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Abstract—FPGA devices are continuously evolving to meet
high computation and performance demand for emerging appli-
cations. As a result, cutting edge FPGAs are not energy efficient
as conventionally presumed to be, and therefore, aggressive
power-saving techniques have become imperative. The clock rate
of an FPGA-mapped design is set based on worst-case conditions
to ensure reliable operation under all circumstances. This usually
leaves a considerable timing margin that can be exploited to
reduce power consumption by scaling voltage without lowering
clock frequency. There are hurdles for such opportunistic volt-
age scaling in FPGAs because (a) critical paths change with
designs, making timing evaluation difficult as voltage changes,
(b) each FPGA resource has particular power-delay trade-off
with voltage, (c) data corruption of configuration cells and
memory blocks further hampers voltage scaling. In this paper,
we propose a systematical approach to leverage the available
thermal headroom of FPGA-mapped designs for power and
energy improvement. By comprehensively analyzing the timing
and power consumption of FPGA building blocks under varying
temperatures and voltages, we propose a thermal-aware voltage
scaling flow that effectively utilizes the thermal margin to reduce
power consumption without degrading performance. We show
the proposed flow can be employed for energy optimization as
well, whereby power consumption and delay are compromised to
accomplish the tasks with minimum energy. Lastly, we propose
a simulation framework to be able to examine the efficiency of
the proposed method for other applications that are inherently
tolerant to a certain amount of error, granting further power
saving opportunity. Experimental results over a set of industrial
benchmarks indicate up to 36% power reduction with the same
performance, and 66% total energy saving when energy is the
optimization target.

I. INTRODUCTION

The prevalence of computation-intensive workloads with
high-performance requirements such as machine learning
(ML) and data center applications [1], [2] accompanied with
the advance of technology node have persuaded the FPGA
vendors to integrate more resources with boosted clock rate in
state-of-the-art FPGAs [3]. This, together with slowed shrink-
ing of FPGAs supply voltage [4], have pushed these devices
to a point they consume power comparable to CPUs [5].
Besides, there are prevailing energy-constrained applications
in the Internet of Things (IoT) era, implemented in FPGAs,
with the need for extreme energy efficiency [6], [7]. All in
all, more efficient power reduction approaches for FPGAs are
now indispensable.

As FPGAs already employ a manifold of device-level opti-
mization to throttle power consumption [8], more aggressive
power reduction techniques are gaining traction. These tech-
niques generally build upon the conservative timing margin
(dg) that is considered to compensate reliability threats in

deep-nano technologies; while an FPGA-mapped design is
able to deliver an actual clock period of dVnom

at nominal
voltage Vnom, in practice, STA (static timing analysis) tools
report an operating clock delay of dVnom + dg to make up
for uncertainties such as voltage fluctuations, degradation,
temperature, etc. [5]. The aforementioned aggressive tech-
niques exploit this available timing headroom to reduce the
supply voltage of FPGAs down to Vlow for which the actual
clock period dVlow

becomes equal or close to dVnom
+ dg

(leaving no margin for guardbands). Thus, the device still
delivers the original performance at a lower voltage. Note
that aggressive voltage scaling techniques are different from
conventional DVFS (dynamic voltage and frequency scaling)
that concurrently tunes the frequency and voltage based on
per-task performance demand of applications.

Although lowering the supply voltage of processors and
ASIC devices has been known to be an effective power saving
technique [9]–[11], there are limited studies presenting voltage
scaling in FPGAs. Voltage scaling (in particular, aggressive
and performance-aware one) in FPGAs is challenging mainly
because: (a) Critical Path (CP) in an FPGA is design-
dependent, which makes timing probing difficult under voltage
scaling, especially considering the impact of temperature.
Therefore, in contrast to ASIC designs, a set of precalibrated
stand-alone sensory circuits, e.g., ring oscillators and CP mon-
itors [10] cannot accurately correlate the sensor frequency with
all varying CPs. (b) FPGA architectures are heterogeneous,
comprising soft-fabric (i.e., programmable logic and routing
resources), DSP cores, memory blocks (BRAM), etc. These
building blocks are tightly coupled, and each has a particular
power/delay relation with supply voltage. Considering the sep-
arate voltage rails provided for certain components, i.e., Vbram,
Vcore, and Vio that can be regulated separately, finding efficient
voltage points becomes design-dependent and challenging.
In other words, in multi-supply devices, multiple voltage
combinations can lead to the target dVnom

+ dg boundary,
while only one tuple yields minimum power. This makes
speculative voltage decrement no more efficient. (c) Scaling
the voltage of FPGAs is also constrained by the data corruption
of configuration and memory SRAM cells. In addition, as we
will discuss in this paper, reducing the voltage of configuration
cells unexpectedly increases FPGA power consumption in
certain cases, calling for cautious analysis.

In this paper, we leverage the pessimistic thermal-induced
timing slack to scale down FPGA operating voltage for power
saving while tackling the aforementioned challenges as fol-
lows.

ar
X

iv
:1

91
1.

07
18

7v
1 

 [
cs

.A
R

] 
 1

7 
N

ov
 2

01
9



(1) We propose to incorporate thermal-aware voltage scaling in
the FPGA design flow. We first obtain the temperature-delay-
voltage correlation of FPGA resources within the supported
temperature range. Then, we statically estimate the thermal
distribution of applications to obtain the available timing
headroom, for which voltages of different power rails can be
efficiently determined based on the characterized library. For
further effectiveness, we also suggest online (i.e., dynamic)
voltage adaptation based on the response of thermal sensors.
The proposed methods consider the voltage-temperature feed-
back loop and the separate power rails of specific resource
types to yield maximum power efficiency.
(2) We leverage the proposed flow of (1) to explore the
energy consumption, whereby we trade-off the performance
and power consumption to achieve the minimum energy point.
This is desirable for a majority of edge and IoT applications
for which total energy consumption is the utmost concern.
(3) Our approaches mentioned in (1) and (2) are deterministic,
as they guarantee timing closure. Nonetheless, many use-cases
such as image processing and machine learning applications
can tolerate a certain level of computation errors, which gives
an opportunity for voltage over-scaling. However, it needs an
examination of applications under these non-ideal conditions
to get a glimpse of produced error in the output. We propose
a primary FPGA simulation framework to be able to evaluate
an FPGA-mapped design under voltage-scaling, i.e., when the
delay of resources varies. Using the proposed framework, we
map demonstrative machine learning applications into FPGA
fabric and examine the impact of voltage over-scaling on extra
power gain versus accuracy drop.

II. BACKGROUND AND RELATED WORK

A. FPGA Architecture

Fig. 1 illustrates the architecture of conventional tile-based
FPGAs. The architecture comprises tiles of logic clusters (a.k.a
CLBs or slices) that bind together using the configurable
switch boxes (SBs) and connection blocks (CBs) to implement
larger functions. Each logic CLB consists of N (e.g., N = 10)
K-input look-up tables (LUTs) each of which is capable
to implement Boolean expressions up to K variables. SB
multiplexers are located in the intersection of horizontal and
vertical channels (wire tracks) to enable connectivity and
bending of nets. These multiplexers are also responsible for
connecting outputs of logic resources (LUTs, FFs, carry chain,
etc.) to global routing, i.e., to horizontal and vertical channels.
Analogously, CB multiplexers pass the selected global wires
into the logic clusters. Specific FPGA columns are repetitively
dedicated to Block RAMs and DSP cores. The majority of
logic and routing resources have a multiplexer-like structure,
mainly implemented as two-stage multiplexers that have been
shown to provide optimal area-delay efficiency [12]. These
resources often drive large loads, especially the global routing
resources that have a high number of long fanout wires, so are
augmented with large output buffers to improve performance.
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Fig. 1. Tile-based FPGA architecture (left), and constructing building blocks
(right) [18].

B. Related Work

While many previous studies have attempted to reduce
FPGA power dissipation by power-gating, conventional DVFS,
configurable dual supply voltage, control of signal levels,
architectural innovations, etc. [13], there is a limited number
of works that leverage the available timing margin to re-
duce voltage without scarifying performance. Authors of [14]
explore the timing headroom of FPGA-mapped designs by
gradually reducing the voltage (keeping the frequency fixed)
until observing the error. They detect the error by inserting
a shadow register per each CP with a phase-shifted clock
to detect the data mismatch caused by voltage reduction. As
there are a huge number of CP and near-CP paths in a large
synthesis-flattened design, the area and power overhead of
this technique can be excessive. Also, measuring the slack
in this technique depends on capturing the signal traversing
the CP, while the CP may not be controllable at the runtime.
Furthermore, the introduced capture registers cannot be used
for paths that head to hard blocks such as BRAM. The
study in [15] addresses the latter issue by replicating such
paths and inserting an end-point proxy register (instead of the
hard block) where an error-detector circuitry checks timing
violations. However, the error-detector itself imposes delay,
so a timing error raised in the original CP might propagate
into the memory before being detected.

In [16], the authors propose a two-step self-calibrating
voltage scaling scheme by exploiting the available timing slack
of thermal margin. CPs of a design are extracted by using
the STA tool and are then implemented on the FPGA fabric.
Afterward, for different values of temperature and core voltage
(T and Vcore), the maximum frequency is obtained by grad-
ually increasing it until error is observed by the implemented
error-detection circuit. This approach does not consider the
thermal distribution within the chip [17] where a CP may
experience varied temperature in reality. This either results
in timing violation by ignoring the parts of CP that reside
in hot (hence, slower) tiles or gives non-optimal results if a
related thermal margin is considered. In addition, the STA tool
reports the CPs according to worst-case condition while CPs



might change at lower temperatures. Thus, a larger number of
near-CP paths need to evaluate which makes the entire process
further cumbersome. BRAM and soft-logic voltage rails also
are not separately considered, so the minimum employed
voltage will be limited by the one that violates the timing
first.

Finally, recent work in [19] examines the voltage scaling of
FPGA BRAMs. The authors showed that up to 39% of BRAM
voltage can be reduced without observing any error. Though it
is promising in reducing the power of BRAMs by one order of
magnitude, a trial-and-error based approach does not guarantee
correct functionality as it is infeasible to examine all the inputs.
Moreover, the overall efficiency is limited to the power of
BRAMs.

Aforementioned techniques are all speculative as they de-
crease the voltage until observing an error. This overlooks
errors that emerge gradually due to violating the guardbands
(e.g., timing error as a result of degradation [20]) or may
arise abruptly due to voltage transients [5]. Recently, work
in [5] showed a margin of over 36% is needed for voltage
transients as a result of load transients, and this margin is
already considered in STA tools. Nevertheless, as voltage
transients occur infrequently, the speculative voltage scaling
methods do not take them into consideration, which will lead
to timing violation at certain conditions. Our voltage scaling
approach is different from previous studies as we incorporate
it in the FPGA design flow by characterizing the resources
during FPGA architecting. This eliminates the arduous task
of voltage-timing speculation and guarantees timing. Our
method precisely considers the correlation of temperature,
delay, voltage, and power of resources and separate power
rails of soft-fabric and memories, so it yields maximum
efficiency by setting the optimal core and BRAM voltages
as well as accurately estimating the timing according to the
thermal distribution of the blocks. Finally, over-scaling of
voltages needs timing simulation to observe the impact of
timing violations. We enable it by our novel FPGA simulation
flow. It is noteworthy that, similar to our work, the studies in
[21] and [22] also propose deterministic frequency and/or volt-
age adaption through resource characterization. Nonetheless,
[21] targets performance boosting by using non worst-case
guardband in lower temperatures, and [22] adjusts both the
frequency and voltage in non-peak workloads to save power
(hence, has nothing to do with the temperature).

III. PROPOSED METHOD

A. Preliminary

FPGA flow is different from conventional standard-cell
based design of ASICs. Thus, we first elaborate the setup of
experiments used in the rest of the paper before detailing the
proposed method.
• Power and Delay. We use circuit-level simulations to

obtain the delay and power of FPGA resources. For this end,
we use the latest version of COFFE [23] that generates and
characterizes an accurate netlist of FPGA resources according
to the given architectural description using comprehensive

TABLE I
FPGA ARCHITECTURE PARAMETERS USED IN COFFE

Parameter Value Parameter Value
K 6 SBmux size 12
N 10 CBmux size 64
Channel tracks 240 localmux size 25
Wire segment length 4 Vcore, Vbram 0.8 V, 0.95 V
Cluster global inputs 40 BRAM 1024 × 32 bit

circuit-level HSPICE simulations. Besides the description of
the target FPGA architecture, COFFE also requires technology
process of transistors, for which we use 22 nm predictive
technology model (PTM) [24]. COFFE also generates and
evaluates the memory blocks of FPGA and has been shown to
have a suitable delay and exact area match with commercial
FPGAs [25]. Similar to configuration SRAM cells, the core
of the memory blocks (i.e., eight-transistor dual-port SRAM
cells) is implemented by 22 nm high-threshold low-power tran-
sistors [26], which throttles their leakage power by two orders
of magnitude. As we will show in the rest of this section, our
simulations show a similar power trend to commercial FPGAs.

COFFE does not model DSP blocks. We thus develop the
DSP HDL code based on the Stratix IV description [27] and
characterize it using Synopsys Design Compiler with NanGate
45 nm open cell library [28]. Then we scale the results to
22 nm based on measuring scaling factors of a selected set of
cells at 45 nm and 22 nm technologies. Based on PrimeTime
report, the developed DSP consumes 4.6 mW at 250 MHz,
which is comparable to a 28 nm DSP that dissipates 5.6 mW
at the same frequency [29]. To characterize the delay and
power of programmable resources at different temperature
and voltages, we sweep the parameters of COFFE-generated
netlists in HSPICE simulations. For DSP, we create a set of
standard-cell libraries using NanGate netlists by the means of
Synopsys SiliconSmart so we could characterize the DSP at
different operating conditions.
• FPGA Flow. We use VTR 7.0 (Verilog-to-Routing) [30]

toolchain that enables defining a customized FPGA archi-
tecture and place and route the benchmarks. We select our
benchmarks from VTR repository that belong to a wide variety
of applications (vision, math, communication, etc.), contain
single- and/or dual-port memory blocks as well as DSP blocks,
with an average of over 23,800 6-input LUTs (maximum over
106 K). We use FPGA architecture parameters similar to Intel
Stratix devices [18], [31] in COFFE and VPR1 placement
and routing, which is summarized in Table I. COFFE uses
these parameters to generate SPICE netlist and area and delay
report, which are then fed into VTR to place and route the
benchmarks. K and N are the sizes of LUTs and number of
logic blocks in a cluster (see Fig. 1), which are chosen to be 6
and 10 in accordance with Intel devices. Estimating the power
consumption of applications (for both thermal simulation and
power saving estimation) needs also their signal activity, for
which we use ACE 2.0 [32]. We modified VPR to enable
timing analysis at different scenarios using the characterized
libraries.

1VPR (Versatile Place and Route) is the P&R tool in VTR toolchain.
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Fig. 2. Behavior of different FPGA resources under varying temperature and voltages.

• Thermal Simulation. We use HotSpot 6.0 [33] for
thermal simulations. Inputs of HotSpot are device floorplan,
power trace (or average power values), and device configura-
tion parameters. For the floorplan file, we divide the device
floorplan into a two-dimensional array of FPGA tiles with the
areas reported by COFFE. We assume CLB tiles are square,
and the heights of DSP and memory blocks are 4× and
6× of CLB tiles [30]. The number of tiles and location of
each tile can be obtained from the placement and routing
outputs reported by VPR. Leakage and dynamic power of
each tile is obtained based on the current temperature and
activities of resources of the tile. Finally, for the HotSpot
configuration file, we change the parameters according to
validated FPGA parameters in [34]. We adjust the convective
resistance to concur with an effective thermal resistance (θJA)
of contemporary FPGAs, i.e., we tune r convec such that
when the total power of given power trace is set to 1 Watt,
the reported temperature by HotSpot equals θJA. We examine
the efficiency of the proposed technique by using a typical
θJA of 2 °C/W as in today’s Intel and Xilinx devices (e.g.,
Virtex–7 and Stratix V) [29], [35], and a pessimistic thermal
resistance of 12 °C/W , corresponding to their mid-size devices
(such as Spartan–7 or Artix–7) with still airflow.

B. Proposed Thermal-Aware Voltage Scaling Flow

• Motivation. Fig. 2 gives perception on how temperature
margin can be leveraged for power reduction. This figure
is obtained using the experimental setup explained in the
previous subsection. Numbers were not in the same range,
so we normalized each one to its base value at 100°C and
0.8V for the sake of clear illustration. According to Fig.
2(a), although FPGA timing analysis reports the worst-case to
ensure timing meets in all scenarios [36], in practice, resources
have a smaller delay at lower temperatures. For instance, at
40 °C, delay of switch box (×— SB) is 0.85× of its delay at
worst-case temperature2. This gap can be utilized for voltage
reduction. Based on Fig. 2(b), 0.68 V is the point wherein
this margin is fully utilized, i.e., delay of 40 °C increases by

1
0.85× and becomes equal to delay at worst-case temperature.
Eventually, Fig. 2(c) reveals this 120 mV reduction of voltage
shrinks the switch box power down by 32%. As mentioned
before, memory block comprises of low-threshold transistors,
so uses a different power rail with a voltage higher than
datapath (core) transistors. Other non-memory resources show

2We assume an upper-bound of 100 °C for junction temperature [27].

a ∼V 2 relation with voltage while BRAM observes a more
dramatic power reduction as voltage scales. As is evident from
the figure, different resources exhibit different delay behavior
as temperature and voltage change. This stems from different
sizing of transistors, input slope, output capacitance, etc., as
detailed in previous works [11], [37].

We can get several insights from Fig. 2 and above discus-
sion.
(a) Replica circuits such as ring oscillators used to correlate
the temperature/voltage with frequency of ASICs are not a
viable solution to track timing because, in FPGAs, CPs are
design-dependent and made from different types and count of
resources. Apparent from Fig. 2(a) and (b), designs bounded
by routing (SB) have a totally different performance behavior
compared to logic (LUT) bounded ones when temperature
or voltage changes, so a set of representative paths fails to
resemble all paths accurately.
(b) Previous studies rely on worst-case reported paths to check
the timing (or to insert error detectors) while lowering the
voltage. Nonetheless, from Fig. 2(a) and (b) we can infer a
non-CP path may become CP at lower temperature or voltage.
For instance, LUT delay severely increases at lower voltages,
so the delay of LUT-bounded paths can exceed originally
reported SB-bounded paths. This signifies cautious timing
analysis in voltage scaling.
(c) More importantly, even if timing analysis of an FPGA-
based design were possible under arbitrary (T, V) pairs,
efficient voltage scaling would be still challenging because, as
shown in Fig. 2(c), resources enjoy differently from voltage
reduction. For instance, memory block shows better power
saving as voltage scales, while, on the contrary, its delay
also increases more under voltage scaling. Thus, for a certain
timing headroom, there is a trade-off between power gain
and increase of delay (i.e., use up of margin) when there are
multiple power rails. This justifies why temperature-voltage-
delay correlation and voltage-power libraries are indispensable
for a reliable and efficient thermal-aware voltage scaling.

• Thermal-Aware Voltage Scaling Flow. Taking the above-
mentioned insights into consideration, in the following we
present our voltage scaling algorithm as the core of our
energy efficiency technique, and then further elaborate it by
exemplifying case-studies. Algorithm 1 can be either simply
integrated into the current FPGA flow stack (i.e., in the original
timing analysis step), or attached as an additional step. In
either case, it relies on a pre-characterized library of delay



Algorithm 1: Thermal-Aware Voltage Selection
Input: netlist: Placed and routed design
Input: Tamb: Ambient temperature
Input: −→α : Input activities / sample inputs

1
−→
T m×n = [Tamb, · · · , Tamb] // m,n : FPGA grid size

2
−−→
∆Tm×n = [∞, · · · ,∞]

3 dworst = T (netlist, Tmax, Vcoremax , Vbrammax)

4 while ‖
−−→
∆T‖∞ > δT do

5 min
Vcore, Vbram

−→
P lkg(

−→
T , Vcore, Vbram) +

6
−→
P dyn(netlist,−→α , fworst, Vcore, Vbram)

7 s.t. T (netlist,
−→
T , Vcore, Vbram) ≤ dworst

8
−→
T old =

−→
T

9
−→
T = HotSpot(

−→
P lkg +

−→
P dyn)

10
−−→
∆T =

−→
T −

−→
T old

11 return Vcore, Vbram

and power, as detailed in Section III-A. If Algorithm 1 is
used as an additional step, then it needs to get the post place
and route netlist. Other inputs of the algorithm are maximum
temperature surrounding the FPGA board, and sample inputs
or activities (we further discuss it later).

FPGA thermal estimation usually relies on a single total
power and ambient temperature value to estimate the junction
temperature [29], however, we divide the target FPGA into
a grid of m×n tiles, for m and n being the number of
FPGA rows and columns. It improves the accuracy of thermal
estimation and helps to catch potential hotspot regions, where
the blocks have higher delay than the rest of the board,
hence need fine-grained timing analysis for both accuracy and
efficiency (i.e., to avoid under- or over-estimation of timing).
dworst is the delay that conventional one-size-fits-all timing
analysis T of FPGA reports under nominal memory and core
voltages and maximum temperature [36] while also considers
some margin for reliability issues such as voltage transients
[5]. Thus dworst is the target delay that our algorithm attempts
to deliver with lower voltages. One drawback of previous
voltage scaling approaches [14], [16] is they invade this
reliability margin when they speculatively reduce the voltage
until observing an error in the output, as the error does not
show up in regular conditions. The core of the algorithm is a
loop where, based on previously obtained temperature for each
tile (set to Tamb initially), it finds the (Vcore, Vbram) pair that
minimizes the power while watches over the delay of candidate
pair to not exceed dworst. In the first iteration of the algorithm,
it explores all |Vcore| × |Vbram| pairs. In the next iterations,
execution time can be significantly reduced by limiting the
search to the boundaries of the previous solution, making
subsequent iterations O(1). Note that in both timing analysis
and power calculation (lines 5–7), each tile has its own activity
and potentially different temperature, so we use vectors of
length m×n to store the values associated with each tile.
Temperature affects the leakage power and delay of the tile
resources, while activity affects the dynamic power. Hence,

−→
T

is passed to
−→
P lkg calculation and timing (T ) analysis, while

−→α is passed to
−→
P dyn to estimate dynamic power at dworst
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Fig. 3. Activity of benchmarks nodes for different activities of primary inputs
(left/blue), and DSP power at different activities of its inputs (right/red).

(clock cycle will be always dworst). Finally, the power values
are imported in a thermal simulator to update temperatures
of tiles. This procedure repeats until reaching a steady-state
temperature. For thermal simulation in our experiments we use
HotSpot 6.0 [33], with setup already detailed in Section III-A.
• Static and Dynamic Implementations. Static imple-

mentation of the proposed technique is straightforward as
both core and memory voltages are determined during the
configuration of design, whether by incorporating Algorithm
1 in original timing analysis of FPGA, or using it as a post-
routing addendum. As the voltages remain fixed in the field
operation, the algorithm needs to consider the corner case of
the programmed design, i.e., the highest temperature it might
reach. A noteworthy point here is that activities of internal
nodes of a design do not linearly correspond to activities of
primary inputs. In Fig. 3, when signal activity factor (α) of
benchmarks inputs increases from 0.1 to 1, activity of internal
nodes (averaged over all 10 benchmarks) increases from 0.05
to ∼0.27, which is significantly less than α = 1 considered
for primary inputs. In addition, in some blocks such as DSP,
the increase in activity of primary inputs does not necessarily
translate to increase of power. As can be seen from Fig. 3, DSP
power increases by only around 37% when its inputs activities
raise from 0.1 to 0.3, then its power saturates until α ∈ [0.3,
0.7], and declines thereafter. This behavior of power is because
the frequently changing inputs offset each other more often
(e.g., when both inputs of an XOR function change in a clock,
its output remains the same). All in all, by caring for the worst-
case input activity, the proposed static scheme guarantees
reliable operation at corners without overly pessimistic activity
estimation, though the ambient temperature needs to consider
maximum possible.

The proposed thermal-aware voltage scaling scheme can be
implemented online (dynamic) to avoid pessimistic assumption
on the temperature bound. Instead of thermal simulation,
online scheme reads the junction temperature using on-board
sensors available on all contemporary FPGAs. For instance, In-
tel devices already contain temperature sensing diodes (TSD)
with instantiatable IP cores having their internal clock source
that can output the junction temperature with a resolution
of 10 bits in 1,024 clock cycles (i.e., 1 ms) [38]. Therefore,
during the configuration of each design, we create a look-
up table with temperature T as its keys and (Vcore, Vbram)
as the values that minimize the power for that T . Optimal
(Vcore, Vbram) of each temperature can be obtained in the
same way explained above for the static approach. Reading
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Fig. 4. Outputs of Algorithm 1 for mkDelayWorker benchmark under different ambient temperaturs.

the temperature with steps of few milliseconds is large-enough
to allow on-chip voltage regulators (such as Intel on-the-fly
regulators) to adjust the voltage [39], and yet is small enough
to avoid temporal heat-up mismatch that takes orders of
seconds [40]. The sensed junction temperature can be directly
used as VID (voltage identification) for the programmable
integrated voltage regulator to adjust the voltage with the pre-
loaded values [39]. A thermal margin (e.g., 5 °C) might be
considered to account for the error of TSDs and potential
spatial thermal gradients [41].
• Case-study. To elaborate our method, we use

mkDelayWorker benchmark with 6,128 LUTs and 164 mem-
ory blocks that VPR mapped it to a 92×92 grid device due to
its high BRAM demand, with a frequency of 71.6 MHz. Our
simulations show the device consumes a leakage power of
0.367 W at 25 °C (considering all used and unused resources),
while the closest Intel device (Stratix V 5SGSD3) is 1.5×
in size with a power of 0.646 W. This 1.76× power ratio is
acceptable considering the size difference and more advanced
technology we use in our simulations (22 nm versus 28 nm).

Fig. 4 shows the results of our static voltage scaling scheme
on mkDelayWorker benchmark. We assume ambient (near-
board) temperature range from 0 °C up to 85 °C as previous
studies have shown that board temperature of datacenter
FPGAs can reach up to ∼70 °C [1]. Fig. 4(a) shows that,
moving from 0 °C to 85 °C, generally both Vcore and Vbram
increase towards their nominal 0.8 V and 0.95 V values to meet
timing in worst-case junction temperature. Small fluctuations
of BRAM voltage at certain points is to yield maximum power
saving. For instance, at 30 °C, Vcore, Vbram = (0.73, 0.79)
while at 25 °C, Vcore, Vbram = (0.72, 0.82), however, we
expected BRAM voltage to be lower for 25 °C. This is
because actually the 10 mV reduction of Vcore at 25 °C is
worth the 30 mV increase of Vbram; as we examined, it
resulted in a power of 410 mW while experiments showed that
the other combination (0.73, 0.79) would consume 420 mW
(> 410 mW). It indicates preciseness of our technique in
determining most efficient voltage pairs for a given Tamb.

Fig. 4(b) compares the total power consumption of the
proposed technique and baseline. Each curve shows the lower
and upper bound of the power, where lower bound corresponds
to α = 0.1 and upper bound corresponds to maximum
dynamic power consumption, i.e., α = 1.0. As explained
above and showed in Fig. 3, power does not increase linearly
with activity (i.e., upper bound of power is not 10× of lower

TABLE II
ITERATIONS OF ALGORITHM 1 ON mkDelayWorker AT Tamb = 60 °C.

Iter. Vcore(mV ) Vbram(mV ) Power (mW ) Tjunct(°C) Time (s)
1 740 920 485 65.82 10.9
2 750 900 558 66.69 3.1
3 750 910 564 66.76 3.1
4 750 910 564 66.77 3.1
5 750 910 564 66.77 3.1

bound) because leakage power is independent of activity and
also activities of internal nodes are not linearly correlated with
primary inputs activity. As expected, lower temperatures have
more power saving as there is more margin to reduce voltages.
Also, although the proposed method optimizes the voltages
according to worst-case activity, our method still significantly
improves power when activity is low. Note that the baseline
has fixed voltages; however, it also consumes less leakage
power in lower temperature so its total power also reduces in
lower temperatures. It is noteworthy that in our experiments
we observed the leakage power has an exponential relation
of e0.015T with temperature, which is comparative to e0.017T

we derived for Intel devices [35]. The junction temperature of
baseline exceeded 100 °C when ambient temperature reaches
85°C. Thus, Fig. 4(b) and (c) are limited to 85 °C.

Finally, Fig. 4(c) shows the upper (α = 1.0) and lower
(α = 0.1) bounds of increase in junction temperature of device
tiles for different ambient temperatures (and corresponding
voltages). Higher activity consumes more dynamic power
hence has a higher impact on temperature. There is a close
correlation between Fig. 4(b) and (c) as steady-state junction
temperature is correlated to total power, especially when de-
sign activity is uniform. Please note that overlapping (almost)
of lower bound of the proposed method with upper bound of
the baseline is haphazard and specific to this benchmark.
• Algorithm Runtime. For all of our benchmarks, the flow

converges in less than 6 iterations. At low Tamb values, due to
weak temperature-leakage feedback, the algorithm converges
in 2–3 iterations. On a typical desktop system, the first iteration
takes less than 12 seconds, and in subsequent iterations the
algorithm limits the search space to the boundary of the
current solution, making each iteration less than 4 seconds.
Thermal simulation takes ∼2.5 seconds of each iteration. Table
II shows the details of the static voltage scaling algorithm.
At first round, voltages are set to (0.74, 0.92). The resultant
power increases the temperature by 5.82 °C, which increases
the delay (tightens the margin) and leakage. Thus, the sec-
ond iteration changes the voltages to (0.75, 0.90) for timing



closure. The increase of temperature in the first iteration also
considerably increases the (leakage) power, from 485 mW to
558 mW. The temperature then starts converging; hence the
subsequent voltage and power changes are insignificant.
• Discussion. We do not change the voltages of other

power rails such as auxiliary supply voltage (Vaux) and I/O
voltage (Vio) as they enable interfacing with other devices and
have relatively low power consumption. We also do not touch
the voltage of configuration SRAM cells as they use high-
threshold mid-oxide transistors with two orders of magnitude
less leakage [26]. In addition, we observed that reducing the
voltage of SRAM cells causes voltage drop in pass-gate based
multiplexer structure of resources, which increases the leakage
power of buffers due to non-ideal voltage at their input.

C. Proposed Thermal-Aware Energy Optimization Flow

While performance is the major concern of high-end FPGA
designs, total energy usage is a primary concern of battery-
backed and IoT applications. The goal of optimal energy
exploration is to find the voltage(s) Vopt and clock period dopt,
for which E(Vopt, dopt) = P (Vopt, dopt) × dopt is minimum,
where E(Vopt, dopt) is the design energy consumption rate
operating with Vopt and clock dopt. To obtain the Vopt and
clock period dopt, clearly, the operating voltage Vopt must
be able to deliver the clock period of dopt to avoid timing
violations. Second, the design must operate with maximum
possible frequency for the given voltage. Otherwise, if the
clock period is set to α · dopt (α > 1), total energy becomes:

E(Vopt,α · dopt) =
(
Plkg(Vopt) +

Pdyn(Vopt)

α

)
×α · dopt (1)

= (αPlkg(Vopt) + Pdyn(Vopt))dopt > (Plkg(Vopt) + Pdyn(Vopt))dopt

That is, scaling the clock by α scales the dynamic power by
1
α , but since the execution time also scales by α, the total
consumed dynamic energy remains the same. Nonetheless, the
leakage power is independent of the clock period. Thus, the
leakage energy scales by α. Therefore, for a given voltage
(which we aim to find the best one), the clock period needs
to be minimum possible to minimize total energy.

That being said, we derive the new Algorithm 2 that looks
for the (Vcore, Vbram) pair that achieves minimum power-
delay product as the energy metric whilst also exploits the
temperature headroom for further efficiency. Clearly, having
the temperature-delay-voltage and voltage-power characteriza-
tion is vital for the reliability and efficiency of the proposed
flow. Having Algorithm 1 already explained, understanding
the Algorithm 2 is straightforward. Essentially, it looks for all
(Vcore, Vbram) pairs, and as reasoned above, finds the maxi-
mum frequency considering thermal margin. In contrast with
the voltage scaling flow, Algorithm 2 exploits the available
thermal margin to maximize the frequency for a candidate
voltage, rather than lowering the voltage for a fixed frequency.
Thermal simulation (line 10) is again crucial as changing the
frequency (line 6) changes the power and hence temperature.

Algorithm 1 was performing thermal simulation for the best
(Vcore, Vbram) at each iteration and we observed that, in the

Algorithm 2: Thermal-Aware Energy Optimization
Input: netlist: Placed and routed design
Input: Tamb: Ambient temperature
Input: −→α : Input activities / sample inputs

1 Emin =∞
2 for ∀ Vcore, ∀ Vbram do
3

−→
T n×n = [Tamb, · · · , Tamb]

4
−−→
∆Tn×n = [∞, · · · ,∞]

5 while ‖
−−→
∆T‖∞ > δT do

6 dmax = T (netlist,
−→
T , Vcore, Vbram)

7
−→
P total =

−→
P lkg(

−→
T , Vcore, Vbram) +

8
−→
P dyn(netlist,−→α , dmax, Vcore, Vbram)

9
−→
T old =

−→
T

10
−→
T = HotSpot(

−→
P lkg +

−→
P dyn)

11
−−→
∆T =

−→
T −

−→
T old

12 if dmax ×
∑

i

−→
Pi < Emin then

13 Emin = dmax ×
∑

i

−→
Pi

14 Vcoremin = Vcore

15 Vbrammin = Vbram

16 return Vcoremin , Vbrammin

worst case, it converges in less than eight iterations. However,
Algorithm 2 needs to explore all |Vcore| × |Vbram| combi-
nations and perform several thermal simulations under each.
It could take up to several hours for large benchmarks. We
enhanced it by, first, skipping a (Vcore, Vbram) combination if
its energy in the initial loop (i.e., before involving temperature-
delay feedback of line 10) was larger than the already found
optimum. In addition, we also considered a small temperature
margin of 0.1 °C, so we could avoid the thermal simulation of
cases with power within 0.1

θJA
range of a previously obtained

case. These optimizations reduced the average runtime on
benchmarks by two-order of magnitude (from 72 minutes to
49 seconds) with virtually no impact on the solution.

D. Timing-Speculative Voltage Over-Scaling

Timing speculation has been shown to provide opportunistic
power reduction in applications that can inherently tolerate a
certain amount of error. Examples are: (a) image processing
circuits such as DCT/IDCT where small drop of PSNR (Peak
Signal to Noise Ratio) might not be perceived by human [42].
(b) Deep Neural Networks (DNNs) because of their pooling
layers that filter out a significant portion of intermediate
results and also the stochastic nature of the gradient descent
[43] (c) light-weight alternatives of DNNs such as the brain-
inspired computing that performs the main machine learning
applications by using inexpensive operations on hypervectors
that can bear a certain amount of inaccuracy [44], etc. Timing-
speculative voltage over-scaling is orthogonal to the thermal-
aware voltage reduction with the opportunity of violating the
timing for more significant power saving.

Timing-speculative voltage scaling requires post P&R sim-
ulation of the targeted design with the timing data at the
scaled voltage to estimate the incurred inaccuracy. In standard-
cell design approaches, timing speculation can be realized
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Fig. 5. The proposed simulation flow for FPGA-mapped applications,
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by generating the same cell library under scaled voltages or
providing multiple operating condition modes at the same
library. Thus, the synthesized design can be simulated using
the new timing data. Nonetheless, to the best our knowledge,
there is no FPGA framework for post place and route (timing)
simulation, particularly under varying voltages.

By taking advantage of our characterization libraries, we
build our simulation framework upon the Verilog-to-Routing
(VTR) [30] project explained in Section III-A. Fig. 5 demon-
strates the proposed post P&R simulation framework. The
flow begins with synthesis (using ODIN [45]) and technology
mapping (using Berkeley ABC [46]) of the HDL description to
BLIF format that can be imported to the VPR P&R tool [30].
Architectural description of the target FPGA needed by VPR
can be hand-written or auto-generated by COFFE [23]. VPR
generates a .net file that describes the placement information
of resources, and a .route file that provides the routing
information of design nets. Finally, we developed a Python-
based tool to analyze VPR outputs and instantiate the FPGA’s
utilized components using primitives similar to Xilinx syntax
in Verilog HDL. The generated file is augmented with the
delay of the resources obtained by parsing the VPR outputs.
It is noteworthy that all configurable multiplexers (SBs, CBs,
etc.) are programmed in a place and routed design, so we
could simplify their functionality as a buffer just to incorporate
their delay information. VPR’s placement output (.net) does
not include a functional description. Thus, we retrieve the
configuration of LUTs from the technology-mapped BLIF.
Similarly, BLIF files do not contain BRAMs initialization, so
we read them back from the original HDL file. To make the
voltage over-scaling efficient, we utilize the proposed thermal-
aware voltage scaling as follows. For a given timing rate (e.g.,
1.1× of original clock), we change the timing condition of
Algorithm 1 (line 7) to meet the new constraint (1.1× of
dworst). Hence, the obtained over-scaled voltages are optimal
for that allowed amount of violation. We repeat it for different
timing violation rates. In Section IV we report the additional
power saving granted by speculative voltage-scaling.

IV. EXPERIMENTAL RESULTS

• Power Reduction. Fig. 6 demonstrates the power re-
duction using the proposed flow of Algorithm 1. The flow
finds the optimum core and memory voltage pair (Vcore and
Vbram) assuming highest inputs activity (α) to guarantee it
satisfies temperature corners. In practice, however, the input
activity range might be lower. Therefore, for the obtained
optimal voltages, we assumed a varying activity α ∈ [0.1,
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Fig. 6. Power reduction and voltages for 40 °C and 65 °C board temperatures.

1.0] and calculated the power reduction for the entire range.
Therefore, Fig. 6 demonstrates a range of power saving. The
right axis of this figure also shows the optimal Vcore and Vbram
voltages for each benchmark. In several benchmarks, the paths
containing memories were significantly shorter than critical
paths. For instance, in LU8PEEng, the critical path is 21×
longer than the longest BRAM path. For these paths, Vbram
is reduced down to 0.55 V, which we set as the lowest voltage
level before device crashes [19]. In Fig. 6(a) we considered a
device operating at Tamb = 40 °C with θJA = 12 °C/W , and
in Fig. 6(b) as considered more high-end device operating
at 65 °C with θJA = 2 °C/W (see Section III-A for details
of experiments). The opportunity of power saving reduces in
higher temperatures. At 40 °C, the average power saving of
10 benchmarks is 28.3%–36.0% (depends on activity), while
at 65 °C it becomes 20.0%–25.0%. We observed up to 9.2 °C
increase in the junction temperature of the baseline, which
reduced to 5.9 °C in the proposed method due to consuming
less power. Benchmarks have different power reduction and
optimal voltages based on the resources on critical paths
(that determine the voltage scaling limit), used resources, the
activity of nodes, etc. Comparing Fig. 6(a) and (b) also reveals
how differently the voltages of benchmarks need to be adjusted
moving from 40 °C to 65 °C: raygentop needs boosting both
voltages by 20 mV, or1200 needs only +20 mV of core rail,
and mkPktMerge needs 80 mV increase of memory rail with
10 mV reduction of core voltage, suggesting the necessity of
dynamic implementation (see Section III-B) for best efficacy.

• Energy Reduction. Fig. 7 shows the range of energy
reduction (left axis) of each benchmark using the proposed
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energy optimization flow at 65 °C. The points (×, ◦, N)
correspond to the right axis and show the optimal voltage
values and frequency ratio. Remember that the goal of our
energy minimization flow was to find out the minimum energy
consumption point (power-delay product) by compromising
the delay and power, so the delay has been increased by
1

0.37 = 2.7× while the overall consumed energy is improved
by 44%–66% depending on input activities. There are obvious
differences with optimal points of power and energy reduction
flows. Unlike the power flow, here, Vbram of above-mentioned
benchmarks (e.g., LU8PEEng) have not been shrunk down
to 0.55 V because the delay of their critical paths is also
increased, hence the memory voltage cannot be freely reduced.
The ranges of energy savings are also more stretched (e.g., in
mkPktMerge) because in higher activities, memory dynamic
energy becomes the dominant contributor to total energy
consumption, hence, throttling its energy becomes worthwhile
even considering the increased delay. As it can be seen in the
figure, its Vcore is reduced to 0.64 V while in power reduction
flow (Fig. 6(b)) it could be reduced to 0.91 V because the clock
delay must have been remained fixed.

• Speculative Voltage Over-Scaling. We chose LeNet [47]
as a classic CNN for handwritten digit recognition and imple-
mented as a systolic array architecture [48]. Its relatively small
size makes the timing simulation computationally tractable.
We also selected another machine learning algorithm based
on computing with hyperdimensional (HD) [49] vectors to
detect two face/non-face classes among 10,000 web faces of a
face detection dataset (FACE) from Caltech [50]. Fig. 8 shows
the result of thermal-aware voltage over-scaling. Initially, CP
delay is 1× of original clock, meaning that no timing violation
is allowed and the ∼34% power reduction is because of
thermal-aware voltage scaling. Thereafter, we allow up to 40%
violation of CP delay, where accuracy drop becomes notice-
able at 1.2× of the original clock. This tolerance is because
DNNs are intrinsically error-tolerant (e.g., allow quantization
of weights down to three bits in the LeNet [51]). Similarly,
previous studies of HD have shown an accuracy drop of merely
4% when up to 30% of the vectors bits are flipped (i.e.,
noisy) [44] mainly because orthogonality of vectors, making
them discernible under error. Based on Fig. 8, when voltage
over-scaling increases the CP delay to 1.35× of the clock
period, errors start spiking. At this point, by respectively 3%
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and 0.5% accuracy drop, LeNet and HD powers are reduced
by 48% and 50%, which means additional 15% and 16%
improvement compared to our original voltage-scaling (with
∼34% improvement for both) in which CP delay does not
exceed clock period.

V. CONCLUSION

In this paper, we proposed power and energy optimization
techniques for FPGAs by characterizing FPGA resources and
utilizing thermal headroom. Keeping the performance intact,
the voltage scaling flow determines the optimal voltages
of designs based on their thermal distribution and can be
implemented statically with fixed voltage(s), or dynamically
using programmable voltage regulators at highly varying am-
bient temperatures. Our proposed energy optimization flow
compromises the delay and power to seek optimal point
that minimizes total consumed energy. Finally, we proposed
a timing simulation framework that provides further power
saving opportunity by making the impact of voltage over-
scaling observable.
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[21] B. Khaleghi and T. Š. Rosing, “Thermal-aware design and flow for
fpga performance improvement,” in 2019 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2019, pp. 342–
347.

[22] S. Salamat, B. Khaleghi, M. Imani, and T. Rosing, “Workload-aware
opportunistic energy efficiency in multi-fpga platforms,” arXiv preprint
arXiv:1908.06519, 2019.

[23] C. Chiasson and V. Betz, “Coffe: Fully-automated transistor sizing for
fpgas,” in Field-Programmable Technology (FPT), 2013 International
Conference on. IEEE, 2013, pp. 34–41.

[24] Predictive technology model. [Online]. Available: http://ptm.asu.edu/
[25] S. Yazdanshenas, K. Tatsumura, and V. Betz, “Don’t forget the mem-

ory: Automatic block ram modelling, optimization, and architecture
exploration,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays. ACM, 2017, pp.
115–124.

[26] T. Tuan, S. Kao, A. Rahman, S. Das, and S. Trimberger, “A 90nm low-
power fpga for battery-powered applications,” in Proceedings of the 2006
ACM/SIGDA 14th international symposium on Field programmable gate
arrays. ACM, 2006, pp. 3–11.

[27] “Stratix iv device handbook,” Datasheet, Intel, September 2014.
[28] Nangate open cell library. [Online]. Available: http://nangate.com/
[29] “Xilinx power estimator user guide,” User Guide, Xilinx, 2018.
[30] J. Luu, J. Goeders, M. Wainberg, A. Somerville, T. Yu, K. Nasartschuk

et al., “Vtr 7.0: Next generation architecture and cad system for fpgas,”
ACM Transactions on Reconfigurable Technology and Systems (TRETS),
vol. 7, no. 2, p. 6, 2014.

[31] D. Lewis, E. Ahmed, D. Cashman, T. Vanderhoek, C. Lane, A. Lee et al.,
“Architectural enhancements in stratix-iii and stratix-iv,” in Proceedings
of the ACM/SIGDA international symposium on Field programmable
gate arrays. ACM, 2009, pp. 33–42.

[32] J. Lamoureux and S. J. Wilton, “Activity estimation for field-
programmable gate arrays,” in Field Programmable Logic and Appli-
cations, 2006. FPL’06. International Conference on. IEEE, 2006, pp.
1–8.

[33] R. Zhang, M. R. Stan, and K. Skadron, “Hotspot 6.0: Validation,
acceleration and extension,” University of Virginia, Tech. Rep, 2015.

[34] S. Velusamy, W. Huang, J. Lach, M. Stan, and K. Skadron, “Monitoring
temperature in fpga based socs,” in 2005 International Conference on
Computer Design. IEEE, 2005, pp. 634–637.

[35] “Powerplay early power estimator user guide,” User Guide, Intel, Febru-
ary 2017.

[36] “Timing closure user guide,” User Guide, Xilinx, January 2012.
[37] H. Amrouch, B. Khaleghi, and J. Henkel, “Optimizing temperature

guardbands,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2017, pp. 175–180.

[38] “Intel fpga temperature sensor ip core user guide,” User Guide, Intel,
May 2018.

[39] E. A. Burton, G. Schrom, F. Paillet, J. Douglas, W. J. Lambert,
K. Radhakrishnan et al., “Fivrfully integrated voltage regulators on 4th
generation intel® core socs,” in 2014 IEEE Applied Power Electronics
Conference and Exposition-APEC 2014. IEEE, 2014, pp. 432–439.

[40] S. Tian and J. Szefer, “Temporal thermal covert channels in cloud fpgas,”
in Proceedings of the 2019 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2019, pp. 298–303.

[41] T. Ebi, D. Kramer, W. Karl, and J. Henkel, “Economic learning for
thermal-aware power budgeting in many-core architectures,” in Pro-
ceedings of the seventh IEEE/ACM/IFIP international conference on
Hardware/software codesign and system synthesis. ACM, 2011, pp.
189–196.

[42] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-
aware design to suppress aging,” in 2016 53nd ACM/EDAC/IEEE Design
Automation Conference (DAC). IEEE, 2016, pp. 1–6.

[43] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: enabling
aggressive voltage underscaling and timing error resilience for energy
efficient deep learning accelerators,” in Proceedings of the 55th Annual
Design Automation Conference. ACM, 2018, p. 19.

[44] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Ex-
ploring hyperdimensional associative memory,” in 2017 IEEE Interna-
tional Symposium on High-Performance Computer Architecture (HPCA).
IEEE, 2017, pp. 445–456.

[45] P. A. Jamieson and K. B. Kent, “Odin ii: an open-source verilog
hdl synthesis tool for fpga cad flows,” in Proceedings of the 18th
annual ACM/SIGDA international symposium on Field programmable
gate arrays. ACM, 2010, pp. 288–288.

[46] R. Brayton and A. Mishchenko, “Abc: An academic industrial-strength
verification tool,” in International Conference on Computer Aided Ver-
ification. Springer, 2010, pp. 24–40.

[47] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner et al., “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[48] J. J. Zhang and S. Garg, “Fate: fast and accurate timing error prediction
framework for low power dnn accelerator design,” in Proceedings of
the International Conference on Computer-Aided Design. ACM, 2018,
p. 24.

[49] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of hyper-
vectors, binarized bundling, and combinational associative memory,”
arXiv preprint arXiv:1807.08583, 2018.

[50] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category
dataset,” 2007.

[51] A. T. Elthakeb, P. Pilligundla, A. Yazdanbakhsh, F. Mireshghallah,
and H. Esmaeilzadeh, “Releq: A reinforcement learning approach for
deep quantization of neural networks,” arXiv preprint arXiv:1811.01704,
2018.

http://ptm.asu.edu/
http://nangate.com/

	I Introduction
	II Background and Related Work
	II-A FPGA Architecture
	II-B Related Work

	III Proposed Method
	III-A Preliminary
	III-B Proposed Thermal-Aware Voltage Scaling Flow
	III-C Proposed Thermal-Aware Energy Optimization Flow
	III-D Timing-Speculative Voltage Over-Scaling

	IV Experimental Results
	V Conclusion
	References

