitwise substitution. This approach accumulates training
data more intelligently: given the choice of adding an incoming
piece of data to one of N model vectors, we can select the
model with the lowest Hamming distance to ensure that we
do not needlessly encode information in our models.

3) SearcHD Training Process: Binary substitution updates
each dimension of the selected class stochastically with p =
α × (1− δ ) probability, where δ is a similarity between the
query and the class hypervector and α is a learning rate.
In other words, with flip probability p, each element of the
selected class hypervector will be replaced with the elements
of the query hypervector. α is the learning rate (0 < α) which
determines how frequently the model needs to be updated
during the training. Using a small learning rate is conservative,
as the model will have minor changes during the training.
A larger learning rate will result in a major change to a
model after each iteration, resulting in a higher probability
of divergence. We explore the impact of learning rate on the
classification accuracy in Section V-B

C. Inference

After updating the model on the entire training dataset,
SearcHD uses the trained model for the rest of the classifica-
tion during inference. The classification checks the similarity
of each encoded test data vector to all class hypervectors. In
other words, a query hypervector is compared with all N× k
class hyprevectors. Finally, a query identifies a class with the
maximum Hamming distance similarity with the query data.

IV. IN-MEMORY CLASSIFICATION IN HD SPACE

SearcHD requires bitwise computations over hypervectors
in both training and inference modes. These operations are fast
and efficient when compared to floating point operations used
by neural networks or other classification algorithms [8], [21].
This enables HD computing to be trained and tested on light-
weight embedded devices. However, as traditional CPU/GPU
cores have not been designed to efficiently perform bitwise
operations over long vectors, we provide a custom hardware
realization of SearcHD. Here we show how to use the analog
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characteristics of ReRAMs, in particular ReRAM devices, to
process all HD computing functionality within a memory.

A. Overview

HD computing operations can be supported using two main
encoding and associative search blocks. In Section IV-B, we
explain the details of the in-memory implementation of the
encoding module.

During training, SearcHD requires only a single pass over
the training set. For each class, SearcHD first randomly selects
N data points from the training dataset as representative class
hypervectors. Then, SearcHD uses CAM blocks to check the
similarity of each encoded hypervector (from the training
dataset) with the class hypervectors. Depending on the tag
of input data, SearcHD only needs to perform the similarity
check on N hypervectors of the same class as input data. For
each training sample, we find a hypervector in a class which
has the highest similarity with the encoded hypervector using
a memory block which supports the nearest Hamming distance
search. Then, we update the class hypervector depending on
how well/close it is matched with the query hypervector (δ ).
To implement this, we exploit an analog characteristic of
ReRAMs to identify how well a query data is matched with
the most similar class. We exploit the feature of ReRAM
devices to generate a random stochastic sequence with the
desired probability. This sequence needs to have a similar
number of zeros as the difference between a query and the
class hypervector. Finally, we update the elements of a selected
class by performing an in-memory XNOR operation between
(i) the class and (ii) the stochastically generated hypervector.
In the following section, we explain how SearcHD can support
all of these operations in an analog fashion.

During inference, we employ the same CAM block used
in training to implement the nearest Hamming distance search
between a query and all class hypervectors. For an application
with k classes and N class hypervectors, SearcHD requires
similarity comparisons between the query and k×N stored

class hypervectors. The hardware introduced in Section IV-C,
explains the details of in-memory search implementation.

B. In-Memory Encoding

The encoder, shown in Figure 3a, implements bitwise XOR
operations between hypervectors P and L over different fea-
tures, and thresholds the results. To support this functionality,
our analog design assigns a small size crossbar memory (m+1
rows with D dimensions) to each input feature, where the
crossbar memory stores the corresponding position hypervec-
tor (ID) along with all m possible level hypervectors that each
feature can take (m is the number of level hypervectors, as
defined in Section III). The results of all XOR operations are
written to another crossbar memory. Next, the memory that
stores the XOR results perform the bitwise majority operation
on the entire memory. In conventional crossbar memory, the
write in the majority block needs to perform serially over
different features. However, in this work, we use switches
(shown in Figure 3a) that enables parallel write in the majority
block. These switches portioned memory rows into a separated
block, enabling all XOR results to be written in majority block
independently. We accomplish this operation by designing
a sense amplifier for the crossbar memory that can detect
whether the number of 1’s is above a certain threshold (T HR).
This Majority function does not involve actual counting but
uses the analog characteristics of ReRAM devices, making it
a significantly faster and more efficient design.

In-Memory XOR: To enable an XOR operation as required
by the encoding module, the row driver must activate the
line corresponding to the position hypervector (ID shown in
Figure 3a). Depending on the feature value, the row driver
activates one more row in the crossbar memory which cor-
responds to the feature value. Our analog design supports
bitwise XOR operations inside the crossbar memory among two
activated rows. This design enables in-memory XOR operations
by making a small modification to the sense amplifier of
the crossbar memory, as shown in Figure 3b. We place a



6

R
o
w

 D
r
iv

e
r

Clk

B
u

ff
e
r

L
a
tc

h

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

CAM

Cell

D

Ganged 

Inverter

Ganged 

Inverter

Ganged 

Inverter

Input Buffer

(a) Encoded Query Hypervector Latch Stage

G
a
n

g
ed

 

In
v

er
to

r

ML1

ML2

MLc

(b)

W/L=I W/L=J
ML1

MLc

Buffer

MLC

W/L=IW/L=J

ML2

Buffer

VTH

ML

Vk

+

_

ADCC

Sample Time 

Generation
α  

Distance Detector

D
is

ta
n

ce
 D

e
te

c
to

r

(c)

(d)

Fig. 4. (a) CAM-based associative memory. (b) The structure of the CAM sense amplifier, and (c) the ganged circuit and (d) the distance detector circuit.

modified sense amplifier at the tail of each vertical bitline
(BL). The BL current passes through the ROR and RAND, and
changes the voltage in node ‘x’ and ‘y’. A voltage larger
than a threshold in node ‘x’ and ‘y’ results in inverting
the output values of the inverters, realizing the AND and
OR operations. We use the combination of AND and OR
operations to generate XOR. In our design, ROR, RAND, and
VR are tuned to ensure the correct functionality of the design
considering process variations. It should be noted that the
same XOR functionality could be implemented using a series
of MAGIC NOR operation introduced by S. Kvatinsky [49].
The advantage of this approach is that we do not need to make
any changes to the sense amplifier. However, the clock cycle
of MAGIC NOR is at the order of 1ns, while the proposed
approach computes XOR in less than 300ps.

In-Memory Majority: Figure 3c shows the sense amplifier
designed to implement the majority function. To evaluate
this function, a row driver activates all rows of the crossbar
memory. Any cell with low resistance injects current into the
corresponding vertical BL. The number of 0s in each column
determines the amount of current in the BL. The charging
rate of the capacitor Cm in the proposed sense amplifier
depends on the number of zeroes in each column. The sense
amplifier samples the capacitor voltage at a specific time,
which intuitively is the same as comparing the BL current with
a T HR = n/2 value. Since the charging current is constant,
the voltage grows linearly with time, thus the ”specific time”
can be equal to twice the time where Cm is charged by the
maximum current. Our design can use different pre-determined
T HR values in order to tune the level of thresholding for
applications with different feature sizes.

C. In-Memory Associative Search

The goal of this search operation is to find a class with
the highest similarity. We employ crossbar CAMs, which can
search the nearest Hamming distance vector with respect to
the stored class hypervectors. Traditionally, CAMs are only
designed to search for an exact match and cannot look for a
row with the smallest Hamming distance.

Figure 4a shows an architectural schematic of a conventional
CAM. A search operation in CAM starts with pre-charging
all CAM match-lines (MLs). An input data vector is applied

to a CAM after passing through an input buffer. The goal
of the buffer is to increase the driving strength of the input
data and distribute the input data across the entire memory
at approximately the same time. Finally, each CAM row is
compared with the input data. Conventional CAM can detect
a row that contains an exact matching, i.e., where all bits of
the row exactly match with the bits in the input data.

In this work, we exploit the analog characteristics of CAM
blocks to detect the row that has the minimum Hamming
distance with the query vector. Each CAM row with stored
bits that are different from the provided input will discharge
the associated ML. The rate of ML discharging depends on the
number of mismatch bits in each CAM row. A row with the
nearest Hamming distance to the input data is the one with
the lowest ML discharging current, resulting in the longest
discharging time. To find this row, we need to keep track of
all other MLs and determine when only a single ML is still
discharging.

Figure 4b shows the general structure of the proposed CAM
sense amplifier. We implement nearest Hamming distance
search functionality by detecting the CAM row (most closely
matched line) which discharges last. This is realized with three
main blocks: (i) detector circuitry which samples the voltage
of all MLs and detects the ML with the slowest discharge rate,
(ii) a buffer stage which delays the ML voltage propagation
to the output node, and (iii) a latch block which samples
buffer output when the detector circuit detects that all MLs are
discharged. The last edge detection can be easily implemented
by NORing the outputs of all matched lines, which is set
when all MLs are discharged to zero. However, a conventional
implementation of NOR leads to a huge number of transistors
and increased latency as the number of inputs rises beyond 3.

Here, we propose the use of a Ganged CMOS-based [50]
NOR circuit, which not only provides faster results but can also
support larger fan-in with acceptable noise margin. Figures 3b
and c show the circuit consisting of skewed inverters with
their outputs shorted together. The behavior of the circuit is
defined by the ratio r = I/J, where I and J are the sizes of the
pull-up and pull down transistors, respectively. For r > q, the
inverter is highly skewed and has a stronger pull-up, while for
r < q, it is lowly skewed and has a stronger pull-down. (q is
a technology dependent parameter.) If r is sufficiently small,
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outputs of multiple skewed inverters can be shorted together
to implement the NOR operation. Figures 4b and c show that
the output of the circuit is set only when all the nMOS devices
are off, i.e. all MLs are zero. The output of ganged NOR circuit
controls the latch. The buffer stage used in the sense circuit
adds delay to the ML voltage. This delay should be sufficiently
large to ensure that we can latch on the last falling ML, when
the ganged logic senses that all MLs have fallen to zero.

D. In-Memory Distance Detector

In training, SearcHD uses the proposed CAM block to find a
hypervector which has the highest similarity with a query data.
Then, SearcHD needs to update the selected class hypervector
with the probability that is proportional to how well a query is
matched with the class. After finding a class hypervector with
the highest similarity, SearcHD performs the search operation
on the selected row. This search operation finds how closely
the selected row matches with the query data. This can be
sensed by the distance detector circuit shown in Figure 4d.
Our analog implementation transfers the discharging current
of a CAM row into a voltage (Vk) and compares it with a
reference voltage (VT H ). The reference voltage is the minimum
voltage that VK can take when all query dimensions of a query
hypervector match with the class hypervector.

E. In-Memory Random Generation & Model Update

Depending on the distance similarity difference betweem a
query and the class hypervector, SearcHD generates a random
sequence of a bit stream which has a proportional number
of 1s. For example, for a query with δ similarity between
the query and the class hypervector, SearcHD generates a
random sequence with p = α× (1−δ ) probability of ‘1‘ bits.
During training, SearcHD selects the class hypervector with
the minimum Hamming distance from the query data, and
updates the selected class hypervector by bitwise substitution
of a query and the class hypervector. This bitwise substitution
is performed stochastically on random p×D of the class
dimensions. This requires generating a random number with
a specific probability.

ReRAM switching is a stochastic process, thus the write
operation in a memristor device happens with a probability
which follows a Poisson distribution [51], [52]. This probabil-
ity depends on several factors such as programming voltage
and write pulse time. For a given programming voltage, we
can define the switching probability as:

P(t) = 1− e−t/τ
τ(V ) = τ0e−V/V0

where τ is the characterized switching time that depends on the
programming voltage, V , and τ0 and V0 are the fitting param-
eters. To ensure memristor switching with high probability,
the pulse width should be long enough. For example, using
t = τ , the switching probability is as low as P(t = τ) = 63%,
while using t = 10τ increases this probability to P(t = 10τ)
=99.995%. We exploit the non-deterministic ReRAM switch-
ing property to generate random numbers [53], [54]. Depend-
ing on the applied voltage, a pulse time is assigned to set the
device switching probability to the desired percentage. For

example, to generate numbers with 50% probability, the pulse
time (α) has been set to ensure p(t = ατ) = 50%.

Assume a class hypervector with D dimensions, Ci =
{c1,c2, · · · ,cD}. Random generation creates a bit sequence
with D dimensions, R = {r1,r2, · · · ,rD} but with p probability
of bits to be ‘1‘. We update the selected class hypervector
in two steps: (i) we read the random hypervector R using
a memory sense amplifier to select the bits for the bitwise
substitution operation. Then, we activate the row of a selected
class hypervector and apply R as a bitline buffer to reset
corresponding class elements where R has ‘1‘ values there.
(ii), SearcHD reads the query hypervector (Q) and calculates
the AND operation of the query and R hypervector. Our design
uses the result of the AND operation as a bitline buffer in order
to set the class elements in all dimensions where the bitline
buffer has a ‘1‘ value. This is equivalent to injecting the query
elements into a class hypervector in all dimensions where R
has non-zero values.

V. EVALUATION

In this section, we test the functionality of SearcHD in both
software and hardware implementations. We first discuss the
impact of learning rate and class configurations on SearcHD
classification accuracy. We then compare the energy efficiency
and performance of SearcHD with baseline HD computing
during training and inference. We finally discuss the accuracy-
efficiency tradeoff with respect to hypervector dimensions.

A. Experimental Setup

We test the functionality of SearcHD in both software and
hardware implementations. In software, we verify SearcHD
training and inference functionalities by a C++ implementation
of the stochastic algorithm on an Intel Core i7 7600 CPU.
For the hardware implementation, we have designed a cycle
accurate simulator which emulates HD computing functional-
ity. Our simulator pre-stores the randomly generated level and
position hypervectors in memory and performs the training
and inference operations fully in the proposed in-memory
architecture. We extract the circuit level characteristic of the
hardware design from simulations based on a 45nm CMOS
process technology [55] using the Hewlett Simulation Program
with Integrated Circuit Emphasis (HSPICE) simulator. We
use the VTEAM ReRAM model [56] for our memory. The
model parameters of the device, as listed in Table II, are
chosen to produce switching delay of 1ns, a voltage pulse
of 1V and 2V for RESET and SET operations in order to
fit practical devices [49]. The energy of set and reset opera-
tions are Eset = 23.8 f J and Ereset = 0.32 f J, respectively. The
functionality of all the circuits has been validated considering
10% process variations on threshold voltage, transistor sizes,
and ReRAM OFF/ON resistance using 5000 Monte Carlo
simulations. Table III lists the design parameters including
the transistor sizes, and AND/OR resistance values.

We test SearcHD accuracy and energy/performance ef-
ficiency on four practical classification applications. Ta-
ble IV summarizes the configurations with various evaluation
datasets.
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TABLE II
VTEAM MODEL PARAMETERS FOR MEMRISTOR

kon −216.2m/sec VT,ON −1.5V xoff 3nm
koff 0.091m/sec VT,OFF 0.3V RON 10kΩ

αon,αoff 4 xon 0 ROFF 10MΩ

TABLE III
CIRCUIT PARAMETERS

Transistor Size (W/L) Resistance Values (Ω) Voltage
M1 M2 M3 M4 Mr AND OR MEM VR
2 4 2 4 1 1.2k 5k 5k 1V

TABLE IV
DATASETS (n: FEATURE SIZE, k: NUMBER OF CLASSES).

n K
Train
Size

Test
Size Description

ISOLET 617 26 6,238 1,559 Speech recognition [43]
FACE 608 2 522,441 2,494 Face recognition [57]

UCIHAR 561 12 6,213 1,554 Activity recognition [45]
IOT 115 2 40,000 2,494 IoT Botnet detection [46]

TABLE V
THE IMPACT OF LEARNING RATE ON SEARCHD CLASSIFICATION

ACCURACY

α 0.1 0.5 1 2 3

ISOLET 83.6% 85.2% 85.2% 82.9% 81.4%
FACE 88.4% 90.1% 90.2% 89.5% 88.7%

UCIHAR 90.2% 91.1% 91.3% 90.8% 90.0%
IOT 98.5% 99.7% 99.9% 97.9% 96.8%

B. SearcHD and Learning Rate

Table V shows the impact of the learning rate α on SearcHD
classification accuracy. Our evaluation shows that using a very
small learning rate reduces the capability of a model to learn
since each new data can only have a minor impact on the
model update. Larger learning rates result in more substantial
changes to a model, which can result in possible divergence.
In other words, large α values indicate that there is a higher
chance that the latest training data point will change the model,
but it does not preserve the changes that earlier training data
made on the model. In this work, our evaluation shows that
using α values of 1-2 provide the maximum accuracy for all
tested datasets.

C. SearcHD Accuracy in Different Configurations

Figure 5 shows the impact of the number of hypervectors
per each class N on SearcHD classification accuracy in com-
parison with other approaches. State-of-the-art HD computing
approaches use a single hypervector representing each class.
As the figure shows, for all applications, increasing the number
of hypervectors per class improves classification accuracy.
For example, SearcHD using eight hypervectors per class
(8/class) and 16 hypervectors per class (16/class) can achieve
on average 9.2% and 12.7% higher classification accuracy,
respectively, as compared to the case of using 1/class hy-
pervector when running on four tested applications. However,

(a) ISOLET (b) FACE

(d) IOT(c) UCIHAR

Fig. 5. Classification accuracy of SearcHD, kNN, and the baseline HD
algorithms.

TABLE VI
MEMORY FOOTPRINT OF DIFFERENT ALGORITHMS (MB)

kNN Baseline
HD

SearcHD
64/class 32/class 16/class 8/class 4/class

UISOLET 14.67 0.99 1.98 0.99 0.49 0.24 0.12
CARDIO 0.15 0.11 0.22 0.11 0.05 0.02 0.01
UCIHAR 13.29 0.45 0.91 0.45 0.22 0.11 0.05

IOT 17.54 0.07 0.15 0.07 0.04 0.02 0.01

SearcHD accuracy saturates when the number of hypervectors
is larger than 32/class. In fact, 32/class is enough to get most
common patterns in our datasets, thus adding new vectors
cannot capture different patterns than the existing vectors in
the class.

The red line in each graph shows the classification accuracy
that a k-Nearest Neighbor (kNN) algorithm can achieve. kNN
does not have a training mode. During Inference, kNN looks
at the similarity of a data point with all other training data.
However, kNN is computationally expensive and requires a
large memory footprint. In contrast, SearcHD provides sim-
ilar classification accuracy by performing classification on a
trained model. Figure 5 also compares SearcHD classification
accuracy with the best baseline HD computing algorithm using
non-binary class hypervectors [15]. The baseline HD model
is trained using non-binary encoded hypervectors. After the
training, it uses a cosine similarity check for classification.
Our evaluation shows that SearcHD with 32/class and 64/class
provide 5.7% and 7.2% higher classification accuracy, respec-
tively, as compared to the baseline HD computing with the
non-binary model.

Table VI compares the memory footprint of SearcHD, kNN,
and the baseline HD algorithm (non-binary model). As we
expect, kNN has the highest memory requirement, by taking
on average 11.4MB for each application. After that, SearcHD
32/class and the baseline HD algorithm require similar mem-
ory footprints, which are on average about 28.2× lower than
kNN. SearcHD can further reduce the memory footprint by
reducing the number of hypervectors per class. For example,
SearcHD with 8/class configuration provides 117.1× and 4.1×
lower memory than kNN and the baseline HD algorithm while
providing similar classification accuracy.
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Fig. 6. Training execution time and energy consumption of the baseline HD
computing and SearcHD with different configurations.

D. Training Efficiency

Figure 6 compares the energy efficiency and performance
of SearcHD training and the baseline HD computing algo-
rithm. Regardless of whether binary or non-binary models are
employed, the baseline HD computing approach has the same
training cost. Baseline HD computing encodes data in the non-
binary domain and then adds the input data in order to create a
hypervector for each class. This operation cannot map into a
crossbar memory architecture as the memory only supports
the bit-wise operation. In contrast, SearcHD simplifies the
training operation by eliminating all non-binary operations
from HD training. In all reported results, we run SearcHD
on the proposed in-memory architecture, while the baseline
HD computing approach runs on optimized digital hardware
proposed in [15] and [21]. Our evaluation shows that SearcHD
with 64/class (32/class) configuration can achieve on average
12.2× and 9.3× (31.1× and 12.8×) higher energy efficiency
and speedup as compared to the baseline HD computing
algorithm.

E. Inference Efficiency

Figure 7 compares SearcHD and baseline HD computing
efficiency during inference. The y-axis shows the energy con-
sumptions and execution times of the baseline HD computing
and SearcHD algorithm with the number of hypervectors per
class ranging from 4 to 64. The baseline HD algorithm uses
cosine as the similarity metric, while SearcHD uses Hamming
distance and accelerates this computation via analog, in-
memory hardware. Our evaluation shows that SearcHD with
all configurations can provide significantly faster and more
energy efficient computation as compared to the baseline HD
algorithm. For example, SearcHD with 64/class (32/class) con-
figuration can provide on average 66.2× and 10.8× (178.7×
and 14.1×) energy efficiency and speedup as compared to a
baseline HD algorithm, while providing 7.9% (6.5%) higher
classification accuracy. The higher energy and performance
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Fig. 7. Inference execution time and energy consumption of the baseline HD
algorithm and SearcHD with different configurations.

efficiency of SearcHD comes from the in-memory capability
in parallelizing the similarity check among different rows. In
addition, the approximate search in analog memory eliminates
slower digital-based counting operations.

In SearcHD, the computation cost grows with the number of
hypervectors in a class. For example, SearcHD with 32/class
configuration consumes 14.1× more energy and has 1.9×
slower execution time as compared to SearcHD with 4/class
configuration. In addition, we already observed that SearcHD
accuracy saturates when using models with more than 32/class
hypervector.

1) Detectable Hamming Distance: The accuracy of the
associative search depends on the bit precision of ganged-logic
design. Using large-size transistors in the ganged logic will
result in a faster response to ML discharging, thus improving
the detection accuracy of the row with the minimum Hamming
distance to the input. Figure 8 shows the HD classification
accuracy and the energy-delay product (EDP) of SearcHD
associative memory, when we change the minimum detectable
bits in design from 10 to 90 bits. The results are reported for
the activity recognition dataset (UCIHAR). The EDP values
are normalized to SearcHD using 10 detectable Hamming
distance.

As the graph shows, the design can provide acceptable
accuracy when the minimum detectable number of bits is
below 32. In this configuration, the associative memory can
achieve an EDP improvement of 2.3× when compared to
using the design with a 10-bit minimum detectable Hamming
distance. That said, ganged logic in low bit precision improves
the EDP efficiency while degrading the classification accuracy.
For instance, 50-bits and 70-bits minimum detectable Ham-
ming distances can provide 3× and 4.8× EDP improvement
as compared to the design with 10-bit detectable Hamming
distances, while providing 1% and 3.7% lower than maximum
SearcHD accuracy. To find the maximum required precision
in CAM circuitry, we cross-checked the distances between
all stored class hypervectors. We observed that the distance
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Fig. 8. SearcHD classification accuracy and normalized EDP improvement
when the associative memory works in different minimum detectable dis-
tances.

between any two stored classes is always higher than 71 bits.
In other words, 71 is the minimum Hamming distance which
needs to be detected in our design. This feature allows us to
relax the bit precision of the analog search sense amplifier
which results in further improvement in its efficiency.

Prior work tried to modify the CAM structure in order
to enable nearest Hamming distance search capability [21].
However, that design is very sensitive to dimensionality and
process variations. Our evaluation on a CAM with 10,000
bits shows that SearcHD associative memory can provide 8
bits Hamming-detectable error under 10% process variations,
while work in [21] works with 22 bits Hamming-detectable
error. In addition, our proposed approach provides 3.2× higher
energy efficiency and 2.0× faster as compared to work in [21].
In Section V, we show the impact of SearcHD associative
search on the training/inference efficiency.

F. Accuracy-Efficiency Tradeoff

SearcHD can exploit hypervector dimensions as a parameter
to trade efficiency and accuracy. Regardless of the dimension
of the model at training, SearcHD can use a model in lower
dimensions in order to accelerate SearcHD inference. In HD
computing, the dimensions are independent, thus SearcHD
can drop any arbitrary dimension in order to accelerate the
computation. Figure 9 shows the classification accuracy, nor-
malized energy consumption and normalized execution time
of SearcHD when the hypervector dimension changes from
D =2000 to 10,000. Our evaluation shows that SearcHD
can achieve maximum accuracy using dimensions around
D = 8,000. In addition, SearcHD with D = 4000 (D = 6000)
can achieve 2.0× and 1.3× (1.3× and 1.2×) higher energy
efficiency and speedup than SearcHD with D = 10,000 while
providing only 2.1% (1.2%) lower classification accuracy.

G. Area/Energy Breakdown

Here, we compare the area and energy breakdown of
digital HD computing with SearcHD analog implementation.
Figure 10a shows the area occupied by the encoding and
associative search modules. In a digital implementation, en-
coding takes a large amount of chip area, as it requires
to encode data points with up to 800 features. In contrast,
analog implementation takes significantly lower area in both
encoding and associative search modules. The analog majority
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Fig. 9. Impact of dimensionality on SearcHD accuracy and efficiency.

computation in the encoding modules and the analog detector
circuit in the associative search module eliminate large circuits
for digital accumulation. This results in 6.5× area efficiency
of the analog as compared to digital implementation.

Figure 10b shows the area and energy breakdown of the
encoding module in digital and analog implementations. In
digital, XOR array and accumulator are taking the majority
of the area and energy consumption. The accumulator has a
higher portion of energy, as this block requires to sequentially
add the XOR results. In analog implementation, the majority
function dominating the total area and energy, while XOR
computation takes about 32% of the area and 16% of energy.
This is because the majority module uses a large sense
amplifier and exploits switches to split the memory rows
(enabling parallel write). Figure 10c shows the area and energy
breakdown of the associative search module in both digital
and analog implementation. Similar to the encoding module,
in digital implementation, XOR array and accumulator are
dominating the total area and energy consumption. In analog,
the CAM block is dominating the area, as it requires to store all
class hypervectors. However, in terms of energy, the detector
circuit takes over 64% of total energy. The ADC block takes
about 10% area and 7.2% of the energy, as we only require a
single ADC block in each associative search module.

H. Hardware Efficiency

To fairly show the advantage of the in-memory imple-
mentation, we compare the efficiency of SearcHD with the
digital implementation in two configurations: (i) optimized
digital implementation with 6.5× larger area than analog, (ii)
digital which takes the similar area as analog. The results
in Table VII are reported for both training and inference
phases, when our implementation provides a similar accuracy
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TABLE VII
EFFICIENCY OF SEARCHD AS COMPARED TO DIGITAL IMPLEMENTATION:

@ OPTIMIZED AND @ SAME AREA CONFIGURATIONS.

Speedup Energy Efficiency
ISOLET FACE UCIHAR IOT ISOLET FACE UCIHAR IOT

Training Optimized 20.8 15.8 18.2 47.1 174.5 163.3 206.9 884.9
@ Area 76.9 66.4 69.7 184.7 218.2 213.9 258.6 1141.5

Inference Optimized 25.6 18.4 18.7 31.3 1093.9 908.0 455.8 2516.1
@ Area 94.6 70.9 78.5 121.8 1312.7 1125.9 542.4 4554.1

as the baseline digital implementation. Our evaluation shows
that analog design provides 25.4× and 357.5× (23.5× and
1243.4×) speedup and energy efficiency as compared to op-
timized digital implementation during training (inference). In
the same area, analog training (inference) efficiency improves
to 99.4× and 458.0× (91.4× and 1883.7×) speedup and
energy efficiency, respectively.

I. SearcHD & OFF/ON Ratio

In practice, the value of OFF/ON resistance ratio has impor-
tant impact on the performance of SearcHD functionality. Al-
though we used VTEAM model with 1000 OFF/ON resistance
ratio, in practice we may have memristor devices with lower
OFF/ON ratio. Using lower OFF/ON ratio has direct impact
on the SearcHD performance. In other words, lower ratio
makes the functionality of detector circuit more complicated,
specially for thresholding functionality. We evaluate the impact
of variation on resistance ratio when the OFF/ON ration
reduces to 100. Our results shows that this reduction results in
5.8× and 12.5× slower XOR and thresholding functionality,
respectively.

VI. CONCLUSION

In this paper, we propose SearcHD, a fully binary HD com-
puting algorithm. SearcHD encodes every data point to HD
space with binary elements and performs training by assigning
multiple binary hypervectors to each class. During inference,
SearcHD searches in the pre-stored class hypervectors for
the closest class hypervector to the binary test hypervector
in terms of Hamming distance similarity. We accordingly
designed an in-memory architecture which can accelerate all
SearcHD functionalities in memory. Our experimental evalu-
ation of four practical classification applications shows that
SearcHD implemented in-memory can achieve 31.1× and
12.8× (178.7× and 14.1×) energy efficiency and speedup
during training (inference) as compared to the state-of-the-
art HD computing algorithms while providing 6.5% higher
classification accuracy.
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