
SparseHD: Algorithm-Hardware Co-Optimization
for Efficient High-Dimensional Computing

Mohsen Imani, Sahand Salamat, Behnam Khaleghi, Mohammad Samragh, Farinaz Koushanfar, Tajana Rosing
University of California San Diego, La Jolla, CA 92093, USA

{moimani, sasalama, bkhalegh, msamragh, fkoushanfar, tajana}@ucsd.edu

Abstract—Hyperdimensional (HD) computing is gaining trac-
tion as an alternative light-way machine learning approach for
cognition tasks. Inspired by the neural activity patterns of the
brain, HD computing performs cognition tasks by exploiting long-
size vectors, namely hypervectors, rather than working with scalar
numbers as used in conventional computing. Since a hypervec-
tor is represented by thousands of dimensions (elements), the
majority of prior work assume binary elements to simplify the
computation and alleviate the processing cost. In this paper, we
first demonstrate that the dimensions need to have more than one
bit to provide an acceptable accuracy to make HD computing
applicable to real-world cognitive tasks. Increasing the bit-width,
however, sacrifices energy efficiency and performance, even when
using low-bit integers as the hypervector elements.

To address this issue, we propose a framework for HD acceler-
ation, dubbed SparseHD, that leverages the advantages of sparsity
to improve the efficiency of HD computing. Essentially, SparseHD
takes account of statistical properties of a trained HD model and
drops the least effective elements of the model, augmented by
iterative retraining to compensate the possible quality loss raised
by sparsity. Thanks to the bit-level manipulability and abounding
parallelism granted by FPGAs, we also propose a novel FPGA-
based accelerator to effectively utilize the advantage of sparsity
in HD computation. We evaluate the efficiency of our framework
for practical classification problems. We observe that SparseHD
makes the HD model up to 90% sparse while affording a minimal
quality loss (less than 1%) compared to the non-sparse baseline
model. Our evaluation shows that, on average, SparseHD provides
48.5× and 15.0× lower energy consumption and faster execution
as compared to the AMD R390 GPU implementation.

I. INTRODUCTION

Machine learning algorithms have become ubiquitous as
they have demonstrated effectiveness in various tasks, e.g.,
object tracking, speech recognition, and image classification
[1]–[5]. This has been further accentuated with the emergence
of the Internet of Things (IoT), where different applications
run learning algorithms to perform cognitive tasks. However,
the massive streams of data produced by the sensory and
embedded devices pose serious processing challenges due to
limited resources [6]–[8], which makes it inevitable to devise
alternative computing methods that can efficiently process a
large amount of data with an affordable cost.

Brain-inspired Hyperdimensional (HD) computing has been
proposed as an alternative computing method that performs
the cognitive tasks using a more light-weight approach [9].
HD computing is established on the fact that an organic
brain processes patterns of neural activity which are not
readily associated with numerical numbers [9], [10]. Recent
research, instead, have exploited high dimensional vectors
(e.g., more than a thousand dimension), called hypervectors, to

represent the neural activities, and shown successful progress
for many cognitive tasks [11]–[15]. Specifically, compared
to conventional learning algorithms, (a) HD offers an efficient
learning strategy without over-complex computation steps such
as back propagation in neural networks. Note that even binary
neural networks are very costly to train and their advantage
over non-binary models is limited to test time [16]–[19]. (b)
HD computing builds upon a well-defined set of operations
with random HD vectors which makes the learning process
extremely robust in the presence of hardware failures and
noise. In fact, alternatives counterparts such as neural networks
are shown to be vulnerable to adversatial noise patterns [20],
[21]. (c) HD can be easily applied to diverse problems
and applications including language recognition [22], [23],
voice recognition [14], DNA sequencing [24], activity recog-
nition [25], clustering [26], and collaborative learning.

In HD computing, training data are encoded (i.e., mapped to
a high-dimensional space) and aggregated to form a set of hy-
pervectors, called an HD model, by light-weight computation
steps. In case of classification, each hypervector represents a
separate class. The similarity of a given input (also encoded
to a hypervector) with the class hypervectors determines the
model prediction. Most of the previous HD works exploit bi-
narized hypervectors to reduce the computations and memory
intensity of HD computing [13], [14], [27]–[29]. As we will
show later, using non-binary hypervectors with real-valued
elements improves the accuracy by more than 50% for a
specific task. However, it requires a higher computation cost to
perform a large number of multiply-add operations, compared
to the binarized HD that mainly uses bitwise operations.

In this paper, we present a robust and efficient solution that
throttles the computational load while preserving the numeric
precision of the non-binarized hypervectors, further raising
the profile of HD computing. The proposed HD accelera-
tion framework, called SparseHD, explores the prospect of
sparsity in the hypervectors to improve the HD computing
efficiency. SparseHD takes advantage of statistical properties
of HD models to make the trained hypervectors sparse without
losing the quality of inference (prediction). It reformulates the
training phase of HD model to enforce sparsity by eliminating
the least impactful features in the trained hypervectors. We
examine two approaches for enforcing sparsity: (a) class-wise
sparsity which independently sparsifies hypervectors of each
class by discarding the elements that have minimal impact
on the results, and (b) dimension-wise sparsity that identifies
and discards the inconsequential (non-informative) dimensions



+

L1 hypervector
Flip D/Q bits

Flip D/Q bits

Flip D/Q bits

L2 hypervector

LQ-1 hypervector

LQ hypervector

Random 

Generator

Permuted L 

Permuted L 

Permuted L 

Similarity check

(c)

Base hypervectors

Base hypervectors

Base hypervectors

ρ
1
 

F
e
a

tu
r
e
 V

e
c
to

r

(b)
v1

v2

vn

Training Data

Training Data 
@ Class N

Training Data 
@ Class 2

Training Data 
@ Class 1 Encoding

Inference 
Data

qD Query

Class 1

Class 2

Class N 

(a)

q2 q1

c
1
D c

1
2 c

1
1

c
2
D

c
N

D c
N

2 c
N

1

c
2
2 c

2
1

Inference

qD Query q2 q1

Encoding

Encoding

Encoding

Associative Memory

ρ
0
 

ρ
n-1

 

Base Hypervector

+

D
is

ta
n

ce
 S

im
il

a
r
it

y

Training

Σ

Σ

Σ

Q
u

a
n

ti
ze

Accumulation

Similarity check

Fig. 1. (a) Overview of the HD classification consisting of encoding and associative memory modules. (b) The encoding module maps a feature vector to a
high-dimensional space using pre-generated base hypervectors. (c) Generating the base hypervectors.

shared across all learned hypervectors. Thereafter, SparseHD
realizes an efficient FPGA implementation of the proposed
sparse HD model. Considering the nature of operations in HD
computing, FPGA is the most appealing solution for HD ac-
celeration due to the great degree of parallelism controllable in
a fine-grained manner, afforded intrinsically by these devices
[30]. The main contributions of this paper are as follows.
• We develop the first sparse HD computing method that
enables sparsity on the trained HD model. We also propose an
automated technique which iteratively retrains HD models to
compensate the potential quality loss that might be incurred
by model sparsity.
• We implement a user-friendly platform for FPGA imple-
mentation of sparse HD computation that supports both the
dimension-wise and class-wise sparse models. Our FPGA ac-
celerator is hand-crafted in a pipelined structure to effectively
utilize the FPGA resources to maximize performance.
• We perform extensive evaluations on practical classification
problems. Compared to AMD R390 baseline implementation,
SparseHD implemented on Kintex-7 FPGA KC705 Evaluation
Kit achieves on average 45.5× lower energy consumption
and 15.0× faster execution time. In addition, ensuring the
quality loss of less than 0.5% and 1.5%, SparseHD achieves
11.4× and 49.7× Energy-Delay Product (EDP) improvement
as compared to the FPGA implementation of baseline HD.

II. PRELIMINARY

HD provides a general model of computing that can be
applied to different types of learning problems. Fig. 1(a)
shows the overview of HD computing architecture for a
demonstrative classification problem. The HD architecture
comprises an encoding module and an associative memory,
a.k.a. similarity check. The encoding module maps each input
data to a hypervector. During the training, all the training
inputs corresponding to a particular class are encoded and
combined together to generate a class hypervector. There
is a class hypervector for each class which is stored in
an associative memory. In the inference (prediction) phase,
an unlabeled input data is mapped to a query hypervector
using the same encoding module used for training. The query
hypervector is then compared with all class hypervectors to
determine the classification result.

A. Encoding Module

The encoding module works on the pre-processed data, i.e.,
extracted features, which vary from application to application.
For instance, a voice signal might be first transferred to
Mel-Frequency Cepstral Coefficients (MFCCs) feature vector
[31]. Fig. 1(b) illustrates how the encoding module maps
a single input data to high-dimensional space of D (e.g.,
10,000) elements. Consider a single input data represented by
feature vector ~Vfv = 〈v1, v2, · · · , vn〉, wherein n� D is the
number of features per input, so is application-dependent. The
encoding essentially comprises two main steps as follows.

(1) Generating base hypervectors: Each feature value vi ∈
[vmin, vmax] in the input feature vector ~Vfv can have different
discrete or continuous values, that require to be quantized to
Q levels, denoted by L = {l1, l2, · · · , lQ} with l1 and lQ
corresponding to vmin and vmax, respectively. Each scalar
li corresponds to a D-dimensional binary hypervector, called
base hypervector. The base hypervectors have to maintain
the proximity of the levels, i.e., if the values of li and lj
(hence, vi and vj) are relatively close, the corresponding base
hypervectors ~Li and ~Lj need to have relatively small Hamming
distance. Consequently, ~L1 and ~LQ should be orthogonal.
Therefore, as shown in Fig. 1(c), to create the entire set of
base hypervectors, the first seed hypervector ~L1 associated
with l1 is created by random binary elements. Each of the
subsequent level base hypervector is then created by flipping
specific D/Q of dimensions. This leads ~LQ to be orthogonal
with respect to ~L1 while similar feature values have similar
base hypervectors. For data with quantized bases, e.g., text and
DNA sequences, the level hypervectors do not need to have
proximity correlation [32].

(2) Element-wise hypervector mapping: Once all the base
hypervectors are generated, each of the n elements of the input
feature vector ~Vfv are independently quantized and mapped to
the corresponding base hypervector according to its level. In
the last step, the n base hypervector of input ~Vfv need to be
combined into a single representative hypervector. The naı̈ve
approach would be to aggregate (add up) all base hypervectors
of the elements but such an approach does not take account of
the spatial and/or temporal distance (i.e., index of each feature)
of the features. To differentiate the impact of feature indexes,
we employ permutation. From the distribution of random
binary values we know that permuting different indexes keeps



the vectors nearly orthogonal [33], i.e., δ(~L,P(i)
~L

) ' D/2 ,

with δ standing for Hamming distance and P(i)
~L

denoting i-
bits rotational permutation of vector ~L. The orthogonality of
a base hypervectors and its permuted pair is assured as long
as the hypervector dimensionality is long enough compared to
the number of features (D � n). Hence, the aggregation of n
hypervectors corresponding to each feature index is obtained
via the following equation, illustrated also by Fig. 1(b).

~H = ~Lv1 + P(1)
~Lv2

+ · · ·+ P(n−1)
~Lvn

=

n∑
i=1

P(i−1)
~Lvi

(1)

~H is the non-binary encoded hypervector of input ~Vfv and ~Lvi

is the binary base hypervector of (the level of) feature vi.

B. Model Training
Training of an HD model consists of generating the base

hypervectors, which is done just once, and encoding every in-
put feature vector, as explained above. Thereafter, the encoded
hypervectors belonging to the same prediction class (label) are
accumulated to build up the class’s hypervector. Thus, for the
class hypervector ~C with label i, we have:
~Ci = 〈cD, · · · c1〉 =

∑
j

~Hi
j , ~Hi = 〈hD, · · ·h1〉 (2)

~Hi indicates the encoded hypervector of an input with class
(prediction label) i. As an instance, in a face detection task,
the trainer adds all hypervectors which have the ‘face’ tag and
‘non-face’ tags in two different class hypervectors.

Binarized model: The additions involved in HD training
are element-wise and result in class hypervectors with non-
binary dimension elements, i.e., ~C ∈ ND. To perform the
classification using binary hypervectors, a threshold function
needs to be applied on the non-binary class hypervectors:

T (~C, τ) = 〈c′D, · · · c′1〉 where c′i =

{
0, if ci < τ

1, otherwise.
(3)

That is, for every element ci of the class hypervector, it is
checked whether the same element in at least τ out of its k
building hypervectors ~H was 1, so usually τ = k

2 .

C. Inference (Test/Prediction)
During the inference, an input data is encoded to a so-

called query hypervector using the same encoding scheme
used for training as explained above. The associative memory
(a.k.a similarity check) is responsible to compare the query
hypervector with all class hypervectors to find out the one
with the highest similarity (see Fig. 1(a)). In the context of
binarized HD model, Hamming distance is an inexpensive and
suitable metric of similarity, while non-binary class hypervec-
tors need to use cosine similarity. The cosine similarity can be
expressed as cos( ~H, ~Ci) =

~H·~Ci
‖ ~H‖·‖~Ci‖

, where ~H·~Ci indicates dot

product between the hypervectors, and ‖ ~H‖ and ‖~Ci‖ show
the magnitudes of the query and ith class hypervector. As
query ~H is common between all the candidate classes, we
can ignore ‖ ~H‖ when finding the maximum relative similarity.
The magnitude of each class hypervector, ‖~C‖ =

∑
c2i can be

computed once offline after the training, which simplifies the

Model Sparser

Adjusted Model (Non-sparse)

Error<ε 

Final HD 

Model

Trained 

Model

Training 

data

Validation 

data

Testing

 data

NO

HD Training

Error 

Estimation

HD Testing

HD Training 

SparseHD Framework

HD Inference

1

Training

 data

HD Model

Adjustment

YES

Sparse 

Model

2

3 4

5

Fig. 2. Overview of SparseHD algorithmic framework enabling sparsity in
HD computing model.

cosine similarity to a dot product between two hypervectors
at inference, that can be computed in much lower cost:
similarity(~C, ~H) =

∑D
i=1 ci · hi

D. Binarization Accuracy Loss
Most existing HD computing methods use binary class hy-

pervectors to eliminate costly cosine operation [13], [14], [27],
[34]. Our result shows that, HD computing accuracy using
a binary model is significantly lower than a non-binarized
model. For example, for the face detection task, binarized HD
achieves a classification accuracy of 38.9%, which is far lower
than 96.1% of the non-binarized counterpart. However, the
non-binary HD rises from the costly cosine similarity metric
that involves a large number of additions/multiplications, mak-
ing it less desirable as a light-weight classifier. Our evaluation
on four practical applications listed in Section V shows that
the non-binary HD model delivers 17.5% better prediction
accuracy though it is 6.5× slower in computation.

III. MODEL SPARSIFICATION

A. Overview
Fig. 2 shows the overview of the proposed SparseHD frame-

work. SparseHD takes a trained HD model in non-binary dense
representation as an input (•1 ). For each class hypervector,
the model sparser drops S% of each class elements (•2 ). The
classification accuracy of the sparse model is examined on
the validation dataset, which is a part of the original training
dataset. Thereafter, SparseHD compares the accuracy of HD
with the sparse and dense model to calculate the quality loss
due to model sparsity (•3 ). For errors larger than a pre-defined
threshold ε, SparseHD adjusts the HD model by retraining
the HD based on the sparsity constraint (•4 ). The model
adjustment may change the sparsity of class hypervectors, thus
the Model Sparser resets the sparsity of the HD model to the
desired level. The model adjustment and sparsification process
repeats iteratively until the convergence condition is satisfied.

B. Model Sparsifier
We propose two techniques to sparsify the HD com-

puting model: dimension-wise and class-wise sparsity. The
dimension-wise technique sparsifies the trained HD models by
dropping the same dimensions for all existing classes, while
the class-wise method makes each class hypervector sparse
individually. Fig. 3 shows an example of class elements using



(b) Class-wise Sparsity

C
1

10 0 0 0C
1

20 0C
1

S 

C
2

10 0C
2

20 0C
2

S 00 0 0

C
3

10 0 0 0C
3

20 0 C
3

S 

C
N

10 0 0C
N

20 0C
N

S 0

C
1

10 0 0 0C
1

20 0C
1

S 

C
2

10 0 0 0C
2

20 0C
2

S 

C
3

10 0 0 0C
3

20 0C
3

S 

C
N

10 0 0 0C
N

20 0C
N

S 

(a) Dimension-wise Sparsity

Class 1 vector

Class 2 vector

Class 3 vector

Class N vector

Dimension (D)

Dimension (D) Speech Recognition

Least Important  

Dimensions 

(Common Info) 

Dimension Variation ×10
4

Absolute Class Values ×10
4

Speech Recognition

Least Important 

Class Elements

Class 1 vector

Class 2 vector

Class 3 vector

Class N vector

Fig. 3. (a) An example of the SparseHD dimension-wise sparsity model
and distribution of the values variation (∆V) in all dimensions of the class
hypervectors. (b) An example of the trained SparseHD class-wise sparsity
model and the distribution of the absolute class values in a trained model.

class-wise and dimension-wise sparsity. In the following, we
explain what’s the motivation behind each of these methods
and how the sparsity can be applied to a trained HD model.

(1) Dimension-wise sparsity: The goal of HD computing at
inference is to find a class hypervector with the highest cosine
similarity to the query hypervector, which is relative among
the class hypervectors. We observe that not all dimensions
of the class hypervectors have useful information that can
distinguish one class from others. In several dimensions, all
class hypervectors store common information shared among
all classes, which add relatively similar weight to all classes
in calculating the cosine similarity. To enable dimension-
wise sparsity in HD computing, our framework measures
the changes in the class elements in each dimension. The
following equation shows the variation in the jth dimension
of the class hypervectors:

∆Vj = max{c1j , . . . , cNj } −min{c1j , . . . , cNj }
j ∈ {1, 2, . . . ,D} (4)

where cij denotes jth element of the ith class hypervector.
After obtaining the variation of dimensions (∆Vjs),

SparseHD selects the dimensions with the lowest ∆V as the
best candidates to be dropped from the HD model as they
have the least impact on differentiating the classes. Fig. 3(a)
shows the histogram distribution of the ∆V in all dimensions
of the class hypervectors for speech recognition (ISOLET)
dataset with 26 classes. Many dimensions have low variation
in values across the classes, i.e., they have similar values in
those dimensions. We obtained a similar ∆V distribution for
the six applications (reported in Section V), mainly because
the feature vectors have many similar patterns in the original
domain, which get distributed uniformly in high-dimensional
space. For S% sparsity, we select S×D dimensions with the
least ∆V and discards those class entries of these dimensions.

(2) Class-wise sparsity: In class-wise sparsity, the goal is
to drop the elements of each individual class that have the
least impact on the cosine similarity. While calculating the
cosine similarity, the elements of a query hypervector are input
dependent and can change from one input to another one. Due

to the randomness of HD base hypervectors, averaging the
query hypervectors results in a hypervector with a uniform
distribution of values in all dimensions. Using this assumption,
class-wise sparsity needs to find the best class elements that
can be dropped while having minimal impact on the cosine
similarity. Fig. 3(b) shows the distribution of the absolute class
values in a single class hypervector for speech recognition
after training. The graph visualizes the best candidates which
can be dropped from a single class hypervector. In fact, the
values with the least absolute values are the best candidates
which can be dropped while causing least impact on the cosine
similarity. For example, for the ith class hypervector, we select
S% elements with minimum absolute value as follows.

min{ciD, . . . , ci2, ci1}S̃ , i ∈ {1, 2, . . . , |~C|} (5)
To make a model with S% sparsity, SparseHD makes S×D

elements of each class hypervector zero. This method reduces
the number of required multiplication and addition operations
by ensuring each class hypervector will not have more than
(1−S)×D non-zero elements. Provided appropriate hardware
support, the sparsity of class hypervectors can significantly
accelerate the performance of HD.

C. Model Adjustment

Sparsifying may affect the HD classification accuracy since
the design was not originally trained to work with sparse
hypervectors. Our design estimates the error rate of the sparse
model by checking its average accuracy over the validation
data and compares it with the baseline HD model, ∆e =
eBaseline − eSparse. To compensate for the quality loss due
to model sparsity, we adjust the model based on the new
constraints. Model adjustment is similar to training procedure
and its goal is to enhance the sparse model to provide higher
accuracy over training data. HD looks for the similarity of
each input hypervector to all stored class hypervectors; (i) If
a query hypervector, ~H, is correctly classified by the current
model, our design does not change the model. (ii) However,
if it is wrongly matched with the ith class hypervector (~Ci)
while it actually belongs to class ~Cj , our retraining procedure
subtracts the query hypervector from the ith class hypervector
and adds it to class ~Cj hypervector:

~Cinew = ~Ci − ~H and ~Cjnew = ~Cj + ~H (6)
After adjusting the model over training data, the class

elements may not retain their S% sparsity. Therefore, the
framework repeats the algorithm by dropping the inconsequen-
tial elements of the new class to ensure the S% sparsity in
class hypervectors and estimates the classification error rate
over validation data again, until an error rate, ε, is satisfied or
a predefined number of iterations passed.

IV. FPGA IMPLEMENTATION

The baseline HD computing algorithm involves a huge
amount of multiplications that can be effectively parallelized
on GPU or FPGA platforms. However, GPUs are optimized
for dense computations with regular data access patterns and
cannot benefit much from a sparse model. On the other hand,
due to the resource constraints of FPGA, the encoding module



c1
1c1

d0c1
D

Associative Memory

Reg 1

Reg d

+
+

+
+

Reg 1

Reg d

+
+

+
+

Non-sparse: D dimensions

Read Windows (d)

c1
d c1

2 c1
1

qd q1q2

cN
d cN

2 cN
1

qd q1q2

c1
2c1

d+1

c2
1c2

d0c2
D c2

2c2
d+1

cN
1cN

d0cN
D cN

2cN
d+1

Multiplication Tree-based Addition

Cosine 

Similarity

Pre-fetched Base 

Hypervectors Tree-based Adder

01

L
1

10

ρL 

0

011

ρ(n-1)L 

ρ
(1)

ρ
(n-1)

1-bit 

1-bit 

2-bits 

1-bit 

2-bits

logn-bits

1-bit 

1-bit 

2-bits 

1-bit 

2-bits

logn-bits

qd

Permuted 

Hypervectors

 Encoding Module Associative Memory

1st dimension

d th dimension

A B C D E F

Query Hypervector

Permutation

q1

qdqD q1

(A)
01L1

LQ

In
d

ex

Q
u

a
n

ti
ze 1

1

1

0 0 1

(A)
01L1

LQ

In
d

ex

Q
u

a
n

ti
ze 1

1

1

0 0 1

(A)
01L1

LQ

In
d

ex

Q
u

a
n

ti
ze 1

1

1

0 0 1

F
ea

tu
re

 V
e
c
to

r 
{v

1
, 

…
, 

v
n
} ρ

(0)

d/(1-s)+n

v1

v2

vn

Dropped 

Dimensions

MASK Vector
q2

q2

Sparse: D×(1-S) dimensions

d

d

Fig. 4. FPGA implementation of the encoding module and associative memory for SparseHD with dimension-wise sparsity.

and associative memory cannot simultaneously process all
dimensions of hypervectors. As a result, we need to segregate
and process the dimensions in batches of d. This, however,
imposes a significant latency overhead. Thus, we implement
a pipeline architecture which hides the delay of the encoding
module. In our implementation, at the time encoding module
generates d dimensions of the query hypervector, the associa-
tive memory module performs the similarity check on another
d dimensions that were encoded in the previous cycle.

A. Encoding Implementation

To accelerate the encoding process, the FPGA stores all the
base hypervectors (L ∈ {0, 1}D) in Block RAMs. In encoding,
the maximum number of required permutations is n − 1 (for
the last feature vn), where n is the number of features. Thus, to
calculate the first dimension (h1) of the query hypervector, ~H,
we only need to access 1st to nth dimensions/bits of the base
hypervectors (see Fig. 4•B ). Accordingly, to generate the first
d dimensions of the query hypervector, the encoding module
requires 1 to “d + n” indexes of the base hypervectors as the
dth dimension requires d to “d + n” indexes. Similarly, for
the ith cycle, our implementation only requires to prefetch the
indexes “i× d” to “i× d + n” of the base hypervectors.

Since the base hypervectors are in binary, the dimension-
wise addition of the permuted hypervectors is similar to
the popcount operation. SparseHD implements a tree-based
pipeline structure to add up all the bits in the same dimension.
This structure uses a 1-bit adder in the first stage and then
increases the bit-width of the adders by one bit at each
stage. In the last stage (log nth stage), a single log n-bit adder
calculates the final result of addition of all n hypervectors (Fig.
4•C ). To parallelize the addition on all dimensions, SparseHD
implements multiple instances of the same tree-based adder,
i.e., one adder-tree per every fetched dimension. Note that to
balance the pipeline between the encoding module and the
associative memory, the number of query elements generated
by the encoding module should not exceed the number of
elements processed by the associative memory at each cycle.

The main implementation challenge in encoding the
dimension-wise sparse HD is to skip generating the dimen-
sions of the query hypervector that correspond to an inconse-
quential dimension in the class hypervectors (that have been

0 0 14 0 7

0 0 0 6 0

0 0 0 0 12

0 0 0 0 0

0 0 1 0 0

Data 

Vector

Index

Vector

1

# non-zero 

elements

2

# Zero Skipped 

elements

5

14 7 6 12 1

2 1 3 5 7

3 5 9 15 23

Coordinate Computation

Non-zero indexes

+1 +1 +1 +1 +1

Compressed model

Fig. 5. Compressed format of an 80% matrix and coordinate computation
required to decompress the HD model.

dropped out). The sparsity pattern of the d dimension batches
fetched at each cycle is not similar, so simply avoiding the
addition of predetermined dimensions of the batches is not
effective. For this purpose, at each cycle, d

1−S +n dimensions
of the base hypervectors are fetched and permuted to generate
d

1−S dimensions of the (permuted) base hypervectors. We
use a mask module, indicated by MASK Vector in Fig. 4•B ,
that stores the indexes of the effective query elements (for
which the corresponding class dimensions are actually used) to
generate the d effective dimensions of the query hypervector.
This module basically stores the d effective elements of
the prefetched hypervectors in an intermediate memory, and
passes them to the d adder blocks in the next cycle. Otherwise,
it was not feasible to connect the fetched dimensions to the
adder trees as the used dimensions are data dependent. It is
also noteworthy that the dimension-wise sparsification pushes
every d

1−S dimensions in the class hypervectors to retain a sim-
ilar sparsity ratio of S, hence we can determine the hardware
specification assuring that no more than d

1−S × (1 − S) = d

effective dimensions are generated at each cycle.

B. Associative Search

(1) Dimension-wise implementation: Fig. 4 shows the
architecture of the similarity check module of SparseHD.
Specifically, the flow diagram of the associative search here
is shown for the non-sparse model and/or the dimension-wise
sparse HD model (Fig. 4•D ). For the dimension-wise sparsity,
the inconsequential elements across all class hypervectors
are at the same indexes, hence those elements are discarded
from both the classes and query hypervector, leaving a model
with reduced dimensions that share a similar architecture to
non-sparse HD. Each query element is multiplied by the



Offline

c
N

10 0 0 0c
N

20 0c
N

S 

c
2
10 0c

2
20 0c

2
S 00 0

c
1
10 0 0c

1
20 0c

1
S 0

Associative Memory

q1q2qD qD-1 qD 
q2qD q1q2qD qD-1 qD 

i
1
1i

1
b

Sequential Shift 

Read Windows

i
1
d

q1q2qD qD-1 qD 

Sequential Shift 

i
N

1i
N

d

Reg 1

Reg 2

Reg d

+
+

+

+

Reg 1

Reg 2

Reg d

+
+

+

+

Dimension (D)

Read WindowsQuery Hypervector

Runtime

c
1
1c

1
d

A B C D E

Sparse Multiplication Tree-based Addition

Cosine Similarity

q2qD q1

c
N

1c
N

d

Address Decoder

P
re

-f
e
tc

h
er

P
re

-f
e
tc

h
er

Query Hypervector

Index Buffer

Address Decoder

q1

i
N

bS
p

a
rs

e 
H

D
 

M
o
d

e
l

H
D

 M
o
d

e
l

In
d

e
x
es

M
o
d

e
l 

D
e
c
o
d

e
r

C
o
o
r
d

in
a
te

 

C
o
m

p
u

ta
ti

o
n

Non-Zero Indexes

Non-Zero Indexes

q1

q1

S
p

a
re

 H
V

 C
o
m

p
re

ss
io

n

Fig. 6. FPGA implementation of the SparseHD with class-wise sparsity.

corresponding element in all class hypervectors (Fig. 4•E ) and
are accumulated in a tree-based adder structure (Fig. 4•F ).

The number of input dimensions that the encoder fetches
at a time, d

1−S + n (where d is also equal to the number of
dimensions processed in the associative memory), depends on
the number of classes and available DSP blocks in FPGA, and
the sparsity of the model. In our implementation of SparseHD
on Kintex-7 FPGA KC705 Evaluation Kit with 840 DSPs,
depending on the application, the value of d can also be
limited by the maximum number of query elements that the
encoding module generates, which is limited by LUTs count.

(2) Class-wise implementation: In an HD model with class-
wise sparsity, the non-zero elements of the class hypervectors
are distributed non-uniformly. To compress the sparsed HD
model, we employ Compress-Sparse-Column (CSC) [35] and
store the non-zero elements and their indexes in data and index
vectors, respectively. The first element of the index buffer
stores the number of non-zero values and the remaining ele-
ments show the number of zeros before each non-zero element.
Fig. 5 demonstrates a matrix with 80% sparsity, where the
five non-zero elements are stored in the data vector, and the
number of zero elements between two consecutive non-zero
elements proceed the total number of non-zero elements in
the index vector. To compute the actual index of the non-
zero elements, the coordinate computation block adds up the
number of elements before the current element.

Fig. 6 elaborates the FPGA implementation of SparseHD
with class-wise sparsity. The trained model is sparsified and
compressed during the training (Fig. 6•A ). For each class,
a data vector and an index vector stores the information of
the HD model and the model decoder and the coordinate
computation blocks are used to reconstruct the model and pass
the model to the associative memory (Fig. 6•B ). To calculate
the dot product between the query and class hypervectors, our
design reads the first D′ dimensions of the query hypervector,
{qD′ , . . . , q1}. These dimensions are multiplied with the
first D′ dimensions of all class hypervectors. Although query
elements are stored in BRAMs, accessing them would be
costly as we need to have D read ports. SparseHD reduces
the cost of multiple read accesses by prefetching the selected
{qD′ , . . . , q1} elements into a smaller distributed memory
with D′ read ports (Fig. 6•C ). Depending on the value of
index buffer elements {i1d, . . . , i11}, address decoder selects
d query elements from the prefetched memory to multiply
them with the non-zero class elements. Since each class has

sparse representation with d non-zero elements, our design
shifts read windows (with step d) to sequentially multiply
the non-zero class elements with the corresponding elements
of the query hypervector (Fig. 6•D ). For each class, the
results of d multiplications accumulate using a tree-based
adder (Fig. 6•E ). Each time when the read windows have been
shifted over dimensions of query hypervector, the generated
values are accumulated to calculate the final result of dot
product for each class. Eventually, the class with the highest
similarity is the result of the classification.

V. EVALUATIONS

A. Experimental Setup

We implemented the SparseHD inference platform in
Verilog and verified the timing and the functionality of the
sparse models by synthesizing and mapping them using Xilinx
Vivado Design Suite [36] on the Kintex-7 FPGA KC705
Evaluation Kit. We implemented SparseHD algorithmic
innovation including training, model adjustment, class-wise
and dimension-wise sparsity, and error estimation in C++ on
CPU. We compare the SparseHD implementation with AMD
Radeon R390 GPU with 8GB memory, and Intel i7 CPU with
16GB memory using the proposed sparse as well as baseline
implementations. HD code of the GPU is implemented using
OpenCL, while for CPU, it has has been developed in C++
and optimized for performance. We used AMD CodeXL [37]
and Hioki 3334 power meter for the power measurement of
the GPU and CPU, respectively. We evaluate the efficiency
of the proposed SparseHD on four practical classification
problems listed below:
Speech Recognition (ISOLET): the goal is to recognize
voice audio of the 26 letters of the English alphabet [38].
Activity Recognition (UCIHAR): Recognizing human
activity based on 3-axial linear acceleration and angular
velocity captured at a constant rate of 50Hz [39].
Physical Activity Monitoring (PAMAP): Logs of eight
users and three 3D accelerometers positioned on arm, chest
and ankle [40]. The goal is to recognize 12 different human
activities such as lying, walking, etc.
Face Detection: We exploit Caltech 10,000 web faces
dataset [41]. Non-face images, are selected from CIFAR-100
and Pascal VOS 2012 datasets [42]. For the HoG feature
extraction, we divide a 32x32 image to 2x2 regions for three
color channels and 8x8 regions for gray-scale.



10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85

A
cc

u
ra

cy
 (

%
)

(d) FACE

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85A
cc

u
ra

cy
 (

%
)

(b) UCIHAR

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85

A
cc

u
ra

cy
 (

%
)

(c) PAMAP

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85

A
cc

u
ra

cy
 (

%
)

(a) ISOLET

80

Fig. 7. Impact of sparsity on the classification accuracy of the class-wise and dimension-wise sparse models (the blue and orange curves). The green curves
correspond to non-sparse models with smaller dimensionality such that the number of dimensions matches the number of non-zeros in the sparse hypervectors.

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85

A
cc

u
ra

cy
 (

%
)

(d) FACE

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85A
cc

u
ra

cy
 (

%
)

(b) UCIHAR

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85

A
cc

u
ra

cy
 (

%
)

(c) PAMPA

10,000 5000 4000 3000 2000 1000

0% 50% 60% 70% 80% 90%

Sparsity (S)

Effective Dimension

100

95

90

85

A
cc

u
ra

cy
 (

%
)

(a) ISOLET

80

Figure 7: Impact of sparsity on the classification accuracy of the class-wise and dimension-wise sparse models (the
blue and orange curves). The green curves correspond to dense HD models with smaller dimensionality such that the
number of dimensions matches the number of non-zeros in the sparse hypervectors.

50% 60% 70% 80% 90%
0

8

16

24

32

E
n

e
rg

y
 C

o
n

s
u

m
p

.(
J

)

(a) ISOLET
50% 60% 70% 80% 90%

0

5

10

15
E

n
e

rg
y

 C
o

n
s

u
m

p
.(

J
)

(b) UCIHAR
50% 60% 70% 80% 90%

0

5

10

15

E
n

e
rg

y
 C

o
n

s
u

m
p

. 
(

J
)

(c) PAMAP
50% 60% 70% 80% 90%

0

5

10

E
n

e
rg

y
 C

o
n

s
u

m
p

.(
J

)

(d) FACE

50% 60% 70% 80% 90%
0

2

4

6

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

(e) ISOLET
50% 60% 70% 80% 90%

0

0.5

1

1.5

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

(f) UCIHAR
50% 60% 70% 80% 90%

0

1

2

3

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

(g) PAMAP
50% 60% 70% 80% 90%

0

0.5

1

1.5

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
)

(h) FACE

Figure 8: Energy consumption and execution time of FPGA-based implementation of SparseHD with class-wise and
dimension-wise models in different sparsity.

Effect on associative search module: Sparsity also improves
the energy efficiency of associative memory for both class-
wise and dimension-wise sparse models. Similar to encoding,
at the same level of sparsity, the class-wise SparseHD pro-
vides lower efficiency than dimension-wise model. This is
because in class-wise model the non-zero elements are dis-
tributed in all D dimensions of a hypervector, thus FPGA
needs a large amount of sequential reads in order to perform
all sparse multiplications between a query and class hyper-
vectors. This incurs the overhead of reading more dimensions
and storing the pre-fetched query dimensions. Thereby result-
ing in lower computation efficiency. In contrast, dimension-
wise model reduces the hypervector dimensions, and the cor-
responding hardware does not have the overhead of reading
non-zero dimensions.

6.3.3 Performance vs Sparsity
Figure 8 (e-h) show the execution time of the SparseHD

using dimension-wise and class-wise models. SparseHD
is implemented in a pipelined stage such that the delay of
encoding module is hidden by the execution time of the as-
sociative memory which performs the similarity check. For
each application, we fully utilized the FPGA resources in
order to provide the maximum performance. Our evaluation
shows that for both sparse models, SparseHD performance
improves by increasing the sparsity of the class hypervectors.

The execution time of SparseHD is limited by the minimum
encoding or associative memory throughput. As we explained
in Section 5.3, the maximum number of query elements that
SparseHD can process (d) at a time depends on feature size
and number of classes. For SparseHD with large number
of features, the encoding module is the bottleneck, while
for SparseHD with large number of classes the associative
memory limits the value of d. For example, in ISOLET with
n = 617 features and N = 26 classes the associative memory
(DSPs) limits d to 32, while in FACE with n = 608 features
and only N = 2 classes, the encoding module (FFs and LUTs)
limits the d value to 192. This large d value significantly
improves the performance of the FACE as compared to ap-
plications with large number of classes. In addition, com-
paring the class-wise and dimension-wise models shows that
dimension-wise associative memory mostly utilizes DSPs,
while using less LUTs than the class-wise model. This en-
ables the dimension-wise model to utilize the majority of
FPGA LUTs for encoding module which results in providing
a higher throughput.

6.3.4 Accuracy-Efficiency Trade-off
There is a trade-off between the accuracy and efficiency

when the sparsity of models increases. Table 2 lists the
normalized energy-delay product (EDP) improvement of
SparseHD using dimension-wise and class-wise models while

10

Fig. 8. Energy consumption and execution time of FPGA-based implementation of SparseHD with class-wise/dimension-wise models in different sparsity.

B. SparseHD Accuracy-Efficiency

(1) Accuracy versus sparsity: Fig. 7 shows the classification
accuracy of the baseline HD (0% sparsity) and SparseHD as
the model sparsity increases from 50% to 90%. SparseHD with
both dimension-wise and class-wise models has very stable
accuracy when the model sparsity scales up to 90%, albeit
applications have different sensitivity to sparsity. The results
also show that at the same level of sparsity, the class-wise
model provides higher accuracy as compared to the dimension-
wise model, i.e., the class-wise can work in higher sparsity
while providing the same accuracy as dimension-wise model.
It stems from the fact that the class-wise model exploits all
dimensions of the hypervectors to represent the class pattern,
while the dimension-wise model reduces dimensionality by
discarding the entire dimensions for all existing classes, re-
sulting in lower flexibility during the retraining process.

For a fair evaluation, Fig. 7 also compares the accuracy of
SparseHD with a non-sparse but low-dimensional model which
has been trained with the same effective dimension as sparse
models (and the same number of total training iterations).
Evidently, the non-sparse low-dimensional HD provides lower
accuracy than the sparse model using the same effective
dimensions. This lower accuracy comes from the fundamental
concept behind HD which requires the model to be built
upon the nearly orthogonal base hypervectors. However, the
mathematics governing the high dimensional space do not per-
fectly work when the hypervector dimensionality is reduced.
SparseHD only discards the inconsequential model elements
and still maintains the orthogonality of the hypervectors in the

high dimensional space.

(2) Energy efficiency versus sparsity: Fig. 8(a)-(d) show
the energy breakdown of SparseHD, mapped four different
applications on FPGA, using both dimension-wise and class-
wise sparsification. The encoding module takes different ratios
of the total energy consumption depending on the number of
features and classes. Its energy consumption improves with
the sparsity of model as higher sparsity decreases the number
of effective dimensions and thus reduces the number of query
elements which the encoding module needs to generate. For all
applications, the class-wise model consumes higher encoding
energy as compared to the dimension-wise model. In the class-
wise model, usually fewer dimensions are zero across all
class hypervectors, while in dimension-wise sparse model the
number of zero dimensions across all classes increases linearly
with the model sparsity. Based on the results, SparseHD with
90% sparsity, on average, reduces the effective number of
query elements to 10% and 48% for dimension-wise and class-
wise sparse models, which results in 9.5× and 4.4× higher
energy efficiency compared to baseline HD encoding module.

Sparsity also improves the energy efficiency of associative
memory for both class-wise and dimension-wise sparse mod-
els. Similar to encoding, at the same level of sparsity, the class-
wise SparseHD provides lower efficiency than dimension-wise
model. This is because, in class-wise model, the non-zero
elements are distributed in all D dimensions of a hypervector,
hence FPGA needs a large amount of sequential memory reads
to perform all sparse multiplications between a query and class
hypervectors. This incurs the overhead of fetching and storing



TABLE I
NORMALIZED ENERGY-DELAY PRODUCT (EDP) IMPROVEMENT OF

APPLICATIONS ENSURING DIFFERENT QUALITY LOSS.
Quality Loss 0% 0.3% 0.5% 1% 1.5% 2%

ISOLET Dimension-wise 1× 1× 1× 22.6× 51.0× 51.0×
Class-wise 4.1× 6.1× 9.9× 22.6× 76.1× 76.1×

UCIHAR Dimension-wise 1× 6.8× 3.0× 3.0× 3.0× 7.8×
Class-wise 1× 4.2× 10.7× 10.7× 29.4× 29.4×

PAMAP Dimension-wise 1× 3.9× 3.9 11.1× 24.7× 24.7×
Class-wise 3.3× 5.3× 69.5× 69.5× 69.5× 69.5×

FACE Dimension-wise 1× 1× 1× 1× 2.5× 3.3×
Class-wise 1.2× 4.5× 4.5× 11.3× 23.7× 23.7×

AVERAGE Dimension-wise 1× 3.2× 3.2× 10.4× 22.3× 23.9×
Class-wise 2.4× 5.0× 11.4× 28.5× 49.7× 49.7×

more dimensions, resulting in lower computation efficiency.
In contrast, dimension-wise model reduces the hypervector
dimensions, and the corresponding hardware does not have
the overhead of reading non-zero dimensions.

(3) Performance versus sparsity: Fig. 8 (e)-(h) show the ex-
ecution time of the SparseHD using dimension-wise and class-
wise models. SparseHD is implemented in pipelined stages
such that the delay of encoding module is masked by the ex-
ecution time of the associative memory. For each application,
we fully utilized the FPGA resources to maximizes the per-
formance. Our evaluation shows that for both sparse models,
SparseHD performance improves by increasing the sparsity
of the class hypervectors. The execution time of SparseHD
is limited by the minimum encoding or associative memory
throughput. As explained already, the maximum number of
query elements that SparseHD can process d at a time depends
on feature size and number of classes. For SparseHD with a
large number of features, the encoding module becomes the
bottleneck, while for SparseHD with a large number of classes
the associative memory limits d. Comparing the class-wise
and dimension-wise models also shows that dimension-wise
associative memory mostly utilizes DSPs, while using less
LUTs than the class-wise model. This enables the dimension-
wise model to use the majority of FPGA LUTs for encoding
module, resulting higher throughput.

(4) Accuracy-efficiency trade-off: Table I lists the normal-
ized energy-delay product (EDP) improvement of SparseHD
using dimension-wise and class-wise models while ensuring
different quality loss bound. The EDP results are relative to the
FPGA-based implementation of the baseline non-sparse HD
code. Although at the same sparsity level the class-wise model
is less efficient than the dimension-wise model, it provides
higher efficiency than at the same level of accuracy. This is
because of the higher tolerance of the class-wise model to spar-
sity, which enables it to work with higher sparsity compared to
dimension-wise model. For example, when SparseHD ensures
less than 0.5% quality loss (∆E = 0.5%), the dimension-
wise and class-wise models provide 3.2× and 11.4× EDP
improvement compared to the baseline HD model running
on FPGA. Similarly, ensuring the quality loss of less than
1% and 1.5%, SparseHD with the class-wise model achieves
28.5× and 49.7× EDP improvement as compared to the FPGA
implementation of baseline HD.

C. HD Acceleration on Different Platforms

Fig. 9 shows the energy consumption and execution time
of HD computing applications running on different platforms

ISOLET UCIHAR PAMAP FACE
0

0.2

0.4

0.6

0.8

1

ISOLET UCIHAR PAMAP FACE

E
x

e
c

u
ti

o
n

 T
im

e
(G

P
U

=
1

)

0

0.2

0.4

0.6

0.8

1E
n

e
rg

y
 C

o
n

s
u

m
p

ti
o

n
(G

P
U

=
1

)

0
.0

2
6

0
.0

1
8

0
.0

2
4

0
.0

1
4

0
.0

2
2

0
.0

1
2

0
.0

1
4

0
.0

0
8

Non-sparse Model
50% Sparse (Dimension-wise) 
90% Sparse (Dimension-wise) 
50% Sparse (Class-wise) 
90% Sparse (Class-wise) 

50% Sparse (Dimension-wise) 
90% Sparse (Dimension-wise) 
50% Sparse (Class-wise) G

P
U

F
P

G
A

90% Sparse (Class-wise) 

Non-sparse Model

Fig. 9. Energy consumption and execution time of the baseline HD on GPU
and FPGA platforms

described before. All platforms run the baseline HD code with
D = 10, 000 dimensions (non-sparse model) and the sparse
model with 50% and 90% sparsity. The results are normalized
to GPU running non-sparse HD algorithm. Accordingly, FPGA
provides on average 8.7× (18.3×) lower energy consumption
and 1.9× (178.4×) faster computation compared to the GPU
(CPU) when running HD in full dimension. The higher effi-
ciency of the FPGA rises from the fine-grained pipeline and
parallelism and granted flexibility to manage the irregular data
patterns in fetched data. Sparsity improves the efficiency of
both GPU and FPGA platforms, however, the improvement is
more significant on FPGA. For example, GPU running 90%
class-wise (dimension-wise) sparse model provides maximum
1.3× and 1.4× (3.5× and 3.3×) speedup and energy efficiency
improvement compared to the GPU running a non-sparse
model. However, FPGA running the class-wise (dimension-
wise) model with the same sparsity achieves 15.0× 48.5×
(19.7× 84.1×) speedup and energy efficiency as compared to
the GPU, respectively.

VI. CONCLUSION

In this paper, we proposed a novel algorithm-architecture
platform, SparseHD, for efficient Hyperdimensional comput-
ing, as a new paradigm in learning applications. The algorith-
mic innovation of SparseHD introduces different concepts of
sparsity to the representative class hypervectors, which, con-
sequently, reduce the computations required for HD inference,
leading to more effective utilization of available resources. We
also proposed an FPGA implementation of SparseHD which
enables efficient realization of sparsity in the hardware level
granted by the bit-level parallelism and pipelining supported
by FPGA. We conducted an extensive set of experiments using
different benchmarks, sparsity rates, and hardware platforms
to evaluate the proposed framework.

ACKNOWLEDGEMENTS

This work was partially supported by CRISP, one of six
centers in JUMP, an SRC program sponsored by DARPA,
Office of Naval Research (N00014-17-1-2500), and also NSF
grants #1730158, #1527034, and #1619261.



REFERENCES

[1] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in 2015 IEEE international con-
ference on computer vision (ICCV), no. EPFL-CONF-230283. IEEE,
2015, pp. 4705–4713.

[2] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen et al.,
“Deep speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[3] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro
et al., “Deep speech 2: End-to-end speech recognition in english and
mandarin,” in International Conference on Machine Learning, 2016, pp.
173–182.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural infor-
mation processing systems, 2012, pp. 1097–1105.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[6] A. Zaslavsky, C. Perera, and D. Georgakopoulos, “Sensing as a service
and big data,” arXiv preprint arXiv:1301.0159, 2013.

[7] R. Khan, S. U. Khan, R. Zaheer, and S. Khan, “Future internet: the
internet of things architecture, possible applications and key challenges,”
in Frontiers of Information Technology (FIT), 2012 10th International
Conference on. IEEE, 2012, pp. 257–260.

[8] Y. Sun, H. Song, A. J. Jara, and R. Bie, “Internet of things and big data
analytics for smart and connected communities,” IEEE Access, vol. 4,
pp. 766–773, 2016.

[9] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[10] M. Imani et al., “A framework for collaborative learning in secure high-
dimensional space,” in Cloud Computing (CLOUD). IEEE, 2019, pp.
1–6.

[11] O. Rasanen and S. Kakouros, “Modeling dependencies in multiple
parallel data streams with hyperdimensional computing,” IEEE Signal
Processing Letters, vol. 21, no. 7, pp. 899–903, 2014.

[12] O. J. Räsänen and J. P. Saarinen, “Sequence prediction with sparse
distributed hyperdimensional coding applied to the analysis of mobile
phone use patterns,” IEEE transactions on neural networks and learning
systems, vol. 27, no. 9, pp. 1878–1889, 2016.

[13] A. Rahimi, S. Datta, D. Kleyko, E. P. Frady, B. Olshausen, P. Kanerva
et al., “High-dimensional computing as a nanoscalable paradigm,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 64, no. 9,
pp. 2508–2521, 2017.

[14] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdi-
mensional computing for efficient speech recognition,” in Rebooting
Computing (ICRC), 2017 IEEE International Conference on. IEEE,
2017, pp. 1–8.

[15] M. Imani et al., “Bric: Locality-based encoding for energy-efficient
brain-inspired hyperdimensional computing,” in ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2019, pp. 1–6.

[16] M. Ghasemzadeh, M. Samragh, and F. Koushanfar, “Rebnet: Residual
binarized neural network,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2018, pp. 57–64.

[17] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. Leong, M. Jahre
et al., “Finn: A framework for fast, scalable binarized neural network
inference,” in Proceedings of the 2017 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays. ACM, 2017, pp. 65–74.

[18] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net:
Imagenet classification using binary convolutional neural networks,” in
European Conference on Computer Vision. Springer, 2016, pp. 525–
542.

[19] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. Lauter, and F. Koushan-
far, “Xonn: Xnor-based oblivious deep neural network inference,” arXiv
preprint arXiv:1902.07342, 2019.

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow et al., “Intriguing properties of neural networks,” arXiv preprint
arXiv:1312.6199, 2013.

[21] B. D. Rouhani, M. Samragh, M. Javaheripi, T. Javidi, and F. Koushanfar,
“Deepfense: Online accelerated defense against adversarial deep learn-
ing,” in 2018 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD). IEEE, 2018, pp. 1–8.

[22] P. Kanerva, “What we mean when we say” what’s the dollar of
mexico?”: Prototypes and mapping in concept space.” in AAAI fall
symposium: quantum informatics for cognitive, social, and semantic
processes, 2010, pp. 2–6.

[23] A. Joshi, J. T. Halseth, and P. Kanerva, “Language geometry using
random indexing,” in International Symposium on Quantum Interaction.
Springer, 2016, pp. 265–274.

[24] M. Imani et al., “Hdna: Energy-efficient dna sequencing using hyperdi-
mensional computing,” in IEEE BHI. IEEE, 2018, pp. 271–274.

[25] Y. Kim et al., “Efficient human activity recognition using hyperdimen-
sional computing,” in IoT. ACM, 2018, p. 38.

[26] M. Imani et al., “Hdcluster: An accurate clustering using brain-inspired
high-dimensional computing,” in DATE. IEEE/ACM, 2019.

[27] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in High Performance Computer
Architecture (HPCA), 2017 IEEE International Symposium on. IEEE,
2017, pp. 445–456.

[28] M. Imani et al., “A binary learning framework for hyperdimensional
computing,” in DATE. IEEE/ACM, 2019.

[29] S. Gupta et al., “Felix: Fast and energy-efficient logic in memory,” in
IEEE/ACM ICCAD. IEEE, 2018, pp. 1–7.

[30] A. DeHon, “The density advantage of configurable computing,” Com-
puter, vol. 33, no. 4, pp. 41–49, 2000.

[31] B. Logan et al., “Mel frequency cepstral coefficients for music model-
ing.” in ISMIR, vol. 270, 2000, pp. 1–11.

[32] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design. ACM, 2016, pp. 64–69.

[33] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of hyper-
vectors, binarized bundling, and combinational associative memory,”
arXiv preprint arXiv:1807.08583, 2018.

[34] M. Imani et al., “Fach: Fpga-based acceleration of hyperdimensional
computing by reducing computational complexity,” in ASPDAC. ACM,
2019, pp. 493–498.

[35] L. Lu and Y. Liang, “Spwa: An efficient sparse winograd convolutional
neural networks accelerator on fpgas,” in 2018 55th ACM/ESDA/IEEE
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[36] T. Feist, “Vivado design suite,” White Paper, vol. 5, 2012.
[37] “Amd,” http://developer.amd.com/tools-and-sdks/opencl-zone/codexl/.
[38] “Uci machine learning repository,” http://archive.ics.uci.edu/ml/datasets/

ISOLET.
[39] “Uci machine learning repository,” https://archive.ics.uci.edu/ml/

datasets/Daily+and+Sports+Activities.
[40] A. Reiss and D. Stricker, “Creating and benchmarking a new dataset for

physical activity monitoring,” in Proceedings of the 5th International
Conference on PErvasive Technologies Related to Assistive Environ-
ments. ACM, 2012, p. 40.

[41] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[42] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J. Winn,
and A. Zisserman, “The pascal visual object classes challenge: A
retrospective,” International journal of computer vision, vol. 111, no. 1,
pp. 98–136, 2015.


