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ABSTRACT OF THE DISSERTATION

Energy efficient data aggregation in wireless sensor networks

by

Jinseok Yang

Doctor of Philosophy in Electrical engineering (Communication Theory and Systems)

University of California, San Diego, 2015

Tajana Šimunić Rosing, Chair

Wireless sensor networks (WSNs) form a critical interface between physical and

digital worlds by converting physical qualities into measurements which can be used for

a wide-ranging spectrum of applications. In the past, these WSNs have been application-

specific and exposed only to a limited set of users. Going forward, WSNs will no longer

be specialized networks. The new emerging IoT will run multiple applications that have

diverse delay requirements for generated and received measurements. In this thesis, we

propose a power management framework that operates on the sensing platforms which

have multiple power managers. For example, sensors are controlled by sensor controller

and battery is managed by battery manager in order to minimize the unnecessary energy
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consumption. The proposed framework integrates these different power management

approaches and optimizes their interactions to achieve optimality in terms of energy

efficiency. Proposed approach saves 20% to 60% of energy consumption compared to

the state of art approaches. In addition, we propose an optimal transmission manager

that supports multiple applications in single-hop wireless sensor networks. We formulate

the problem with Markov decision process model and dynamically adjust transmission

instances based on random delay requirements of buffered measurements. Then, we

propose a distributed transmission manager that leverages the optimal transmission

manager to operate in multi-hop WSNs. We implement both transmission managers in

ns3 simulator and compare with other state of the art designs. The results show that

the proposed transmission manager consumes on average 148.3% less energy than the

state of the art approaches while on average having 14.1% fewer measurements that

expire. Lastly, we propose adaptive information dissemination protocol in order to

provide information to users in vicinity. Sensors estimate users moving speed and adjust

information provision interval in order to save energy. The results show that our proposed

approach decrease in power consumption by a factor of 2x to 8x in a single sensor, and

2x to 16x in 10 node sensor network, when compared to the state of art approaches.
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Chapter 1

Introduction

Wireless sensor networks (WSNs) are a cyber-physical interface to the physical

world. They have been applied to various domains such as Smart Cities, Smart Buildings

and environmental monitoring systems. Environmental monitoring systems [20][21]

deploy either small scale nodes (ref. Fig. 1.1 (left)) or large scale systems (ref. Fig. 1.1

(right)) in order to observe natural phenomena variations in remote regions. Ecologists

or scientists then access to the aggregated data and analyze them to monitor the biotic

and abiotic factors in the area of interest [20]. Research in Smart Buildings [27][40] uses

inputs from deployed sensors to control corresponding building components in order

to decrease utility bills while guaranteeing user satisfaction. For example, light control

system [40] monitors occupancy level of each room with motion detection sensors and

controls the level of luminosity. Personal health care systems [44][36] adopt WSNs

in order to collect health care related information from patients who live in remote

regions. One of the key challenges in WSNs is their short battery lifetime. WSNs play an

important role in data aggregation that collect raw data of the whole sensing field through

data exchange and aggregation with their neighboring nodes [70]. Minimizing energy

consumption indirectly decreases the amount of data forwarded to the sink. Methods that

1
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Figure 1.1: Environmental monitoring sensing platforms, (left) Heliomote [33] (right)
Buoy deployed in a lake located in northern Wisconsin, USA measuring several key
limnological variables [68]

guarantee measurement quality while increasing energy efficiency are needed.

A number of power management approaches [13][26][32][33][58][68] have been

proposed to address the challenges of WSNs. Energy efficient protocols [13][32][58][65]

increase network lifetime with energy efficient MAC and routing protocols. They achieve

energy efficiency by significantly reducing the amount of data to be transported to the sink.

The amount of data reduction is constrained by required measurement quality. WSNs with

energy harvesting [15][26][33][39][68] replenish energy from ambient sources in order

to overcome battery capacity limitations. They treat the harvested energy as auxiliary

energy source and smartly adjust system parameters such as wireless communication

rate in order to keep a preset amount of remaining battery capacity. Previous approaches

[26][33][68] decide how to allocate energy to various tasks (sensing, communication

etc.) over time so that the deployed network continues to gather high-quality data. For

example, solar panel equipped sensor nodes in Fig. 1.1 runs energy allocation algorithm

in order to determine optimal sampling rate and duty cycle based on the current battery

level & the amount of harvested energy. Again, these approaches also constrains the

energy allocation based on data quality requirements.

However, even though there are many studies increase the lifetime of WSNs much
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remains to be done. Over last years, more works are still needed in order to increase

energy efficiency of WSNs.

Energy harvesting based power managers [16][33][47] minimize the waste of

energy in low power embedded system by predicting the behavior of energy sources

over short and medium time frames and adjusting task performance level of the system.

Several prediction algorithms such as EWMA [33], WCMA [47] and Pro-Energy [16]

have been proposed. The algorithms predict energy level at future time slots based

on structured model which is constructed from find-grained training data set. Their

prediction accuracy deteriorates in heavily shaded areas, such as forests and urban areas

because these situations result in course grained training set of harvested energy data.

The prediction error increases up to 30% without fine grained data set. Thus, a prediction

algorithm that can accurately estimate future energy arrival with coarse-grained training

set is needed.

Power managers [13][26][32][33][58][68] which run in each sensing platform

control the amount of energy expenditure in order to increase the operation lifetime

given data quality constraints. Even though they have the common goal, they control

different hardware components in the sensing platform. For example, approaches in

[26][32][33] adjust duty cycle in MAC layer to save idle energy consumption. Sensor

controllers [10][34] adjust sampling rate and increase the lifetime. Sensor controller

use linear regression models from observed variables and decrease sampling rate based

on the level of temporal correlation. This decreases the communication energy cost by

decreasing the data upload frequency. Application based approaches [12][70] handle

buffering delay of generated and received packets in WSNs based on time constraints of

them. They buffer all packets in order to decrease communication cost by decreasing

the amount of transmitted packets. In a reality, all sensor nodes are equipped with both

sensors and wireless radios, so approaches stated above can be implemented in a single
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sensor node at the same time. Thus, a framework that integrates the operations of various

power managers is needed.

Power manager with applications [12][70] adjust data forwarding interval based

on delay tolerance of the application. For example, HVAC control application [25] use

sensing data coming from WSNs, but it does not require real-time information. Then,

nodes in WSNs buffer measurement and transmit with aggregated packets. This decreases

the number of transmission activities, and then increases the energy efficiency. However,

their work assumes that there is only a single application running, so they cannot operate

in WSNs which run multiple applications that have diverse delay requirements. In fact,

the new emerging Intenet Of Things (IoT) will have multiple application share in common

WSNs infrastructure, so application based power manager that support heterogeneous

types of measurements is needed. Traditionally, WSNs collect raw data from the sensors,

upload to centralized server and users consume the collected data. However, with IoT,

users can directly access to near sensor nodes and collect necessary information as needed.

This requires a new information provision approach.

This thesis addresses all the challenges described above. We next outline the

contributions of this thesis.

1.1 Thesis contributions

1.1.1 Adaptive power management framework

We propose a power management framework that includes sensor controller,

battery manager and application based power manager. We identify the necessary

interactions among different power managers and then integrate into a single power

management framework. The framework is optimal in terms of energy efficiency with low

computational complexity. The framework also includes an user interactive component,
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so system administrator can adjust sampling rate based on their needs. We logically

divide battery capacity into normal and emergency components in order to protect against

to sudden sampling rate changes. When processes consume less energy than expected,

the power manager allocates the remaining to emergency component. Power manager

supports sudden high of requests with that extra energy. Our simulations use sensor data

and system specifications (battery and solar panel specs, sensing and communication

costs) from a real sensor network deployment. Our results show that the proposed

approach saves significant amounts of energy by avoiding oversampling when application

does not need it while using this saved energy to support sampling at high rates to capture

events with necessary fidelity when needed. The more detail algorithms and experimental

results are described in Chapter 2.

1.1.2 Heterogeneous application transmission manager

The goal of the transmission manager in WSNs with heterogeneous applications

running is to adjust the delay at the data buffer in order to decrease the number of trans-

mission activities by exploiting application specific delay requirements and the current

topology of WSNs. The well-known approach, cascade time-out protocol (Cas) [55]

determines the buffering delay based on a nodes distance to the sink. Their approach is

completely distributed, but it does not consider the fact that heterogeneous applications

require different timeout constraints. Application specific transmission managers are

proposed by [12][11][70]. Their transmission managers determine optimal transmission

time of buffered measurements based on the characteristics of a running application.

However, they assume that all nodes in the wireless network run a single delay sensitive

application. None of above approaches can support heterogeneous WSNs which sup-

port multiple applications with different delay requirements.We propose a transmission

manager that determines the optimal transmission instance for measurements based on
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applications’ delay tolerance, using optimal stopping theory in Markov Decision Process.

We implement our novel transmission manger in ns3 simulator [45] to compare it with

other state of art transmission managers. We evaluate the energy consumption and the

number of expired measurements under three different network topology: i) single hop, ii)

linear topology and iii) grid topology. In all three cases, proposed transmission manager

consumes average 148.3% less energy than state of art approaches while having on

average 14.1% fewer expired measurements as compared to the state of art approaches.

1.1.3 User based energy efficient data aggregation in WSNs

In a number of sensing applications, users are only interested in the data relevant to

their present location and current type. This implies that WSNs need a low-power protocol

that allows mobile users, while moving around the deployed stationary sensor networks,

to access the data from the sensors in their vicinity. This approach is different from mobile

sink approaches [54][66] which typically assume that the system has control over the sink

mobility to ensure that it collects data from all the sensors. Unlike mobile sink approaches,

we assume that users carry their mobile phones while moving throughout the area where

sensors are deployed. Recent work proposed a technique where a sensor node wakes up

when it receives a RFID impulse from a user and then it unicasts data [32]. However, this

mechanism requires users to carry an RFID reader that is expensive and cumbersome. We

propose transmission manager that dynamically adjust transmission times based on user

mobility. Transmission manager adjust its broadcasting rate as a function of the travel

time of users in their transmission range (broadcast area). Proposed approach estimates

the travel time based on handshaking process between sensing platform and users. The

results show a decrease in power consumption by a factor of 2x to 8x in a single sensor,

and 2x to 16x in 10 node sensor network, when compared to the existing protocols. More

details on the algorithms and experimental results are described in Chapter 4.



Chapter 2

Adaptive power management

framework

2.1 Introduction

Sensor networks are revolutionizing the scientific applications by gathering data

about the environment at unprecedented spatio-temporal granularity [1][3][19][38][50].

A key problem in WSNs is deciding how to allocate energy to various tasks (sensing,

communication etc.) over time so that the deployed network continues to gather high-

quality data. There has been extensive research in the area of power management and

resource allocation algorithms in sensor networks. A good example of a fair energy

allocation algorithm is progressive filling [26] that takes into account battery levels

and harvested energy to provide uniform sampling rates [68]. It has two implications:

allocating as much energy as possible results in high frequency sampling and fair energy

allocation over time results in sampling the environment at a fixed rate. Our experience

with real-world sensor network deployments in collaboration with limnologists and coral

reef ecologists shows that the high frequency fixed rate sampling technique does not

7
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work well in practice because of the following reasons.

1) Real-world deployments depend on periodic interaction to maintain optimal

sampling regime: Sensor networks need periodic interaction primarily for the following

two reasons. (A) Early identification of system failures: Sensor networks embedded in

inhospitable environment are prone to fail for a variety of reasons such as biofouling,

exposure to extreme temperature or humidity etc. (B) Identification of interesting trends:

Both anticipated (nightly temperature drops) and unanticipated episodic events (typhoon,

hurricanes etc.). At present the interaction is manual, where the domain scientists

periodically look at the incoming data to ensure that it is generating science-quality data

[20]. Scientists also often explore the data to see if something interesting happened in last

day or two and whether the current sampling rate is sufficiently capturing the events with

necessary fidelity. At present, it is too complex to automate this process. This is both due

to lack of a priori knowledge of the all possible events and system failures and specifying

and capturing all the interesting events and system failures. In addition, even if the events

are known, programming and detecting all possible events makes the system prohibitively

complex. In future, as machine learning algorithms will be more sophisticated and sensor

networks become equipped with more computing power, we believe that this manual

approach will be replaced by an automated system that requires no human interaction.

However, either a real end user or an automated system will interact with the deployed

network on a periodic basis. In this thesis we use the term ”user request” to denote both

the request generated by human beings as well as automated systems.

2) Periodic sampling at fixed rate is not sufficient: Sampling the environment

at fixed predefined intervals is neither reliable (need to accommodate system failures)

nor desirable (current sampling rate might not capture an important event with desired

fidelity) [20]. We now explain this in detail. Failure: Suppose monitoring system

monitors both temperature and humidity level every 1 min. In many applications if
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either measurement is missing the other is useless. This indicates that the missing value

should be compensated by either repeating a measurement within a few seconds or not

sampling. Interesting events: Scientists often want systems that can adapt sampling rates

to meet their science requirements. Consider an application that requires sampling a

sensor at a high rate (i.e. 10 samples/seconds) when rain is detected and otherwise a

much lower sample rate (i.e. 1 sample/minute). Periodic sampling can often result in

either oversampling (thereby wasting energy) or under sampling (thereby not capturing

an event with necessary fidelity).

3) Setting sampling regime is often an exploratory and iterative process: Scientists

are often operating in unexplored territory and therefore setting up sampling rate is not a

one-time process, but is an iterative and exploratory process. Scientists typically set the

sampling rate to the best of their knowledge and then use the gathered data to adjust it.

This process can take anywhere from a few days to a few months.

Even if the sampling were set optimally, there are still significant challenges

with data transmission. The state of the art approaches for determining the optimal

transmission policy include control-limit policy [70] and MDP based approaches [39].

The control-limit policy does not consider heterogeneous sensors. The MDP based

approach [39] requires complete knowledge of transition probability of the harvesting

level and channel condition variations, which is unrealistic. In addition, both offer limited

control over the energy-delay tradeoff and are not suitable for real-time and delay-tolerant

applications.

Based on all above observations, we propose i) power manager that adapts

sampling rate as a function of both application-level context (e.g., user request) and

system-level context (e.g harvesting energy availability and stored energy) and we lever-

age it to build a ii) power management framework (APMF) that integrates together

adaptive sampling (AS) and transmission policy (TP). The interactive power manager is
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described in Section 2.4 while the adaptive power management framework is described

in Section 2.5

2.2 Related work

There has been considerable work in the area of sensor network reprogramming

[31][37][42]. These approaches are mainly designed for rare network-wide software

updates and are not suitable for more frequent sampling rate updates. The industrial

automation systems or building management systems integrated with control system

require guaranties for real-timeliness, functional safety, security, energy efficiency, etc

[21]. In these sensor-actuator networks resource allocation decisions are typically done in

a centralized manner (at the plan data center). In contrast, we propose a fully distributed

approach for energy allocation.

Context has been used extensively for efficient sensor network protocol design

in the area of routing [36][71], cluster formation [28], and power management [63].

Wood et al. [63] proposed a context aware power management protocol considers

heterogeneous energy sources in which some nodes are powered by batteries and others

are plugged into wall. However, they do not consider green energy sources in their

research. Gorlatova et al. [26] proposed an algorithm to determine fair energy allocation

along time dimension in systems with predictable as well as stochastic renewable energy

inputs. Their energy allocation algorithm – Progressive Filling (PF) fairly allocates

energy over time dimension and it has O(n2) computational complexity. PF algorithm

starts from time slot 0 and increments its allocated energy by α until it reaches the target

battery level. Since PF is the state-of-the-art energy algorithm, we use it to compare with

our proposed interactive technique. In this work we use interchangebly PF algorithm

and non-interactive technique. To the best of our knowledge, this is the first work that
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proposes a novel interactive power management technique that adapts sampling rate as a

function of both application-level context (e.g., user request) and the system-level context

(e.g harvesting energy availability).

2.3 System model

We model a typical environmental monitoring system. Our system consists of

two components (1) field deployed sensor network (2) data center. The sensor network

consists of a network of platforms (e.g. buoys or towers), which are large enough to

house large solar panels and bulky batteries and an embedded computer to which multiple

sensors (order of 30) are connected either via serial or Bluetooth link. The computer

runs a low-power operating system and is equipped with one or more network modalities

(e.g, WiFi, cellular, and satellite). Figure 1.1 (right) shows the latest deployment of an

instrumented buoy for a lake monitoring application. This buoy hosts a variety of sensor

for monitoring lake processes, including temperature at twenty seven depths, dissolved

oxygen, conductivity, pH/ORP, flourescence sensors (Chloraphyll a, Blue-green Algae,

and Rhodamine WT) and voltage. These sensors are connected to an Android Cell phone

via IOIO board. The phone runs the data acquisition program and sends data back to a

data center over the cellular network. We use one Instapark 80W Mono-crystalline solar

panel as our green energy source [4]. It has following power specifications: Maximum

Power Voltage: 17.39V; Open Circuit Voltage: 21.97V; Maximum Power Current: 4.61A.

Table 2.1 summarizes the sensing and communication and processing power consumption,

which we use in our simulations.

The data center provides facilities to process store and visualize the gathered data.

It also provides capabilities to remotely command and control the field deployed sensor

network. A user monitors collected data and determines current optimal sampling rate
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Table 2.1: Power specification for our deployment

Device Power consumption(W)
3G cost+Processing 5
Vaisala Weather Station 0.168
Sonde 3.372
Templine 0.42
Sensing cost 3.96

that meets the science requirements. Sensor nodes receive the request and adjust their

configuration based on onboard power management technique (described later).

2.4 Interactive power manager

Our approach uses application-context (e.g., feedback from domain scientists or

an automated system running user-specified rules) to optimally set sensor sampling rates.

Figure 2.1 describes the proposed power management framework that runs at each sensor

node. It consists of two major subsystems, namely, power manager (PM) and and the

Interactive Resource Allocator (IRA) subsystem. The PM subsystem makes resource

allocation decisions based on the current battery level and predicted harvesting level

(ref. Eq (2.1)). The IRA subsystem then adapts the aforementioned sampling rate in

an interactive manner (ref. Algorithm 2). We now describe the details of PF and IRA

algorithms.

Each sensor node divides a time into K slots [26]. We denote S = [s1, ...,sK] as

a set of allocated energy to K time slots and si is the allocated energy to slot i. The

embedded power manager allocates energy to each time slot based on the current batter

level and predicted battery level (ref. Eq. (2.1)). B(i) is battery level and H(i) is the

predicted harvest level at time slot i. We use Bmax to denote total Battery capacity and

Bmin to denote minimum battery capacity. U(·) is utility function that calculates sampling

rate given allocated energy. It is a non-negative, increasing, strictly concave function [57].
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Figure 2.1: Interactive Context-Aware Power Management System Architecture

The first constraint of Eq. (2.1) obeys the energy neutral operation in energy harvested

wireless sensor network[33].

max
si

K

∑
i=1

abelie f · (si)

s.t.B(i)≤ B(i−1)+H(i−1)− s(i−1),

si ≤ Bmax,si ≥ 0 H(i)≥ 0, Bmin ≤ B(i)≤ BK

(2.1)

In order to solve Eq. (2.1), PM allocates constant energy over K time slots as

described in Algorithm 1. The validity of this approach has been proved by [26][57].

This reduces the computational complexity of PM to O(n) compared to that of PF O(n2).

However, constant energy allocation does not consider a situation where system needs

to consume more energy than harvested. Interactive resource allocator (IRA) considers

those scenario.

We now describe the IRA subsystem. The sensor node virtually divides its battery

into two parts, Bcurrent and Bsaved . The IRA subsystem (ref. Algorithm 2) interacts with

the application (user or automated system) and then calculates the energy required to meet

the requested sampling rate. Intuitively, when the energy needed to satisfy the user request
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ALGORITHM 1: Advanced Progressive Filling(APF)

avgHarvstEnergy = ∑
K
i=1 H(i)/K ;1

s(1 : K) := avgHarvestEnergy ;2
for i = K; i≥ 1; i = i−1 do3

[over,amount]← check validity(s(i)) ;4
if over == TRUE then5

s(i) = s(i)−amount ;6
end7

end8
9
Function [over,amount] = check validity(s)10
Bcurrent = current battery level11
for i = 1; i≤ K; i = i+1 do12

Bcurrent ←min{B(i)+Q(i)− s(i),Bmax} ;13
if Bcurrent < s(i+1) then14

return [T RUE,s(i+1)−Bcurrent ] ;15
end16

end17
return [FALSE,0] ;18

(sreq) is less than the energy allocated (s(i)) by the APF algorithm (system is currently

oversampling), IRA turns down the current sampling rate and saves this extra energy

to Bsaved while achieving the necessary fidelity. However, when user requires sampling

at higher rate than the current sampling rate (the system is currently under sampling),

the sensor node augments Bcurrent with Bsaved to support it. When (s(i)+Bsaved < sreq

given s(i)< sreq), the system is under sampling because it does not have enough energy

to support the requested sampling rate. In this case, we consider three policies (1)

Aggressive: The ongoing event is so critical that the user sees benefit in capturing that

even at the cost of reduced network lifetime. In this case, the IRA algorithm increases the

sampling rate for the given slot to the requested rate. (2) Conservative: IRA algorithm

decides to continue sampling at the current sampling rate at the cost of reduced fidelity.

(3) Hybrid policy: The system selects the best sampling rate it can support in a greedy

manner. This happens in the case where although the requested rate is not feasible due to

energy constraints, but there is still benefit in increasing the sampling rate to the level

that can be supported.
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ALGORITHM 2: Interactive Resource Allocator
s← Algorithm 11
for i = 1; i≤ K; i = i+1 do2

sreq← sampling rate given s(i) ;3
if sreq < s(i) then4

// Support user request5
s(i)← sreq ;6
Bsaved ← Bsaved +{s(i)− sreq} ;7

else8
if sreq < s(i)+Bsaved then9

s(i)← sreq ;10
Bsaved = Bsaved−{sreq− s(i)};11

else12
Aggressive : s(i)← sreq ;13
Conservative : s(i)← s(i) ;14
Hybrid : s(i)← s(i)+Bsaved ;15

end16
end17

end18

2.4.1 Mathematical Analysis

In this section, we theoretically compare the performance of interactive and non-

interactive power management approaches in terms of user satisfaction. The interactive

approach makes its decision based on battery level, predicted harvesting energy, and user

request, while the non-interactive approach typically considers only the first two as its

inputs. At a given slot i, when the allocated energy (s(i))is larger than energy required to

meet the user request (sreq), a sensor node can satisfy user request at that slot. However,

in this case, the node is oversampling and wasting its energy.

zi =

1 i f s(i)≥ sreq

0 i f s(i)< sreq
(2.2)

As shown in equation (2.2), zi defines the condition of i’s time slot. When s(i) is larger

than sreq the zi has 1 which indicates that the system is oversampling and spending extra

energy. Otherwise zi has 0 as shown in equation (2.2).
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Let us define the probability p = Pr(s(i)≥ sreq). The average number of slots in

which a node spends oversamples and wastes energy is given by equation (2.3). Thus,

in this case, the average number of time slots in which the non-interactive approach

overspends energy in K ·Pr (si ≥ xi).

E[Zi] = K · p = K ·Pr(s(i)≥ sreq) (2.3)

The proposed interactive power manager (ref. Algorithm 2) saves energy when the energy

needed to satisfy user request (sreq) is less than allocated energy (s(i)), and uses the saved

energy (Bsaved) as a boost when the energy needed to satisfy a user request is more than

allocated energy. The interactive approach with hybrid policy fails to satisfy user requests

only when the sum of allocated and saved energy is lower than the amount of user request,

s(i)+Bsaved < sreq. We describe this in equation (2.4).

zi =

1 i f s(i)+Bsaved ≥ sreq

0 i f s(i)+Bsaved < sreq
(2.4)

The s(i)+Bsaved ≥ sreq includes both si ≥ xi and s(i)+Bsaved ≥ sreq situations. Thus,

the average number of time slots that satisfy user request with interactive approach is K ·

{Pr(s(i)≥ sreq)+Pr(s(i)+Bsaved ≥ sreq)}. This result means that user-interactive power

management always satisfies more user requests than the non-interactive mechanism

because Pr(s(i)+Bsaved ≥ sreq)≥ 0. The interactive approach with conservative policy

will show same performance with non-interactive one and aggressive policy always

satisfies user satisfaction.



17

2.4.2 Results

US climate Reference Network(USCRN), maintains a database of environmental

data collected from various monitoring stations across the US. For our simulations, for

solar energy prediction, we use data from USCRN database for Necedah, Wisconsin

location since it is the closest location to our deployment. Our past research has shown

that the state-of-the-art energy predictors such as Weather-Conditioned Moving Average,

WCMA can be used to accurately predict the amount of harvesting energy [47]. Therefore,

in this thesis we use WCMA algorithm for solar energy prediction. To calculate accuracy,

we use one week worth of sensor data (Wind speed data) from our deployment. We use

Matlab to conduct simulations.

Study of impact of time slot length variations on energy efficiency

In this study, we consider 24 hours duration and vary the time slot length from

1 (24 slots/day) hour to 24 hours (1 slot/day). We fix 1 sample per 10 min as default

sampling rate. We consider user request pattern from 10% to 100%. In the case of 10%

request pattern, among all time slots, 10% time slot support high request rate which

requires 1 sample every 1 min. Remaining request pattern requires 1 sample every

5min. We use end point battery level as 11.1V. Thus, the capacity is (12-11.1)*55 =

49.5Wh. Table 2.2 shows percentage of energy consumed for each approach for different

time slot lengths and request patterns. As expected (ref. Table 2.2), when we decrease

request frequency, the overall energy consumption decreases. However, we observe an

interesting patten when time slot length is varied. When time slot length is between 1

hour to 6 hours, the environmental conditions (for solar energy production) do not vary

considerably and the overall energy consumption goes up as a function of slot length.

However, for lengths greater than 6 hours the environmental conditions within a slot

can vary significantly thereby changing the harvesting energy production (solar energy
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Table 2.2: Impact of time slot length and request pattern variations on energy efficiency

Request pattern 1 hr 2 hr 3 hr 4 hr 6 hr 12 hr 24 hr
10% 0.956 0.834 0.831 1.293 0.9 0.469 0.376
20% 1.457 1.496 1.417 1.342 1.193 1.186 0.449
30% 1.677 1.69 1.821 1.929 2.074 1.251 0.889
40% 2.178 2.179 2.188 2.173 2.44 1.512 1.109
50% 2.508 2.791 2.554 2.663 2.514 1.512 1.403
60% 3.107 2.962 2.885 3.201 3.174 1.903 1.622
70% 3.302 3.279 2.995 3.543 3.541 2.36 2.063
80% 3.608 3.475 3.655 3.983 4.201 2.556 1.916
90% 3.95 3.695 3.801 4.081 4.055 2.686 2.43
100% 4.207 4.086 4.242 4.374 4.275 2.882 2.283

availability during day-night shifts). This results in lower energy consumption for 12

hours and 24 hours slot lengths as compared to slots of 1, 2, 3, and 4 hours duration.

Study of impact of End Point Voltage variations on energy-efficiency

Figure 2.2: Impact of End Point Voltage variations on energy-efficiency

Our deployment uses Interstate DCM0055 Lead-Acid battery [2] with 55Ah

capacity with Initial Battery Level (IBL) as 12V. The technical specification for this
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battery mentions that there are five different End Point Voltage (EPV) levels : 9.6V,

10.2V, 10.5V, 10.8V, 11.1V for this battery. When the battery level reaches the EPV, it

stops working until the recharge process starts. We then calculate the available/ target

battery capacity for each of the discharge levels as: (IBL - EPV) * battery capacity. For

example, for 9.5V EPL, the target battery capacity is: (12 - 9.6)* 55 = 132 Wh. It can be

seen that the energy efficiency decreases as the application request ratio increases since

in our case each request needs higher sampling rate (sampling every 1 minute). We can

see that the proposed interactive approach is significantly more energy efficient than the

non-interactive approach. This is because the later one allocates as much energy as it can

in a fair manner, which leads to oversampling and wastage of energy. Figure. 2.2 also

shows that higher discharging rate cannot use the total capacity, 55Ah because it draws

high current. This situation is explained by Peukert’s Equation [23].

Study of impact of harvesting energy variations on energy efficiency and accuracy

In this thesis we employ WCMA [47] algorithm for solar energy prediction

for the interactive and non-interactive approaches. Solar energy availability varies

significantly as a function of geographic location and season. To understand its impact on

the performance of our approach in this study we consider solar energy variations during

the winter (2012/01/4 - 2012/01/10) season at three different geographic locations in the

United States, namely, 1) Necedah, Wisconsin (44.0262, -90.0737), 2) Austin, Texas

(30.25, -97.75), and 3) Santa Barbara, CA (34.425833, -119.714167). We set default

sampling interval to be 10 minutes and high request sampling interval to be 1 minute.

Our results indicate that the proposed interactive approaches are orders of mag-

nitude more energy efficient than the non-interactive approach. In particular, Table 2.3

shows the the percentage of remaining battery level after one week of operation. In

case of non-interactive approach it is just 0.8152% for the Wisconsin winter case. The
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accuracy is expressed in terms of Root Mean Square Error (RMSE). Note that as shown

Table 2.4 error of this approach is quite high (RMSE = 2.3057). We calculated that PF

algorithm allocated energy to sample sensors every 17 seconds. This is counterintuitive

because the approach samples data at very high frequency (default sampling rate for

the interactive approach is every 10 minutes), but it still its error is higher than all the

interactive approaches. A careful investigation shows that PF approach sets it Target

Battery Level (TBL) to the battery end point voltage (9.6V). It will try to allocate maxi-

mum energy during each time slot in a fair manner. However, this includes the stored

and harvesting energy. They assume an ideal solar prediction algorithm that always

predicts the harvesting energy accurately. However, WCMA, the state-of-the-art solar

energy prediction algorithm has a relative mean error of only 10%. When we plug-in

this realistic solar energy prediction algorithm with the non-interactive algorithm, we see

that during the one week of operation, the batter level goes below the end point level

(target battery level) for approximately 11% of the slots. The system then stops operating

thereby completely missing the sampling opportunities in those slots. In contrast, the

interactive approaches avoid oversampling when not needed thereby saving the energy to

allow higher sampling rates upon request. We also observe that the geographic locations

did not have any major impact on the energy efficiency or the accuracy of the studied

protocols.

Table 2.3: Percentage of remaining battery after 1 week

WI CA TX
Non-interactive 0.815 0.981 1.795

Interactive-conservative 99.92 99.92 99.94
Interactive-aggressive 99.83 99.83 99.86

Interactive-hybrid 99.89 99.89 99.91



21

Table 2.4: Impact of harvesting energy variations on system accuracy

WI CA TX
Non-interactive 2.305 2.498 2.132

Interactive-conservative 1.08 1.08 0.08
Interactive-aggressive 0.01 0.015 0.01

Interactive-hybrid 1.100 1.100 1.100

2.4.3 Discussion

The state-of-the-art energy allocation algorithm that takes into account current

battery level and harvesting energy strives to fairly allocate as much energy as possible

along the time dimension. This approach, by not considering application-context, leads

to very high and uniform sampling rates. However, sampling the environment at fixed

predefined intervals is neither possible (need to accommodate system failures) nor

desirable (sampling rate might not capture an important event with desired fidelity). To

that end, in this work we propose a novel interactive power management technique that

adapts sampling rate as a function of both application-level context (e.g., user request)

and system-level context (e.g harvesting energy availability). Our simulations use sensor

data and system specifications (battery and solar panel specs, sensing and communication

costs) for a real sensor network deployment. Existing interactive algorithm considers

an ideal solar energy prediction algorithm that makes no prediction errors. However,

by plugging-in a realistic solar energy prediction algorithm, we show that the existing

approach often leads to draining the battery below the end point voltage thereby resulting

in lower accuracy while spending high energy (due to high sampling rate). Our results

show that the proposed approach saves significant amounts of energy compared by

avoiding oversampling when application does not need it and uses this saved energy

to support sampling at high rates to capture event with necessary fidelity when needed.

The computational complexity of our approach is lower (O(n)) than the state-of-the-art

non-interactive energy allocation algorithm (O(n2)). This approach assume that each
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Figure 2.3: System architecture for PMF and APMF

sensing platform only run single power manager in order to achieve energy efficiency.

However, in reality, different hardware components in sensor nodes run different power

management strategies, so we still need to optimize their interactions. This is the topic of

the next section.

2.5 Adaptive Power Management Framework

2.5.1 System architecture

Figure 2.3 describes the system architecture for traditional Power Management

Framework (PMF) as well as the proposed Adaptive Power Management Framework

(APMF). The traditional PMF includes three modules (ref. Figure 2.3) namely, battery

manager, green energy predictor, and energy allocation algorithm.

The battery manager typically estimates the available battery capacity with one

of the well-established capacity estimation algorithms [43][9][51], and provides this

information to the energy allocation algorithm. Based on the information from battery

manager and green energy predictor modules, the energy allocation algorithm calcu-

lates/allocates the optimal energy for each time slot (ref. Equation (4)). The state-of-art

energy allocation algorithm, Progressive Filling (PF) [26], only considers battery level

and harvested energy as optimization parameters, so the sampling rate is calculated only
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based on energy information.

In contrast to the traditional PMF, the APMF (ref. Figure 2.3) consists of the

following five modules: (1) battery manager, (2) green energy predictor, (3) Transmission

Policy (TP), (4) Adaptive Sampling (AS) and (5) Energy allocation algorithm. The battery

manager, green energy predictor, and the energy allocation modules are identical in PMF

and APMF, while APMF also includes adaptive sampling (AS) and transmission policy

(TP) modules to increase the energy efficiency by considering the application context.

The AS module takes the energy budget calculated by the energy allocation module as its

input and calculates the sampling rate at each decision epoch by capturing variations in

phenomenon. AS and TP modules work in tandem. After AS determines sampling for

the current decision epoch, the TP module uses this information to determine the optimal

transmission policy so that both the transmission cost and the loss of data freshness (an

application- specific metric) are minimized.

2.5.2 Adaptive Power Management Framework

Transmission policy module (TP)

TPs goal is to postpone data delivery in order to save energy while maximizing

the data freshness. At each decision epoch, the TP module takes sampling rates, Rsampling,

from the Adaptive Sampling (AS) module, and decides whether to transmit buffered

packets or continue sampling them. We assume exponential distribution for inter arrival

time of decision epoch as did work presented in [70]. The mean of inter- arrival time is µ.

The monitoring system consists of m different sensors. Each measurement has a different

lifetime, specified as the maximum delay of data arriving to the data center while still

meeting application-specific data freshness requirements [14].

We leverage [70] to define the reward function (Equation (1)) as a product of
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Figure 2.4: Illustration of decision process of TP

energy gain and data freshness loss. Note that energy gain is a monotonically increasing

function, whereas the data freshness is a monotonically decreasing function. This reward

function allows applications to easily tune the delay-data freshness tradeoff.

ri(td) = e−αi·td ·g(td) = e−
1

Li f etimei
·td ·g(td) (2.5)

The ri(td) denotes the reward of sensor node i with delay td . The g(td) is the

energy gain achieved by decreasing transmission events by td , and e−αi·td indicates the

freshness loss with the delay td . Any function what has monotonicity and non-decreasing

characteristic with delay can be used as g(td). For example, in [70], author uses the

number of buffered samples as energy gain.

We define αi as a discount factor, which varies based different level of allowable

latency of application. Note that the control-limit and MDP based approaches assume that

all sensors have same discount factor, α, and therefore, they cannot support a wide-range

of applications. In contrast, our approach allows an application to set the value of on per

sensor basis. Figure 2.5 shows the effect of the varying the delay on reward for various

discount factors. To show the effect of discount factor and delay, we set the initial value

of reward (i.e. Equation (1)) when td ∈ [0,1]. The real time application should set α to

have a large discount factor, so the TP transmits buffered packet with shorter delay to

maximize rewards (e.g., when α is 1, td is 3 minutes the reward is 0.1). In other words,

delay-tolerant applications can set α to have small delay, so TP can achieve maximum
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Figure 2.5: Different discount factors, α, result in different reward

reward with a certain delay (e.g., when is 0.1, td is 3 minutes the reward is 0.7). The

proposed TP module extends the control-limit policy (ref. Algorithm 1) to account for

different values of α. We now show that this policy is optimal (ref. Theorem 1).

Theorem 1. We assume the system consists with m sensors, where each sensor has

its own reward function (ref. Equation 2.5). This function has a finite value which

monotonically decreases with delay (ref. Assumption 2.2 [70]). Each sensor i has αi

as its discount factor. The value of inter-arrival time of decision epoch is δW, so mean

interval arrival time is µ = 1/δW. s∗i is the optimal number of samples that maximize

reward for sensor i (ref. Equation 2.6). Then, the total number of optimal number

of samples (s∗) is the sum of s∗i (ref. Equation 2.7). We set current sampling rate as

Rsampling.

s∗i =

⌈
E[Xe−αiδW ]

1−E[Xe−αiδW ]
+1

⌉
=

⌈
Rsamplingµ
αi(αi +µ)

+1
⌉

(2.6)
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s∗ =
m

∑
i=1

s∗i (2.7)

Proof. We need to show that sum of optimal number of samples for each sensor is

also optimal. This problem is same as weighted interval scheduling problem [35]. The

scheduling problem can be formulated as follows. Assume a system with multiple

requests, where each request has a start time and a finish time. The system can operate

only one request at a time. A certain reward is returned when the system finishes a

request. The goal of scheduling problem is to schedule requests such that the sum of

rewards is maximized while ensuring that the scheduled requests do not overlap. It has

been proved [35] that the scheduling problem has maximum value when all requests are

mutually compatible which means they do not overlap. In our case, since all the sensors

can be sampled independently, they are mutually compatible, so the maximum value of

s∗ in Equation 2.7 is indeed optimal.

Algorithm 3 describes the operational details of TP. At every decision epoch,

TP decides what to do with the buffered packets in the following manner. If number of

buffered packets is larger than s∗, then TP decides to transmit all the buffered packets. If

it is smaller than s∗, then it delays the transmission until the next decision epoch.

ALGORITHM 3: Transmission policy module

Input: Rsampling: calculated sampling rate at AS1
Start at each decision epoch2
Bu f Length = total number of buffered packets3
for every sensors do4

s∗i = Eq. 2.6 with Rsampling5
end6

s∗ = equation 2.7 with all s∗i7
if Bu f Length≥ s∗ then8

Transmit all buffered packets ;9
end10
Decide next decision epoch based on distributed of δW11

The proposed Transmission Policy (TP) provides controls for tuning the energy-
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delay and application data lifetime tradeoffs. For example, a delay-intolerant application

might set the data lifetime to a large value to ensure that data freshness maximized at the

expense of more frequent transmission. On the other hand, a delay-tolerant application

might tolerate loss in data freshness by transmitting less frequently thereby saving more

energy. The existing MDP [39] based approach does not allow applications to tune this

tradeoff. The control-policy approach [70] considers tradeoff between energy gain and

delay of buffered data because a system can save energy while decreasing the number

of transmission events. To characterize the tradeoff they define reward as a function of

energy gain and delay, and show that increasing delay increases reward until a certain

point and after the point reward start decreasing.

Adaptive sampling module (AS)

The existing research on adaptive sampling assumes a discrete and bounded

sampling rate and calculates optimal sampling rates over K time slot by applying task-

allocation algorithm (i.e. Hungarian method [46]). The authors [34] use a linear pro-

gramming approach with initial battery capacity before the first time slot as its constraint.

They minimize distance between approximated sampled data and real data. Based on

past measurements, sampling rates for K future time slots are predicted. However, this

optimal adaptive sampling algorithm (OSA) requires high computational complexity

O(n3). The AS module estimates the sampling rate using the allocated energy from

the energy allocation module as its input. As we described in Section III.A, TP has a

variable length decision epoch, thus, the AS calculates optimal sampling rate at every

decision epoch. TP then uses this as its input. In Algorithm 4, The Ealloc(i) is the

allocated energy by the next decision epoch, and β denotes the factor reduction in energy

by down sampling. An application sets β so that down sampling saves energy, while

meeting its requirements in terms of data fidelity. The set of sampling rates of sensors are
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R = [r1, ...,rM], and r1 and rM as its lower and upper bounds respectively. AS calculates

the quality of samples for all values of E and R and then chooses the sampling rate.

Total Deviation (TD) [34] is a distance between predicted and real sample values. A

larger value of TD implies lower quality of samples, so we calculate the largest TD (ref.

calculateTD in Algorithm 2) for different sampling rates for a given energy limit. ITD in

Algorithm 2 is a 2-dimensional matrix that saves the corresponding TD entry for each

sampling rate and available energy combination. After calculating TDs for all elements

in E and R, Algorithm 4 derives the sampling rate as the rate which has the smallest

uncertainty & highest quality. Its computational complexity is O(n2), but with small set

of E and R, it can be readily implemented on a resource-constrained smart phone.

ALGORITHM 4: Transmission policy module

Input: Ealloc1
Rsampling2
for p = 1 to length(R) do3

for q = 1 to length(E) do4
IT D(p,q) = calculateT D(R(p),E(q))5

end6
end7
Rsampling = find the smallest value in IT D8

Green energy predictor

In case of periodic or partially periodic renewable energy such as solar energy,

existing research has shown that the state of the art energy predictors such as Weather-

Conditioned Moving Average, WCMA can be used to accurately predict the amount

of harvesting energy [47]. Therefore, in this thesis we use WCMA algorithm for solar

energy prediction.
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2.5.3 Results

Our experimental results are based on two real-world data sets: (1) The deploy-

ment on a lake in Northern Wisconsin (ref. Figure 1) from Aug.8 to Oct. 9 2012. We use

the measured temperature and humidity. (2) The second data set is from North temperate

lake ecological study [5], with sampling from June 26 to Nov. 4 2008. For solar energy

prediction we use data from USCRN [6] database for Necedah, Wisconsin location since

it is the closest location to our deployment. Table 1 is the power specification of a

subset of sensors and the smartphone from our deployment (i.e. dataset 1) [64]. The

smartphone acquires data from all the sensors and then transmits it to a data center hosted

on Amazon-EC2 cloud platform. The phone is equipped with Wi-Fi and cellular radios.

In our deployment the phone transmitted data over cellular (3G) network. In Table 2.5,

suspend means that the application processor is idle, while the communications processor

performs a low level of activity, as it must remain connected to the network to be able

to receive messages, etc. Idle state means that all components are in a low-power state

without application operation.

Table 2.5: Power consumption specification for our deployment

Current (mA) Power (mW) Time (s)
Wind speed (m/s) 2.5 30 5
Wind direction (◦) 2.5 30 5

Barometric pressure (hPa) 0.8 9.6 5
Air temperature (◦C) 0.8 9.6 5
Relative humidity (%) 0.8 9.6 5

Templine 31.7 380 5
Andriod phone - Suspend 2.4 7.2 -

Andriod phone - Idle 14.5 43.5 60
Andriod phone - Tx + Rx 53.9 161.9 1

We assume mean decision epoch interval of 13 minutes, same as the simulation

setup in [70]. Thus, we restrict maximum sampling interval to 13 minutes. We model

data lifetime in terms of a sensors sampling interval with three different values: 1, 5, and
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10. In the remainder of this thesis, we use x1, x5, and x10 to represent these lifetime

factors. We define data freshness loss as the percentage of data which stays longer than

its lifetime in the local buffer. For example, when the sampling interval is 1 minute and

lifetime factor is set to 10, the sample does not lose its data freshness for 10 minutes. Our

proposed power management framework is implemented in Matlab.

Performance of AS with real world data sets

We compare AS with optimal adaptive sampling algorithm (OSA) [34] in terms

of calculated average sampling rate over experimental period. The difference between

OSA and AS is length of time slot: the OSA considers fixed length of time slot, and AS

determines sampling rate at each decision epoch. In addition, AS discretize allowable

energy (i.e. vector E in Algorithm 2) into a set of finite size. The Table 2.6 shows that

the difference between OSA and AS is less than 1 minute. AS samples slightly at higher

rates than OSA, while significantly reducing the computational overhead.

Table 2.6: Average sampling rate with real data sets

Temperature Humidity Chloride
AS 4.5±0.6 4.5±0.6 6±3.6

OSA 5.17±1.6 5±1.4 6.7±6.4

Study of energy-delay tradeoff for various lifetime factors

In this study, we describe the impact of varying lifetime factors on relative power

consumption (ref. Table 2.7) and data freshness loss (ref. Table 4). To check the perfor-

mance of TP, we consider the scenario where each of these six sensors uniformly selects

its sampling interval between 0 to a predefined upper bound during the initialization phase.

We vary upper among 3, 5, 10, 13 minutes. In Table 3, the relative power consumption

decreases with the increase in the lifetime factor. This is because the system can buffer



31

the samples for longer duration as the lifetime factor increases thereby reducing the

number of transmissions (ref. Equation (2.5)). For example, TP with lifetime factors 1

(i.e. TP (x1)) consumes 1.25 times and 1.4 times more energy than TP (x5) and TP (x10)

policies respectively. In Table 4, TP (x10) policy has between 1.3 to 3.3 times more loss

data freshness than TP (x5) policy.

Table 2.7: Impact of variation of lifetime factor on relative power consumption (%) for
different sampling upper bounds

3min 5min 10min 13min
TP (x1) 97.7 96.3 88 78.7
TP (x5) 93.2 77.8 60.7 48.5

TP (x10) 89 68 51.8 44.8

Table 2.8: Impacts of different lifetime factor to freshness loss (%) for different sam-
pling upper bound

3min 5min 10min 13min
TP (x5) 1.2 2 2.6 6.4

TP (x10) 2.3 6.5 6.5 8.6

Study of energy-delay tradeoff

In this study, we describe the impact of various transmission policies on relative

power consumption (ref. Table 2.9) and data freshness loss (ref. Table 2.10). The energy

consumption of TP with 5x lifetime is consistently 20than the MDP based approach (ref.

Table 2.9). However, because TP (x5) policy uses large lifetime factor, its data freshness

(ref. Table 2.10) loss is higher (between 2% to 7%) as compared to the MDP based

approach.

Study of PF, AS and TP with real data set

In this section, we compare APMF with PMF [26] (ref. In Table 2.11). APMF

results in 27% to 72% energy savings in comparison with PMF. We also selectively
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Table 2.9: Impacts of different transmission policies on power consumption (%) for
different sampling intervals

5min 10min 15min 20min
MDP [39] 98.6 79.6 6138 51.2
TP (x5) 77.8 60.7 48.5 41.3

Table 2.10: Impacts of different transmission policies to freshness loss (%) for different
sampling interval

5min 10min 15min 20min
MDP [39] 0 0 0 1
TP (x5) 2 2.6 6.4 7.9

disable TP and AS modules to evaluate their impact on overall performance of APMF.

We can see the TP dominates energy savings because transmission cost is 25x higher

than the sensing cost. Table 2.12 shows that APMF has a negligible data estimation

error as compared to PMF. Therefore, APMF results in higher energy savings with no

loss in accuracy. The low level of estimation error is because measured temperature and

humidity are slowly varying (i.e. at most 4.2◦C and 4.5% variance respectively per day).

We use another set of measurement from North template lake ecological study [5], which

involves sampling from 6/26/2008 to 11/4/2008. This data includes a limnological

variable that varies more quickly than temperature. From Table 2.13, we can observe that

APMF consumes 62% less energy than PMF.

Table 2.11: Relative energy consumption in comparison with data set 1

vs. PMFTP (x1) Humidity Temperature
APMF 27% 32%

APMF w/o TP 62% 72%
APMF w/o AS (5min) 48% 53%
APMF w/o AS (5min) 16% 42%
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Table 2.12: Estimation error in comparison with data set 1

vs. PMFTP (x1) Humidity Temperature
APMF 0.015% 0.005%

APMF w/o TP 0.012% 0.003%
APMF w/o AS (5min) 0.009% 0.003%
APMF w/o AS (5min) 0.013% 0.005%

Table 2.13: Relative energy consumption comparison with data set 2

vs. PMFTP (x1) Energy consumption (%)
APMF 62 %

APMF w/o TP 88%
APMF w/o AS (5min) 74%
APMF w/o AS (5min) 69%

2.6 Discussion

In this thesis, we have Advanced Power Management Framework (APMF) that

adapts sampling & transmission rates based on battery capacity level, harvesting energy

amount and application-context (characteristics of gathered data). The adaptive sampling

and transmission policy manager modules of APMF have low complexity and are suitable

for resource-constrained devices. APMF provides applications a finer control over delay-

energy tradeoff. We evaluated the performance of our proposed approach using dataset

from two real-world deployments. Our results show that APMF saves 20% to 60%

of energy consumption by avoiding oversampling. So far, we have studied power

management designs that operate in different layers. In the next section, we study the

user based data aggregation approaches for WSNs.

Chapter 2, in part, is a reprint of the material as it appears in ”Leaveraging

application constext for efficient sensing”, by Jinseok Yang, Sameer Tilak and Tajana

Simunic Rosing, IEEE ISSNIP 2014. The dissertation/thesis author was the primary

investigator and author of this thesis.

Chapter 2, in part, is a reprint of the material it appears in ”An Interactive
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Context-aware Power Management Technique for Optimizing Sensor Network Lifetime”,

by Jinseok Yang, Sameer Tilak and Tajana Simunic Rosing, SENSORNETS 2016. The

dissertation/thesis author was the primary investigator and author of this thesis.



Chapter 3

Adaptive transmission manager

3.1 Introduction

A new generation of Wireless Sensor Networks (WSNs) envisions commodity

sensing & actuation infrastructure to provide services. These WSNs form a critical and

general interface between physical and digital worlds. They convert physical qualities

into measurements which can be used for a wide-ranging spectrum of applications. The

impact of such networks is significant: WSNs will no longer be specialized networks

which are running a single application and supporting a limited set of users. Rather,

multiple applications deployed by multiple organizations will share a deployed sensor

network. The running applications will have diverse delay and accuracy requirements.

Fig. 3.1 describes the operation of a sensing platform which collects data from

heterogeneous measurement sources in WSNs. Each sensing platform runs multiple ap-

plications that collect raw data from the corresponding sensors. Applications process the

raw data to generate measurements, and send these measurements along with application-

specific delay requirements to the data buffer in the transmission manager. In addition to

generating its own data, the sensing platform also receives packets forwarded from its

35
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neighboring nodes as WSNs may use multi-hop wireless links to forward the data to the

sink node. Thus, the data buffer in the transmission manager has both the measurements

generated by the node itself as well as the ones received from its neighbors. The job of

the transmission manager is to determine the optimal single hop transmission instance of

buffered measurements, based on the end-to-end delay requirements and distance to the

sink along a routing path. Recent publications that look at delay guarantees in multi-hop

WSNs [62][61] decompose the end-to-end delay problem into a set of single-hop delay

subproblems. However, they don’t determine a specific solution for how each node in

WSNs will obtain a single-hop delay requirement. They show that end-to-end delay

guarantee problem requires information about the buffer, the channel, and the system

conditions of ancestor nodes in the routing paths such that the problem is NP-hard.

The key challenge of transmission manager is to minimize the number of mes-

sages that expire prior to reaching their destination while minimizing the energy con-

sumption. We first propose an optimal transmission manager using the optimal stopping

theorem based on Markov Decision Process model (MDP) in order to find out optimal

transmission instance between two nodes. Then, we propose a distributed transmission

manager that tunes the optimal transmission manager to operate in multi-hop WSNs.

The optimal and distributed transmission managers work in tandem (ref. Fig. 3.4), and

run on each node as shown in Fig. 3.1. In this figure, transmission managers in green

box includes those approaches. They determine the transmission time for every buffered

measurement. Measurements expire if they cannot arrive to a sink by application specific

time constraint.

We implement both transmission mangers in ns3 simulator [45] to compare

with the other state of the art transmission managers [55][12][70]. We evaluate the

energy consumption and the number of expired measurements for three different network

topologies: i) single hop, ii) linear and iii) grid. A single hop case is typical for small
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Figure 3.1: Applications generate measurements which have application-specific delay
requirements and send them to the data buffer in the transmission manager. Transmission
manager determines the transmission time of the buffered measurements.

scale wireless sensor networks such as Body Area Networks (BANs) [8]. Linear topology

is commonly used in buoy deployments in order to monitor lake conditions such as

temperature, dissolved oxygen, conductivity and pH/ORP. Grid topology has been shown

to be effective for city-wide deployments such as air quality monitoring in downtown San

Diego for projects such as CitiSense [44]. In all three cases, the optimal and distributed

transmission managers work in tandem, and consume on average 148.3% less energy

than the state of the art approaches while having on average 14.1% of measurements that

expire.

In the remaining part of this work, we first summarize the related work on trans-

mission managers in Section 3.2. Section 3.3.1 formulates our problem by using Markov

Decision Process (MDP) model and proves the existence of the optimal transmission time.

Details of proposed optimal transmission manager are described in Section 3.3.2. In

Section 3.3.4, we describe how our proposed transmission manager operates in multi-hop

WSNs. Section 3.4 discusses the experimental setup. Network simulation results with

single hop, linear and grid topologies are summarized in Section 3.5
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3.2 Related work

There are a few publications that focus on designing transmission manager that

minimizes the energy consumption while ensuring a low number of expired measure-

ments. They decrease energy consumption by decreasing the communications with an

embedded buffer. They estimate transmission time based on different factors such as

local application delay constraints, distance to the sink node and node’s available energy.

The periodic per hop approach [55] waits for a pre-defined periodic time interval

before forwarding received data to its parent node. The cascade time-out protocol,

presented in the same paper, buffer all generated and received measurements in its buffer

and transmit at calculated transmission time. The time is function of the hop distance to

the sink node and sampling interval as described in the following: transmission time= 2∗

{sampling interval− (single hop delay∗hop distance to the sink)}. In [55], authors set

the single hop delay as 0.03sec. Transmission managers that consider application based

delay constraints are proposed by [12][70][11]. Their transmission managers determine

the optimal transmission time of buffered measurements based on the characteristics of

a running application. The selective-forwarding approaches [12][11] maximize reward

of all measurements that are generated in the wireless network to achieve the energy

reduction while minimizing the number of expired measurements. They define the reward

as a function of delay-sensitivity of measurements and a probability of arriving at the sink

node. Selective-forwarding approaches assume that all nodes in the wireless network run

a single delay sensitive application. In contrast, the delayed forwarding approach [70]

uses a delay-sensitivity factor (i.e. α) to represent the trade-off between energy gain and

expiration rate of measurements. For example, a large α value requires a node to schedule

a transmission within a short amount of time. While this decreases the probability of

measurements timing out, it also increases energy consumption. The choice of α is
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arbitrarily specified by the author.

Prior works do not consider different delay requirements of heterogeneous ap-

plications in WSNs. This is the limitation that our proposed transmission managers

seek to resolve. We first propose the optimal transmission manager that determines

optimal transmission delay of buffered measurements on a single sensor node in Section

3.3. Then, we extend the transmission to operates in multi-hop WSNs and explain in

Section 3.3.4. Both transmission managers work in tandem, and the results show that

they consume on average 148.3% less energy than the state of the art approaches while

increasing the number of measurements that expire by 14.1% on average.

3.3 Optimal transmission manager

The system model is shown in Fig. 3.1. The distributed and optimal transmission

managers operate between running applications and the network layer on each sensing

platform. All generated or received measurements are stored in the data buffer. They

include two types of information: i) raw data and ii) end-to-end time constraints. Raw data

is coming from embedded sensors. Applications assign end-to-end time constraints based

on their own delay requirements for the generated measurements [62][61]. Distributed

transmission manager determines upper bounds of transmission instance, N, from the

end-to-end time constraints as described in Section 3.3.4. Then, optimal transmission

manager (OptTM) decides the optimal transmission time of the measurements based

on the time constraints of buffered measurements in order to minimize the number of

measurements that expire and lower the energy consumption.

In order to satisfy these goals, OptTM evaluates actions at regular time intervals

called decision epochs, as shown in Fig. 3.2. At each decision epoch, OptTM determines

the optimal transmission time. The transmission manager’s MDP model has the following
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Figure 3.2: At every decision epoch, transmission manager uses Markov Decision
Process model and find out optimal transmission instance of buffered measurements.
Black arrows represent the transitions between the states

components:

• States, S = {s1, ...,sSmax}, represent buffer characteristics. For example, the state

variables represent the current number of measurements in the buffer. OptTM buffer

delays separated by ∆step time interval and represented by {Step1, ...,Stepmax}. At

each decision epoch, OptTM checks buffer characteristics and decides the optimal

step (time) for transmission. Smaller ∆step increases the granularity of buffer

delays, but it also constantly increases computation complexity. In this work, we

set ∆step at 1 sec which is a reasonable value for the applications we use in this

work. In the current decision epoch, as shown in Fig. 3.2, OptTM looks over all

possible transmission times represented by steps 1 to N and chooses to transmit

measurements at step k.

• Actions, A= {a1, ...,aAmax}, give the number of measurements that the transmission

manager transmits at a particular step. Amax is the maximum number of actions.

• Transition probability defines the likelihood of the next state based on the current

state and the current action. At step k, Pk(sk+1|sk,am) is the probability of the next
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state sk+1 when the current state is sk and the action is am. For example, at step

k, the chosen action, am maybe to transmit all measurements in the buffer, thus

transitioning the system into state sk+1 with an empty buffer.

• Reward, Rk(sk,am), is calculated for all possible actions, am ∈A, at each state sk ∈ S.

OptTM selects the action, a∗k , that returns the largest reward, R∗k , as described in

Eq. (3.1) and Eq. (3.2).

a∗k = arg max
am∈A

{
Rk(sk,am)+∑

s∈S
Pk(sk+1 = s|sk,am)R∗k+1(sk+1)

}
(3.1)

R∗k(sk) = max
am∈A

{
Rk(sk,am)+∑

s∈S
Pk(sk+1 = s|sk,am)R∗k+1(sk+1)

}
(3.2)

3.3.1 Criteria for optimality

Definition 1. Let S and A be partially ordered sets and f (s,a) a real-valued function on

S×A. The function f (s,a) is super-additive when f (s′,a′)− f (s,a′)≥ f (s′,a)− f (s,a)

with s′ > s in S and a′ > a in A.

Theorem 2. There exists an optimal structured transmission rule if the formulated

problem satisfies the following conditions [49]:

1. Rk(sk,am) is nondecreasing in sk for all am ∈ A and k ∈ {1, ..,N−1}.

2. Cumulative transition probability, qk( j|sk,am) = ∑
sSmax
sk+1= j Pk(sk+1|sk,am), is nonde-

creasing in sk for all k ∈ {1, ...,N−1} and am ∈ A, k ≥ 0, ∀ j ∈ S.

3. Rk(sk,am) is super-additive function on S×A.
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4. q( j|sk,am) is super-additive function on S×A.

5. RN(sk,am) is nondecreasing in sk.

Then, the optimal value is nondecreasing in state s≤ s′ ∈ S: R∗k(s)≤ R∗k(s
′).

Given Theorem 2, a reward function, Rk(s,a), in OptTM is super-additive and

nondecreasing in s ∈ S for all a ∈ A and k ∈ {1, ..,N}. The nondecreasing condition of

Rk(s,a) in s becomes true when the reward function satisfies the following relationship

with s′ ≥ s ∈ S and a ∈ A: Rk(s′,a)−Rk(s,a)≥ 0. The reward function becomes super

additive function when it satisfies the following relationship with s′≥ s∈ S and a′≥ a∈A:

Rk(s′,a′)−Rk(s,a′)≥ Rk(s′,a)−Rk(s,a). We first derive a sufficient condition to satisfy

the above two relationships with an assumption that Rk(s,a) = f (s) · rk(a) (that is f (s)

is nondecreasing function with state s and rk(a) is a reward with an action a). With

this assumption, we can derive a sufficient condition for super-additivity of Rk(s,a) as

described in Eq. (3.3). The derived sufficient condition that satisfies the relationship,

Rk(s′,a′)−Rk(s,a′)≥ Rk(s′,a)−Rk(s,a), is rk(a′)≥ rk(a) with nondecreasing f (s). In

addition, the condition also guarantees nondecreasing characteristic of Rk(s,a) because

f (s′)≥ f (s).

Rk(s′,a′)−Rk(s,a′)≥ Rk(s′,a)−Rk(s,a)

= rk(a′){ f (s′)− f (s)} ≥ ck(a){ f (s′)− f (s)}

= rk(a′)≥ rk(a)

(3.3)

The cumulative transition probability is the nondecreasing and has super additive

property when it satisfies the following two relationships with s′ ≥ s ∈ S and a′ ≥ a ∈ A:

i) qk( j|s′,a)− qk( j|s,a) ≥ 0, ii) qk( j|s′,a′)− qk( j|s,a′) ≥ qk( j|s′,a)− qk( j|s,a). We

define Xs as the difference between the two states and prove the nondecreasing property
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of cumulative transition probability as described in Eq. (3.4).

qk( j|s′,a)−qk( j|s,a)

=
∞

∑
sk+1= j

Pk(Xs = sk+1− s′)−Pk(Xs = sk+1− s)≥ 0
(3.4)

When j≥ s′, ∑
∞
sk+1= j Pk(Xs = sk+1−s′)−Pk(Xs = sk+1−s) = ∑

s′−s
n=1 Pk(n). When

s ≤ j < s′, ∑
∞
sk+1= j Pk(Xs = sk+1− s′)−Pk(Xs = sk+1− s) = ∑

j−s
n=1 Pk(n) since Pk(Xs <

0) = 0. When 0≤ j < s, ∑
∞
sk+1= j Pk(Xs = sk+1−s′)−Pk(Xs = sk+1−s) =∑

j−s
n=1 Pk(n) = 0.

In all three cases, qk( j|s′,a)−qk( j|s,a) in Eq. (3.4) is always positive. This proves that

the cumulative transition probability has a nondecreasing property. Without the loss of

generality, we see that it is also super-additive.

With these properties, our model is guaranteed to give the optimal transmission

time. In the next subsection we discuss how we define all of the parameters of our model

in order to guarantee the optimality.

3.3.2 Optimal transmission manager implementation

At every decision epoch, OptTM checks the buffer state for each time step and

determines when to transmit the currently buffered measurements. Thus, we define two

actions corresponding to transmitting no messages if the optimality criteria are not met

(a0) and transmitting all messages if they are met (aall).

Reward at step k, Rk, is the sum of all buffered measurements’ remaining lifetime

(the first term in Eq. (3.5)) with the expected rewards for future measurement arrivals

(the second term in Eq. (3.5)). Previous works [12] and [70] use exponential function as

their reward to emphasize the effect of decreasing message lifetime with delay. However,

exponential function decreases the delay too quickly in realistic applications, so we
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use a linear function of remaining lifetime as shown in Eq. (3.5) and Eq. (3.6). T li f e
i,k

is the remaining lifetime of ith measurement in the buffer at kth step as shown in Eq.

(3.6). It is the time difference between a time constraint of that measurement (T time
i )

and step k representing the time delay that all measurements incur before transmission.

Future measurements are generated from different applications and arrive at different

times. Thus, we calculate the expected future reward in terms of the number of running

applications, data delay and the number of arrivals. The number of applications running

in WSNs is defined by nApp. The expected delay by kth step is β and γ is the number of

measurements arrived. P(γ,α) is the probability of γ arrivals of application α. We model

this probability using a Poisson distribution as described in Eq. (3.7). λα is arrival rate of

measurements generated from an application α. E{T time} is the expected time constraint

of future arrival measurements.

Rk(sk) = ∑
i

T li f e
i,k +

nApp

∑
α=1

k−1

∑
β=1

∞

∑
γ=0

γ · {E(T time)−β} ·P(γ,α) (3.5)

T li f e
i,k = max

{
T time

i − k,0
}

(3.6)

P(γ,α) =
e−λα(λα)

γ

γ!
(3.7)

We use optimal stopping theorem [49] to implement OptTM. We define only

two buffer states, S = {sbest ,snot}. When the reward at the current step is the largest

seen so far, the system is in state sbest , otherwise, it is in state snot . Transitions between

the two states are denoted by the transition probabilities. Transition probabilities for

the uncontrolled system are independent of the system state [49], so P(sk+1|sk,am)

becomes P(sk+1|sk). More specifically, P(sbest |sk = snot) = P(sbest |sk = sbest) = P(sbest)

and P(snot |sk = snot) = P(snot |sk = sbest) = P(snot).
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Reward at step k, R(sk), is the sum of all buffered measurements’ remaining

lifetime (the first term in Eq. (3.8)) with the expected rewards for future measurement

arrivals (the second term in Eq. (3.8)). The arrival rate of measurements λ can be

measuring by the number of arrivals between two consecutive decision epochs.

Rk(sbest ,ak) = ∑
i

T li f e
i,k +

k−1

∑
β=1
{E(T time)−β} ·λ (3.8)

We can now derive the optimality criteria given our simpler model by using

backward iteration approach [49]. This approach starts from final step N and checks

the optimal reward at each step going back to the beginning (ref. Eq. (3.2)). Because

transition probability only exists when OptTM continues buffering (action a0), the optimal

reward at step k, k < N, can be simplified as described in Eq. (3.9). We set R∗N(sbest) = 1

and R∗N(snot) = 0 due to the nondecreasing property of the reward function.

R∗k(sk) = max
{

Rk(sk,ak = aall),E[R∗k+1(sk+1)]
}

(3.9)

The Rk(sk,am = aall), k ≤ N is the reward of buffered measurements at step k

when OptTM transmits all buffered measurements. R∗k+1(sk+1) is the optimal reward

at the next step, k + 1.The expected reward for the next state, E[R∗k+1(sk+1)] can be

calculated as described in Eq. (3.10).

E[R∗k+1(sk+1)] = ∑
s∈{sbest ,snot}

R∗k+1(s)P(sk+1 = s) (3.10)

We next calculate the optimal reward at each step. We denote R∗k(sbest) as the

optimal reward at step k when the current state is sbest . The R∗k(snot) is the optimal reward

at step k when the current state is snot . For k < N, R∗k(sbest) and R∗k(snot) can be calculated

as described below.
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R∗k(sbest) = max
{

Rk(sbest),E
{

R∗k+1(sk+1)
}}

= max{Rk(sbest),P(sbest) ·R∗k+1(sbest)

+P(snot) ·R∗k+1(snot)}

(3.11)

R∗k(snot) = max{0,P(sbest) ·R∗k+1(sbest)

+P(snot) ·R∗k+1(snot)}
(3.12)

Because the expected reward is always positive, we can simplify Eq. (3.11) and

Eq. (3.12) to Eq. (3.13).

R∗k(sbest) = max
{

Rk(sbest),E
{

R∗k+1(sk+1)
}
= R∗k(snot)

}
(3.13)

Solution of Eq. (3.13) yields the optimality criteria of the transmission manager.

In state sbest , when Rk(sbest)≥ E
{

R∗k+1(sk+1)
}

the optimal action is to transmit all the

currently buffered measurements. When Rk(sbest)< E
{

R∗k+1(sk+1)
}
, the optimal action

is to continue buffering without transmitting measurements, a0. The optimal transmission

instance that maximizes the reward while minimizing the number of measurements that

expire is shown in Eq. (3.14).

N∗ = argmin
k
{Rk(sbest)≥ E

{
R∗k+1(sk+1)

}
} (3.14)

We can select any probability as transition probability that satisfy condition in Eq.

(3.4). Thus, we select P(sbest) =
1

k+1 which means the reward at next step k+1 is the

largest seen so far. As sbest and snot are mutually exclusive events, P(snot) = 1−P(sbest).

Because reward function does not depend on the current state, Eq. (3.14) becomes Eq.
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(3.15) with selected transition probability. This means that Eq. (3.15) is the optimal

solution.

N∗ = argmin
k
{Rk ≥ R∗k+1} (3.15)

ALGORITHM 5: Optimal single hop transmission manager (OptTM)

Input 1: time constraints set T1
Input 2: Dsink: distance in number of hops from current node to sink2
N = input from DistTM3
A = zeros(1,N), this is action vector4
R = zeros(1,N), this is reward vector5
for k=1 to N do6

Calculate R(k) with Eq. (3.8)7
end8
// Determine optimal action9
for k=N-1 to 1 do10

if maxR(1 : k) 6= R(k) then11
//Current state is snot12
A(k)← a0 // Continue ;13

else14
//Current state is sbest15
Calculate E[R∗k+1] with Eq. (3.10) and apply transmission16
probabilities
if R(k)≥ R∗k+1 then17

A(k)← aall // transmit all currently buffered measurements;18
else19

A(k)← a0 ;20
end21

end22
end23
if ∃k,A(k) = aall then24

Output: optimal transmission instance = min{k ≥ 1 : A(k) = aall}25
end26

3.3.3 OptTM algorithm for a single hop WSNs

Algorithm 5 describes how OptTM determines the optimal transmission time

for buffered measurements at each decision epoch in single hop WSNs. Inputs to the

algorithm are buffer with time constraints of all measurements (T ), upper bound of

delay (N) which is calculated from distributed transmission manager, distance in number
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Figure 3.3: Additional delays at relay nodes (A+B)

of hops from current node to sink (Dsink), action (A) and reward (R) vectors. OptTM

calculates the reward (ref. Eq. (3.8)) for each potential transmission step in lines 6:8.

When the current reward is not the largest one calculated at previous steps (lines 11:13),

OptTM continues buffering without transmitting measurements (ref. Eq. (3.12). Else

OptTM compares the current reward with the expected reward (line 17). It transmits

all the measurements if the current reward is greater than equal to the expected reward.

Lastly, OptTM selects the soonest step for which Eq. (3.14) is satisfied. This is then

defined as the optimal transmit time (line 25). The computation and space complexity of

this algorithm is O(N).

3.3.4 Distributed transmission manager

Applications assign end-to-end time constraints based on their own delay require-

ments for the generated measurements. Measurements coming from different applications

may have different time constraints. Distributed transmission manager (DistTM) calcu-
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ALGORITHM 6: Distributed multi-hop transmission manager (DistTM)

Input 1: buffer Bin1
Input 2: Dsink: distance in number of hops from current node to sink2
length(Bin): the number of measurements in Bin3

T end
i : end-to-end time constraint of ith measurement in Bin4
// Calculate upper bound of transmission delay5
Calculate x with Eq. (3.17)6
Calculate N with Eq. (3.16)7
// Calculate optimal transmission instance8
Optimal txinstance← Algorithm 5 with input N9
// Check measurements that expire10
for k=1 to length(Bin) do11

Bin(k) = Bin(k)− txinstance ;12
if Bin(k)≤ 0 then13

delete Bin(k) from Bin14
end15

end16
Output: Schedule transmission of measurements in Bin at txinstance17

lates N and provides the value to OptTM at each decision epoch. Then, as described in

Algorithm 5, OptTM running on a relay node uses time constraints of buffered measure-

ments (generated & received) to choose when to transmit between 1 and N. Unlike other

state of the art approaches, OptTM is non-synchronized approach. This yields additional

delays at relay nodes as described in Figure 3.3. Node 3 transmits a measurement to

Node 2 at t1. Node 2 relays the measurement to Node 1 at t2. Node 1, then, relays the

received measurements to the sink at t3. A measurement generated from Node 3 can be

expired if the additional delays at relay nodes (A+B) is larger than its time constraint. A

measurement of Node 2 has additional delay at Node 1, but a measurement of Node 1 do

not suffer additional delay because Node 1 can directly connect to the sink. This implies

that even though all nodes have same measurements (which have same time constraints),

Node 3 should have the shortest transmission interval in order to avoid measurement

expirations at relay nodes. This means that DisTM should consider distance to the sink

when it calculates the final step N.

We first check the worst case delay at relay nodes in multi-hop WSNs. Suppose

all nodes have same measurements (with time constraint, Ttime) in their buffer, and they
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have same transmission interval x sec. Because each node transmits after x sec, the

the worst case delay is a function of distance to the sink and the transmission interval,

Dsink · x. This means that when transmission interval x satisfies the following condition,

Dsink ·x≤ T time = x≤ T time

Dsink
, all measurements can arrive to the sink without expiring. The

best case delay is x because of no additional delays at relay nodes. Thus, measurements

do not expire if x≤ T time. Average delay at relay nodes in multi-hop WSNs is a function

of the worst and best case delays as described in Eq. (3.16). The right hand side of the

Eq. (3.16) is bounded average delay at relay nodes with x sec transmission interval.

T time

Dsink
+ x

2
≥

x
Dsink

+ x

2
=

(Dsink +1) · x
2 ·Dsink

(3.16)

The goal of DistTM is to find upper bound of transmission instance (N) by

estimating expected delay at relay nodes with Dsink. Thus, DistTM uses expected time

constraints of measurements, E(T time), and calculates x as described in Eq. (3.17). We

use similar method as [55] because they show the best performance when all nodes

are synchronized. Single hop delay is the sum of maximum value of propagation

delay in wireless channel and staggering delay in MAC layer [55]. OptTM transmits

measurements to MAC layer [48][24] to forward them to neighbor node. MAC layer

takes random delay between 0 to maximum staggering delay in order to avoid collisions.

The propagation delay depends on deterministic factors (ex. distance and packet size)

and non-deterministic factors (ex. channel condition, weather and moving objects) [41].

Thus, it is impossible to accurately get the maximum propagation delay in general. In

[55], authors set the maximum staggering delay to 0.03sec and estimate the maximum

single hop delay, DmaxHop, of 0.3 sec for CSMA. Thus, we also set the DmaxHop to 0.3sec.

x =
{

E(T time)−DmaxHop ·Dsink
}

(3.17)
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Figure 3.4: Three components of multi-hop TM

Algorithm 6 describes how distributed transmission manager determines final step

N and connects to OptTM. Inputs to the algorithm are buffer with all the measurements

(Bin) and distance to the sink (Dsink). All measurements in Bin have sensor readings

and end-to-end time constraints. Each measurement may have different end-to-end time

constraint. Network layer provides Dsink to the transmission manager. In lines 6:7, dis-

tributed transmission manager calculates N. Algorithm 5 uses N as an input and calculates

optimal transmission instance between 1 and N in line 9. After distributed transmission

manager gets the transmission instance, it updated end-to-end time constraints of all

original measurements in Bin in lines 11:16. When updated end-to-end time constraints

have zero or negative values, distributed transmission manager removes corresponding

measurements from Bin. Lastly, distributed transmission manager schedules transmis-

sion of all measurements in Bin at the optimal transmission instance in line 17. The

computation and space complexity of this algorithm is O(length(Bin)+N).

3.4 Experimental setup

We evaluate the performance of our proposed OptTM in terms of percentage of

expired measurements and energy consumption (mJ) compared to the following state of

the art approaches:

• Fixed [55]: All nodes have a fixed buffering time limit and periodically transmit

all buffered measurements at every instance.
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• Cas [55]: The cascade time-out protocol considers the distance to the sink node

to evaluate the buffering time limit. Farther nodes have shorter buffering time

limit. For single-hop analysis, this method converges to the shortest time interval

between transmission instances.

• CL [70]: The control-limit transmission manager transmits all buffered mea-

surements when the buffer size is over a predefined threshold. This threshold is

a function of arrival rates and time constraints. The decision epoch can be either

random or deterministic. We use the deterministic version in our simulations. Fig.

3.5 shows the buffer threshold for different sampling intervals and maximum time

constraints. The threshold increases while we increase maximum time constraints

and decrease the sampling interval. In this work, for a sampling interval of 2

sec, the buffer threshold varies from 8 to 45 measurements for maximum time

constraints between 15 to 90 sec.

• SF [12]: The selective forwarding transmission manager calculates a threshold

based on the consumed energy and importance of measurements. Importance is an

inverse function of time constraints. It sends a measurement if the measurement’s

importance is larger than the calculated threshold. Otherwise, SF discards the

measurements.

• DistTM: The distributed transmission manager employs OptTM which deter-

mines the optimal transmission instance based on Eq. (3.8) and Eq. (3.15) at

every decision epoch. At each decision epoch, DistTM calculates upper bound

of transmission instance, and OptTM uses it to get the optimal transmission in-

stance. Then, DistTM schedules transmission of all buffered measurements at the

optimal transmission instance. The details of OptTM and DistTM are described in

Algorithm 5 and Algorithm 6.
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Figure 3.5: Buffer threshold of CL for different sampling interval and time constraints

We implement all the above approaches with ns3 network simulator [45]. Our

approach operates on top of the network layer, so it is agnostic to the underlining routing

protocol. Thus, we choose well established routing protocol, DSDV [29]. The distance

between the two closest nodes is 100m.

We consider three different network topologies: i) single hop, ii) linear and iii)

grid. The single hop considers a situation with a single source which is directly connected

to a sink. Such direct communication between a sink and sensors is common in small

scale WSNs such as body area networks (BANs) as shown in Fig. 3.6 [8]. In this case,

we use CC2630 @2.4 GHz [17] as a transmission device. The radio module runs as

3V with transmit current at 6.1mA, receive current at 5.9mA and sleep current 100 nA.

Linear topology establishes a routing path as depicted in Fig. 3.7. An good example

is lake monitoring application that deploys multiple buoys in an single lake to monitor

temperature, dissolved oxygen, conductivity, pH/ORP, flourescence (Chloraphyll a and

Blue-green Algae) [69] to understand important issues such as spatial distribution of

algal bloom and invasive species. Lastly, we imagine sensor nodes deployed in San

Diego downtown form a grid as shown in Fig. 3.8. Such topology has been assumed for

air quality monitoring in CitiSense project [44]. Blue node is the sink node while red
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Figure 3.6: Wireless healthcare system architecture [8]

Figure 3.7: Example of linearly deployed buoys in an single lake [69]

nodes generate and relay measurements. Nodes in both linear and grid topologies have a

non-QoS 802.11b radio which uses ad-hoc model with 1 Mb/s maximum data rate. The

WiFi module runs at 3V with transmit current at 380mA, receive current at 313mA, idle

listening current at 273 mA and sleep current at 33mA [45]. We only consider the energy

consumption of transmission device with a linear battery model because our approach

only changes the amount of data communicated. Constant speed propagation delay model

characterizes the channel conditions.

We use synchronized and unsynchronized sampling methods. In synchronized

scenario, all nodes periodically generate measurements at a predefined time interval. This

is typical in monitoring systems which use WSNs to measure fine grained environmental
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Figure 3.8: Considered topology for the realistic network simulation. Node 0 (Blue
node) is the sink node. Other nodes generate and relay measurements to the sink node

factors [44]. We set the sampling time interval to 5 sec. For example, environmental

monitoring application such as CIMIS [18] use temperature, humidity and pressure

sensors use 5 sec granularity of sampling. In unsynchronized scenario, all nodes generate

measurements with randomly selected sampling time which is uniformly distributed

between 1 to 5 sec. This is typical when different applications require different sampling

intervals. Time constraints of measurements are uniformly distributed between a mini-

mum of 1 sec and a varying the maximum value ranging from 15 to 90 sec. The varying

maximum value enables us to study the effect of heterogeneous time constraints. Similar

values have been used in deployed WSNs. For example, in the air quality monitoring

system [44] deployed sensors provide data to the patients every 30 sec. Vaisals weather

stations [64] measure weather conditions such as temperature and humidity every 1 to

120 sec. The initial time interval between decision epochs is set to be 5sec. The total

simulation time is set to 24 hours to represent a single day.
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3.5 Experimental results

3.5.1 Network simulation of BAN

In this section, we compare the percentage of expired measurements and wireless

energy consumption of transmission managers in a small scale, single hop WSN. This

type of deployment is typical of Body-area Networks (BANs) which consist with one-hop

distance devices and sink. We evaluate the performance of the state of the art transmission

managers for both synchronized and unsynchronized sampling. Fixed transmits all the

buffered measurements at every decision epoch (5sec). CL [70], SF [12] and DistTM

check data buffer at every decision epoch (5sec) and decide when to transmit buffered

measurements. Cas [55] calculates the time interval between transmissions based on the

node distance to a sink. Since there is only one hop, it transmits measurements every

9.334sec.

Results with synchronized sampling: In this scenario, a source node generates

measurements at a fixed time interval of 5 sec. Fig. 3.9 and Fig. 3.10 show the

percentage of expired measurements and energy consumption with different maximum

time constraints. We normalize the energy consumption by Fixed with 15 sec maximum

time constraint. While we increase the maximum time constraints to 90 sec, Fixed

and Cas consume same amount of energy because of fixed transmission intervals. Cas

consumes less energy than Fixed because Cas has longer time interval (9.334 sec)

between communications than Fixed (5 sec). As described in Fig. 3.5, CL adjusts buffer

limit from 4 to 19 for different maximum time constraints, and transmits measurements

if buffer length reaches to the limit. CL has between 80 to 99.7% of measurements

that expire because the buffer length does not reach the transmission threshold for

most decision epochs. On the other hand, CL also consumes the least energy. SF uses

time constraints of a measurement, transmission and reception power to calculate the
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Figure 3.9: Percentage of expired measurements

Figure 3.10: Energy consumption normalized by Fixed

Body Area Network (BAN)

threshold and the importance of the measurement. When the importance is larger than the

threshold, SF transmits the measurements. Otherwise, it discards them. However, given

varying maximum time constraint ranging from 15 to 90sec, all of measurements have

higher importance than the thresholds. Thus, SF expires no measurements for different

maximum time constraints. SF achieves energy saving by discarding some portion of

measurements, but remaining messages have to be transmitted at every decision epoch,

so it consumes a same amount of energy as Fixed. DistTM dynamically adjusts the

transmission instance based on measurements’ time constraints. While we increase

maximum time constraints to 90sec, DistTM consumes on average 158.2% less energy
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Figure 3.11: Percentage of expired measurements

Figure 3.12: Energy consumption normalized by Fixed

BAN with random sampling interval

than other approaches (except for CL which does not deliver messages in timely fashion)

with no measurements that expires.

Results with unsynchronized sampling: Unlike synchronized sampling, in this

case each node generates measurements based on a varying sampling interval which is

randomly selected between 1 to 5 sec. Fig. 3.11 and Fig. 3.12 describe the percentage

of expired measurements and normalized energy consumption relative to Fixed with 15

sec maximum time constraint. Fixed has no expired measurements. Cas and SF expire

at most 7.3% and 11.6% of measurements, but they consume on average 183.6% more

energy than DistTM. While we increase the heterogeneity of time constraints, DistTM
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Figure 3.13: Percentage of expired measurements

Figure 3.14: Energy consumption normalized by Fixed

Linear WSN

consumes on average 158% less energy than other approaches except for CL which does

not meet the QoS requirements.

3.5.2 Network simulation of a linear WSN

This scenario is typical of buoys deployed on a lake. We compare the performance

of transmission managers in terms of energy consumption normalized to Fixed with 15

sec maximum time constraint and the percentage of expired measurements when a set of

10 linearly connected nodes sample data and communicate findings to a single sink on the

shore. Each node constructs routing path to the sink with table driven routing protocol,
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Figure 3.15: Percentage of expired measurements

Figure 3.16: Energy consumption normalized by Fixed

Linear WSN with random sampling interval
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DSDV. Cas determines transmission instance based on a node distance from the sink.

More specifically, farther nodes have shorter time intervals between communications

than nodes closer to the sink.

Results with synchronized sampling method: In this scenario, a source node

generates measurements every 5 sec. Fig. 3.13 and Fig. 3.14 show the percentage

of measurements that expire and the normalized energy consumption. DistTM adjusts

transmission instance based on time constraints of buffered measurements. Thus, DistTM

has on average 144.3% less energy consumption while it expires on average 19.3%

less measurements than than all the other state of the art approaches. Fixed, Cas,

SF periodically transmit buffered measurements without considering maximum time

constraints. These strict approaches result in higher energy consumption as compared

to DistTM. While we increase the heterogeneity of time constraints, Fixed, Cas and

SF decreases the number of measurements that expire because they can deliver more

measurements in timely fashion when we extend the maximum time constraints to 90 sec.

However, they consume more energy than DistTM in order to transmit measurements.

While we extend the the maximum time constraint to 90sec, Cas expires on average 2.8%

more measurements while consuming on average 7% more energy than DistTM.

Results with unsynchronized sampling method: We further investigate the perfor-

mance of transmission managers in a linearly constructed WSNs when all nodes use a

uniformly distributed sampling interval between 1 and 5 sec. Fig. 3.15 and Fig. 3.16 show

the percentage of measurements that expire and the normalized energy consumption for

different maximum time constraints. In linear WSN, approaches using static transmission

instance such as Fixed and SF do adjust the instance based on maximum time constraints,

so they consume more energy and have lower percentage of measurements that expire

as compared to DistTM. Cas consumes on average 8.3% more energy than DistTM

while expiring 5.2% more measurements. However, with maximum time constraints
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Figure 3.17: Percentage of expired measurements

Figure 3.18: Energy consumption normalized by Fixed

Grid WSN (20 nodes)

larger than 30sec, Cas expires on average 2% less measurements than DistTM even

though it consumes on average 18% more energy than DistTM. When we extend the

maximum time constraints to 90 sec, DistTM dynamically adjusts transmission time

between communications, so it decreases the energy consumption by decreasing the

number of transmission events. DistTM consumes on average 146% less energy while

having on average 4% less measurements that expire as compared to other approaches.
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Figure 3.19: Percentage of expired measurements

Figure 3.20: Energy consumption normalized by Fixed

Grid WSN with random sampling interval (20 nodes)

3.5.3 Network simulation of a grid WSN

In this scenario, we evaluate the performance of transmission managers in a grid

topology based WSN. This is an example that has been developed to mimic an urban

sensing project such as CitiSense [44]. We evaluate the performance of the state of the

art transmission managers for both synchronized and unsynchronized samplings. As

described in Fig. 3.8, WSN is constructed with 19 nodes and 1 sink. All nodes except for

the sink construct routing paths with table-driven routing protocol, DSDV, and forward

buffered measurements to the next stage nodes following the established routing path.
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We study the effects of network size in Sec. 3.5.4.

Results with synchronized sampling method: All nodes in this WSN generate

measurement every 5 sec. Fig. 3.17 and Fig. 3.18 show the percentage of expired

measurements and the normalized energy consumption. Fixed, Cas and SF periodically

transmit measurements without considering maximum time constraints at fixed time

instances, so they have more measurements that expire while we increase the maximum

time constraint to 90 sec. However, this results in higher energy consumption to transmit

unexpired measurements. DistTM determines time interval between communications

based on measurements’ time constraint, so it consumes on average 141% less energy

than other approaches with on average 0.3% less measurements that expire for different

maximum time constraints as compared to Fixed, Cas, CL and SF .

Results with unsynchronized sampling method: In this section, we evaluate the

performance of transmission managers when all nodes have sampling interval that is

uniformly selected from 1 to 5 sec. Fig. 3.19 and Fig. 3.20 show the percentage of

expired measurements and the normalized energy consumption for different maximum

time constraints. Fixed, Cas and SF do not adjust time interval between communications

based on time constraints of measurements. Unlike their approaches, DistTM dynamically

finds the optimal transmission time based on measurements’ time constraints as described

in Algorithm 1 and Algorithm 2 at each decision epoch. DistTM decreases the energy

consumption when we extend maximum time constraints to 90 sec. Fixed, Cas and SF

decrease the percentage of expired measurements under same condition, but on average

they consume 149% more energy than DistTM. The percentage of measurements that

expire under these protocols is on average 4.3% more than DistTM.
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Figure 3.21: Maximum time constraint: 15 sec

Figure 3.22: Maximum time constraint: 60 sec

Energy consumption normalized by Fixed

3.5.4 Results for different sizes of WSNs

In this section, we change network sizes ranging from 2 to 20 nodes with syn-

chronized sampling method: single-hop WSN=2, linear WSN=10, and grid WSNs=20.

Fig. 3.21 and Fig. 3.22 show normalized energy consumption for different

network sizes when maximum time constraints are 15 sec and 60 sec. Each result is

normalized to Fixed in single-hop WSN with corresponding maximum time constraint.

The number of nodes in WSN is shown on x-axis ranging from 2 to 20. Larger networks

gather more measurements and generate more traffic. Thus, all approaches consume
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Figure 3.23: Maximum time constraint: 15 sec

Figure 3.24: Maximum time constraint: 60 sec

Percentage of expired measurements

more energy with larger network sizes. DistTM dynamically adjusts the transmission

time between communications based on measurements’ time constraints, so it decreases

energy consumption with larger maximum time constraints (ref. Fig. 3.22). When

maximum time constraint is 15 sec, DistTM consumes on average 31.1% less energy

and expires 17.8% less measurements. (ref. Fig. 3.21). When maximum time constraint

is 60 sec, DistTM consumes on average 178% less energy with on average 13.2% less

measurements that expire than all other approaches for different network sizes (ref. Fig.

3.22 and Fig. 3.24).
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Figure 3.25: Synchronized.

Figure 3.26: Unsynchronized.

Trade-off between normalized energy consumption and the percentage of expired
measurements

3.5.5 Comparison between Cas and OptTM

As we can observe from previous results, DistTM always consumes less energy

than the state of the art approaches except for Cas when maximum time constraints is

less than or equal to 30sec in both synchronized and unsynchronized sampling methods.

When maximum time constraint increases to 90sec, Cas consumes more energy than

DistTM. Thus, in this section, we study their relationships for different maximum time

constraints, network sizes and sampling methods. Fig. 3.25 and Fig. 3.26 describe the
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trade-off between the percentage of expired measurements and energy consumption that

has been normalized to Cas. Numbers in parenthesis denote network sizes: single-hop

WSN=2, linear WSN=10, grid WSNs=20. Numbers on data points denote maximum time

constraints. While we increase the maximum time constraints to 90 sec, Cas consumes

the same amount of energy because Cas cannot adjust its transmission instance based

on the time constraints of buffered measurements. However, DistTM decreases the

energy consumption while we increase the maximum time constraints. In BAN, Cas

expires on average 2.8% more measurements, and consumes on average 16.2% more

energy than DistTM for different time constraints and sampling methods. In linear WSN,

DistTM consumes on average 20% less energy than Cas while having on average 4%

less measurements that expire. In Grid network, DistTM still outperform Cas. DistTM

consumes on average 28% less energy and expires 6.7% less measurements. When we

increase the network size, both approaches have high measurements’ expiration rates

with 15sec maximum time constraint. DistTM expires around 40% of measurements

and Cas has at least 60% of measurements that expire. Cas only considers distance to

sink, so its energy consumption is fixed for different maximum time constraints. DistTM

considers both maximum time constraints and distance from the sink when it calculates

transmission instance. When maximum time constraint is 15sec, DistTM consumes

50% more energy on average than Cas and has 13% less expired measurements on

average. However, while we increase maximum time constraints, DistTM smartly adjusts

transmission interval, so it consumes less energy then Cas with a lower number of expired

measurements.

3.5.6 Overhead

In this section, we evaluate the computation overhead of transmission managers.

We set 90 sec as the maximum time constraint of measurements because it causes the
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worst case computation and space complexity of DistTM. We measure elapsed time of

DistTM on a low-power and small-scale embedded device, Raspberry PI2 [7] (1GHz

CPU and 1 GB main memory), and compare the elapsed time with the simplest approach,

Fixed. 100 measurements are placed in data buffer. DistTM determines the optimal

transmission instance based on measurements’ time constraints. We repeat experiments

100 times. DistTM spends on average 0.4msec more time than Fixed resulting in 8%

computation overhead. This shows that DistTM can operate on low-power embedded

devices with minimum overhead while it significantly decreases both energy consumption

and the number of measurements that expire.

3.6 Conclusion

In this paper, we propose optimal transmission manager (OptTM) in WSNs where

multiple applications operate with different time constraints. OptTM determines the

optimal transmission instance based on time constraints of both generated and received

measurements in a single hop. We mathematically prove the existence of the optimal

transmission instance. Distributed transmission manager (DistTM) evolves OptTM to

operate in multi-hop WSNs. DistTM explicitly considers the relationship between end-to-

end time constraints and the distance to sink unlike other approaches. We implement both

DistTM and OptTM in ns3 simulator, and compare their performance with other state of

the art approaches in terms of energy consumption and the number of measurements that

expire. We consider three different network topologies, single hop, linear and grid, and

vary maximum time constraints from 30 sec to 90 sec. For all different configurations,

our proposed approach consumes on average 148% less energy than the other approaches

with on average 14.1% less measurements that expire.

Chapter 3, in part, is a reprint of the material as it appears in ”Transmission
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manager in heterogeneous applications running WSNs”, by Jinseok Yang, Sameer Tilak

and Tajana Simunic Rosing, IEEE Globecom 2015. The dissertaion author was the

primary investigator and author of this paper.

Chapter 3, in part, has been submitted for publication of the material as it may

appear in ”Design of transmission manager in heterogeneous WSNs”, by Jinseok Yang,

Sameer Tilak and Tajana Simunic Rosing, which was submitted to IEEE Transactions on

Emerging Topics in Computing. The dissertation author was the primary investigator and

author of this paper.



Chapter 4

Adaptive information dissemination

protocol

4.1 Introduction

The proliferation of smart portable devices (tablets and smart phones) is enabling

mobile users to dynamically discover the sensors and interact with them in real-time. In

this thesis, we focus on an important class of applications in which mobile users require

only the data within a specific context (e.g., present location and current time), is of

interest. Consider a sensor network deployed for air-quality monitoring. The deployed

sensors can alert nearby users upon detecting high allergen levels. In this application,

instead of continually streaming all the data to the backend servers, and having users

access a small fraction of the data via long-haul networks, it is more efficient to enable

users to access the sensed data within their context of interest. We propose a novel

distributed technique that lets users, while moving around the deployed sensor network,

collect information from the sensors in their vicinity. A key component of our technique

is the sensor nodes ability to adjust their broadcasting rate as a function of the travel time

71
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of users in their transmission range (broadcast area). To achieve this goal, each sensor

node independently estimates users mobility at low cost. Most of the existing travel

time estimation techniques rely on additional power hungry devices, such as cameras

[22] or GPS. Such techniques are accurate at the expense of high power consumption

and additional hardware, which makes them inappropriate for low-power, low-cost,

ubiquitous sensor networks. In contrast, we use the number of acknowledgement (ACK)

messages received from users as the statistical basis for estimating users mobility. As the

users acknowledge the data, each sensor node selects the smallest sampling rate based on

estimated users mobility thereby saving a significant amount of energy. Our technique is

completely distributed and does not require any communication among sensor nodes. If

the data is needed also at a later time, it can be forwarded by a users phone to a backend

server. An application running on the server may provide improved interfaces, statistics

and services based on the data collected. However, this has been addressed by other work

[44] and is not the topic of this thesis. Our results show a decrease in power consumption

of 2x to 8x (a single sensor) & 2x to 16x (network-wide) when compared to the existing

protocols.

4.2 Related work

The mobile sink approaches [54][66] typically assume that the system has control

over the sink mobility to ensure that it collects data from all the sensors. We instead

assume that users carry their mobile phones while moving freely throughout the area

where sensors are deployed. In the proposed approach we assume that the sensor nodes

do not have any control over users mobility (e.g., user speed, direction, etc.). While

Xu et al. [67] does not require any control over the sink mobility, the data is forwarded

to mobile sink by acquiring trajectory of mobile sink and establishing energy-efficient
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routing protocol, which does not scale well with number of mobile users. Recent work

proposed a technique where a sensor node wakes up when it receives a RFID impulse

from a user and then it unicasts the data [32]. However, this mechanism requires users to

carry an RFID reader that is expensive and cumbersome. We next discuss the design of

our adaptive broadcast mechanism.

4.3 Adaptive information dissemination protocol

Our system consists of a network of stationary wireless sensor nodes deployed in

an area of interest. Each stationary sensor node has a low power microcontroller, one or

more sensors, and a radio. We assume that each node uses a low power MAC protocol

capable of sending broadcast packets and capable of minimizing channel contention

and collisions. As shown in Figure 4.1, sensor nodes divide the time in a day in slots

of variable length (Slotss,s ∈ [1,d] ). In addition, each time slot is divided into two

components: (a) Traffic estimation slot and (b) Adjustment slot. During the traffic

estimation slot, sensors broadcast messages at a fixed rate and gather data needed for

estimating the users mobility. During the adjustment slot, sensors dynamically adjust

their (1) broadcast rate and (2) the length of the adjustment slot to match the estimated

users mobility pattern.

Figure 4.1: A day is divided in d time slot Slots



74

4.3.1 Traffic estimation slot

Ideally, the best way to estimate real user travel time is by using measured

values of users speed and direction as shown in Equation (4.1). Here user is travel time,

Ti, is a function of the users speed (vreal,i) and length of the users trajectory within

the transmission range, where li denotes the distance from the sensor node, S with

transmission radius r. Figure 4.2 shows that the distance between a user and a sensor

node S, and li can be described with users angle of arrival, θi.

Ti =
2
√

r2− l2
i

vreal,i
=

2r cosθi

vreal,i
(4.1)

Figure 4.2: Example of distance and arrival angle of user

However, in reality, when a sensor node measures users travel time, users angle of

arrival and speed are not measurable without special equipment. Thus, we propose a novel

low- power ACK-based mechanism for estimating the users travel time which does not

require above information. During the traffic estimation slot, sensors broadcast messages

at a fixed rate with the goal of estimating the users mobility (i.e. travel time). Each time

a mobile user receives a message from a sensor, it acknowledges it by unicasting an

acknowledgement (ACK) message, which includes its unique ID. After every broadcast,

a sensor node keeps its radio on for a fixed amount of time to ensure that it can receive

the ACK messages from mobile users. A sensor node then uses the number of ACKs
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received from the users as the statistical basis for estimating users mobility. Each sensor

node maintains a two-column table. The first column stores the users IDs and the second

column has the number of ACKs received from that user during the traffic estimation slot.

This allows sensor nodes to detect if a new user has moved into the transmission range,

and to estimate the user travel time using sequences of ACKs from the same user. The

estimated users travel time (Ti) is a function of the amount of time between broadcasts

(BIT E) and the number of received ACKs (Ki) as shown in Equations (4.2) and (4.3).

When a users actual travel time is larger than BIT E , depending upon the users arrival

time a sensor can receive either case 1: ceil(Ti/BIT E), or case 2: floor(Ti/BIT E) number

of ACK messages. For example, when the users travel time is smaller than the BIT E , in

case 1, the user arrives within the sensors transmission range just before the broadcast

and receives one message from the sensor node. In case 2, the user arrives and leaves

the region between two successive broadcasts and cannot receive any messages from the

sensor node.

T
′

i = Ki ·BIT E (4.2)

Ki = f (Ti,BIT E) =

 ceil(Ti/BIT E) case 1

f loor(Ti/BIT E) case 2
(4.3)

The upper bound of estimation error between actual travel time (Ti) and ACK-

based estimated travel time (Ti) are described in Equation (4.4).

est.Errori =

∣∣∣∣∣T
′

i −Ti

Ti

∣∣∣∣∣=
∣∣∣∣Ki ·BIT E −Ti

Ti

∣∣∣∣< BIT E

Ti
(4.4)

We now describe how a sensor determines when to terminate its current traffic

estimation slot. When δ percent of users (δ is 90% in our experiments) leave the
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transmission range, a sensor node generates a set of users travel times, Tset . It next sets

the upper bound on the length of the traffic estimation slot, LT E , based on the largest

estimated users travel time, max(Tset), and BIT E , as shown in Equation 4.5.

LT E = ceil
(

maxTset

BIT E

)
·BIT E (4.5)

The time interval between the two successive broadcasts during the traffic esti-

mation slot, BIT E , is updated for next traffic estimation slot using exponential moving

average as described in Equation (6). This allows a sensor node to further save its energy

during the traffic estimation slot.

BIT E = (1−α) ·BIT E +α ·mean(Tset), α ∈ [0,1] (4.6)

In Equation (4.6), α denotes an applications sensitivity to current traffic conditions.

When α is 0, then BITE is not updated with current traffic condition, whereas, when

α approaches 1, the current traffic condition is the dominant factor and the BIT E is

updated based sample mean of (Tset). The benefit of this can be seen as follows. When

the current traffic condition is slower than past traffic conditions, mean(Tset) decreases,

which in turn increases BIT E . This optimization allows sensors to broadcast at a lower rate

during the estimation slot and save energy. Parameter α is set in an application-specific

manner. Existing research [15] shows that the average speed of all different races such as

European, American, Austrian, and Asian is 1.34 m/s with a standard deviation of 0.26

m/s. We set the initial value of BIT E as (2 ·Transmission range)/1.34. Transmission

range is determined from the transmission power specifications [13].
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4.3.2 Adjustment slot

At the beginning of each adjustment slot, sensor nodes determine the length

of time between broadcasts (BIad j) and the length of adjustment slot (Lad j) based on

Tset , obtained during the traffic estimation slot. During the adjustment slot, sensor

nodes broadcast messages every BIad j interval while successfully meeting application

requirement. After every broadcast, sensor nodes turn off their radio to save power. To

determine the value of optimal BIad j, we first define Ni as the expected number of packets

received by each user i during the adjustment slot over BIad j, given the estimated travel

time of user i, Ki ·BIT E , is obtained during the traffic estimation slot.

Ni = f loor
(

Ki ·BIT E

BIad j

)
where Ki ·BIT E ∈ Tset (4.7)

Then, the packet reception reliability is calculated by counting the number of

users who receive at least one packet during their travel time as shown in Equation (4.8).

The I(x) is an indicator function of x which returns 1 when x is positive, and returns 0

otherwise. Here |Tset | is the size of Tset .

Pktrel(i) = E[I(Ni)] =
|Tset |

∑
i=1

I(Ni)/|Tset | (4.8)

The average number of packets received by every user when sensor nodes broad-

cast every BIad j seconds, Pktcnt(i), is described in Equation (4.9).

Pktcnt(i) = E[Ni] =
|Tset |

∑
i=1

Ni/|Tset | (4.9)

If we increase BIad j, then both Pktrel(i) and Pktcnt(i) decrease as shown in Equa-

tions (4.8) and (4.9). Thus, the optimal BIad j, BI∗ad j, is the largest BIad j that guarantees

Pktrel(i) satisfies application defined quality of service (e.g. 90% of users receiving at
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least one packet while travelling through a sensors transmission range), while minimizing

Pktcnt(i) as described in Equation 4.10. The selected BI∗ad j is derived at the beginning of

the adjustment slot, and BIad j, in equation (4.10), is any set of positive numbers.

BI∗ad j = arg min
BIad j

Pktcnt s.t. Pktrel ≥ QoS, QoS≥ 0 (4.10)

The length of the adjustment slot determines the system reliability because a

mismatch between the estimated and the ongoing traffic conditions degrades the system

performance in terms of data collection reliability (when users speed increases) or energy

efficiency (when the user slows down). We initially set the Lad j using Tset as shown in

Equation (4.11). Then, the length is adjusted based on traffic condition similarity.

Lad j = mean(Tset)+2 · std(Tset) (4.11)

To check for the similarity, we use the concept of Prediction Interval (PI), shown

in Equation (12), where the µprev and σprev are mean and standard deviation from the

previous traffic estimation slot. The t∗ in Equation (12) follows students t-test and is

determined by the application defined success rate. For example, if a sensor node wants

99% of the mean (Tset) to fall into prediction interval, the node can set t∗ as 2.58 (most

standard statistical textbooks list t* values [12]).

PI = [µprev− t ·σprev,µprev + t ·σprev] (4.12)

Current users mobility metrics are considered to be similar to the previous ones

if the current mean (Tset) lies within PI. However, the duration of the current traffic

distribution has random nature, so when conditions are similar, the sensor node increments

Lad j by using the binary exponential backoff algorithm mentioned in Equation (4.13).
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Lad j =

 Lad j similar = FALSE

Lad j + rand([0,2# success]) ·Lad j similar = T RUE
(4.13)

Parameter (# success) is initialized to 1 and is incremented by one until it reaches

the system defined parameter, Smax. If the current mobility estimates are not similar to

the previous, the sensor node does not increment Lad j and set # success to 1. The above

optimization allows sensor nodes to increase the length of the adjustment slot when

the traffic conditions do not vary much and save more energy. When Tset is empty, a

maximum value of travel time (Tmax) is set to BIad j to save energy. After the adjustment

slot ends, the sensor nodes start a new traffic estimation slot. During the adjustment

slot a sensor simply broadcasts data at BIad j interval and does not require ACKs. Thus,

when BIad j is always larger than or equal to BIT E (which we now prove), we prove that

adjustment slot always spend less energy than traffic estimation slot.

Lemma 1. If all Ki = 1 where Ki ·BIT E ∈ Tset , the BI∗ad j that satisfies Equation (4.10) is

BIT E (i.e. BI∗ad j = BIT E).

Proof. a) If BIad j > BIT E , then all Ni are 0 (ref. Equation (4.7)) and Pktrel(i) is also 0

for all i. This violates the constraints of Equation (4.10), so BIad j ≤ BIT E . b) Pktcnt is a

non-decreasing function of Ni (ref. Equation (4.9)). Since Ni is inversely proportional

to BIad j, Pktcnt is also inversely proportional to BIad j. Thus, the min. Pktcnt is achieved

when BIad j = BIT E .

Theorem 3. If all Ki ≥ 1 where Ki ·BIT E ∈ Tset , the optimal BIad j that that satisfies

Equation (4.10) is greater than equal to BIT E .

Proof. Proof: a) If Ki ≥ 1 and BIad j < BIT E , then Ni 1 (ref. Equation (4.7)) and Pktrel

becomes 1 (ref. Equation (4.9)). If Ki ·BIT E ≥ BIad j and Ni 1, then there exists some

BIad j such that BIad j ≥ BIT E (i.e. Ki ≥ BIad j/BIT E ≥ 1). b) Since both Ni and Pktcnt
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are inversely proportional to BIad j, the largest BIad j that satisfies reliability constraint is

always ≥ BIT E .

4.4 Simulation setup

Radio specifications and accurate user mobility modeling are critical for evaluat-

ing our proposed approach.

Radio specification: We use Chipcorn CC2420 IEEE 802.15.4 radio specifications [13]

in our simulations. We vary the transmission range as 10, 30, and 55 meters. These ranges

are derived using Friis transmission equation. The corresponding power consumption

values are shown in Table 4.1. With the maximum packet size of 123 bytes transmitted at

250kbps, the packet transmission takes 4ms, and average ACK reception time is 0.5ms

[13]. In order to calculate the distance between receiver and sender, we use the Friis

transmission equation, and set receiver and transmitter gain as 2. We also assume the

frequency is 2.4MHz.

Table 4.1: Compare related works to proposed transmission manager

CPU idle Transmit (10m) Transmit (30m) Transmit (55m) Receive
Power (mA) 0.712 8.41 9.71 10.9 18.8

As shown in Equation (4.14), in order to model transmission range in a realistic

manner, we use log-normal shadowing radio propagation model [41]. In this equation X

is the shadowing deviation, which determines the radio irregularity

Prx = Ptx · (C)η ·10X/10 (4.14)

User mobility modeling: User mobility pattern has a significant impact on design,
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Table 4.2: Simulation parameters for steady traffic flow conditions: congested and
non-congested [60]

Traffic type Mean (m/s) Stdv (m/s) Density (ped/m2) Flow level (m/s)
Non-congested 1.46 0.15 0.2 0.2

Congested 0.96 0.26 0.8 1.2

development, and performance of network protocols [41]. Existing research has shown

that simple user mobility models do not generate realistic movement patterns [41].

Existing researches [59][30][53] show that the behavior of masses of people can be

modeled similar to gases or fluids. Thus, we use the model that characterizes users

mobility with three parameters: density (user/m2), flow level (user/sm), speed (m/s). The

density is represented by the number of users in a confined space (e.g. street), and the

flow level is the number of arrivals per second in a given area [52]. The relationships

between those parameters are described in Equation (4.15).

Density(ped/m2) =
Flow level(ped/s)

Mean o f f low speed(m/s)
(4.15)

The street width and the number of users in a confined area determine the mean

and the variance of the flow speed [53][60]. When there are few users in confined space,

the user density is proportional to the flow level. However, when there are a lot of users

in a confined space, density and flow level have inversely proportional relationship and

the mean of flow speed decreases because the users adjust their walking speed to avoid

physical interaction with other users, which increases variation flow speed (ref. Table

4.2).

We evaluate the performance of the proposed protocol against the following

three state of the art protocols: periodic information broadcast, non-uniform information

dissemination, and RFID impulse protocol.

Periodic information broadcast protocol: In this protocol, the sensor nodes broadcast
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data at fixed rate. This protocol is simple to implement, however since it cannot adapt

to user mobility it results in either high overhead (when the users speed is low) or low

reliability (when the user speed is high). The broadcast interval is calculated as function

of the transmission range and mean users speed

Non-uniform information dissemination protocols: Tilak et al. [56] proposed a suite of

non-uniform information dissemination protocols, where the packet forwarding probabil-

ity is inversely proportional to the distance the packet has traveled. In other words, if a

sensor receives a packet from a close neighbor, it is more likely to forward this than a

packet received from a neighbor much farther away. Our approach is a special case of

non-uniform protocol where only the one-hop information is relevant to a given user.

RFIDImpulseprotocol [32]: This protocol assumes that all sensor nodes turn off their

radios as long as they have no packets to send or receive. When a sensor has a packet to

send, it triggers RFID tag of a user. Then the user generates interrupt to wake up radios,

and send ACK to the sensor when radios become fully active. The ACK represents the

successfully wake-up of the user, so the sensor starts transmit packet. However, their

approach is not suitable if the goal is provide information to all users who pass through

the sensor nodes transmission region. Thus, we reversed the role between user and sensor

in order to the protocol can serve multiple users request such that when a sensor node

receives a RFID impulse from the user it wakes up and sends (unicasts) its data. Later,

we use term RFIDImpulse to denote the revised RFIDImpulse protocol. The updated

protocol is more suitable for the studied application than the original protocol.

4.5 Results

We evaluate the performance of the proposed protocol in terms of power con-

sumption and data collection reliability under two different cases: (1) single sensor and
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(2) multiple sensors nodes. We assume 100 users traverse the transmission range. The

weighting factor (ref. Equation (6)) is set to 0.5. Since we consider pedestrian mobility,

Tmax is set as η · 2r where η is the reciprocal of the slowest users speed. We set η to

0.91m/swalking speed of an elderly person [60].

Energy-efficiency and reliability comparison study: In this study we evaluated the

energy-efficiency of all the protocols. We vary the transmission range as 10, 30, and 55

meters. As described in Table 4.3 users arrive at a fixed flow level.

Table 4.3: Factor reduction in energy consumption for all the protocols (and number
of messages transmitted by all the protocols in bracket) under steady state flow (non-
congested traffic condition) for different transmission ranges

TxRange / Protocol Adaptive Non-uniform Periodic RFIDImpulse
10m 10.83 [21] 6.31 [41] 6.31 [41] 1.29 [100]
30m 23.97 [11] 12.06 [17] 12.06 [17] 1.12 [100]
55m 33.65 [6] 13.05 [12] 13.05 [12] 1 [100]

Table 4.3 shows the factor reduction in energy consumption and number of mes-

sages transmitted (in bracket) for various protocols. Since we do not consider forwarding

overhead in case of the non-uniform protocol, its performance is identical to the periodic

protocols performance. In the case of non-uniform and periodic broadcast protocols, once

the broadcast interval selected at onset and then it does not change. However, in case of

the adaptive protocol, a sensor node broadcasts at a fixed rate only during the traffic esti-

mation slot whereas the broadcast interval during the adjustment slot is adapted based on

user mobility estimated during the traffic estimation slot. Therefore the adaptive protocol

transmits the least number of messages and significantly outperforms all other protocols

(ref. Table 4.3). Since the adaptive protocol transmits significantly lower messages, and

turn off radio after transmit packet, the factor reduction in energy consumptions varies

from 10.83-33.65 (Adaptive), 0.06-0.05 (Non-uniform), and 1.29-1 (RFIDImpulse). The

overall power consumption depends on both the transmission power/packet and the

number of transmissions, but as shown in Table 4.3, as the transmission range increases
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the overall energy consumption goes down. This is counter-intuitive; however, this

happens for the following reason. During the traffic estimation slot, BIT E is calculated

as (2r / Average user speed), so BIT E increases as a function of r. This implies that the

number of messages transmitted is inversely proportional to the transmission range, r (ref.

Table 4.3). For example, following tuples denote (transmission range in meters, average

broadcast interval in seconds): (10, 15), (30, 45), and (55, 82). Therefore, the increase in

power/packet due to higher transmission range is overcompensated by the decrease in

number of transmissions.

We now compare the reliability of all the protocols. From, the reliability of

the adaptive protocol is comparable to other protocols. In fact, at least 92% of users

receive at least one packet while passing through the sensors transmission range, and

the non-uniform/periodic protocols have 93% reliability. The RFIDImpulse protocol

has the highest reliability since each sensor node wakes up and sends sensed data when

it receives a RFID impulse from the user, but it requires the highest number of packet

transmission as shown in Table 4.3 (in bracket).To sum up, reliability of adaptive protocol

is slightly less than the non-uniform/periodic protocols by 1%, but it has significant

energy savings at least 2x than others.

Effect of variation of δ: A sensor node generates a set of users travel times, Tset after

the δ percent of users leaving the transmission range. Therefore, δ is a critical factor in

evaluating the performance of the proposed protocol. To study its impact, we fixed BITE

and traffic condition, and varied δ from 10% to 100%, which in turn varied LT E . We

observed the following ”phase transition” phenomenon. When δ is less than 80%, the

reliability is less than 20% (less than 20% of users receive at least one packet). However,

when δ becomes larger than 80%, the system reliability becomes more than 95%. //

Effect of Lad j adaptation: We initially set the length of the adjustment slot using the

average measured travel time of Tset as shown in Equation (4.11). However, as shown
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in Equations (4.12) and (4.13), sensor nodes vary Lad j. The intuition behind this is that

a sensor node can increase the length of the adjustment slot when the traffic conditions

are do not vary much and save more energy. To quantify this benefit, we varied the

transmission range as 10, 30, and 55 meters. We observed that when the traffic condition

did not vary significantly over time, incrementing Lad j results in 20% decrease in sensors

power consumption.

Impact of transmission range variation and shadowing on energy-efficiency: In this

study we use log-normal shadowing propagation model [41] to explore the impact of

radio irregularities on the energy efficiency and reliability of various protocols. As the

shadowing deviation increases, the transmission range turns into a more irregular shape,

which in turn increases the transmission range (users travel time). As shown in Figure

4.4 and Figure 4.5 this has two implications: (a) As the shadowing deviation increases,

the ratio of energy spent in adjustment slot over estimation slot decreases. Therefore,

a sensor node spends more time and energy in the estimation slot and less during the

adjustment slot. (b) In case of congested traffic condition (ref. Figure 4.5), a sensor

spends higher energy during estimation slot than in the case of non-congested traffic (ref.

Figure 4.4). On the other hand, in case of congested traffic condition (ref. Figure 4.5), a

sensor spends less energy during the adjustment slot as compared to the energy spend in

non-congested traffic condition (ref. Figure 4.4). This happens because in the congested

case since the user speed is lower than the non-congested traffic (ref. Table 4.2), both the

mean(Tset) and max(Tset) values are higher, which in turn results in higher BIT E and LT E

(ref. Equations (4.5) and (4.6)).

Sensor network-wide Power consumption: Till this point, we only considered

power consumption for an individual sensor node. We now evaluate the power consump-

tion at the network level. We assume that K sensors are placed in a field. Equation

(4.16) denotes the energy consumption of non-uniform protocol for K (2) sensor nodes,
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Figure 4.3: Comparison of reliability for all the protocols under steady state flow type
(non-congested traffic condition) for different transmission ranges

Figure 4.4: Impact of transmission range variation and shadowing on energy-efficiency
of protocols non -congested traffic condition

Figure 4.5: Impact of transmission range variation and shadowing on energy-efficiency
of protocols congested traffic condition
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where Etx, Erx are transmission and reception energies, Ntx is the number of packet trans-

missions. A sensor node placed I hops away from the sink has 1/i+1 as its forwarding

probability [?].

Ei =

 Ntx ·Etx , i = k

Ntx ·Etx +Ntx ·
(
Erx +

1
i+1Erx

)
,otherwise

(4.16)

Equation (4.17) derives K ·Ntx ·(Etx+Erx)+0.5 ·Erx is the lower bound of energy

consumption of the non-uniform protocol. The energy consumption of adaptive protocol

is affected by both the number of messages transmitted, N′, and the number of sensor

nodes, so its lower bound is K ·N′ · (Ptx +Prx). Since Ntx is larger than N′ as shown in

Table 4.3 (in bracket) and the Non-uniform has an positive additional term, the adaptive

protocol is more energy-efficient than the non-uniform protocol.

Table 4.4: Sensor network-wide Power consumption bound for all the protocols

Adaptive Non-uniform Periodic RFIDImpulse
K ·N′ · (Etx +Erx) K ·N · (Etx +Erx)+0.5 ·Prx K ·N · (Etx +Erx) Nuser ·Etx

K

∑
i=1

Ei =
K−1

∑
i=1

{
Ntx ·Etx +Ni+1 ·

(
Erx +

1
i+1

·Etx

)}
+Ntx + ·Etx

= K ·Ntx ·Etx +Erx ·
K−1

∑
i=1

Ni+1 +Erx ·
K−1

∑
i=1

Ni+1

i+1

> K ·Ntx ·Etx +(K−1) · 3
2
·Nrx ·Erx

= K ·Ntx · (Etx +Erx)+

(
K− 3

2

)
·Erx

≥ K ·Ntx · (Etx +Erx)+0.5 ·Erx, whenK ≥ 2

(4.17)

Table 4.3 (in bracket) shows the number of messages transmitted by all the

protocols by a single sensor. Using Table 4.3 and Equation (4.17), as shown in Table 4.5,
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we can estimate the energy consumption (in mJ) of each protocol for a sensor network

consisting of 10. Table 5 shows that the Adaptive protocol decreases energy consumption

from 6x to 16x in comparison with the RFIDImpulse protocol, and 2.4x and 1.95x in

comparison with Non-uniform and Periodic protocols respectively.

Table 4.5: Factor reduction in energy consumption for a 10-node sensor network

Adaptive Non-uniform Periodic RFIDImpulse
10m 6.16 2.54 3.15 1.29
30m 10.2 5.31 3.59 1.12
55m 16.31 6.71 8.33 1

Study of data collection resilience for all protocols: The percentage of users

who receive at least one packet while traversing sensors transmission range is defined as

data collection reliability. We now extend this to the network wide reliability that we call

data collection resilience, as the percentage of users who receive at least one packet from

every sensor node. RFIDImpulse protocol has the highest resilience because a sensor

wakes up and unicasts data when it receives RFID signal from a user. Suppose K is the

number of sensor nodes and ra, ru, and rp denote average resilience of adaptive, non-

uniform, and periodic protocols respectively and C is the sum of forwarding probabilities

over K sensor nodes (ref.Equation (4.18)). K1 and K2 represent the distance between the

sink node and the farthest node on the left and farthest node on the right respectively

(K1 +K2 = K). Since C is always less than K, the data collection resilience of adaptive

protocol is always larger than the non-uniform protocol. Then, we can estimate the

data collection resilience of all the protocols as shown in Table 4.6. We denote d as the

distance between the static sink, K1 +K2 = K.

Table 4.6: Data collection resilience comparison across all the protocols

Adaptive Non-uniform Periodic RFIDImpulse
ra (ru ·C)/K rp 100
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Figure 4.6: Ψ comparison across all the protocols

C =
K1

∑
i=1

1/i+
K1

∑
j=1

1/ j (4.18)

We define parameter, Ψ, as the product of factor reduction in energy consumption

and data collection resilience. The higher value of Ψ, better the performance of the

protocol. Figure 4.6 shows that Ψ of the proposed protocol is 2x and 5x in comparison

with Periodic and Non-uniform protocols respectively.

4.6 Conclusion

In this thesis we present a novel distributed low-power protocol that lets users,

while moving around the deployed sensor network, collect information from the sensors

in their vicinity. As users mobile acknowledge the data, the sensors estimated user

travel time and use it as a statistical basis for dynamically adjusting their data broadcast

rate. We compared our approach with state-of-the-art protocols using realistic mobility

models and radio propagation model. The results show a decrease of between in power

consumption of 2x to 8x (single sensor) & 2x to 16x (network-wide) when compared to

the existing protocols while reliability is only 1% lower than other protocols for three

different transmission ranges.

Chapter 4, in full, is a reprint of the material as it appears in ” A novel protocol
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for adaptive broadcasting of sensor data in urban scenarios”, by Jinseok Yang, Sameer

Tilak and Tajana Simunic Rosing, IEEE Globecom 2013. The dissertation/thesis author

was the primary investigator and author of this thesis.



Chapter 5

Summary and Future work

5.1 Thesis summary

We designed three methods to decrease the energy consumption in WSNs while

guaranteeing a level of QoS to win. We first proposed integrated power management

framework that optimizes interactions among power management components. User

interactive power manager optimally schedules battery usage patterns based on types

of user request. Then, we proposed transmission managers both for a single sensing

platform and multi-hop sensor networks. The optimal transmission manager (OptTM)

calculates the optimal transmission time for measurements with different timing require-

ments. OptTM supports multiple applications in a single hop wireless sensor networks.

Distributed transmission manager (DistTM) leverages OptTM to operate in multi-hop

WSNs. Lastly, we design a novel broadcast mechanism that capable of seamlessly pro-

viding information to mobile users while minimizing communication energy costs. An

overview of our contributions is next. After that we provide some ideas for future work.

91
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5.1.1 Adaptive power management framework

We present a power management framework that adapts sampling & transmission

rates based on battery capacity level, harvesting energy amount and application con-

text. Our interactive power management adapts the sampling rate as a function of both

application-level context (e.g., user request) and system-level context (e.g harvesting

energy availability). Proposed approach saves 20% to 60% of energy consumption as

compared to the state of the art approaches while having at most 8.6% of measurements

that expire.

5.1.2 Adaptive transmission manager

We design optimal and distributed transmission managers that dynamically adjust

transmission time based on the time constraint of measurements. The optimal transmis-

sion manager characterizes energy and delay trade-off and finds the optimal transmission

time by using Markov Decision Process model for any two nodes. Then, we leverage

structured monotone rule to decrease the complexity of the algorithm to O(n). Dis-

tributed transmission manager calculates upper bound of the transmission time based on

the distance to the sink. The two transmission managers work in tandem to determine the

transmission time for all buffered measurements. Our proposed approach consumes on

average 148.3% less energy than the other approaches while expiring on average 14.1%

less measurements.

5.1.3 Adaptive information dissemination protocol

We present a novel distributed low-power protocol that lets users collect informa-

tion from the sensors in their vicinity while moving around the deployed sensor network.

As mobile users acknowledge the data, the sensors estimate user travel time and use it
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as the statistical basis for dynamically adjusting their broadcast data rate. Each sensor

node selects the smallest sampling rate based on estimated users mobility thereby saving

a significant amount of energy. The results show that our proposed approach decreases

power consumption by a factor of 2x to 8x in a single sensor, and 2x to 16x in 10 node

sensor network as compared to the state of art approaches.

5.2 Future work directions

A sensor node power manager controls various system parameters to increase the

energy efficiency. One of the main parameters controls the communication cost. Previous

approaches decrease communication cost with synchronization, buffering and reliable

routing path construction.

Recently, Internet Of Things (IoT) has emerged. It extends the scope of WSNs

from information provider to both information provider & consumer. This rises a new

challenges for WSNs. Sensor nodes need to extract context from collected measurements

and adjust performance of power manager accordingly. This requires new machine learn-

ing algorithms that can operate in WSNs and interface between the learning algorithm

and the power manager.

Power managers achieve energy savings by decreasing the amount of data to be

transmitted and measured. More specifically, sensors on a sensing platform may decrease

the sampling rate and transmit only representative values in order to save on commu-

nication energy. Previous approaches such as compressive sensing and reconstruction

algorithms support this by reconstructing missing elements from the measurements.

Compressive sensing has been actively researched. It can reconstruct 90% of

missing data from 10% of measurements. However, compressive sensing requires com-

plex math, so it cannot operate on low-powered sensor nodes. In addition, compressive
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sensing assumes that all datasets have a fixed rank parameter which is not true in real

WSNs.

To address these issues, light weight data reconstruction algorithms need to

be created that can perform as well as compressive sensing but can run on smaller

computation infrastructure. Collaborative filtering algorithms can be leveraged to solve

this problem because they are relatively light weight. Collaborative filtering is an essential

tool to extract hidden interactions among measurements, so that reconstruction engine

can interact with the power manager more efficiently.
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