
DUAL: Acceleration of Clustering Algorithms using
Digital-based Processing In-Memory

Mohsen Imani‡, Saikishan Pampana∗, Saransh Gupta∗, Minxuan Zhou∗, Yeseong Kim†, Tajana Rosing∗
‡Department of Computer Science, UC Irvine

†Department of Information and Communication Engineering, DGIST
∗Department of Computer Science and Engineering, UC San Diego

m.imani@uci.edu; yeseongkim@dgist.ac.kr; {spampana, sgupta, miz087, tajana}@ucsd.edu

Abstract—Today’s applications generate a large amount of data
that need to be processed by learning algorithms. In practice,
the majority of the data are not associated with any labels.
Unsupervised learning, i.e., clustering methods, are the most
commonly used algorithms for data analysis. However, running
clustering algorithms on traditional cores results in high energy
consumption and slow processing speed due to a large amount
of data movement between memory and processing units. In
this paper, we propose DUAL, a Digital-based Unsupervised
learning AcceLeration, which supports a wide range of popular
algorithms on conventional crossbar memory. Instead of working
with the original data, DUAL maps all data points into high-
dimensional space, replacing complex clustering operations with
memory-friendly operations. We accordingly design a PIM-based
architecture that supports all essential operations in a highly
parallel and scalable way. DUAL supports a wide range of
essential operations and enables in-place computations, allowing
data points to remain in memory. We have evaluated DUAL
on several popular clustering algorithms for a wide range of
large-scale datasets. Our evaluation shows that DUAL provides
a comparable quality to existing clustering algorithms while
using a binary representation and a simplified distance metric.
DUAL also provides 58.8× speedup and 251.2× energy efficiency
improvement as compared to the state-of-the-art solution running
on GPU.

Index Terms—Processing in-memory, Unsupervised learning,
Hyperdimensional computing, Algorithm-hardware co-design

I. INTRODUCTION

With the emergence of the Internet of Things (IoT), sensory
and embedded devices generate massive data streams and
demand services that pose huge technical challenges due to
limited device resources. Today IoT applications analyze raw
data by running machine learning algorithms. Since the majority
of data generated are not associated with any labels, clustering
algorithms are the most popular learning methods used for
data analysis [1]. Clustering algorithms are unsupervised and
have applications in many fields including machine learning,
pattern recognition, image analysis, information retrieval,
bioinformatics, data compression, and computer graphics [2]–
[5]. These algorithms are used to group a set of objects into
different classes, so that objects within the same class are
similar to each other. The process of clustering datasets involves
heavy computations as most algorithms need to calculate
pairwise distances between all the points in the dataset [6]–[8].

Running clustering algorithms with large datasets on con-
ventional processors results in high energy consumption and
slow processing speed. Although new processor technology has
evolved to serve computationally complex tasks more efficiently,

data movement costs between the processor and memory
still hinder the higher efficiency of application performance.
Processing in-memory (PIM) is a promising solution to
accelerate applications with a large amount of parallelism [9]–
[16]. Several recent works have explored the advantage of PIM-
based architectures to accelerate supervised learning algorithms
such as Deep Neural Networks (DNNs) [17], [18]. These
approaches mostly use PIM architecture as a dot product engine
to perform the vector-matrix multiplication involved in the
DNN computation.

There are three main challenges in using existing PIM
architectures to accelerate clustering algorithms: (i) the main
operations involved in clustering algorithms are pairwise
distance computation, e.g., Euclidean distance, and similarity
search which cannot be supported entirely by existing PIM
architectures [16]. (ii) Most existing PIM architectures are
analog-based [15], [17], [18]; thus they use Digital-to-Analog
Converter (DAC) blocks to transfer data to the analog domain
for the computation and Analog-to-Digital Converter (ADC)
to transfer it back to the digital domain. In the existing PIM
architectures, the DAC/ADC blocks are dominating the total
chip power/area, e.g., 98% of DNN accelerators [18], resulting
in very low throughput/area. (iii) They require separate storage
and computing memory units, resulting in a large amount of
internal data movements. This not only reduces the computation
efficiency but also affects the design scalability.

In this work, we present a digital-based PIM architecture,
called DUAL, which accelerates a wide range of popular
clustering algorithms on conventional crossbar memory. DUAL
supports all essential clustering operations in memory, in a
parallel and scalable way. DUAL eliminates the necessity of
using any ADC/DAC blocks and addresses the internal data
movement. The main contributions are listed as follows:

• To the best of our knowledge, DUAL is the first digital-
based processing in-memory architecture that acceler-
ates unsupervised learning tasks. In contrast to the existing
PIM designs, DUAL enables all PIM computation on digital
data stored in memory. This eliminates the necessity of using
ADC/DAC blocks, providing high throughput/area. DUAL
is also the first PIM architecture that support digital search-
based Hamming distance computing.

• Instead of working on the original data, DUAL maps all
data points into high-dimensional space enabling the
main clustering operations to process in a hardware-

Fig. 1. Hierarchical Clustering Overview.

friendly way. DUAL proposes a novel non-linear encoder
that preserves the similarity of the neighbor values in high
dimensional space. This encoding simplifies the distance
similarity metric from Euclidean to Hamming distance.

• We design a PIM architecture that accelerates various
clustering algorithms on conventional crossbar memory.
DUAL performs in-place computation in a highly parallel
and scalable way, where the data points can be processed
without transferring between the storage and computing
blocks. Therefore, it eliminates internal data movements
between memory blocks. The proposed solution supports a
wide range of essential clustering operations, e.g., in-memory
distance computations and the nearest search, which can be
programmed in high-level languages.

We have evaluated DUAL efficiency on several popular clus-
tering algorithms and a wide range of large-scale datasets. Our
evaluations show that DUAL provides a comparable quality of
clustering to the baseline clustering algorithms. In terms of
efficiency, DUAL provides 58.8× speedup and 251.2× energy
efficiency improvement as compared to the state-of-the-art
solution running on NVIDIA GTX 1080 GPU. Enabling 1%
and 2% lower quality of clustering, DUAL speeds up the
computation to 72.5× and 87.4× respectively.

II. BACKGROUND

Clustering algorithms categorize data points based on the
similarity between them in the space. These algorithms use dif-
ferent metrics to compute pairwise distance. Euclidean distance
is a commonly used metric in most of the clustering algorithms
such as K-means and hierarchical clustering [19]–[21]. Here we
provide a detailed explanation of hierarchical clustering, one
of the most popular and complex clustering algorithms [22]–
[26] as an example. In Section VI-C, we explain how DUAL
accelerates other popular clustering algorithms.

Hierarchical clustering is a class of clustering algorithms
that start out with each data point being their own cluster [27]
and then iterates over the data until only one cluster remains. In
each iteration, two clusters are combined, hence reducing the
number of clusters by one and so we have to iterate n (size of
data set) times to finish clustering. This method of clustering
has a time complexity of O(n3) with space complexity of
O(n2) and hence is both compute and memory-bound as the
size of the data set used in clustering increases. Figure 1
presents a high-level overview of hierarchical clustering. The
first part of the algorithm uses a distance metric to find
pairwise distances between all points in the dataset. State-of-the-
art implementations of hierarchical clustering use Euclidean
distance for pairwise distance computation [24], [28], [29].
After creating the pairwise distance matrix, we iterate through
all values in the matrix and find the pair of data points with
the minimum distance. Then, it merges these selected data
points into a single cluster. Finally, the algorithm updates the

Fig. 2. Overview of DUAL platform accelerating clustering algorithms.

distance of the merged data points with respect to all other
clusters based on an updated policy.

There are several different linkages to update the distance
matrix: single-linkage, complete-linkage, average-linkage, and
ward-linkage [30]. For disjoint clusters ai,a j, and ak with sizes
si,s j, and sk, the linkages are defined as follows:

Single− linkage : d(ai∪a j,ak) = Min[d(ai,ak),d(a j,ak)]

Complete− linkage : d(ai∪a j,ak) = Max[d(ai,ak),d(a j,ak)]

Average−linkage : d(ai∪a j,ak)=
si×d(ai,ak)+ s j×d(a j,ak)

si + s j

The state-of-the-art algorithms are using Ward-linkage to
update the pairwise distance matrix [31].
d(ai∪a j,ak) =C1×d(ai,ak)+C2×d(a j,ak)−C3×d(ai,a j)

C1 =
si + sk

si + s j + sk
; C2 =

s j + sk

si + s j + sk
; C3 =

sk

si + s j + sk

We call C1, C2, and C3 as Ward’s coefficients. The clustering
algorithm continues by iteratively finding the next two closet
clusters in the distance matrix and merging them into a cluster.

III. DUAL OVERVIEW

In this paper, we propose DUAL, a novel platform to accel-
erate unsupervised learning in a fully digital PIM architecture.
Figure 2a shows an overview of DUAL framework consisting of
an HD-Mapper and a digital-based PIM accelerator. Instead of
working on original data, our architecture maps all data points
to long-size binary vectors. This data mapping replaces complex
clustering operations with hardware friendly operations. DUAL
also exploits the resistive characteristics of Non-Volatile
Memory (NVM), in particular memristor devices [32], [33], to
support all necessary clustering operations in memory.

A. HD-Mapper

The goal of the HD-Mapper is to encode data points into
high-dimensional vectors, called hypervector, such that the
data can keep their similarity using a PIM-friendly Hamming
distance metric. The HD-Mapper can be a Locality Sensitive
Hashing (LSH) or any other encoding function [34]–[37].
There are several approaches based on Hyperdimensional (HD)
computing to perform the encoding functionality. However,

2

Fig. 3. HD-mapper: encoding data points into high-dimensional space.

all existing approaches linearly map each input feature into
the hyperspace [38]–[40]. In contrast, we propose HD-mapper
that explicitly considers non-linear interactions between input
features. The proposed encoding is inspired by the Radial
Basis Function (RBF) kernel trick method [41], [42]. The
underlying idea of HD-mapper is that data that is not linearly
separable in original dimensions, might be linearly separable
in higher dimensions. Consider certain functions K(x,y) which
are equivalent to the dot product in a different space, such that
K(x,y) = Φ(x) ·Φ(y), where Φ(·) is often a function for high
dimensional projection. The RBF or Gaussian Kernel is the
most popular kernel:

K(x,y) = e
−||x−y||2

2σ2

We can take advantage of this implicit mapping by replacing
their decision function with a weighted sum of kernels:

f (·) =
N

∑
i=0

ciK(·,xi)

where (xi,yi) is the training data sample, and the cis are constant
weights. The study in [41] showed that the inner product can
efficiently approximate Radial Basis Function kernel:

K(x,y) = Φ(x) ·Φ(y)≈ z(x) · z(y)
The Gaussian kernel function can now be approximated by the
dot product of two vectors, z(x) and z(y).

Figure 3 shows our encoding procedure. Let us con-
sider an encoding function that maps a feature vector F =
{ f1, f2, . . . , fm}, with m features (fi ∈ R) to a hypervector
H = {h1, h2, . . . , hD} with D dimensions (hi ∈ {0,1}). We
generate each dimension of encoded data by calculating a dot
product of feature vector with a randomly generated vector as
hi = cos(Bi ·F), where Bi is a randomly generated vector from
a Gaussian distribution (mean µ = 0 and standard deviation
σ = 1) with the same dimensionality of the feature vector. The
random vectors {B1,B2, · · · ,BD} can be generated once offline
and then can be used for the rest of the classification task
(Bi ∈ Rm). After this step, each element, hi of a hypervector
H, has a non-binary value. We prefer binary hypervectors
for computation efficiency. We thus obtain the final encoded
hypervector by binarizing it with a sign function (H′= sign(H))
where the sign function assigns all positive hypervector
dimensions to ‘1’ and zero/negative dimensions to ‘0’. The
encoded hypervector stores the information of each original
data point with D bits. HD-Mapper gives an analytical model to
estimate the required dimensionality of the encoder depending
on the number of data points and the number of clusters. The
discussion about this estimation is out of the scope of our paper.
More information can be found by looking at the amount of
orthogonal information that each hypervector can store in the

HD space [43].

B. DUAL Accelerator

The second module is a digital-based PIM architecture that
enables parallel encoding and clustering computation over the
encoded hypervectors stored in memory. Unlike prior PIM
designs that use large ADC/DAC blocks for analog comput-
ing [15], [17], [18], DUAL performs all clustering computations
on the digital data stored in memory. This eliminates ADC/DAC
blocks, resulting in high throughput/area and scalability. DUAL
uses two blocks for performing the computation; a data block
and a distance block. The data block stores the encoded data
points and computes pairwise similarity using a row-parallel
Hamming distance computation. Each distance/data block
supports the following set of operations (shown in Figure 2b):
(i) search-based operations: row parallel Hamming distance
computation and nearest search. (ii) Arithmetic operations:
row-parallel addition, multiplication and division.

Figure 2c,d shows how DUAL maps hierarchical clustering
into PIM acceleration. In each iteration, DUAL computes the
Hamming distance of each data point with all stored data points
in all data blocks using the row-parallel search operation and
the result is written in a distance memory. After computing
all pairwise distances, DUAL performs the search for the
nearest value over the distance matrix. Our design supports the
nearest search operation in a row-parallel way. Next, DUAL
clusters the two data points with the highest similarity and
then updates the relative distance of all other data points with
the clustered nodes. The distance update is computed using
linear arithmetic operations, e.g., addition, multiplication, which
can be performed in a row-parallel way in the update block
(Figure 2c,d). The updated distance vectors will be written back
into the corresponding row/column of the distance block. DUAL
continues computation by iteratively finding and clustering data
points with the closest distance. DUAL exploits the supported
PIM operations to perform clustering tasks where data is already
stored in memory. DUAL also uses interconnects to enable bit-
serial/row-parallel data transfer between the data and distance
blocks. This eliminates the overhead of internal data movement
between the data and distance blocks (Figure 2c,d).

IV. DUAL SUPPORTED OPERATIONS

A. Search/Similarity Computation

The exact search is one of the native operations supported by
crossbar memory. During the search, the crossbar memory gets
the configuration of a Content Addressable Memory (CAM),
where each CAM cell is represented using two memristor
devices (0T-2R) [44], [45]. These devices store complementary
values. During the search, a row-driver of the CAM block pre-
charges all CAM rows (match-lines:MLs) to supply voltage
(Vdd). The search operation starts by loading the input query
into the vertical bit-lines (BLs) connected to all CAM rows.
Similar to CAM cells, each input query is represented using two
complementary bits. Consider a CAM cell (shown in Figure 4a),
if a query input matches with the stored value in the CAM
cell, the ML will stay charged. However, in case of a mismatch
between the CAM cell and the query data, the CAM starts
discharging the ML. Conventionally, CAM blocks exploit the
ML discharging current to enable the exact search operation.

3

Fig. 4. DUAL operations: search-based and arithmetic

Here, we modify the CAM block to enable Hamming distance
computation and nearest search in a parallelized way. Note
that although there are several work used NVM-based CAM
to support the nearest absolute search functionalities [39], [46],
DUAL is the first digital-based PIM architecture that supports
Hamming computing without using costly ADC blocks.

1) Hamming Distance Computation: Figure 4b shows the
architecture of the modified CAM block. Our design exploits
the timing characteristic of ML discharging current in order
to detect the Hamming distance of each CAM row with an
input query. The search sense amplifier, “CAM SA” shown in
Figure 4b, samples the ML current in different time stamps and
finds the number of mismatches depending on the cycle that the
ML voltage is dropped. Note that during Hamming computing,
the detector circuit, shown in Figure 4b, is deactivated (En= 0).
More mismatches between a query and CAM row results in a
faster-discharging current of ML. ML discharging current does
not change linearly with the number of mismatches when the
search is performed on a long row with too many cells. As
Figure 4c shows, when we search on a row with a 4-bit length,
we can detect the difference between 2-bits, 3-bits, and 4-bits
mismatching by sampling ML in linear time (200ps). However,
considering a 7-bit CAM row, the mismatches of 6-bits and 7-
bits are happening much faster than 2-bits to 3-bits. This limits
the maximum possible bit-search parallelism to 4-bits using
linear search. In contrast, we propose a non-linear sampling
time, shown in Figure 4c, which enables DUAL to search up
to 7-bits in parallel.

To enable fast Hamming distance computation, the distance
result should be written in a row-parallel way on the distance
memory block. This requires translating sampling time to
a Hamming distance and writing it into the distance block.
However, this approach requires an extra processing step. Here,
we present an approach that enables the result of the 7-bit
Hamming distance search to be written in the distance memory
in a single cycle. Our approach assigns a single 3-bit counter
to each memory block, where the counter value increments
with the same clock used for the search sampling. Depending
on the discharge CAM rows in each sampling time, DUAL
activates corresponding rows of the distance memory. Finally,
DUAL writes the counter value on all selected rows in the

distance block. Write operation happens in a row-parallel way,
where all activated rows will get counter values in a single
write cycle.

The write latency in the non-volatile memory is slower
than the search operation frequency (1ns write latency vs.
200ps/100ps search sample). Therefore, to provide high
throughput, we use a 7-bit register next to each data block
in order to store the sampling time that each row has been
discharged. After the Hamming distance computation, DUAL
sequentially activates the rows of distance block (depending
on the values stored in each column of the buffer), and
accordingly writes the counter values to them. DUAL performs
the Hamming distance computation serially on 7-bits windows.
The result of distance computation will be written as D/7
values of 3-bits on the distance memory (shown in Figure 4b).

2) Nearest Value Search: In the Hamming distance op-
eration, DUAL computes the actual distance value of query,
rather than finding a row with the nearest Hamming distance.
However, the second popular clustering operation is to find
a row that has the nearest distance to query data. In this
search, the memory stores integer/fixed-point values, thus
bits in different positions have different weights. To consider
the impact of each bit indices, we weight different bitlines
by connecting them to different bitline voltages. During the
search, the most significant bits (MSBs) are assigned to a
higher voltage than bits in lower positions (shown in Figure 4d,
V1 = 0.8V , V2 = 0.4V , V3 = 0.2V , V4 = 0.1V). By adjusting
the bitline voltages, we enable a 4-bit parallel search operation.
In a nominal voltage/process technology, we can increase the
number of bits up to 8-bits. However, considering variations in
voltage and process technology, 4-bit parallel search provides
enough noise margin, ensuring exact nearest search computation
over 5000 Monte-carlo simulations (considering 10% variations
in technology and memristor values).

Assume a CAM block storing m bit integer numbers. The
search for the nearest value starts from four MSBs. The first
row that discharges the ML is the row which has the highest
similarity with query data. Each discharging match-line flows
a current into a detector circuit (shown in Figure 4b). In this
mode, the detector circuit is activated (En = 1), and it has
two responsibilities: (i) it stops the search operation by pre-

4

charging all match-lines to Vdd voltage, and (ii) it transfers the
discharged rows to the output stage. The activated rows at the
end of the search cycle (500ps) have the nearest distance to the
query data. Depending on the row with the highest matches,
DUAL activated those rows of the memory and continues the
search operation on the next 4-bits. This sequential search
increases the weight of the bits in the MSB as compared to the
bit located in a lower stage. The search continues over all the
bits, ending up with a single activated row in the last stage.

B. Row-Parallel PIM-based Arithmetic

DUAL supports arithmetic operations directly on digital
data stored in memory without reading them out of sense
amplifiers [16], [47]–[52]. Our design exploits the memristor
switching characteristic to implement NOR gates in digital
memory [16], [48]. DUAL selects two or more columns of
the memory as input NOR operands by connecting them to
ground voltage (Shown in Figure 4e). Next, DUAL connects
the bitline corresponding to the output of NOR operation to a
write voltage (V0). In addition, all output memristors located
in the output column are initialized to RON in the beginning.
To execute NOR in a row, an execution voltage, V0, is applied
at the p terminals of the inputs while the p terminal of the
output memristor is grounded, as shown in Figure 4e. During
NOR computation, the output memristor is switched from RON
to ROFF when one or more inputs stored ‘1.’ value (RON).
In fact, the low resistance input passes a current through an
output memristor resulting in writing Ro f f value on it. This
NOR computation performs in row-parallel on all the activated
memory rows by the row-driver.

Since NOR is a universal logic gate, it can be used to
implement other logic operations like addition [53] and
multiplication [54]. Our approach also supports division by
approximately modeling it with the multiplication of numerator
and the inverse of denominator [55]. The inversion is computed
by filliping all denominator bits, adding it with 1, and left
shifting of the result [55]. For example, 1-bit addition (inputs
being A,B,C) can be represented in the form of NOR as,

Cout = ((A+B)′+(B+C)′+(C+A)′)′. (1a)
S = (((A′+B′+C′)′+((A+B+C)′+Cout)

′)′)′. (1b)

Here, Cout and S are the generated carry and sum bits
of addition. Also, (A + B +C)′, (A + B)′, and A′ represent
NOR(A,B,C), NOR(A,B), and NOR(A,A) respectively. We
need to reserve extra memory columns for DUAL arithmetic
operations to store intermediate results (discussed in Section V
and Table III). Note that DUAL can also support floating point
arithmetic operations using the same approach shown in [16].
Note that arithmetic operations in DUAL are in general slower
than the corresponding CMOS-based implementations. This is
because memristor devices are slow in switching. However, this
PIM architecture can provide significant speedup with massive
parallelism. For example, DUAL takes the same amount of
time for addition in a single row or all memory rows. However,
the processing time in conventional cores highly depends on
the data size.

V. DUAL IMPLEMENTATION

Fig. 5. (a) DUAL encoding in-memory implementation, (b) computation
layout.

A. Encoding Implementation

The computation of the HD-Mapper is vector-matrix multi-
plication between the feature vector and the base vectors. This
is followed by applying the cosine function on the dot-product
result (as explained in Section III-A). DUAL accelerates the
encoding module by performing a row-parallel in-memory
multiplication and addition. Figure 5a shows the structure of
DUAL accelerating encoding module on two crossbar memories:
the first block computes the dot product of the input data
with the base vectors, and the second block applies cosine
functionality on the dot product result. These two blocks
are working in a pipeline, meaning that when the first block
computes the dot product of the ith data point, the second block
computes the cosine similarity of the dot product result of the
i−1th data point. Figure 5b shows the layout of vectors stored
in memory, implementing encoding computation.

Dot product Implementation: DUAL supports row-parallel
arithmetic operations in memory. To execute the encoding using
those operations, we perform multiplication of the input vector
with the transposed base vectors stored in the same memory
block. Figure 5 shows the overview of DUAL accelerating
encoding module. Our design performs a row-parallel write
operation to store multiple copies of a data point in different
memory rows ({ f1, f2, · · · , fm}), where features can be an
integer or fixed-point number with any bitwidth. The row-
parallel write can be performed by activating all memory rows
during the write operation. The same memory block stores all
base vectors ({B1,B2, · · · ,BD}) horizontally in different rows.
For an application, base vectors are fixed; thus they need to be
written in memory block only once. The encoding computation
starts by multiplying each feature column with a corresponding
column of base vectors. We use the reserved memory, shown
in Figure 5b, to perform intermediate arithmetic operations and
store the multiplication results. After covering the multiplication
of all m features, DUAL performs a row-parallel in-memory
addition to accumulate all multiplication results (Y = F ·B).

Cosine Implementation: Next, we apply the cosine function
on the dot product (Y). DUAL approximates cosine function
by using the first three terms of Taylor expansion. DUAL
sends two copies of the dot product vector to the next memory
block (Block 2 shown in Figure 5b) in a row-parallel/bit-serial
way. Then, it exploits in-memory multiplication to compute
different powers of the product vector (Y 2 and Y 4 shown
in Figure 5). DUAL multiplies the result vectors with the

5

Taylor expansion coefficients, which are already pre-stored
in the second memory block. Finally, our model computes
the result of Taylor explanation by performing row-parallel
addition/subtraction between different memory columns. We
consider the inverse of output vector sign-bit as encoded
data with binary representation. Note that DUAL uses the
reserved memory to compute the intermediate results of
Taylor’s expansion.

DUAL is a scalable architecture. If the number of base
vectors exceeds the number of memory rows (D > 1k), we
store the rest of the base vectors in another memory block.If
the number of features exceeds the size of a block bitline, we
compute the dot product results in two neighbor blocks and
aggregate the dot product results before passing it through
cosine function.

B. Pairwise Distance Computation
Encoding is a single-pass process. After encoding, DUAL

starts the clustering task on the encoded data points stored
in memory. DUAL exploits two types of memory blocks for
clustering: (i) data blocks that store the encoded data points
and are responsible for pairwise distance computation, (ii)
distance blocks that store the pairwise distance matrix and
perform the clustering task. DUAL assigns a column of the
distance memory to store a flag bit and another column to
store the size of the cluster ({s1,s2, · · · ,sn}). These sizes are
initially set to 1, as each data point is a separate cluster. Figure 6
shows an overview of mapping Hierarchical clustering to DUAL
hardware. Figure 7 also shows the layout of DUAL operations
performing clustering in memory. Each data block supports
a row-parallel Hamming distance computation (explained in
Section IV-A1). DUAL first computes the distance of the first
encoded data point (a1) with all data stored in the data block
(Figure 6•A). The Hamming distance computation is performed
serially over 7-bits windows. The distance results will be written
as a 3-bit value in the distance memory. Assuming a data
point with D dimensions, the distance memory stores D/7
3-bit values. DUAL exploits in-memory addition (explained in
Section IV-B) to accumulate all the partial distance values in a
row-parallel way. The results of accumulation are stored in the
same memory block, only using log D bits. Note that when
we compute the Hamming distance of ai to all data points,
we write the maximum value on the diagonal distance well
(d(ai,ai) = D). This write happens after the accumulation of
all 3-bits counters. We continue a similar search operation for
all data points in order to find all pairwise distances.

C. Nearest Cluster
The next step is to compare all distance values stored in

the distance memory and find data points with the highest
similarity. We exploit nearest search functionality (explained
in Section IV-A2) to implement row-parallel minimum search.
Our design starts the search operation in the first column of
the distance memory with valid flag bit set by searching for a
query which is actually the lowest value, i.e., 000...0. Any row
which has the highest similarity to query data is the smallest
value in the column (Figure 6•B). Next, we perform the same
search operation on other columns of the distance memory
with a valid flag bit set. After each search, DUAL writes a

selected row along with its index in another memory block.
Finally, the nearest search in that memory determines indices
of the closest points.

D. Distance Update
After clustering two data points with the closest distance,

the relative distances of all data points with the merged nodes
need to be updated. DUAL supports all popular linkage distance
update used for clustering algorithms. Here, we first explain
the implementation of the Ward method, which is a popular
and complex update method. Then, we explain how DUAL
supports other linkages using the same operations.
Ward Update: Ward update requires all data points to update
their similarity with the new cluster data points (ai and
a j). Ward update has three coefficients and three distance
values (explained in Section II). Our design first computes
the numerator and denominator of the coefficients by: (i)
performing a row-parallel write of the size of si and s j on two
columns of the coefficient block (Figure 6•C). This write
in all rows is performed in a single cycle. (ii) since the
weight corresponding to each data point is already stored
in the memory (sK column), we perform row-parallel in-
memory addition to compute X : si + sk and Y : s j + sk,
and Z : si + s j + sk, the numerator and denominator of the
Ward coefficients (Figure 6•D). (iii) Next, we compute the
coefficients by performing row-parallel in-memory division of
X , Y , and sk with the denominator (Figure 6•E) (explained in
Section IV-B) .

To compute new distance of all data points to ai∪a j, we
multiply each coefficient column with corresponding column of
the distance memory storing d(ai,ak), d(a j,ak) (Figure 6•F).
We also multiply the third coefficient (C3), with the distance
of the clustered nodes, d(ai,a j) which has been written in a
row-parallel write on another column of the distance memory
(Figure 6•C). Finally, we add the first two terms of the Ward
metric and subtract from it the third term stored in the same
memory (Figure 6•G). The result of this operation is stored in
ith and jth columns of the distance memory. We also update
ith and jth rows of the distance memory. Since these two
nodes are clustered, we only update one of the rows (ith rows
if si > s j), setting si to si + s j and unset the valid flag of s j
(Figure 6•H).

Figure 7 shows the layout of DUAL operations performing
hierarchical clustering in memory. All DUAL operations
can perform column-wise using row-parallel search-based or
arithmetic operations. Ideally, two memory blocks, i.e., data
and distance blocks, can compute the entire clustering tasks.
In section VI-A, we talk about the scalability of DUAL when
the data size is much larger to fit into those memories.
Other Linkage Updates: DUAL supports single and com-
plete linkage by performing compare operation between two
columns of the distance memory (d(ai,ak) and d(a j,ak)). This
comparison is performed by subtracting the distance vectors in
a row parallel way and looking at the sign bit of the subtracted
vector. Depending on the sign bit, we select one of the distance
values as a relative distance to clustered data points. DUAL
supports average linkage using a similar approach as Ward
linkage. We perform row-parallel write of the si and s j values
and multiply them with the corresponding columns of the

6

Fig. 6. Overview of DUAL functionalities supporting hierarchical clustering.

Fig. 7. memory Layout performing clustering.

distance values (d(ai,ak) and d(a j,ak)). Then, DUAL adds the
multiplied vectors and divides the results by si + s j.

VI. DUAL ARCHITECTURE

Figure 8•A shows an overview of the DUAL architecture.
DUAL consists of 64 tiles. Each tile consists of 256 crossbar
memories. Due to the existing challenges of crossbar mem-
ory [56], [57], each memory block is assumed to have a size
of 1k×1k. The memory blocks located in each row of a tile
are connected together using an interconnect. This interconnect
sends the signals from the CAM sense amplifier of the data
block to row drivers of all distance blocks. The interconnect
enables the Hamming distance computation of the data block
to be written in any distance block located in the same row. To
minimize the cost of the interconnect, we enable bit-serial/row-
parallel data transfer which limits the interconnect bandwidth
to 1K-bits. A single 3-bit counter is located at the top of each
crossbar memory. During each sampling cycle of Hamming
distance computation, the interconnects transfer the activate
rows to a destination distance block, and the counter values will
be written in parallel on all the activated rows (Figure 8•B).

A. Scalability & Parallelism

Figure 8•C shows DUAL configuration when the data points
do not fit in a single memory. DUAL assigns the first block
of each tile row to a data block while others are assigned to
distance block storing the pair-wise distances. DUAL provides
both row-level and block-level parallelism. To enable fast
Hamming computing, our design exploits interconnects to
write the result of distance computation in any distance block
located in the same row. In addition, the bit-serial/row-parallel
data transfer between the neighbor blocks accelerates DUAL
computation (Figure 8•D). To enable parallelism, DUAL stores
multiple copies of the data blocks in other tiles to perform the
distance computation and clustering in parallel. Although this
approach speeds up the computation, it adds two overheads:
(i) during the clustering, data located in different tiles need
to be aggregated into a single memory block, this results in a

large internal data movement. (ii) In this configuration, DUAL
also requires a larger memory to store repeated data blocks. In
Section VIII-F, we explore the impact of parallelism on DUAL
computation efficiency.

B. DUAL Pipeline
We design a pipeline that enables DUAL to work with

maximum throughput. DUAL has two main phases: Hamming
computing, and clustering. The Hamming computation happens
only once, while the clustering phase repeats iteratively.

Hamming Computing Pipeline: Our pipeline initially
assigns each distance block to store the relative Hamming
distances corresponding to a single point. This starts by writing
the Hamming distances relative to the first data point in the
first distance memory. To maximize the throughput, DUAL
continues the Hamming computing relative of the second data
point and writes the results in the second distance block. At
the same time, the first block accumulates all D/7 partial
distances in order to represent them using logD bits. Typically,
this accumulation is slow; thus the distance computation
continues sequentially in multiple distance blocks until the
first block becomes available. DUAL again uses the remaining
bitlines of the first distance block (1k− logD bits) for distance
computation of the next data points (Figure 8•E).

Clustering Pipeline: After creating a pairwise distance
matrix, DUAL searches for the index with least Hamming
distance in all distance blocks with valid flag bit set (“Nearest”).
These indices along with the hamming distance are sent to
another memory block which performs a comparison among
the hamming distance to find the minimum distance (“Comp”).
Based on the comparison result, DUAL first computes Ward
coefficients and then transfers the corresponding vectors of
the distance matrix into another block (“Data Transfer”).
Finally, DUAL updates the distance vectors using the moved
distance vectors and the computed Ward coefficients (“Distance
Update”). This process continues iteratively until having one
cluster.

C. Other Clustering on DUAL
DUAL is a general platform that can be used to accelerate

a wide range of unsupervised learning algorithms. A similarity
check is a common operation in most clustering problems.
Here, we explain how DUAL can accelerate other popular
algorithms by using Hamming similarity on the encoded data.

DBSCAN: is another popular clustering algorithm [58]–
[60]. DBSCAN starts the clustering from an initial data point.
For the selected data point, it computes the Hamming distance
with all encoded data points and clusters it to the data point

7

Fig. 8. DUAL architectural details, and the pipeline stage supporting Hamming computing and clustering.

Fig. 9. DUAL computation flow accelerating DBSCAN and K-means
algorithm.

with the closest similarity. This clustering happens if the point
with the maximum similarity is within a pre-defined ε distance.
If it is not, DBSCAN selects another initial point and continues
the clustering until merging all close enough points.

We map DBSCAN to DUAL in a very similar way to
hierarchical clustering. Figure 9a shows the computation steps
of DUAL accelerating DBSCAN. Our design stores all encoded
data points in a data block. Then, it computes the Hamming
distance of an initially selected data with all other data points
in a row-parallel way. The partial Hamming distance values
will be written in a distance memory and then accumulates
in order to represent using a single logD bits value. Similar
to hierarchical clustering, DUAL searches for the minimum
Hamming distance value in a distance memory. The controller
checks the distance of the selected point with ε and clusters
selected points if their distance is within an acceptable range.
The clustering happens by simply activating the flag bit of
the clustered point, indicating that the point does not need to
be involved in future similarity checks. The same procedure
repeats by considering the recently clustered data point as a
new clustering query.

K-means: algorithm starts the clustering with a set of
generated cluster centers [61]. The clustering continues by
checking the similarity of each data point with all cluster
centers and assigning it to a cluster with the highest similarity.
The k-means stops the clustering if the changes between the
centers in two consecutive iterations is less than a pre-defined

Algorithm 1: The implementation of DBSCAN
0: centers = vlca¡10000¿[N]
0: (cur p,cur err) = (0, in f inite)
0: while cur err > thres do
0: h dist = hamming(centers[cur p],centers)
0: (idx,vec) = near search(h dist,0)
0: (cur p,cur err) = (idx,vec− centers[cur p])
0: end while=0

ε .
Figure 9b shows the computation steps of DUAL accelerating

k-means. DUAL exploits the same hardware to compute the
distance of centers {c1

1,c
1
2, · · · ,c1

2} to all data points stored
in the data block. The result of distance computation will
be written in all distance blocks (k columns each storing the
distance relative to a center). Since the cluster centers are
usually small, even a single distance block might be enough
to store Hamming distances of all centers with data points
(if k× logD < 1k, where k is the number of centers). For
each data point, DUAL compares the distance values over all
centers using a series of row-parallel subtraction and writes
the index of a center with the minimum distance on the index
buffer. This minimum functionality is implemented in a row-
parallel way by comparing the distance values two-by-two,
starting from their most significant bits. After finding the index
corresponding to all data points, we activate all rows of the data
block corresponding to center 1. DUAL performs in-memory
addition to accumulate the activated rows. In the next iterations,
DUAL accumulates data points corresponding to other centers.
The k accumulated values are the new centers. To stay in the
binary, the controller binarizes the new centers and repeaters
the clustering using the new centers. The controller also checks
for the converges and stops the algorithm if the number of bit
changes of cluster centers in two consecutive iterations is less
than a pre-defined value.

VII. PROGRAMMING SUPPORT

A. Variable-Length Column Array

All DUAL operations (i.e., search and arithmetic) are column-
wise. So, we introduce a family of data structures, Variable-
Length Column Array (VLCA), to represent all operation values
used in DUAL programs. Here, we denote a D-bit VLCA
with N elements as vlca〈D〉[N]. We enable two-dimensional
indexing in VLCA where vlca〈D〉[i][j] represents jth bit of ii

row in a D-bit vector. VLCA supports slicing indexing which

8

TABLE I
PIM INSTRUCTIONS OF DUAL.

Instruction R. Reg. W. Reg.

set_qinput b, <addr>, <size> q
hamm_7 b, c1, c2 -
add/sub/mul/div b, d, c1, c2, c3 -
near_search b, nc, c, q rst, idx
row_mv b1,r1,c1,b2,r2,c2,nr,nc -

enable programmers to extract specific rows/columns from the
whole data. For instance, vlca〈D〉[i : j][n : m] denotes data slice
of nth−mth columns in the ith− jth rows. A VLCA, which
cannot fit in one memory block, is stored across multiple blocks.
Operations on long VLCAs can be broken into multiple parallel
operations over all blocks storing the vector.

B. Built-in Functions

We define several built-int functions as C library for
implementing operations in DUAL using VLCAs as main
operators.
Hamming Computing: hamming(input, re f s) function
computes the Hamming distance between an input vector (input)
and an array of reference vectors (refs). The function has two
parameters, where input is a D-bit vector and re f s has a
format of vlca〈D〉[N]. Calculations of the Hamming distance is
completed by comparing the vectors in a 7-bit windows. Each
7-bit comparison generates 3-bit distance result. The output of
hamming() function has a format of vlca〈3〉[

⌈D
7

⌉
][N].

Row-Parallel Arithmetic: For each of the arithmetic oper-
ations, we use a row-parallel computation in memory. (e.g.
addition(input1, input2)) has two parameters, where both
inputs and the output have the format of vlca〈D〉[N].
Nearest Search: The function near_search(input, target)
is used to finish the nearest search operation. The nearest
search finds the entry in a vlca〈D〉[N] (input) with a value
which is closest to a target D-bit vector (target). The output
of near_search() function consists of the index of the
matched entry as well as the value of the entry.
Row-Parallel Data Transfer: We copy the value of a vector
to another vector by normal assignment statements a = b,
with the same vector dimensionality. Data movements between
VLCAs are processed by the PIM hardware in a row-parallel
way, resulting in a single bit movement for all memory rows.

C. PIM Interface

Algorithm 1 shows the DBSCAN implementation using
DUAL interface. We implement a runtime library to transform
the function calls into DUAL instructions issued through a
custom device driver (listed in Table I). There are several spe-
cialized registers required for these PIM instructions. Registers
starting with b, r, and c store values indicating the memory
location in terms of the block, row, and column respectively.
Register q stores query data. nr and nc represent the number
of rows and columns for the current instruction.

The mapping of the function to the PIM instruction is straight-
forward; to allocate a VLCA, we should find enough space to
store the vectors in consecutive rows. In our implementation,
we exploit a simple management scheme that uses a list of
free blocks with a global allocation table. Once an allocation
is issued, it checks the free block list to return one or multiple

pages with consecutive rows and adds an allocation entry into
the allocation table to store the allocation information including
the address, bit-width, and the number of elements. When an
address is reclaimed, it returns the corresponding blocks to the
list and merges the list items if needed. The more advanced
management scheme (e.g., handling memory fragmentation)
is out of our scope; there exist many solutions for similar
problems, e.g., SSD and persistent memory [62], [63].

D. Application Mapping
In DUAL, a register is located next to each memory that

stores the sequence of operations that needs to be computed on
the memory block. Each register, which acts as a controller for
each memory block, is initialized once using the tile’s controller.
This initialization happens depending on several parameters
including: clustering algorithm, number of pipeline stages,
dimensionality, number of clusters, number of data points,
and computation precision. Depending on these factors, our
software interface estimates the worst-case memory requirement
for each pipeline stage and decides the suitable data layout
that results in maximum parallelism. We pre-evaluate each
clustering algorithm once offline. This enables our software
interface to find an optimal data layout and register/instructor
values using a very limited algorithm and workload parameters.

VIII. RESULTS
A. Experimental Setup

We have designed a cycle-accurate simulator based on
scikit-learn [64], [65] that emulates DUAL functionality during
different clustering algorithms. For the hardware design, we
use HSPICE for circuit-level simulations to measure the energy
consumption and performance of all the DUAL operations
in 28nm technology. Energy consumption and performance
are also cross-validated using NVSim [66]. We used system
Verilog and Synopsys Design Compiler [67] to implement and
synthesize the DUAL controller. For parasitics, we used the
same simulation setup considered by work in [53]. In DUAL,
the interconnects are model in both circuit and architecture
levels. In circuit-level, we simulate the cost of inter-tile
communication while in architecture we model and evaluate
intra-tile communications. The robustness of all proposed
circuits, i.e., interconnect, has been verified by considering
10% process variations on the size and threshold voltage
of transistors using 5000 Monte Carlo simulations. DUAL
works with any bipolar resistive technology which is the most
commonly used in existing NVMs. In order to have the highest
similarity to commercially available 3D Xpoint, we adopt the
memristor device with a VTEAM model [68]. The model
parameters of the memristor are chosen to produce a switching
delay of 1ns, a voltage pulse of 1V and 2V for RESET and
SET operations in order to fit practical devices [48], [49].

Table II shows detailed configurations of DUAL consisting of
64 tiles. Each tile has 256 crossbar memory blocks. In each tile,
the crossbar memory takes the majority of the area and power
consumption, while the counters are taking less than 0.7% and
3.1% of the tile area and power. Each tile takes 0.84mm2 area
and consumes 1.76W power. The total DUAL area and average
power consumption are 53.57mm2 and 113.51W respectively.

Table III lists the energy consumption, execution time, and
the required memory of each DUAL operation. All results are

9

TABLE II
DUAL PARAMETERS.

Components Param Spec Area Power

Crossbar array size 1Mb 3136µm2 6.14mW
Sense Amp number 1K 57.13µm2 2.38mW

Counter number 1 24.06µm2 0.27mW
Memory Block number 1 3217.19 µm2 8.79mW

Tile Memory num block 256 0.82mm2 1.57W
Interconnect num wire 1k/row 0.01mm2 62.08mW
Controller number 1 289.2µm2 131.75mW

Tile size 32MB 0.84mm2 1.76W

Total number 64 Tiles 53.57mm2 113.51Wsize 2GB

TABLE III
DETAILS OF DUAL SUPPORTED OPERATIONS.

Operations Size
Energy

Consumption
Execution

Time
Required
Memory

Hamming Computing 7-bits 1632fJ 200/100 ps 3-bits/row
Nearest Search 4-bits 1214fJ 200 ps 1-bit/row

Addition 8-bit 2.3pJ 98.4ns 12-bits/row
Multiplication 8-bit 67.7pJ 448.3ns 155-bits/row

Division 8-bit 72.5pJ 561.4ns 168-bits/row
Data Transfer 1-bit 748fJ 1.1ns 1bit/row

reported for a row-parallel case in 28nm technology node when
we perform the computation on a single block with 1k rows.
In contrast to conventional CAM architectures that consume a
huge amount of power, DUAL enables the search operation in
4-bi/7-bit granularity’s, resulting in very lower power density.

B. Workloads

We evaluate DUAL efficiency on three popular clustering
algorithms: hierarchical clustering, K-means, and DBSCAN.
The evaluations are performed on several large-scale datasets
including actual and synthetic datasets. Table IV lists 7 popular
datasets selected from UCI machine learning website [69].
We also evaluated DUAL efficiency on large-scaled synthetic
data consisting of 10k, 1 million, and 10 million data points.
The synthetic data is generated random data with 100 cluster
centers, radius range of [rl ,rh] = [0..

√
2,
√

2..
√

32], and noise
rate of 0-10%. Synthetic data has differet sizes, from 400 MB
(Synthetic 1) to 40 GB (Synthetic 3). To measure cluster quality,
we rely on correct labels of data points and find out how many
points were classified in a cluster that does not reflect the label
associated with the point. For assigning a label to a cluster,
we find a label that is repeated the maximum number of times
in a cluster and assign that label to the cluster. We set the
number of clusters formed to be the same as the number of
labels available in the data set.

We compare DUAL with the efficient implementation of clus-
tering algorithms running on GPU. For hierarchical clustering,
we used the NVIDIA Graph Analytics library (nvGRAPH) [70].
We used [71] and [72] for GPU implementation of k-means
and DBSCAN algorithms, respectively. The experiments are
performed on an NVIDIA GTX 1080 GPU. The performance
and energy of GPU are measured by the nvidia-smi tool.

C. Quality of Clustering

Figure 10a compares the quality of DUAL on three clustering
algorithms. For DUAL, each data point is encoded to D= 4,000
dimensions. The results are compared to the baseline algorithms
working with original data and using Euclidean distance. Our
result shows that DUAL provides comparable accuracy to the

TABLE IV
WORKLOADS.

Datasets # Data Point # Features # Clusters Description

MNIST 60000 784 10 Handwritten Digits [73]
FACIAL 27965 300 2 Grammatical Facial Expressions [74]
UCIHAR 7667 561 12 Human Activity Using Smartphones [75]
SEIZURE 11500 178 5 Epileptic Seizure [76]
SENSOR 13910 129 6 Gas Sensor Array Drift [77]

GESTURE 9880 50 5 Gesture Phase Segmentation [78]
ISOLET 7797 617 26 Speech data [79]

Synthetic 1 100k 1000 50 100k data points
Synthetic 2 1M 1000 50 1 Millions data
Synthetic 3 10M 1000 50 10 Millions data

Fig. 10. (a) The quality of DUAL clustering and the baseline algorithm. (b-d)
comparison of DUAL and LSH when mapping data to different dimensionality.

baseline clustering algorithms. For example, over hierarchical
and DBSCAN (and k-means) DUAL provides on average 1.2%
and 0.4% higher (1.3% lower) average quality of clustering as
compared to the baseline algorithms.

We also compare the quality of DUAL with the clustering
algorithm using Locality-Sensitive Hashing (LSH) [34], [80],
[81]. Similar to DUAL, LSH can map data points to binary
vectors with large dimensionality in order to replace Euclidean
to hardware-friendly Hamming distance metric [24], [82],
[83]. Figure 10b-d compares the quality of clustering in
DUAL and LSH-based approaches. The results are shown
for the MNIST dataset. Our evaluation shows that in the
same dimensionality, DUAL provides a significantly higher
quality of clustering than LSH-based approaches. For example,
DUAL using D = 4,000 provides 5.9%, 5.2%, and 3.3% higher
quality of clustering than LSH-based approach implementing
hierarchical, k-means, and DBSCAN clustering. This higher
quality comes from the non-linearity of the HD-mapper that
keeps the similarity of the original data in high-dimensional
space, while LSH tries to keep approximate distances in a
linear way. In addition, we observe that algorithms have
different sensitivities to dimension reduction. For example,
DUAL accelerating hierarchical clustering can provide a high
quality of clustering even when dimensionality reduces to
D = 2,000. In contrast, k-means is more sensitive to dimension
reduction.

Figure 11 visualizes the clustering of UCIHAR dataset using
the baseline hierarchical clustering and DUAL using D= 4,000
and 1,000. For visualization, we used t-SNE technique [84]
which represents high-dimensional data in 2-dimensional space.
In the UCIHAR dataset, the clustering space is 561-dimensional.
The true cluster labels are indicated by different colors. The
visualization indicates that DUAL using D = 4,000 results in

10

Fig. 11. t-SNE visualizations of the baseline hierarchical learning and DUAL
with different dimensionalities.

a more clustering-friendly space compared to clustering in
the original space. As we decrease the dimensionality of the
mapped hypervectors, DUAL quality of clustering reduces. For
example, DUAL using D = 1,000 provides 5.7% lower quality
as compared to DUAL using D = 4,000 dimensionality.
D. DUAL Efficiency

Figure 12 compares DUAL energy efficiency and perfor-
mance with the baseline clustering algorithms running on
GPU. Our evaluation shows that DUAL running all clustering
algorithms provides on average 58.8× speedup and 251.3×
energy efficiency improvement as compared to the baseline
GPU-based approach. The higher DUAL efficiency comes
from: (i) enabling a large amount of parallelism, supported
by ensuring the data availability in each block. The GPU has
resources/cores to parallelize up to four thousand operations.
Due to the weakness of the existing von-Neumann architectures,
even these small number of cores are usually underutilized
(28% utilization running hierarchical clustering). In contrast,
DUAL can perform up to 8 million parallel operations by
enabling row-level and block-level parallelisms. We also
maximize DUAL utilization using the proposed pipelined that
ensures data availability in each core, i.e., memory block.
(ii) DUAL addresses the overhead of data movement by not
only eliminating the external data movement (between the
processing cores and memory), but also eliminating the internal
data movement between the memory blocks. This internal data
transfer is minimized by exploiting the interconnects and bit-
serial/row-parallel data transfers between the neighbor blocks.
DUAL is an algorithm-hardware co-design. Without HD-

mapper, DUAL cannot support euclidean distance entirely in
PIM. Similarly, without DUAL Hamming computing hardware,
using HD-mapper does not provide computation efficiency. We
run DUAL code (high-dimensional clustering) on the same GPU
as the baseline. We observe that clustering in high-dimensional
space using HD mapper (LSH mapper) runs on average 12.8×
and 3.1× (2.8× and 1.06×) slower and less energy efficient
than clustering on the original space running on the same GPU.
This is because GPUs have lower parallelism (# of cores)
than PIM architecture, thus they get higher benefit running
arithmetic operations on low-dimensional vectors, rather than
binary computation over long vectors. In other words, DUAL
efficiency comes from revisiting clustering algorithms based
on the hardware/technology requirements.

Algorithms Efficiency: DUAL efficiency depends on the
operations involved in each algorithm; a portion of search-based
and arithmetic operations. In search-based operations, DUAL
is significantly faster and more efficient than the equivalent
CMOS-based logic. In terms of arithmetic operations, DUAL
efficiency highly depends on the amount of parallelism. In
fact, in a single arithmetic operation, e.g., 32-bit multiplication,

DUAL is about 60× slower than CMOS-based logic. This is
because our approach supports arithmetic using a series of NOR-
based operations. However, the large amount of parallelism
supported by DUAL results in a higher overall DUAL efficiency.
Looking at different algorithms, DUAL provides the maximum
efficiency over hierarchical clustering and DBSCAN as these
algorithms are mostly involved in search-based operations. For
example, DUAL running hierarchical clustering (DBSCAN)
provides on average 67.1× (71.7×) speedup and 328.7×
(293.3×) energy efficiency as compared to a GPU-based
approach. In contrast, k-means involves a large amount of slow
arithmetic operation (during cluster update), thus providing
only 37.5× speedup and 131.6× energy efficiency as compared
to GPU.

DUAL Configurations: To show the impact of each
optimization, Figure 12 shows the DUAL efficiency without
using the proposed interconnects and counters. Our evaluation
shows that DUAL without interconnects can still outperform
GPU efficiency. The impact of the interconnects is more crucial
on the hierarchical clustering algorithm (3.9× slow down
without interconnect), as it requires interconnects to write
all pairwise computations on different distance blocks located
in the same row. In k-means, DUAL computes the distance to
a limited amount of cluster centers; thus, datasets with more
number of cluster centers are more affected by interconnect
elimination. DBSCAN has the least sensitivity to interconnects
(1.6× slow down without interconnect), as it computes the
Hamming distance to a single data point at each iteration.
Therefore, it uses very few neighbor distance blocks to store
the distance vector.

Figure12 also shows DUAL efficiency without counter blocks.
As NVMs are slow in the write operation, without the counter,
the Hamming computing will be significantly slow down.
This slow down in more obvious on hierarchical clustering as
Hamming computing takes 41% of the total GPU execution. For
example, the results show that without counters DUAL works on
average 2.7×, 2.1×, and 2.4× slower than the baseline DUAL
running hierarchical, k-means, and DBSCAN algorithms.
E. DUAL Quality-Efficiency Tradeoff

As we explained in Section VIII-C, DUAL quality of
clustering depends on the dimensionality of the encoded data.
We exploit the robustness of DUAL to dimension reduction
in order to improve the computation efficiency. DUAL using
lower dimension provides: (i) faster computations, e.g., fewer
iterations for Hamming computing and nearest search, and
accordingly lower bit-width to perform distance update. (ii) In
addition, a lower D reduces the amount of memory requirement
and internal data movement between the blocks during the
cluster update. Figure 13 shows the impact of dimension
reduction on DUAL computation efficiency. The results are
reported when we ensure less than 1% and 2% quality
loss on all tested datasets as compared to DUAL using full
dimensionality (D = 4,000). Our evaluation shows that DUAL
computation efficiency depends on the clustering algorithm.
Hierarchical clustering has high robustness to dimension
reduction (as shown in Figure 10b), thus provides 90.6× and
443.9× (116.7× and 572.2×) speedup and energy efficiency
while providing only 1% (2%) quality loss. In contrast, k-

11

Fig. 12. Efficiency in different configurations.

means quality changes significantly with dimension reduction
(as shown in Figure 10c), resulting in only 42.2× and 139.5×
(46.5× and 146.4×) average speedup and energy efficiency
improvement with 1% (2%) quality loss.

F. Parallelism & Scalability

Figure14 shows the energy consumption and execution
time of DUAL providing different levels of parallelism. The
results are normalized to DUAL using a single copy of encoded
data (parallelism:1). In this low-power mode, DUAL saves the
encoded data in the data blocks, enabling serially Hamming
distance computation over data points. The clustering task can
be also performed without significant data transfer between
the blocks and tiles. In high-performance mode, DUAL saves
multiple copies of the encoded data points into a single
or different tile, providing a parallel Hamming computing.
However, this parallelism comes at the expense of increasing the
number of data transfer between the blocks, especially during
the clustering phase. We evaluate the efficiency of parallelism
over two different dataset sizes: 1K and 100K data points.
Our results show that using small datasets, DUAL computation
speeds up linearly with the level of parallelism. However, using
large datasets, the overhead of internal data transfer saturates
the DUAL speedup. We also observe that hierarchical clustering
requires a lower amount of parallelism for performance
saturation. This is because hierarchical clustering stores all
pairwise distance values, requiring more blocks/tiles to cluster
the same number of data points. In contrast, k-means and
DBSCAN only store k (number of cluster centers) and one
distance similarity, providing higher computation density.

Figure 14 shows DUAL computation speedup for hierarichal
clsutering when using synthetic datasets with 100K, 10M, and
100M data points (listed in Table IV). Similar to parallelism,
increasing the number of chips results in higher performance,
but increases the cost of data transfer between different chips.
For example, increasing the level of parallelism by a factor of
two, only results in 1.6× and 1.4× speedup over 100k and 10M
data point. The lower improvement in larger datasets comes
from the overhead of a large amount of data movement. In a
fair comparison, DUAL using 16 chips provide the same area
as an NVIDIA GPU. In this configuration, DUAL using 10M
data points provides 621.1× and 4.6× speedup as compared
to GPU and DUAL using 1-chip, respectively.

Fig. 13. Efficiency in different levels of quality loss.

G. Breakdown

Figure 15a shows the average DUAL computation efficiency
with In-Memory data-parallel Processor (IMP) [15]. IMP
offloads the PIM-compatible operations of a program into
analog-PIM. These operations are the addition, multiplication,
and dot product. For hierarchical clustering and DBSCAN, IMP
can only offload/accelerate the similarity search (Euclidean dis-
tance), which only takes 24.5% and 29% of total GPU execution
(Figure 15b). This results in about 1.6× and 1.3× speedup
over GPU. In contrast, in k-means, IMP operations can be used
to accelerate both similarity check and cluster update (92% of
GPU execution as shown in Figure 15b), resulting in 12.1×
speedup and 27.2× energy efficiency improvement as compared
to GPU. DUAL using a 4-chips provides a similar chip area as
IMP. In this configuration, DUAL provides 136.2×, 9.8×, and
168.1× speedup than IMP over hierarchical clustering, k-means,
and DBSCAN, respectively. This efficiency mainly comes from
DUAL capability in processing all clustering operations in a
parallel.

Figure 15b shows the breakdown of the DUAL operations
running different clustering applications. Our evaluation shows
that DUAL encoding module takes less than 5% of the
total execution time. For hierarchical clustering, clustering
(nearest search) dominates the execution, as DUAL performs
clustering functionality multiple times over the distance matrix.
For k-means, the center update takes the majority of the
execution time, as DUAL arithmetic operations are slower
than search-based operations. For DBSCAN, the center update
is computationally simple; thus the Hamming computing and
nearest search take the majority of the execution time.

H. DUAL Lifetime and Device Variability

We evaluate the lifetime of DUAL depending on the number
of write operations in the memory devices. one of the main
advantages of DUAL is its high robustness to noise and failure.
DUAL store information as holographic distribution of patterns
in high-dimensional space. In this representation, all dimensions
are equally contributing to storing information. Therefore,
failures on a dimension may not result in losing the entire data.
Prior work shows that the endurance of the memristor device

has ranged between 109 to 1011 [85]. During the lifetime of
DUAL, the number of write operations affects the functionality
of the device. Here, we manage the DUAL endurance by
uniformly distributing the number of writes to all bitlines.

12

Fig. 14. (a) DUAL speedup in different level of parallelism, (b) scalability
using different # of chips.

Since all memory blocks support the same functionality, in a
long time period, DUAL uses different blocks as data blocks.
In addition, DUAL exploits different columns of each memory
to perform arithmetic operations. Our evaluation shows that
assuming the arrays are continuously used, DUAL can work
accurately for 13.5 years. Considering a Gaussian distribution
for device failure (endurance distribution), DUAL will still work
with less than 1% and 2% quality loss after 17.2 and 19.6
years. In DUAL, each tile controller keeps track of the number
of times that each memory block is used for computation. This
provides an estimation of the number of writes in the memory
without paying significant cost for endurance management.

In practice, the memristor devices might have variation due
to thermal or process variations. Here, we consider the impact
of up to 50% variations on the OFF/ON memristor values. Our
evaluation shows that decreasing the Ro f f /Ron slows down
the arithmetic and search-based operations. In 50% variations
(Ro f f /Ron∼ 50), DUAL ensures the exact computation by using
350ps and 1.8ns clock frequency for the search and NOR-based
operations. In architecture-level, this variation results in 1.83×
slower and 1.45× less energy efficiency of DUAL. However,
DUAL efficiency is still much higher than the GPU.

IX. RELATED WORK

Clustering Acceleration: Several prior works tried to
accelerate clustering algorithms on GPU, FPGA, and ASIC
designs [72], [86]–[90]. To accelerate computation, prior works
tried to simplify clustering operations [35]–[37]. For example,
Locality Sensitive Hashing (LSH) was introduced in order
to give an efficient algorithm for nearest neighbor search in
high-dimensional space. This approach simplifies the similarity
search of hashed data to the Hamming distance metric which
can be implemented more efficiently in the hardware [91], [92].
However, the current computing systems are still significantly
slow in processing large datasets, as the main computation still
relies on CMOS-based cores, thus has limited parallelism.

Processing in-memory: To address the data movement
issue, work in [93] proposed a neural cache architecture that
re-purposes caches for parallel in-memory computing. Work
in [94], [95] modified DRAM architecture to accelerate DNN
inference by supporting matrix multiplication in memory. In
contrast, DUAL performs a row-parallel and non-destructive
bitwise operation inside non-volatile memory without using
any sense amplifiers. In addition, these approaches do not
support Hamming computing and the nearest search which
are essential for clustering applications. The capability of
non-volatile memories (NVMs) to act as both storage and
processing units has encouraged research in Processing In-
Memory (PIM) [16], [17], [96]. NVM-based PIMs have been
used to accelerate a wide range of big data applications

Fig. 15. (a) DUAL vs. IMP [15] efficiency. (b) Computation breakdown of
GPU and DUAL.

such as supervised learning [14], [17], [18], [96]–[99], graph
processing [9], [11], [100]. Work in [101], [102] designed
NVM-based Boltzmann machine capable of solving a broad
class of deep learning and optimization problems. Work
in [18] and [17] designed new architectures to accelerate
Deep Neural Network (DNN) inference using analog-PIM.
Work in [14], extended PIM functionality to support the
training phase of DNN algorithms. Work in [15] exploited
analog-PIM to accelerate general data-intensive workloads
by offloading the PIM-compatible operations into the PIM
accelerator. However, these architectures: (i) do not support the
majority of operations involved in clustering algorithms [16],
[18], e.g., similarity/nearest search, (ii) require ADC/DAC
blocks that dominate total chip area/power, e.g., 98% of chip
area and 87% of total power in [18].

In addition, work in [16] proposed a PIM architecture that
supports floating-point arithmetic operations over digital data.
However, all existing clustering algorithms are based on the
search-based operations that cannot be supported by arithmetic
operations. Prior works also exploited digital PIM operations
to accelerate different applications such as DNNs [46], [103],
[104], brain-inspired computing [39], [105], [106], object
recognition [107], graph processing [108], [109], and database
applications [45], [110]. However, the designs do not support
high-level operations used in clustering. In contrast, DUAL
supports all operations involved in clustering algorithms using
parallelized in-memory operations. It also removes the necessity
of ADC/DAC blocks; thus providing high throughput/area.

Search-based PIMs: There are several work used NVM-
based CAM to support the nearest absolute [46] or Hamming
distance [39] search. These approximate analog searches cannot
be used to perform clustering that required actual distance value.
In contrast, DUAL is the first digital-based architecture that
computes Hamming distance without using costly ADC/DAC
blocks. There are recent work used other NVM technologies,
e.g., FeFET and STT-RAMs or multi-level cells (MLCs), to
design CAM blocks [111]–[113]. For example, work in [114]
designed CAM with exact search capability using MLCs. DUAL
idea is orthogonal to NVM technology as it can exploit the same
peripherals to support Hamming computing on any CAMs.

X. CONCLUSION

In this paper, we propose the first digital-based processing
in-memory architecture (DUAL) to accelerate a wide range
of popular unsupervised learning algorithms. DUAL maps all
data points into high-dimensional space, replacing complex

13

clustering operations with memory-friendly operations. We
accordingly designed a PIM-based architecture that supports
all essential operations in a highly parallel and scalable way.
Our evaluation shows that DUAL provides a comparable quality
of clustering to existing clustering algorithms while providing
a 58.8× speedup and a 251.2× energy efficiency improvement
as compared to the existing NVIDIA GTX 1080 GPU.

ACKNOWLEDGEMENTS

This work was partially supported in part by SRC-Global Re-
search Collaboration grant AIHW 2020, in part by SRC JUMP
CRISP program, and also NSF grants #1527034, #1730158,
#1826967, and #1911095. Mohsen Imani and Yeseong Kim
are co-corresponding authors of the paper.

REFERENCES

[1] D. Singh and C. K. Reddy, “A survey on platforms for big data analytics,”
Journal of big data, vol. 2, no. 1, p. 8, 2015.

[2] A. K. Jain, “Data clustering: 50 years beyond k-means,” Pattern
recognition letters, vol. 31, no. 8, pp. 651–666, 2010.

[3] J. A. Silva, E. R. Faria, R. C. Barros, E. R. Hruschka, A. C. De Carvalho,
and J. Gama, “Data stream clustering: A survey,” ACM Computing
Surveys (CSUR), vol. 46, no. 1, p. 13, 2013.

[4] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng, “Distance
metric learning with application to clustering with side-information,” in
Advances in neural information processing systems, pp. 521–528, 2003.

[5] C. C. Aggarwal and C. Zhai, Mining text data. Springer Science &
Business Media, 2012.

[6] L. Fu, B. Niu, Z. Zhu, S. Wu, and W. Li, “Cd-hit: accelerated for
clustering the next-generation sequencing data,” Bioinformatics, vol. 28,
no. 23, pp. 3150–3152, 2012.

[7] X. Cai, F. Nie, and H. Huang, “Multi-view k-means clustering on
big data,” in Twenty-Third International Joint conference on artificial
intelligence, 2013.

[8] A. Fahad, N. Alshatri, Z. Tari, A. Alamri, I. Khalil, A. Y. Zomaya,
S. Foufou, and A. Bouras, “A survey of clustering algorithms for big
data: Taxonomy and empirical analysis,” IEEE transactions on emerging
topics in computing, vol. 2, no. 3, pp. 267–279, 2014.

[9] J. Ahn, S. Hong, S. Yoo, O. Mutlu, and K. Choi, “A scalable processing-
in-memory accelerator for parallel graph processing,” ACM SIGARCH
Computer Architecture News, vol. 43, no. 3, pp. 105–117, 2016.

[10] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: The
terasys massively parallel pim array,” Computer, vol. 28, no. 4, pp. 23–
31, 1995.

[11] J. Ahn, S. Yoo, O. Mutlu, and K. Choi, “Pim-enabled instructions: a
low-overhead, locality-aware processing-in-memory architecture,” in
2015 ACM/IEEE 42nd Annual International Symposium on Computer
Architecture (ISCA), pp. 336–348, IEEE, 2015.

[12] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: throughput-oriented programmable processing
in memory,” in Proceedings of the 23rd international symposium on
High-performance parallel and distributed computing, pp. 85–98, ACM,
2014.

[13] J. Draper, J. Chame, M. Hall, C. Steele, T. Barrett, J. LaCoss, J. Granacki,
J. Shin, C. Chen, C. W. Kang, et al., “The architecture of the diva
processing-in-memory chip,” in Proceedings of the 16th international
conference on Supercomputing, pp. 14–25, ACM, 2002.

[14] L. Song, X. Qian, H. Li, and Y. Chen, “Pipelayer: A pipelined reram-
based accelerator for deep learning,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA),
pp. 541–552, IEEE, 2017.

[15] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,”
in Proceedings of the Twenty-Third International Conference on
Architectural Support for Programming Languages and Operating
Systems, pp. 1–14, ACM, 2018.

[16] M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Floatpim: In-memory
acceleration of deep neural network training with high precision,”
in Proceedings of the 46th International Symposium on Computer
Architecture, pp. 802–815, ACM, 2019.

[17] P. Chi, S. Li, C. Xu, T. Zhang, J. Zhao, Y. Liu, Y. Wang, and
Y. Xie, “Prime: A novel processing-in-memory architecture for neural
network computation in reram-based main memory,” in ACM SIGARCH
Computer Architecture News, vol. 44, pp. 27–39, IEEE Press, 2016.

[18] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Stra-
chan, M. Hu, R. S. Williams, and V. Srikumar, “Isaac: A convolutional
neural network accelerator with in-situ analog arithmetic in crossbars,”
ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 14–26,
2016.

[19] V. Batagelj, “Generalized ward and related clustering problems,”
Classification and related methods of data analysis, pp. 67–74, 1988.

[20] U. Maulik and S. Bandyopadhyay, “Genetic algorithm-based clustering
technique,” Pattern recognition, vol. 33, no. 9, pp. 1455–1465, 2000.

[21] A. Likas, N. Vlassis, and J. J. Verbeek, “The global k-means clustering
algorithm,” Pattern recognition, vol. 36, no. 2, pp. 451–461, 2003.

[22] V. Cohen-Addad, V. Kanade, F. Mallmann-Trenn, and C. Mathieu,
“Hierarchical clustering: Objective functions and algorithms,” in Pro-
ceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 378–397, SIAM, 2018.

[23] A.-A. Liu, Y.-T. Su, W.-Z. Nie, and M. Kankanhalli, “Hierarchical
clustering multi-task learning for joint human action grouping and
recognition,” IEEE transactions on pattern analysis and machine
intelligence, vol. 39, no. 1, pp. 102–114, 2017.

[24] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical
clustering algorithm using locality-sensitive hashing,” Knowledge and
Information Systems, vol. 12, no. 1, pp. 25–53, 2007.

[25] F. Murtagh, “A survey of recent advances in hierarchical clustering
algorithms,” The Computer Journal, vol. 26, no. 4, pp. 354–359, 1983.

[26] C. F. Olson, “Parallel algorithms for hierarchical clustering,” Parallel
computing, vol. 21, no. 8, pp. 1313–1325, 1995.

[27] S. Bandyopadhyay and E. J. Coyle, “An energy efficient hierarchical
clustering algorithm for wireless sensor networks,” in IEEE INFOCOM
2003. Twenty-second Annual Joint Conference of the IEEE Computer
and Communications Societies (IEEE Cat. No. 03CH37428), vol. 3,
pp. 1713–1723, IEEE, 2003.

[28] N. Dhanachandra, K. Manglem, and Y. J. Chanu, “Image segmentation
using k-means clustering algorithm and subtractive clustering algorithm,”
Procedia Computer Science, vol. 54, pp. 764–771, 2015.

[29] O. Yim and K. T. Ramdeen, “Hierarchical cluster analysis: comparison
of three linkage measures and application to psychological data,” The
quantitative methods for psychology, vol. 11, no. 1, pp. 8–21, 2015.

[30] “Wikipedia linkage.” https://en.wikipedia.org/wiki/Hierarchical
clustering.

[31] “Ward method.” https://en.wikipedia.org/wiki/Ward’s method.
[32] J. J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for

computing,” Nature nanotechnology, vol. 8, no. 1, p. 13, 2013.
[33] L. K. John and E. E. Swartzlander, “Memristor-based computing,” IEEE

Micro, no. 5, pp. 5–6, 2018.
[34] “Lsh clustering.” https://github.com/usc-isi-i2/dig-lsh-clustering.
[35] L. Paulevé, H. Jégou, and L. Amsaleg, “Locality sensitive hashing: A

comparison of hash function types and querying mechanisms,” Pattern
Recognition Letters, vol. 31, no. 11, pp. 1348–1358, 2010.

[36] S. Kanj, T. Brüls, and S. Gazut, “Shared nearest neighbor clustering
in a locality sensitive hashing framework,” Journal of Computational
Biology, vol. 25, no. 2, pp. 236–250, 2018.

[37] J. Zamora, M. Mendoza, and H. Allende, “Hashing-based clustering
in high dimensional data,” Expert Systems with Applications, vol. 62,
pp. 202–211, 2016.

[38] M. Imani, S. Bosch, M. Javaheripi, B. Rouhani, X. Wu, F. Koushanfar,
and T. Rosing, “Semihd: Semi-supervised learning using hyperdi-
mensional computing,” in IEEE/ACM International Conference On
Computer Aided Design (ICCAD), pp. 1–8, 2019.

[39] M. Imani et al., “Exploring hyperdimensional associative memory,” in
HPCA, pp. 445–456, IEEE, 2017.

[40] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, pp. 64–69, 2016.

[41] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” in Advances in neural information processing systems,
pp. 1177–1184, 2008.

[42] B. Schölkopf, “The kernel trick for distances,” in Advances in neural
information processing systems, pp. 301–307, 2001.

[43] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[44] J. Li, R. K. Montoye, M. Ishii, and L. Chang, “1 mb 0.41 µm2 2t-2r
cell nonvolatile tcam with two-bit encoding and clocked self-referenced
sensing,” IEEE Journal of Solid-State Circuits, vol. 49, no. 4, pp. 896–
907, 2013.

14

https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Hierarchical_clustering
https://en.wikipedia.org/wiki/Ward's_method
https://github.com/usc-isi-i2/dig-lsh-clustering

[45] M. Imani, S. Gupta, A. Arredondo, and T. Rosing, “Efficient query
processing in crossbar memory,” in 2017 IEEE/ACM International
Symposium on Low Power Electronics and Design (ISLPED), pp. 1–6,
IEEE, 2017.

[46] M. Imani, M. Samragh, Y. Kim, S. Gupta, F. Koushanfar, and T. Rosing,
“Rapidnn: In-memory deep neural network acceleration framework,”
arXiv preprint arXiv:1806.05794, 2018.

[47] M. Imani, S. Gupta, Y. Kim, M. Zhou, and T. Rosing, “Digitalpim:
Digital-based processing in-memory for big data acceleration,” in
Proceedings of the 2019 on Great Lakes Symposium on VLSI, pp. 429–
434, 2019.

[48] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser, “Magic—memristor-aided logic,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 61, no. 11,
pp. 895–899, 2014.

[49] R. Ben-Hur, R. Ronen, A. Haj-Ali, D. Bhattacharjee, A. Eliahu, N. Peled,
and S. Kvatinsky, “Simpler magic: synthesis and mapping of in-
memory logic executed in a single row to improve throughput,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[50] A. Siemon, S. Menzel, R. Waser, and E. Linn, “A complementary
resistive switch-based crossbar array adder,” IEEE journal on emerging
and selected topics in circuits and systems, vol. 5, no. 1, pp. 64–74,
2015.

[51] S. Kvatinsky, G. Satat, N. Wald, E. G. Friedman, A. Kolodny, and U. C.
Weiser, “Memristor-based material implication (IMPLY) logic: design
principles and methodologies,” TVLSI, vol. 22, no. 10, pp. 2054–2066,
2014.

[52] J. Borghetti, G. S. Snider, P. J. Kuekes, J. J. Yang, D. R. Stewart, and
R. S. Williams, “Memristive switches enable stateful logic operations
via material implication,” Nature, vol. 464, no. 7290, pp. 873–876,
2010.

[53] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky, “Logic design within
memristive memories using memristor-aided logic (magic),” IEEE
Transactions on Nanotechnology, vol. 15, no. 4, pp. 635–650, 2016.

[54] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky, “Efficient algorithms
for in-memory fixed point multiplication using magic,” in 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 1–5,
IEEE, 2018.

[55] S. Vahdat, M. Kamal, A. Afzali-Kusha, M. Pedram, and Z. Navabi,
“Truncapp: A truncation-based approximate divider for energy efficient
dsp applications,” in Proceedings of the Conference on Design, Automa-
tion & Test in Europe, pp. 1639–1642, Europe, 2017.

[56] C. Xu, D. Niu, N. Muralimanohar, R. Balasubramonian, T. Zhang,
S. Yu, and Y. Xie, “Overcoming the challenges of crossbar resistive
memory architectures,” in 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pp. 476–488, IEEE,
2015.

[57] A. Nag, R. Balasubramonian, V. Srikumar, R. Walker, A. Shafiee, J. P.
Strachan, and N. Muralimanohar, “Newton: Gravitating towards the
physical limits of crossbar acceleration,” IEEE Micro, vol. 38, no. 5,
pp. 41–49, 2018.

[58] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise.,” in Kdd,
vol. 96, pp. 226–231, 1996.

[59] D. Birant and A. Kut, “St-dbscan: An algorithm for clustering spatial–
temporal data,” Data & Knowledge Engineering, vol. 60, no. 1, pp. 208–
221, 2007.

[60] B. Borah and D. Bhattacharyya, “An improved sampling-based dbscan
for large spatial databases,” in International Conference on Intelligent
Sensing and Information Processing, 2004. Proceedings of, pp. 92–96,
IEEE, 2004.

[61] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. Piatko, R. Silverman,
and A. Y. Wu, “An efficient k-means clustering algorithm: Analysis and
implementation,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, no. 7, pp. 881–892, 2002.

[62] J. Xu and S. Swanson, “{NOVA}: A log-structured file system for hybrid
volatile/non-volatile main memories,” in 14th {USENIX} Conference
on File and Storage Technologies ({FAST} 16), pp. 323–338, 2016.

[63] I. Oukid, D. Booss, A. Lespinasse, W. Lehner, T. Willhalm, and
G. Gomes, “Memory management techniques for large-scale persistent-
main-memory systems,” Proceedings of the VLDB Endowment, vol. 10,
no. 11, pp. 1166–1177, 2017.

[64] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg,
“Scikit-learn: Machine learning in python,” Journal of machine learning
research, vol. 12, no. Oct, pp. 2825–2830, 2011.

[65] “Scikit-learn library.” https://scikit-learn.org.

[66] X. Dong, C. Xu, N. Jouppi, and Y. Xie, “Nvsim: A circuit-level
performance, energy, and area model for emerging non-volatile memory,”
in Emerging Memory Technologies, pp. 15–50, Springer, 2014.

[67] D. Compiler, R. User, and M. Guide, “Synopsys,” Inc., see http://www.
synopsys. com, 2000.

[68] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny, “Vteam:
A general model for voltage-controlled memristors,” IEEE Transactions
on Circuits and Systems II: Express Briefs, vol. 62, no. 8, pp. 786–790,
2015.

[69] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/index.
php.

[70] “nvgraph.” https://developer.nvidia.com/discover/cluster-analysis.
[71] “k-means gpu.” https://github.com/NVIDIA/kmeans.
[72] G. Andrade, G. Ramos, D. Madeira, R. Sachetto, R. Ferreira, and

L. Rocha, “G-dbscan: A gpu accelerated algorithm for density-based
clustering,” Procedia Computer Science, vol. 18, pp. 369–378, 2013.

[73] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278–2324, 1998.

[74] “Grammatical facial expressions.” https://archive.ics.uci.edu/ml/datasets/
Grammatical+Facial+Expressions.

[75] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in International workshop on ambient assisted
living, pp. 216–223, Springer, 2012.

[76] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, and C. E.
Elger, “Indications of nonlinear deterministic and finite-dimensional
structures in time series of brain electrical activity: Dependence on
recording region and brain state,” Physical Review E, vol. 64, no. 6,
p. 061907, 2001.

[77] A. Vergara, S. Vembu, T. Ayhan, M. A. Ryan, M. L. Homer, and
R. Huerta, “Chemical gas sensor drift compensation using classifier
ensembles,” Sensors and Actuators B: Chemical, vol. 166, pp. 320–329,
2012.

[78] R. C. Madeo, C. A. Lima, and S. M. Peres, “Gesture unit segmentation
using support vector machines: segmenting gestures from rest positions,”
in Proceedings of the 28th Annual ACM Symposium on Applied
Computing, pp. 46–52, ACM, 2013.

[79] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/
ISOLET.

[80] H. Koga, T. Ishibashi, and T. Watanabe, “Fast agglomerative hierarchical
clustering algorithm using locality-sensitive hashing,” Knowledge and
Information Systems, vol. 12, no. 1, pp. 25–53, 2007.

[81] X. Shen, W. Liu, I. Tsang, F. Shen, and Q.-S. Sun, “Compressed k-
means for large-scale clustering,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[82] S. Pandit, S. Gupta, et al., “A comparative study on distance measuring
approaches for clustering,” International Journal of Research in
Computer Science, vol. 2, no. 1, pp. 29–31, 2011.

[83] M. Norouzi, D. J. Fleet, and R. R. Salakhutdinov, “Hamming distance
metric learning,” in Advances in neural information processing systems,
pp. 1061–1069, 2012.

[84] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal
of machine learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[85] J. B. Kotra, M. Arjomand, D. Guttman, M. T. Kandemir, and C. R.
Das, “Re-nuca: A practical nuca architecture for reram based last-level
caches,” in 2016 IEEE International Parallel and Distributed Processing
Symposium (IPDPS), pp. 576–585, IEEE, 2016.

[86] J. D. Hall and J. C. Hart, “Gpu acceleration of iterative clustering,”
in The ACM Workshop on General Purpose Computing on Graphics
Processors, pp. 45–52, 2004.

[87] R. Wu, B. Zhang, and M. Hsu, “Clustering billions of data points using
gpus,” in Proceedings of the combined workshops on UnConventional
high performance computing workshop plus memory access workshop,
pp. 1–6, ACM, 2009.

[88] J. Bhimani, M. Leeser, and N. Mi, “Accelerating k-means clustering
with parallel implementations and gpu computing,” in 2015 IEEE High
Performance Extreme Computing Conference (HPEC), pp. 1–6, IEEE,
2015.

[89] J. Canilho, M. Véstias, and H. Neto, “Multi-core for k-means clustering
on fpga,” in 2016 26th International Conference on Field Programmable
Logic and Applications (FPL), pp. 1–4, IEEE, 2016.

[90] F. Winterstein, S. Bayliss, and G. A. Constantinides, “Fpga-based
k-means clustering using tree-based data structures,” in 2013 23rd In-
ternational Conference on Field programmable Logic and Applications,
pp. 1–6, IEEE, 2013.

15

https://scikit-learn.org
https://archive.ics.uci.edu/ml/index.php
https://archive.ics.uci.edu/ml/index.php
https://developer.nvidia.com/discover/cluster-analysis
https://github.com/NVIDIA/kmeans
https://archive.ics.uci.edu/ml/datasets/Grammatical+Facial+Expressions
https://archive.ics.uci.edu/ml/datasets/Grammatical+Facial+Expressions
http://archive.ics.uci.edu/ml/datasets/ISOLET
http://archive.ics.uci.edu/ml/datasets/ISOLET

[91] K. He, F. Wen, and J. Sun, “K-means hashing: An affinity-preserving
quantization method for learning binary compact codes,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 2938–2945, 2013.

[92] J. Wang, H. T. Shen, J. Song, and J. Ji, “Hashing for similarity search:
A survey,” arXiv preprint arXiv:1408.2927, 2014.

[93] C. Eckert, X. Wang, J. Wang, A. Subramaniyan, R. Iyer, D. Sylvester,
D. Blaauw, and R. Das, “Neural cache: Bit-serial in-cache acceleration
of deep neural networks,” arXiv preprint arXiv:1805.03718, 2018.

[94] S. Li, D. Niu, K. T. Malladi, H. Zheng, B. Brennan, and Y. Xie, “Drisa:
A dram-based reconfigurable in-situ accelerator,” in Proceedings of the
50th Annual IEEE/ACM International Symposium on Microarchitecture,
pp. 288–301, ACM, 2017.

[95] V. Seshadri, D. Lee, T. Mullins, H. Hassan, A. Boroumand, J. Kim,
M. A. Kozuch, O. Mutlu, P. B. Gibbons, and T. C. Mowry, “Ambit: In-
memory accelerator for bulk bitwise operations using commodity dram
technology,” in 2017 50th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pp. 273–287, IEEE, 2017.

[96] Y. Zha, E. Nowak, and J. Li, “Liquid silicon: A nonvolatile fully
programmable processing-in-memory processor with monolithically
integrated reram,” IEEE Journal of Solid-State Circuits, vol. 55, no. 4,
pp. 908–919, 2020.

[97] S. Angizi, Z. He, and D. Fan, “Dima: a depthwise cnn in-memory
accelerator,” in 2018 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp. 1–8, IEEE, 2018.

[98] S. Angizi, Z. He, and D. Fan, “Parapim: a parallel processing-in-memory
accelerator for binary-weight deep neural networks,” in Proceedings
of the 24th Asia and South Pacific Design Automation Conference,
pp. 127–132, ACM, 2019.

[99] S. Angizi, Z. He, and D. Fan, “Pima-logic: a novel processing-in-
memory architecture for highly flexible and energy-efficient logic
computation,” in Proceedings of the 55th Annual Design Automation
Conference, p. 162, ACM, 2018.

[100] L. Song, Y. Zhuo, X. Qian, H. Li, and Y. Chen, “Graphr: Accelerating
graph processing using reram,” in 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA), pp. 531–543,
IEEE, 2018.

[101] M. N. Bojnordi and E. Ipek, “Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning,”
in High Performance Computer Architecture (HPCA), 2016 IEEE
International Symposium on, pp. 1–13, IEEE, 2016.

[102] M. N. Bojnordi and E. Ipek, “The memristive boltzmann machines,”
IEEE Micro, vol. 37, no. 3, pp. 22–29, 2017.

[112] K. Ni, X. Yin, A. F. Laguna, S. Joshi, S. Dünkel, M. Trentzsch,
J. Müeller, S. Beyer, M. Niemier, X. S. Hu, et al., “Ferroelectric ternary

[103] S. Gupta, M. Imani, H. Kaur, and T. S. Rosing, “Nnpim: A process-
ing in-memory architecture for neural network acceleration,” IEEE
Transactions on Computers, vol. 68, no. 9, pp. 1325–1337, 2019.

[104] M. Imani, M. S. Razlighi, Y. Kim, S. Gupta, F. Koushanfar, and T. Ros-
ing, “Deep learning acceleration with neuron-to-memory transformation,”
in 2020 IEEE International Symposium on High Performance Computer
Architecture (HPCA), pp. 1–14, IEEE, 2020.

[105] S. Gupta et al., “Felix: fast and energy-efficient logic in memory,” in
ICCAD, p. 55, ACM, 2018.

[106] M. Imani, X. Yin, J. Messerly, S. Gupta, M. Niemier, X. S. Hu, and
T. Rosing, “Searchd: A memory-centric hyperdimensional computing
with stochastic training,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 2019.

[107] Y. Kim, M. Imani, and T. Rosing, “Orchard: Visual object recog-
nition accelerator based on approximate in-memory processing,” in
2017 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 25–32, IEEE, 2017.

[108] M. Zhou, M. Imani, S. Gupta, and T. Rosing, “Gas: A heterogeneous
memory architecture for graph processing,” in Proceedings of the
International Symposium on Low Power Electronics and Design, pp. 1–6,
2018.

[109] M. Zhou, M. Imani, S. Gupta, Y. Kim, and T. Rosing, “Gram: graph
processing in a reram-based computational memory.,” in ASP-DAC,
pp. 591–596, 2019.

[110] M. Imani, S. Gupta, S. Sharma, and T. Rosing, “Nvquery: Efficient query
processing in non-volatile memory,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2018.

[111] F. Zokaee, M. Zhang, and L. Jiang, “Finder: Accelerating fm-index-
based exact pattern matching in genomic sequences through reram
technology,” in 2019 28th International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT), pp. 284–295, IEEE,
2019.
content-addressable memory for one-shot learning,” Nature Electronics,
vol. 2, no. 11, pp. 521–529, 2019.

[113] R. Karam, R. Puri, S. Ghosh, and S. Bhunia, “Emerging trends in design
and applications of memory-based computing and content-addressable
memories,” Proceedings of the IEEE, vol. 103, no. 8, pp. 1311–1330,
2015.

[114] C. Li, C. E. Graves, X. Sheng, D. Miller, M. Foltin, G. Pedretti, and
J. P. Strachan, “Analog content-addressable memories with memristors,”
Nature communications, vol. 11, no. 1, pp. 1–8, 2020.

16

	Introduction
	Background
	DUAL Overview
	HD-Mapper
	DUAL Accelerator

	DUAL Supported Operations
	Search/Similarity Computation
	Hamming Distance Computation
	Nearest Value Search

	Row-Parallel PIM-based Arithmetic

	DUAL Implementation
	Encoding Implementation
	Pairwise Distance Computation
	Nearest Cluster
	Distance Update

	DUAL Architecture
	Scalability & Parallelism
	DUAL Pipeline
	Other Clustering on DUAL

	Programming Support
	Variable-Length Column Array
	Built-in Functions
	PIM Interface
	Application Mapping

	Results
	Experimental Setup
	Workloads
	Quality of Clustering
	DUAL Efficiency
	DUAL Quality-Efficiency Tradeoff
	Parallelism & Scalability
	Breakdown
	DUAL Lifetime and Device Variability

	Related Work
	Conclusion
	References

