
SHEARer : Highly-Efficient Hyperdimensional Computing by
Software-Hardware Enabled Multifold AppRoximation

Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, and Tajana Rosing
Computer Science and Engineering Department, UC San Diego, La Jolla, CA 92093, USA

{bkhaleghi, sasalama, ahthomas, fasgarinejad, yek048, tajana}@ucsd.edu

ABSTRACT
Hyperdimensional computing (HD) is an emerging paradigm for
machine learning based on the evidence that the brain computes on
high-dimensional, distributed, representations of data. The main
operation of HD is encoding, which transfers the input data to
hyperspace by mapping each input feature to a hypervector, ac-
companied by so-called bundling procedure that simply adds up
the hypervectors to realize encoding hypervector. Although the
operations of HD are highly parallelizable, the massive number
of operations hampers the efficiency of HD in embedded domain.
In this paper, we propose SHEARer , an algorithm-hardware co-
optimization to improve the performance and energy consump-
tion of HD computing. We gain insight from a prudent scheme
of approximating the hypervectors that, thanks to inherent error
resiliency of HD, has minimal impact on accuracy while provides
high prospect for hardware optimization. In contrast to previous
works that generate the encoding hypervectors in full precision
and then ex-post quantizing, we compute the encoding hypervec-
tors in an approximate manner that saves a significant amount
of resources yet affords high accuracy. We also propose a novel
FPGA implementation that achieves striking performance through
massive parallelism with low power consumption. Moreover, we
develop a software framework that enables training HD models
by emulating the proposed approximate encodings. The FPGA im-
plementation of SHEARer achieves an average throughput boost
of 104,904× (15.7×) and energy savings of up to 56,044× (301×)
compared to state-of-the-art encoding methods implemented on
Raspberry Pi 3 (GeForce GTX 1080 Ti) using practical machine
learning datasets.

ACM Reference Format:
Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarine-
jad, Yeseong Kim, and Tajana Rosing. 2020. SHEARer : Highly-Efficient
Hyperdimensional Computing by Software-Hardware Enabled Multifold
AppRoximation. In Proceedings of

(ISLPED ’20). ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/
nnnnnnn.nnnnnnn

1 INTRODUCTION
Networked sensors with native computing power – otherwise
known as the “internet of things” (IoT) – are a rapidly growing
source of data. Applications based on IoT devices typically use ma-
chine learning (ML) algorithms to generate useful insights from
data. While modern machine learning techniques – in particular
deep neural networks (DNNs) – can produce state-of-the-art results,

ISLPED ’20,
,
2020. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

they often entail substantial memory and compute requirements
which may exceed the resources available on light-weight edge
devices. Thus, there is a pressing need to develop novel machine
learning techniques which provide accuracy and flexibility while
meeting the tight resource constraints imposed by edge-sensing
devices.

Hyperdimensional computing – HD for short – is an emerging
paradigm for machine learning based on evidence from the neuro-
science community that the brain “computes” on high-dimensional,
distributed, representations of data [1–5]. In HD, the primitive
units of computation are high-dimensional vectors of length dhv
sampled randomly from the uniform distribution over the binary
cube {±1}dhv . Typical values of dhv are in the range 5-10,000. Be-
cause of their high-dimensionality, any randomly chosen pair of
points will be approximately orthogonal (that is, their inner product
will be approximately zero). A useful consequence of this is that
sets can be encoded simply by summing (or “bundling”) together
their constituent vectors. For any collection of vectors P,Q,V their
element-wise sum S = P + Q + V is, in expectation, closer to P,Q
and V than any other randomly chosen vector in the space.

Given HD representations of data, this provides a simple classifi-
cation scheme: we simply take the data points corresponding to a
particular class and superimpose them into a single representation
for the set. Then, given a new piece of data for which the correct
class label is unknown, we compute the similarity with the hyper-
vectors representing each class and return the label corresponding
to the most similar one. More formally, suppose we are given a set
of labeled data X = {(xi ,yi)}Ni=1 where x ∈ Rdiv corresponds to
an observation in low-dimensional space and y ∈ C is a categorical
variable indicating the class to which a particular x belongs. In
general, HD classification proceeds by generating a set of “class
hypervectors” which represent the training data corresponding to
each class. Then, given a piece of data for which we do not know
the correct label – the “query” – we simply compute the similarity
between the query and each class hypervector and return the label
corresponding to the most similar. This process is illustrated in
Figure 1.

Suppose we wish to generate the class hypervector correspond-
ing to some class k ∈ C. The prototype can be generated simply
by superimposing (also called “bundling” in the literature) the HD-
encoded representation of the training data corresponding to that
particular class [1, 6]:

Ck =
∑

i s.t. yi=k
enc(xi) (1)

where enc : Rdiv → {±1}dhv is some encoding function which
maps a low-dimensional signal to a binary HD representation. Then,
given some piece of “query” data xq for which we do not know the

ar
X

iv
:2

00
7.

10
33

0v
1

 [
cs

.L
G

]
 2

0
Ju

l 2
02

0

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

ISLPED ’20,
,

Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, and Tajana Rosing

correct label we simple return the predicted label as:

k⋆ = argmax
k ∈C

δ (enc(xq),Ck) (2)

where δ is an appropriate similarity metric. Common choices for δ
include the inner-product/cosine distance – appropriate for integer
or real valued encoding schemes – and the hamming distance –
appropriate for binary HD representations. This phase is commonly
referred to in literature as “associative search”. Despite the simplic-
ity of this “learning” scheme, HD computing has been successfully
applied to a number of practical problems in the literature ranging
from optimizing the performance of web-browsers [7], to DNA
sequence alignment [8, 9], bio-signal processing [10, 11], robotics
[12, 13], and privacy preserving federated learning [14, 15].

The primary appeal of HD computing lies in its amenability to
implementation in modern hardware accelerators. Because the HD
representations (e.g. ϕ(x)) are simply long Boolean vectors, they
can be processed extremely efficiently in highly parallel platforms
like GPUs, FPGAs and PIM architectures. The principal challenge
of HD computing – and the focus of this paper – lies in designing
good encoding schemes which (1) represent the data in a format
suitable for learning and (2) are efficient to implement in hardware.
In general, the encoding phase is the most expensive stage in the
HD learning pipeline – in some cases taking up to 10× longer
than training or prediction [16]. Existing encoding methods require
generating hypervectors in full integer-precision and then ex-post
quantizing to {±1}. While this accelerates the associative search
phase, it does not address encoding which is the primary source of
inefficiency.

In this work, we propose novel techniques to compute the en-
codings in an approximate manner that saves a substantial amount
of resources with an insignificant impact on accuracy. Of inde-
pendent interest is our novel FPGA implementation that achieves
striking performance through massive parallelism with low power
consumption. Approximate encodings entail models to be trained
in a similar approximate fashion. Thus we also develop a software
emulation to enable users to train desired HD models. Our software
framework enables users to explore the tradeoff between the degree
of approximation, accuracy, and resource utilization (hence power
consumption) by generating a pre-compiled library that correlates
approximation schemes and FPGA resource utilization and power
consumption. We show our procedure leads to performance im-
provement of 104,904× (15.7×) and energy savings of up to 56,044×
(301×) compared to state-of-the-art encodingmethods implemented
on Raspberry Pi 3 (GeForce GTX 1080 Ti).

2 BACKGROUND AND MOTIVATION
2.1 HD Encoding Algorithms
The literature has proposed a number of encoding methods for the
multitude of data types which arise in practical learning settings.
We here focus on a method from [1, 6, 17] which we refer to as
“ID-vector” based encoding. This encoding method is widely used
(see for instance: [10, 17–19]) and works well on both discrete and
continuous data. We focus the discussion on continuous data as
discrete data is a simple extension.

Level HVs

ID HVs

-1 1 1 -1

1 -1 1 1

-1 -1 1 -1

1 -1 1 -1

1 1 -1 -1

1 -1 -1 1

value

index

hv 1

hv div

-1 -1 1 -1

-1 1 1 1

1 -1 -1 1

hv 1

hv 2

hv div

27 -9 -3 95
HV 1

27 -9 -3 95
HV 1

-4 7 8531
HV 2

14 -5 0 91

×

=

×

=

+

+

=

+

= class CAT

+

1 2

3

Figure 1: Encoding and training in HD.

Suppose we wish to encode some set of vectors X = {xi }Ni=1
where xi is supported on some compact subset ofRdiv . To begin, we
first quantize the domain of each feature into a set of L discrete val-
ues L = {li }Li=1 and assign each li ∈ L a codeword Li ∈ {±1}dhv .
To preserve the ordinal relationship between the quantizer bins
(the li), we wish the similarity between the codewords Li , Lj to be
inversely proportional to distance between the corresponding quan-
tization bins; e.g. δ (Li , Lj) ∝ |li − lj |−1. To enforce this property we
generate the codeword L1 corresponding to the minimal quantizer
bin l1 by sampling randomly from {±1}dhv . The codeword for the
second bin is generated by flipping dhv

2·L random coordinates in L1.
The codeword for the third bin is generated analogously from L2
and so on. Thus, the codewords for the minimal and maximal bins
are orthogonal and δ (Li , Lj) decays as |j − i | increases. This scheme
is appropriate for quantizers with linearly spaced bins – however,
it can be extended to variable bin-width quantizers.

To complete the description of encoding, let q(xi) be a function
which returns the appropriate codeword L ∈ L for a component
xi ∈ x. Then encoding proceeds as follows:

X =
div∑
j=i

q(xi) ⊗ Pi (3)

Where Pi is a “position hypervector” which encodes the index of
the feature value (e.g. i ∈ {1, ..,div }) and ⊗ is a “binding” operation
which is typically taken to be XOR.

2.2 Motivation
While the basic operations of HD are simple, they are numerous
due to its high-dimensional nature. Prior work has proposed varied
algorithmic and hardware innovations to tackle the computational
challenges of HD. Acceleration in hardware has typically focused
on FPGAs [20–22] or ASIC-ish accelerators [23, 24]. FPGA-based
implementations provide a high degree of parallelism and bit-level
granularity of operations that significantly improves the perfor-
mance and effective utilization of resources. Furthermore, FPGAs
are advantageous over more specialized ASICs as they allow for
easy customization of model parameters such as lengths of hyper-
vectors (dhv) and input-vectors (div) along with the number of
quantization levels. This flexibility is important as learning applica-
tions are heterogeneous in practice. Accordingly, we here focus on
an FPGA based implementation but emphasize our techniques are

SHEARer : Highly-Efficient Hyperdimensional Computing by Software-Hardware Enabled Multifold AppRoximation

ISLPED ’20,
,

-1

-1

-1

1

1

hv 1

hv 2

hv div

2

2

2

2

3

3

4

5

1

hv
1

hv
div

-1 T Q

T Q

T Q

-1-1

hv
2

1
1

+

+

-1

-1

-1

1

1

1

+

+

+

+

+

+4

(a) (b)

LUT5

LUT6

LUT6

LUT6

Figure 2: (a) Adder-tree and (b) counter-based implementa-
tion of popcount. +○ denotes add operation.

generic and can be integrated with ASIC- [23] and processor-based
[24] implementations.

As noted in the preceding section, the element-wise sum is a crit-
ical operation in the encoding pipeline. Thus, popcount operations
play a critical role in determining the efficiency of HD computing.
Figure 2(a) shows a popular tree-based implementation of popcount
that adds div binary bits (note that we can replace ‘−1’s by 0 in the
hardware). Each six-input look-up table (LUT-6) of conventional
FPGAs consists of two LUT-5. Hence, we can implement the first
stage of the tree using div

3 of three-port one-bit adders. Each subse-
quent stage comprises two-port k-bit adders where k increases by
one at each stage, while the number of adders per stage decreases
by a factor of 1

2 . A n-bit adder requires n LUT-6. Thus, the number
of LUT-6 for a div -input popcount can be formulated as Equation
(4).

nLUT6(adder-tree) =
logdiv∑
i=1

div
3

× i

2i−1
≃ 4

3
div (4)

HD operations can be parallelized at the granularity of a single
coordinate in each hypervector: all dimensions of the encoding
hypervector and associative search can be computed in parallel.
Nonetheless, Equation (4) reveals that the popcount module for a
popular benchmark dataset [25] with 617 features per input requires
∼820 LUTs. This limits a mid-size low-power FPGAwith∼50K LUTs
[26] to generate only ∼60 encoding dimension per cycle (out of
dhv ≃ 5,000).

To save resources, [22] and [23] suggest using counters to im-
plement the popcount for each dimension of encoding, as shown
in Figure 2 (b). Although this seems more compact, in practice, it is
less efficient than an adder-tree implementation: the counter-based
implementation needs “logdiv ” LUTs per dimension, with a per-
dimension latency of div cycles, while adder-trees require O(43div)
LUTs per dimension with a per-dimension throughput of one cycle,
so for a given amount of resources, the conventional adder-tree is
3
4 logdiv× more performance-efficient.
Work in [20] and [21] quantize the dimensions of encoding and

class hypervectors which eliminates DSP modules (or large number
of cascaded LUTs) that are conventionally used for the associative
search stage, since, through quantization, inner product for cosine
similarity will be replaced by popcount operations in case of binary

quantization, or lower-bit multiplications. The resulting improve-
ment is minor because the quantization is applied after full-bit en-
coding. Furthermore, the multipliers of the associative search stage
have input widths ofwenc (from encoding dimensions) andwclass
(from class dimensions), so each one needs O(wenc ×wclass) LUTs.
Pessimistically assuming bit-widths up to wenc = wclass = 16,
an extreme binary quantization can eliminate 256 LUTs required
for multiplication. However, the savings are again modest at best
in practice: on the benchmark dataset mentioned previously, only

wenc×wclass
wenc×wclass+

4
3div

≃ 23%. Therefore, in this paper, we target the
popcount portion that contributes to the more significant part of
resources. Indeed, ex-post quantizing of encoding hypervectors can
be orthogonal to our technique for further improvement.

3 PROPOSED METHOD: SHEARer
3.1 Approximate Encoding
In the previous section, we explained prior work that applies quan-
tization after obtaining the encoding hypervector in full bit-width.
As noted there, while this approach is simple it only accelerates the
associative search phase and does not improve encoding - which is
often the principal bottleneck. Because the HD representation of
data entails substantial redundancy and information is uniformly
distributed over a large number of bits, it is robust to bit-level errors:
flipping 10% of hypervectors’ bits shows virtually zero accuracy
drop, while 30% bit-error impairs the accuracy by a mere 4% [27].
We leverage such resilience to improve the resource utilization
through approximate encoding, as shown in Figure 3. In the follow-
ing, we discuss each technique in greater detail and estimate its
resource usage.

(1) Local majority. From Equation (4) we can observe that the
number of resources (in terms of LUT-6) of the exact adder-tree to
see that the complexity encoding each dimension linearly depends
on the number of data features, div . We, therefore, aim to reduce
the number of inputs to the primary adder-tree by sub-sampling
using the majority function so as to shrink the tree inputs while
(approximately) extracting the information contained in the input.
Note that, here, ‘inputs’ are the binary dimensions of the level
hypervectors (see Figure 1 2 and Figure 2). As shown in Figure
3(a), each LUT-6 is configured to return the majority of its six input
bits. When three out of six inputs are 0/1, we break the tie by
designating all LUTs that perform majority functions of a specific
encoding dimension to deterministically output 0 or 1. We specify
this randomly for every dimension (i.e., an entire adder-tree) but
it remains fixed for a model during the training and inference.
We choose groups of six bits as a single LUT-6 can vote for up to
six inputs. Using smaller majority groups diminishes the resource
saving, especially taking the majorities adds extra LUTs. Moreover,
following the Shannon decomposition, implementing a ‘k+1’-input
LUT requires two k-input LUTs (and a two-input multiplexer). Thus,
the number of LUTs formajority groups larger than six inputs grows
exponentially.

There are div
6 MAJ LUTs in the first stage of Figure 3(a), hence

the number of inputs for the subsequent adder-tree reduces to div
6 .

From Equation (4) we also know that a k-input adder-tree requires

ISLPED ’20,
,

Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, and Tajana Rosing

1

0

1

0

1

1

1

0
LUT6

MAJ1

0

0

1

0

0
LUT6

MAJ1

0

1

0

2

2

3

+

+

+

LUT5

LUT6

LUT6

MAJ

LUT5

1

0

1

0

1

1

1

0
LUT6

MAJ1

0

0

1

0

0
LUT6

MAJ1

0

1

0

LUT6

MAJ

(a)

LUT6

MAJ

LUT6

MAJ

2

+

LUT5

2

+

LUT5

3
+

LUT6

(b)

1

0

1

0

1

1

1

0

1

0

0

1

0

1

1

+

LUT6
+

LUT5

+

LUT5

+

LUT5

2

2

+

LUT6

2

2

3

3

+

LUT6 4

(c)

1

0

1

+

LUT5
+

LUT5

+

LUT5

+

LUT5

2

2

+

LUT5

2

2

2

2

+

LUT5 2

0

1

1

1

0

1

+

LUT6 3

(d)

Figure 3: Our proposed approximate encoding techniques. MAJ and +○ denote majority and addition, respectively.

4
3k LUT-6. Thus, the design of Figure 3(a) consumes:

MAJ LUT-6︷︸︸︷
div
6

+

adder-tree︷︸︸︷
4
3
div
6
=

7
18

div LUT-6 (5)

This uses 1 − 7/18
4/3 = 70.8% less LUT resources than an exact adder-

tree.
In [21], the authors report an average accuracy loss of 1.6%

by post-hoc quantizing the encodings to binary. Thus, one might
think of repeating the majority functions in the subsequent stages
to obtain final one-bit encoding dimensions. Using local majority
functions is efficient, but degrades the encoding quality as majority
is not associative. In particular, the MAJ LUTs add another layer of
approximation by breaking ties. Thus, a so-called MAJ-tree causes
considerable accuracy loss. Therefore, in our cascaded-MAJ design
in Figure 3(b), we limit the MAJ stages to the first two stages. Our
cascaded-MAJ utilizes:

1st stage MAJs︷︸︸︷
div
6

+

2nd stage MAJs︷︸︸︷
div/6
6

+

adder-tree︷ ︸︸ ︷
4
3
div/6
6
=

25
108

div LUT-6 (6)

which saves 1 − 25/108
4/3 = 82.6% resources compared to exact en-

coding. We emphasize that a cascaded all-MAJ popcount needs
≃ ∑

i=1
1
6i = 0.2div LUTs, which saves 85.0% of LUTs. So the

two-stage MAJ implementation with 82.6% resource saving is nearly
optimal because the first two stages of the exact tree were consum-
ing the most resources.

(2) Input overfeeding. In Figure 2(a) we can observe that each
LUT-5 pair of the first stage computes s1s0 = hvi + hvi+1 + hvi+2.
Since only three (out of five) inputs of them are used, these LUTs
left underutilized. With one more input, the output range will be
[0−3], which requires three bits (outputs) to represent, so we cannot
add more than three bits using two LUT-5s. However, instead of
using the LUT-5s to carry out regular addition, we can supply a pair
of LUT-5s with five inputs to perform quantized/truncated addition.
For actual outputs (sum of five bits) of 0 or 1, the LUT-5 pair would
produce 00 (zero); for 2 or 3 they produce 01 (one), and for 4 or 5
they produce 10 (two). That is one LUT-5 computes the actual carry
out of the five bits, and the other computes MSB of the sum. To
ensure that the synthesis tool infers a single LUT-6 for each pair,
we can directly instantiate LUT primitives. As a LUT-6 comprises a
LUT-5 pair (with shared inputs), the number of resources of Figure

3(c) is:

logdiv∑
i=1

div
5

× i

2i−1
≃ 4

5
div LUT-6 (7)

The first stage encompasses div
5 LUT-6s, and each subsequent stage

contains i-bit adders while their count decreases by 1
2× at each

stage. Total number of LUTs is reduced by 1 − 4/5
4/3 = 40% (the same

ratio of over-use of inputs). The saving is smaller than the local
majority approach but we expect higher accuracy due to intuitively
more moderate imposed approximation.

(3) Truncated nodes. Out of 4
3div LUTs used in an exact adder-

tree, div (75%) are used in the intermediate adder units. More
precisely, following i

2i ratio (see Equation (4)), stages 1–4 of the
adder contribute to 25%, 25%, 18.75%, and 12.5% of the total re-
sources, respectively. Note that, although the number of adder
units halves at each stage, the area of each one increases linearly.
We avoid a blowup of adder sizes by truncating the least signifi-
cant bit (LSB) of each adder. As demonstrated in Figure 3(d), the
LSB of the second stage (which is supposed to have three-bit out-
put) is discarded. Thus, instead of using two LUT-6s to compute
s2s1s0 = a1a0 + b1b0, we can use two LUT-5s (equivalent to one
LUT-6) to obtain s2s1 = a1a0 + b1b0, where one LUT-5 computes
s2 and the other produces s1 using four inputs a0, a1, b0, and b1.
Truncating the output of the second stage consequently decreases
the output bit-width of the third stage by one bit as its inputs be-
came two bits. Thus, we can apply the LSB truncating to the third
stage to implement it using two LUT-5s, as well. We can apply the
same procedure in all the consecutive nodes and implement them
by only two LUT-5s. The output of the first stage is already two
bits so we do not modify its original implementation.

We apply truncating to first stages particularly from the left side
of Equation 4 we can perceive the first five stages that contribute to
∼90% of the adder-tree resources. Otherwise, the decay in accuracy
becomes too severe. Equation (8) characterizes the resource usage
of the adder-tree in which the first k stages are implemented using
2-bit adders shown in Figure 3(d) (including the stage one, which
uses the primary exact mode).

the first k stages︷ ︸︸ ︷
k∑
i=1

div
3

1
2i−1

+

subsequent stages︷ ︸︸ ︷
logdiv∑
i=k+1

div
3

i + 1 − k

2i−1
≃ div

3
(2 + 4

2k
) LUT-6 (8)

SHEARer : Highly-Efficient Hyperdimensional Computing by Software-Hardware Enabled Multifold AppRoximation

ISLPED ’20,
,

1 0 1 1

Level
BRAM

0 1 0 0

dmem

1 1 0 1

1 0 0 1

1 1 1 0

0 0 1 0

+

+

+

1 1 0 1

0 0 1 1

1 0 0 1

ID
BRAM

Level
BRAM

Level
BRAM

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

level to
address

id address
controller

per-dimension adder-trees

d1

d1

d1

dmem

dmem

dmem

d1 adder-tree

dmem adder-tree

(a) (b)

Figure 4: SHEARer datapath abstract.

We can see that for k = 1 – i.e. when none of intermediate stages are
truncated – the equation returns 4

3div which is equal to resources
of an exact adder-tree. Setting k to 2, 3, and 4 achieves 25%, 37.5%,
and 43.75% resource saving, respectively.

3.2 SHEARer Architecture
Recall from Figure 1, that the HD encoding procedure needs to con-
vert all input features to equivalent level hypervectors, bind them
with the associated ID hypervector, and bundle together (e.g. sum)
the resulting hypervectors to generate the final encoding. FPGAs,
however, contain limited logic resources as well as on-chip SRAM-
based memory blocks (a.k.a BRAMs) to provide high performance
with affordable power. Previous work, therefore, break down this
step into multiple cycles whereby at each cycle they process dseд
dimensions [19, 20, 28]. When processing dimensions n · dseд to
(n + 1) · dseд , those architectures fetch the same dimensions of
all L level hypervectors. Each of dseд adder-trees are augmented
with L-to-1 multiplexers in all of their div input ports, where the
kth ≤ dseд adder-tree’s multiplexers are connected to kth dimen-
sion of the fetched level hypervectors, and the (quantized) value
of associated feature selects the right level dimension to pass. The
advantage of such architectures is that only dseд · L bits need to be
fetched at each cycle. However, it requires div · dseq multiplexers.
For a modest L = 16, which translates to 16-input multiplexers
occupying four LUTs, the total number of LUTs used for multiplex-
ers will be 4 · div · dseq , the (exact) adder-trees occupy dseq · 43div
(in Equation (4) we showed that a div input exact adder-tree uses
4
3div LUTs). This means that the augmented multiplexers occupy
3× LUTs of the adder area.In our approximate encoding, this ratio
would be even larger as we trim the exact adder. Thus, multiplexer-
based implementation overshadows the gain of approximating the
adders as we need to preserve the copious multiplexers.

To address this issue, we propose a novel FPGA implementa-
tion that relies on on-chip memories rather than adding extra re-
sources. Figure 4 illustrates an overview of the SHEARer FPGA
architecture. At each cycle, we partially process F (out ofdiv) input
features, where F ≤ div . Our implementation is BRAM-oriented,
so each (quantized) feature translates to the address from which
the corresponding level hypervector can be read. This entails a
dedicated memory block group for each of F features currently
being processed. The number of BRAMs in a group is equal to
group size = L·dhv

Cbram as there are L different level hypervectors of
length dhv bits, for a memory capacity of Cbram bits. Therefore,

the number of features F that can be partially processed in a cycle
is limited to F < 2 total BRAMs

group size . The coefficient 2 is because the
BRAMs have two ports from which we can independently read
(that is why in Figure 4 two pixels share the same BRAM group).
The address translator – “level to address" in Figure 4) – activates
only the right BRAM and row of the group, so the other BRAMs
do not dissipate dynamic power. Depending on its configuration,
each memory block can deliver up to dmem bits, as indicated in the
figure. Certainly, we could double the dmem by duplicating the size
of memory groups to process more dimensions per cycle, but then
F – the number of features that can be processed – halves.

Each of dmem fetched level hypervector bit is XORed with the
corresponding bit of the ID (position) hypervector. As detailed in
Section 2.1, each feature index is associated with an ID hypervec-
tor, which is a randomly chosen (but fixed) hypervector of length
dhv . We thus require dhv ·div

Cbram additional BRAM blocks to store ID
hypervectors. This further limits the number of features that can
be processed in a cycle due to BRAM shortage. To resolve this, we
only store a single ID hypervector (seed ID) and generate the other
ones by rotating the seed ID, i.e., ID of index k can be obtained by
rotating the ID of index 1 (seed ID) by k − 1. This does not affect
the HD accuracy as the resulting ID hypervectors are still iid and
approximately orthogonal. For the first feature, we need to read
dmem bits, while for the subsequent F − 1 features we need one
more bit as each ID has dmem − 1 common bits with its predecessor.
Therefore we need a data-width of dmem + F − 1 for ID memory,
meaning that we need 1 + F

dmem
memory blocks of the seed ID

hypervector. Thus, although the seed ID fits in a single BRAM, the
required data-width demands more memory blocks. However, this
is still significantly smaller than the case of storing all different
IDs in BRAM blocks, which either releases BRAMs for processing
the features, or power gates the unused BRAMs. Moreover, using
seed ID BRAM also saves dynamic power as dmem + F − 1 bits
are read (compared to dmem × F of storing different IDs). It is also
noteworthy that at each cycle the first dmem bits read from the
ID memory are passed to the first feature of the features currently
being processed (i.e., feature 1, F + 1, 2F + 1, · · ·). Similarly, bits 2
to dmem + 1 of the fetched ID are passed to the second feature, and
so on. Thus, the output of ID BRAMs to processing logic needs a
fixed routing.

After XORing the fetched level hypervectors with the ID hyper-
vectors, each of the dmem approximate adder-trees add up F binary
bits, so the input size of all adders is F . Since the result is only the
sum of the first F features, SHEARer utilizes a buffer to store these
partial sums. In the next cycle, the procedure repeats for the next
group of features, i.e., features F + 1 to 2F . Therefore, SHEARer
producesdmem encoding dimensions in div

F cycles, hence the entire

encoding hypervector is generated in
⌈
dhv
dmem

⌉
×
⌈
div
F

⌉
cycles.

To make these tangible, in the Xilinx FPGAs we use for experi-
ments, dmem is 64 and Cbram = 512row × 64col . We also noticed
that 16 level hypervectors gives the same accuracy of having more,
so we set L = 16. We also select the hypervector lengths to be a
multiple of 512. Taking the previously mentioned language recogni-
tion benchmark [25] as an example, we observed that dhv = 2,560
provides acceptable accuracy (see Section 4 for more details). For

ISLPED ’20,
,

Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, and Tajana Rosing

this benchmark we thus need group size of
⌈ 16×2560
512×64

⌉
= 2 BRAMs,

where each group can cover two input features. The FPGA we
use has a total 445 BRAMs, which can make at most

⌊ 445
2
⌋
= 222

groups, capable of processing 444 features per cycle. Therefore,
we divide 617 input features of the benchmark into two repeating
cycles using 310 BRAMs (155 BRAM groups) to process the first
310 features in the first cycle, and the rest 307 cycles in the second
cycle, generating dmem = 64 encoding dimensions per 2 cycles. All
64 adder-trees have a 1-bit input sizes of 310. The entire encoding
takes 2560 dim × 2 cycles

64 dim = 80 cycles. Note that reading from on-
chip BRAMs has just one cycle latency and the off-chip memory
latency is buried in the computation pipeline.

3.3 Software Layer
Because of approximation, the output of encoding and hence the
class hypervectors are different than training with exact encod-
ing. Therefore we also need to train the model using the same
approximate encoding(s), as the associative search only looks for
the similarity (rather than exactness) of an approximately encoded
hypervector with trained class hypervectors – which are made up
by bundling a manifold of encoding hypervectors. Our FPGA im-
plementation is tailored for inference, so we carry out the training
step on CPU. We developed an efficient SIMD vectorized Python
implementation to emulate the exact and the proposed encoding
techniques in software. The emulation of the proposed techniques
is straightforward. For instance, for the local majority approxima-
tion (Figure 3(a)), instead of adding up all div hypervectors, we
divide them to groups of six hypervectors, add up all six hyper-
vectors of each group, and compare if each resultant dimension is
larger than 3. We also break the ties in software by generating a
constant vector dictating how the ties of each dimension should
be served. This acts as the MAJ LUTs of the first stage. Thereafter,
we simply add up all these temporary hypervectors to realize the
subsequent exact adders. This guarantees to match the software
output with approximate hardware’s, while we also achieve a fast
implementation by avoiding unnecessary imitation of hardware
implementation.

In addition to div that is the dataset’s attribute, dhv , α , epochs
(number of training epochs) are the other variables of our soft-
ware implementation. α is the learning rate of HD. As explained
in Section 1, HD bundles all encoding hypervectors belonging to
the same-label data to create the initial class hypervectors. In the
subsequent epochs iterations, HD updates the class hypervectors
by observing if the model correctly predicts the training data. If the
model mispredicts an encoded query H l of label l as class Cl ′ , HD
updates as shown by Equation (9). If learning rate α is not provided,
SHEARer finds the best α through bisectioning for a certain number
of iterations.

Cl = Cl + α · H l Cl ′ = Cl ′ − α · H l (9)

We supply the software implementation of SHEARer with the
number of BRAM and LUT resources of the target FPGA to estimate
the architectural parameters according to Section 3.2 as well as us-
ing the resource utilization formulated in Section 3.1. We have also
implemented the exact and approximate adder-trees of different
input sizes and interpolated their measured power consumption –

Table 1: Baseline implementation results.
Parameter ↓ Benchmark → speech activity face digit

Input features (div) 617 561 608 784
Hypervector length (dhv) 2,560 3,072 6,144 2,048
Baseline accuracy 93.18% 93.91% 95.47% 89.07%

Table 2: LUT count for a 512-input adder-tree.
exact MAJ MAJ-2 over-feed truncate

Synthesis 638 183 116 383 340
Equation 675 195 116 405 343
Error 5.8% 6.6% 0.0% 5.7% 0.9%

which is linear w.r.t. the adder size – for different average activities
of the adders’ primary inputs. Therefore, we calculate the average
signal activity observed by the adders according to the values of
temporary-generated binding hypervectors (level XOR ID). We simi-
larly estimate the toggle rate of BRAMs according to consecutive
dmem bits read from BRAMs. As alluded earlier, we do not replicate
the hardware implementation in software; we just need to deter-
mine each fetched level hypervector belongs to which BRAM group
(based on the index of feature), so we can keep track of toggle rates.
Using the signal information with an offline look-up table created
for activity-power, along with the instantiated resource information
calculated as mentioned, during training, SHEARer estimates the
power consumption of an application targeted for a specific device.

4 EXPERIMENTAL RESULTS
(1) General Setup.We have implemented the SHEARer architec-
ture using Vivado High-Level Synthesis Design Suite on Xilinx
Kintex-7 FPGA KC705 Evaluation Kit which embraces a XC7K325T
device with 203,800 LUT-6 and 445 36 Kb BRAM memory blocks
that we use in 512×64bit configuration. By pipelining the adder-tree
stages we could achieve a clock frequency of 200 MHz. We compare
the performance and energy results with the high-end NVIDIA
GeForce GTX 1080 Ti GPU, and Raspberry Pi 3 embedded processor.
We optimize the CUDA implementation by packing the hypervec-
tors within 32-bit integers, so a single logical XOR operation can
bind 32 dimensions. We use speech [25], activity [29], and hand-
written digit [30] recognition as well as a face detection dataset
[31] as our benchmarks. Table 1 summarizes the length of hypervec-
tors and associated accuracy of each dataset in the baseline exact
mode. For a fair comparison, we first obtained the accuracies using
dhv = 10,000, then decreased it until the accuracies remain within
0.5% of the original values. This avoids over-saturated hypervectors
and accuracy drop due to approximation manifests better.

(2) Resource Utilization. To validate the efficiency of the pro-
posed approximation techniques, in addition to holistic high-level
performance and energy comparisons, we examine them by synthe-
sizing a 512-input adder-tree. Table 2 represents the LUT utilization
of the adder implemented in exact and approximate modes. MAJ,
MAJ-2, over-feed and truncate refer to the designs of Figure 3(a)-(d).
It can be seen that our equations in Section 3.1 have a modest av-
erage error of 3.8%. Especially, it over-estimates the LUT count of
both exact and approximate adders, so the resource saving estima-
tions remain similar to our predicted values. For instance, synthesis

SHEARer : Highly-Efficient Hyperdimensional Computing by Software-Hardware Enabled Multifold AppRoximation

ISLPED ’20,
,

Table 3: Relative accuracies SHEARer approximate encod-
ings.

exact MAJ MAJ-2 over-feed trunc-3 trunc-4
speech 93.2% −0.7% −2.3% −0.8% −0.9% −1.9%
activity 93.9% −0.8% −1.2% −1.3% −1.1% −1.0%
face 95.5% −1.8% −3.3% −1.7% −1.6% −1.9%
digit 89.1% −0.8% −0.3% −1.7% 0.1% −0.1%
average −1.0% −1.8% −1.4% −0.9% −1.2%
LUT saving 0 71.1% 82.8% 40.0% 37.5% 43.8%

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

speech activity face digit

In
p

u
t-

p
er

-s
ec

o
n

d

Raspberry Pi GPU SHEARer

Figure 5: Throughput of SHEARer versus Raspberry Pi 3 and
Nvidia GTX 1080 Ti. Y-axis is logarithmic scale.

results indicate MAJ (MAJ-2) saves 71.3% (81.8%) LUTs, which is very
close to the predicted 71.1% (82.8%).

(3) Accuracy. Table 3 summarizes the accuracies of the pro-
posed encodings relative to the exact encoding. LUT saving, which
is dataset-independent, is represented again for the comparison
purpose. “trunc-3” and “trunc-4” stand for truncated encoding (Fig-
ure 3(d)) where, respectively, three and four intermediate stages are
truncated. Overall, MAJ encoding (one-stage local majority shown
in Figure 3(a)) achieves an acceptable accuracy with significant
resource saving, though it is not always the highest-accurate one.
For instance, in the face detection benchmark, the over-feed and
3-stage truncated encodings offer slightly better accuracy. More
interestingly, in the digit recognition dataset, trunc-4 shows a
negligible −0.1% accuracy drop while trunc-3 even improves the
accuracy by 0.1%. This can stem from the fact that emulating the
hardware approximation in SHEARer ’s software layer takes a long
time for the digit dataset, so we limited the software to try five
different learning rate (α) and repeat the entire training for five
times (with epochs = 50) so the result might be slightly skewed.
For the other datasets we conducted the training for 25 times each
with 50 epochs to average out the variance of results.

(4) Performance. Figure 5 compares the throughput of SHEARer
FPGA implementationwith Raspberry Pi andNvidia GPU. SHEARer
implementation is BRAM-bound, so all the exact and approxi-
mate implementations yield the same performance. In Section 3.2
we elaborated that the speech dataset requires two cycles per
dmem = 64 dimensions. We can similarly show that activity
and digit datasets also need two cycles per 64 dimensions, while
digit requires three cycles as its level hypervectors are larger
(dhv = 6,144) and occupy more BRAMs. In the worst scenario,
SHEARer improves the throughput by 58,333× and 6.7× compared
to Raspberry Pi and GPU implementation. On average SHEARer
provides a throughput of 104,904× and 15.7× as compared to Rasp-
berry Pi and GPU, respectively. The substantial improvements arise
from that SHEARer adds up div

2 × 64 (e.g., ∼25,000) numbers per
cycle while also performs the binding (XOR operations) on the fly.

8
8
6
9

3
0
.7

2
6
.5

2
5
.8

2
8
.3

2
8
.1

8
9
9
3

3
0
.9

2
6
.7

2
6
.0

2
8
.5

2
8
.3

1
1
5
3
0

5
7
.2

4
6
.6

4
4
.8

5
1
.2

5
0
.6

8
5
3
8

3
4
.6

3
0
.0

2
9
.3

3
2
.0

3
1
.8

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

Raspberry GPU Exact MAJ MAJ-2 over-feed truncate

speech activity face digit

Figure 6: Energy (Joule) consumption of SHEARer , Rasp-
berry Pi and GPU for 10 million inference. Y-axis is loga-
rithmic.

However, Raspberry Pi executes sequentially and also its cache
cannot fit all the class hypervectors with non-binary dimensions.
Note that we assume that dataset is available in the off-chip mem-
ory (DRAM) of the FPGA. Otherwise, although per-sample latency
would be affected, throughput remains the same as the off-chip
memory latency is buried in the computation cycles.

(5) Energy Consumption. Figure 6 compares the energy con-
sumption of the exact and approximate SHEARer implementations
with Raspberry Pi and GPU. We have scaled the energy to 10 mil-
lion inferences for the sake of illustration (Y-axis is logarithmic).
We used Hioki 3334 power meter and NVIDIA system manage-
ment interface to measure the power consumption of Raspberry
Pi and GPU, respectively. We used Xilinx Power Estimator (XPE)
to estimate the FPGA power consumption. The average power of
Raspberry Pi for all datasets hovers around 3.10 Watt, while this is
∼120 Watt for the GPU. In FPGA implementation, powers showed
more variation as the number of active LUTs and BRAMs differ be-
tween applications. E.g., The face dataset with two-stage majority
encoding (MAJ-2) consumes 3.11 Watt, while the digit recognition
dataset in the exact mode consumes 10.80 Watt. The smaller power
consumption of face is mainly because of smaller off-chip data
transfer as face has the largest hypervector length and takes 288
cycles to process an entire input, while for digit it takes 64 cy-
cles. On average, SHEARer ’s exact encoding decreases the energy
consumption of by 45,988× and 247× (average of all datasets) as
compared to Raspberry Pi and GPU implementations. MAJ-2 encod-
ing of SHEARer consumes the minimum energy, which throttles the
energy consumption by 56,044× and 301× compared to Raspberry
Pi and GPU, respectively. Note that power improvement of the
approximate encodings is not proportional to their resource (LUT)
utilization as BRAM power remains the same for all encodings.

5 CONCLUSION
In this paper, we leveraged the intrinsic error resiliency of HD
computing to develop different approximate encodings with varied
accuracy and resource utilization attributes. With a modest 1.0%
accuracy drop, our approximate encoding reduces the LUT utiliza-
tion by 71.1%. By effectively utilizing the on-chip BRAMs of FPGA,
we also proposed a highly efficient implementation that outper-
forms an optimized GPU implementation over 15×, and surpasses
Raspberry Pi by over five orders of magnitude. Our FPGA imple-
mentation also consumes a moderate power: a minimum of 3.11
Watt for a face detection dataset using approximate encoding, and

ISLPED ’20,
,

Behnam Khaleghi, Sahand Salamat, Anthony Thomas, Fatemeh Asgarinejad, Yeseong Kim, and Tajana Rosing

a maximum of 10.8 Watt on a digit recognition dataset when using
exact encoding. Eventually, our implementation reduces the energy
consumption by 247× (45,988×) compared to GPU and Raspberry
Pi in exact encoding, which further improves by a factor of 1.22×
using approximate encoding.

ACKNOWLEDGEMENTS
This work was supported in part by CRISP, one of six centers in
JUMP, an SRC program sponsored by DARPA, in part by SRC Global
Research Collaboration (GRC) grant, DARPA HyDDENN grant, and
NSF grants #1911095 and #2003279.

REFERENCES
[1] P. Kanerva, “Hyperdimensional computing: An introduction to computing in

distributed representation with high-dimensional random vectors,” Cognitive
computation, vol. 1, no. 2, pp. 139–159, 2009.

[2] N. Y. Masse, G. C. Turner, and G. S. Jefferis, “Olfactory information processing in
drosophila,” Current Biology, vol. 19, no. 16, pp. R700–R713, 2009.

[3] G. C. Turner, M. Bazhenov, and G. Laurent, “Olfactory representations by
drosophila mushroom body neurons,” Journal of Neurophysiology, vol. 99, no. 2,
pp. 734–746, 2008.

[4] R. I. Wilson, “Early olfactory processing in drosophila: mechanisms and princi-
ples,” Annual Review of Neuroscience, vol. 36, pp. 217–241, 2013.

[5] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,” Current Opinion
in Neurobiology, vol. 14, no. 4, pp. 481–487, 2004.

[6] T. A. Plate, “Holographic reduced representations,” IEEE Transactions on Neural
networks, vol. 6, no. 3, pp. 623–641, 1995.

[7] M. Wan, A. Jönsson, C. Wang, L. Li, and Y. Yang, “Web user clustering and
web prefetching using random indexing with weight functions,” Knowledge and
information systems, vol. 33, no. 1, pp. 89–115, 2012.

[8] Y. Kim, M. Imani, N. Moshiri, and T. Rosing, “Geniehd: Efficient dna pattern
matching accelerator using hyperdimensional computing,” in 2020 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE - To Appear), IEEE,
2020.

[9] M. Imani, T. Nassar, A. Rahimi, and T. Rosing, “Hdna: Energy-efficient dna se-
quencing using hyperdimensional computing,” in 2018 IEEE EMBS International
Conference on Biomedical & Health Informatics (BHI), pp. 271–274, IEEE, 2018.

[10] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal processing
using hyperdimensional computing: Network templates for combined learning
and classification of exg signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–
143, 2018.

[11] F. Asgarinejad, A. Thomas, and T. Rosing, “Detection of epileptic seizures from
surface eeg using hyperdimensional computing,” in 2020 42nd Annual Interna-
tional Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
(to appear), 2020.

[12] A. Mitrokhin, P. Sutor, C. Fermüller, and Y. Aloimonos, “Learning sensorimotor
control with neuromorphic sensors: Toward hyperdimensional active perception,”
Science Robotics, vol. 4, no. 30, p. eaaw6736, 2019.

[13] P. Neubert, S. Schubert, and P. Protzel, “An introduction to hyperdimensional
computing for robotics,” KI-Künstliche Intelligenz, vol. 33, no. 4, pp. 319–330, 2019.

[14] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and T. Rosing, “A
framework for collaborative learning in secure high-dimensional space,” in 2019
IEEE 12th International Conference on Cloud Computing (CLOUD), pp. 435–446,
IEEE, 2019.

[15] B. Khaleghi, M. Imani, and T. Rosing, “Prive-hd: Privacy-preserved hyperdi-
mensional computing,” in Proceedings of the 57th Annual Design Automation
Conference (to appear), 2020.

[16] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing, “Bric: Locality-
based encoding for energy-efficient brain-inspired hyperdimensional computing,”
in Proceedings of the 56th Annual Design Automation Conference 2019, p. 52, ACM,
2019.

[17] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier
using brain-inspired hyperdimensional computing,” in Proceedings of the 2016
International Symposium on Low Power Electronics and Design, pp. 64–69, 2016.

[18] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional com-
puting for efficient speech recognition,” in 2017 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–8, IEEE, 2017.

[19] M. Imani, S. Salamat, B. Khaleghi, M. Samragh, F. Koushanfar, and T. Rosing,
“Sparsehd: Algorithm-hardware co-optimization for efficient high-dimensional
computing,” in 2019 IEEE 27th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 190–198, IEEE, 2019.

[20] S. Salamat, M. Imani, B. Khaleghi, and T. Rosing, “F5-hd: Fast flexible fpga-based
framework for refreshing hyperdimensional computing,” in Proceedings of the

ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, pp. 53–
62, 2019.

[21] M. Imani, S. Bosch, S. Datta, S. Ramakrishna, S. Salamat, J. M. Rabaey, and
T. Rosing, “Quanthd: A quantization framework for hyperdimensional computing,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
2019.

[22] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of dense bi-
nary hyperdimensional computing: Rematerialization of hypervectors, binarized
bundling, and combinational associative memory,” ACM Journal on Emerging
Technologies in Computing Systems (JETC), vol. 15, no. 4, pp. 1–25, 2019.

[23] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary learning framework
for hyperdimensional computing,” in 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 126–131, IEEE, 2019.

[24] S. Datta, R. A. Antonio, A. R. Ison, and J. M. Rabaey, “A programmable hyper-
dimensional processor architecture for human-centric iot,” IEEE Journal on Emerg-
ing and Selected Topics in Circuits and Systems, vol. 9, no. 3, pp. 439–452, 2019.

[25] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[26] “7 series fpgas data sheet.” Data Sheet, February 2108.
[27] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdi-

mensional associative memory,” in 2017 IEEE International Symposium on High
Performance Computer Architecture (HPCA), pp. 445–456, IEEE, 2017.

[28] M. Imani, S. Salamat, S. Gupta, J. Huang, and T. Rosing, “Fach: Fpga-based accel-
eration of hyperdimensional computing by reducing computational complexity,”
in Proceedings of the 24th Asia and South Pacific Design Automation Conference,
pp. 493–498, 2019.

[29] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/
human+activity+recognition+using+smartphones.

[30] Y. LeCun, C. Cortes, and C. J. Burges, “The mnist database of handwritten digits,
1998,” URL http://yann. lecun. com/exdb/mnist, vol. 10, p. 34, 1998.

[31] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

http://archive.ics.uci.edu/ml/datasets/ISOLET
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones
https://archive.ics.uci.edu/ml/datasets/human+activity+recognition+using+smartphones

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 HD Encoding Algorithms
	2.2 Motivation

	3 Proposed Method: SHEARer
	3.1 Approximate Encoding
	3.2 SHEARer Architecture
	3.3 Software Layer

	4 Experimental Results
	5 Conclusion
	References

