
Efficient Human Activity Recognition
Using Hyperdimensional Computing

Yeseong Kim
University of California

San Diego
yek048@ucsd.edu

Mohsen Imani
University of California

San Diego
moimani@ucsd.edu

Tajana S. Rosing
University of California

San Diego
tajana@ucsd.edu

ABSTRACT
Human activity recognition is a key task of many Internet of
Things (IoT) applications to understand underlying contexts
and react with the environments. Machine learning is widely
exploited to identify the activities from sensor measurements,
however, they are often overcomplex to run on less-powerful
IoT devices. In this paper, we present an alternative ap-
proach to efficiently support the activity recognition tasks us-
ing brain-inspired hyperdimensional (HD) computing. We
show how the HD computing method can be applied to the
recognition problem in IoT systems while improving the ac-
curacy and efficiency. In our evaluation conducted for three
practical datasets, the proposed design achieves the speedup
of the model training by up to 486x as compared to the state-
of-the-art neural network training. In addition, our design im-
proves the performance of the HD-based inference procedure
by 7x on a low-power ARM processor.

Author Keywords
Human activity recognition, hyperdimensional computing,
alternative computing

INTRODUCTION
Human-aware system design has been widely investigated to
offer high interactivity and enhanced efficiency under limited
device resources. Earlier researchers recognized that under-
standing human behaviors is an important task to accomplish
such goals. For example, diverse techniques exploited hu-
man activities and contexts as key control knobs of various
system managements including mobile systems [9] and smart
homes [1].

Human activity recognition such as motion detection is a key
part of these techniques. Machine learning (ML) techniques
are often used to automatically identify the activities from
various information, where devices in the loop need to collect
the data using sensors, e.g., accelerometers and GPS. Since
training ML models are computationally intensive tasks in
general, the expensive tasks are often offloaded to powerful
systems, e.g., clouds. However, the emergence of the Inter-
net of Things (IoT) raises several issues in this approach; the
amount of data created by billions of distributed devices adds
significant computation burden to the centralized cloud. In
This work was supported in part by CRISP, one of six centers in JUMP, an SRC
program sponsored by DARPA and NSF grants #1730158 and #1527034, and Jacobs
School of Engineering UCSD Powell Fellowship.

IOT ’18, October 1518, 2018, Santa Barbara, CA, USA 2018 Association for Com-
puting Machinery.
ACM ISBN 978-1-4503-6564-2/18/10$15.00
https://doi.org/10.1145/3277593.3277617

addition, sending the sensitive user information may pose pri-
vacy and security concerns. An alternative solution is to run
these tasks in a more localized way, e.g., on the IoT gate-
ways at the edge [3, 19]. The local IoT devices typically have
less computing resources than the cloud servers and run on
low-power processors, such as ARM or Intel Atom. Thus, we
need a new ML technique that can be efficiently processed
even on the embedded devices.

Towards this goal, we have developed a new methodology
which can efficiently recognize human activities based on hy-
perdimensional (HD) computing. HD computing is recently
developed as an alternative computing method inspired by the
human brain [8]. It represents the brain’s memory model us-
ing data encoded at large dimensionality. Earlier works show
that HD computing can offer high efficiency in many classifi-
cation tasks, e.g., voice recognition [5] and language identifi-
cation [7]. HD computing is in particular suitable for sensor-
based classification tasks like human activity recognition in
IoT devices since it is robust against most hardware failure
mechanisms and thrives on noisy and incomplete data that
the sensors often provide [6].

In this paper, we describe how the HD computing method
can be applied to solve diverse human activity recognition
problems. We model the classes of the human activities with
high dimensional vectors, called hypervectors. Our approach
encodes the collected sensor samples with hypervectors, and
combines the samples for each class into a single hypervector
using robust algebra in HD space. Since this step only uses
simple operations, e.g., element-wise addition and multipli-
cation, we can train the model in a lightweight way. Once the
modeling is completed, we identify the human activity class
for a newly observed data encoded with a hypervector. To
this end, we search the most similar hypervector in the model
to the sample.

We have designed different variants of the HD computing-
based classification method for higher efficiency and clas-
sification accuracy. In this paper, we present two key ap-
proaches, hypervector retraining and hypervector binariza-
tion. The hypervector retraining refines the models to achieve
higher classification accuracy. Unlike previous work, in
the retraining step, we exploit non-binarized hypervectors to
achieve high accuracy. The hypervector binarization then
converts the trained hypervectors back to hypervectors of bit-
streams, making the HD computation more suitable for less-
powerful IoT devices.

In our evaluation, we compare our approach with the state-
of-the-art ML solutions. Our experimental results show that

https://doi.org/10.1145/3277593.3277617

the proposed method can provide high accuracy and comput-
ing efficiency for popular human activity recognition prob-
lems. For example, as compared to the neural networks-
based modeling, the HD-computing method achieves up to
486x speedup when running on x86 processor, while provid-
ing comparable classification accuracy. In addition, our de-
sign improves the performance of HD model-based inference
tasks by up to 7x on a low-power ARM processor.

The rest of the paper is organized as follows: We first dis-
cuss related work for HD computing, and elaborate on the
background of HD computing. Next, we describe the HD-
based solution for human activity recognition with our strate-
gies to optimize the efficiency and accuracy. The next section
presents experimental results, and we conclude the paper with
a discussion for future work.

RELATED WORK

Human Activity Recognition
Prior researchers have been investigated to understand and
identify human activities and contexts. For example, the work
in [16] showed a monitoring framework for human activity
recognition which collects data from inertial measurement
units (IMU). Some works have shown that daily activities
can be captured by the sensors equipped in smartphone sys-
tems [2, 17]. Another line of research has focused on how
to exploit the human activity and context information for di-
verse problems. For example, prior research has shown that
understanding users behavior and exploiting the behavioral
characteristics can be used to improve system efficiency. In
this context, earlier work proposed diverse system optimiza-
tion techniques by identifying user behaviors and interactions
for mobile systems [9] and smart homes [1]. Prior work often
utilized ML techniques to identify the activities, while relying
on computing capability of clouds through offloading, e.g.,
[18]. However, due to the massive data stream created in the
IoT systems, more light-weight alternatives are considered as
a key requirement in the system design.

HD Computing
The hyperdimensional (HD) computing was first introduced
in the field of neuroscience [8]. Prior researchers recog-
nized that HD computing is effective for pattern-based cog-
nitive tasks, and showed diverse applications, such as lan-
guage recognition [7], text classification [11], the prediction
from multimodal sensor fusion [14, 15], and speech recog-
nition [5]. The work in [13] showed that bio signal sensory
data can be represented with hyperdimensional data. Some
work have also presented that HD tasks can be efficiently
performed with diverse computing devices. For example, the
hardware accelerator design has been proposed to efficiently
compute binarized hypervectors. Some works also presented
new memory architectures that perform HD operations inside
memory arrays [10, 6]. Digital circuits for HD computing
have been also designed, e.g., computation of Hamming dis-
tance distance search [6]. In this paper, we focus on how
the human activity recognition problem can be effectively
mapped using HD computing. In addition, we show how the
HD computing can be further optimized for IoT devices.

BACKGROUND: HD COMPUTING

In this section, we discuss the background for HD computing,
focusing on the components used in our activity recognition
design.

Data type: Unlike conventional computing methods, the ba-
sic data type of the HD computing is the hypervector which
often has many elements, e.g., more than one thousand. We
denote the dimensionality of the hypervector usingD. For ex-
ample, collected data are converted to hypervectors for future
HD procedures, e.g., classification tasks. In the earlier HD
work, e.g., [5], each element of hypervector is assumed to be
a bit. In contrast, since the hypervector containing numbers
may include diverse information, some recent HD applica-
tions choose this data type to implement [4]. We call these
two different types as binary hypervector and non-binary hy-
pervector. An element of a binary hypervector can be either 0
or 1. For the non-binary hypervector, the elements can have
any real number.

Property of hypervectors: An important characteristic used
in HD computing is the orthogonality of hypervectors. Let us
assume that there are two hypervectors, A and B. The non-
binary hypervectors are defined to be orthogonal if the cosine
similarity ofA andB is zero. For binary hypervectors, we can
define the orthogonality by mapping the hypervector element
of 0 to -1.

Since a hypervector has a large number of elements, we can
easily find many pairs of two orthogonal hypervectors by ran-
domly selecting their elements. For example, let us assume
that we randomly choose elements of two non-binary hyper-
vectors, A and B, among -1 and 1. In the cosine similarity
computation, the element-wise multiplication make each ele-
ment to either -1 or 1 with 50% chance, and the summation
of all elements are very close to zero, i.e., near orthogonal.
In contrast, if two hypervectors are computed somehow to be
similar, the cosine similarity has a high value.

HD arithmetic operations: HD arithmetic operations en-
able to associate multiple hypervectors. In this paper, we uti-
lize three major operations.

• Binding: Two hypervectors A and B are combined into
a hypervector. We denote this operation with A × B.
For the binary hypervectors, the element-wise XORing ac-
complishes this procedure; the element-wise multiplication
is used for non-binary hypervectors. The binding opera-
tion preserves orthogonality of hypervectors. For example,
when we have three hypervectors randomly created, sayX ,
Y , and Z, the hypervector X is still near-orthogonal to the
binding of the rests, Y × Z.

• Bundling: This operation is denoted with the + symbol.
The component-wise addition implements the bundling for
non-binary hypervectors. Since the bundling for two bi-
nary hypervector yields a non-binary hypervector, a major-
ity function is applied afterward. For example, when n bi-
nary hypervectors are bundled, we first apply the elements-
wise addition, and make each element whose value is
greater than n/2 to 0; 1 for the other case. We denote
this operation by [A0 + A1 + · · · + An]. The bundling
operation preserves the similarity with the combined hy-
pervectors. For example, for two hypervectors A and B,

Figure 1. Overview of Proposed Design

the cosine similarity between A and A + B is cos(π/4),
i.e., greater than zero.

• Detaching: This is a counter operation of the bundling for
non-binary hypervectors. The component-wise subtraction
implements this operation, and we denote it using the −
symbol. This makes the cosine similarity between two
operand hypervectors either smaller or negative.

Associative search: The binary and non-binary hypervec-
tors respectively use Hamming distance and cosine distance
as their distance metrics. For simplicity, we denote the dis-
tance metric, which is appropriate for each case, by δ(A,B).
When we have multiple hypervectors, the associative search
is used to find the most similar hypervectors using the dis-
tance metric. For example, when we have m hypervectors,
H1, · · · , Hm, the associative search for another hypervector
A looks for a hypervector, Hi, whose δ(Hi, A) is the highest.

HD-BASED HUMAN ACTIVITY RECOGNITION

Design Overview
Figure 1 describes our design that recognizes human activi-
ties based on HD computing. We collect multiple raw data
from the external sensors in IoT devices, e.g., IMUs of wire-
less embedded devices and accelerometers in smartphones.
Instead of using real numbers, we convert each collected sam-
ple, which includes multiple measurements, to a hypervector.
We call this step by encoding. With the encoded hypervec-
tors and its original activity (label), e.g., walking, running,
and standing, we train the hypervector model. To classify K
classes, the trained model includes K hypervectors for each
class. The training procedure consists of three parts, one-shot
learning, retraining, and model binarization. In the one-shot
learning, our design reads and process the hypervectors for
each sample one by one. Then, the retraining refines the hy-
pervector models considering the samples again with multiple
iterations. In the next step, we update the model to the bina-
rized hypervectors for performance improvements. With the
trained model, we perform the inference of the class. The goal
of the inference procedure is to classify a collected sample
with an unknown label into an activity class. Our design ac-
complishes the inference by performing the associative search
with the model hypervectors.

Sensor Data Encoding
To enable HD computing, we encode the collected raw data to
hypervectors. Let us assume that a sample collected at a time
includes F values, i.e., S = 〈v1, · · · , vF 〉, where each vi is
different raw values that each sensor measures. To find the
patterns of sample hypervectors for each human activity, the
encoding procedure considers the impact of i) the value for
each sensor measurement and ii) differences of all the sensors
in the system.

The first step of the encoding is to convert a measurement
value, vi, into a hypervector. As discussed in the background
section, the similarity between two hypervectors, A and B,
is determined with a metric, i.e., δ(A,B). Thus, we encode
each value so that the corresponding hypervector keeps the
relative difference across the measurement values of differ-
ent samples under the distance metric. To this end, we uti-
lize the measurement range of each sensor. For example, if a
sensor produces a value in a range of [Vmin, Vmax], the min-
imum and maximum values correspond to two hypervectors,
Lmin and Lmax, where Lmin and Lmax are orthogonal to
each other.

We represent any measurement value using the two hyper-
vectors. Lmin with D dimension is first created by randomly
choosing its elements. Using the Lmin, we create another hy-
pervector, say L1, by flipping D/2Q elements, where Q is a
configurable value. We repeat this procedure by Q times to
decide L1, L2, · · · , LQ, e.g., flipping elements of L1 creates
L2. Note that LQ is orthogonal to Lmin, thus LQ = Lmax.
We call these created hypervectors as level hypervectors. A
level hypervector corresponds with each measurement value
by considering the relative difference of the measurement val-
ues. To this end, where the measurement range is quantized
to Q levels, and each quantized subrange is mapped to a level
hypervector.

In the second step of the encoding, we combine different
sensor values of a sample to represent it with a single hy-
pervector. To distinguish different sensors in the hypervec-
tor representation, we utilize another set of hypervectors,
B1, · · · , BF , called base hypervectors, whose elements are
randomly chosen for the orthogonality. Let assume that each
vi value corresponds to a level hypervector, Li. The encoded
hypervector for the sample is computed by:

H = L1 ×B1 + · · ·+ LF ×BF .

Since theBi hypervectors are orthogonal, even though we use
the same set of the level hypervectors for different sensors,
our training step still distinguishes the impact of different sen-
sors within the encoded hypervector. All of the random hy-
pervectors, i.e., Lmin and Bi, are required to be created only
once and exploited for the entire recognition procedure. Note
that the elements of the encoded hypervectors, say sample hy-
pervectors, are 0 or 1 if using the binary hypervectors; -1 or
1 for the non-binary hypervector case.

Model Training
In this procedure, our design trains the model by combining
the sample hypervectors. The goal is to learn the patterns
of sensor values which exist within a class. Let assume that
the training dataset includes N samples, and each sample is

Figure 2. Encoding of Sensor Measurements

encoded with N hypervectors, H1, · · · , HN . Each sample
hypervector corresponds to an activity class, say ci.

One-shot training: The first step of the training is to bun-
dle the hypervectors for each class. We call this computation
as one-shot training. For example, let us assume that there
are l hypervectors, H1, H2, · · · , Hl, where all of them are
included in the same class. The bundling operation makes
another hypervector, M = H1 + · · · + Hl. For exam-
ple, let us assume that we have another hypervector Htest,
which is very similar to H1, by the distance metric. In this
case, δ(M,Htest) is likely to be a positive value. Further-
more, if Htest is similar to the majority of the hypervectors
combined into M , δ(M,Htest) yields a much higher value.
Based on this observation, we create the one-shot model, say
M1, · · · ,MK , by bundling all sample hypervectors included
in each activity of K classes.

Retraining: An issue of the one-shot model is that, al-
though the bundled hypervectors captures the major similarity
within each class, it does not understand hypervector differ-
ences across classes. In addition, bundling a large number of
hypervectors may degrade classification quality when a large
variety of patterns exists in each class. Thus, we refine the
model to i) better identify the discrepancy between different
classes and ii) recognize the common pattern existing in each
class.

Algorithm 1 illustrates our retraining procedure to reduce the
misclassification rate of the activity recognition. From the
one-shot model, our design verifies the classification accu-
racy for each sample using the associative search. If a sam-
ple is wrongly classified, we modify two model hypervectors,
i.e., the hypervector of the target class and the other hyper-
vector of the misclassified class. We first bundle the sample
hypervector once more to the correct class so that the model
hypervector converges faster to the misclassified sample. The
second task is detaching the hypervector from the wrong class
to enlarge the difference between the two model hypervec-
tors. We repeat this updating process multiple times for the
training dataset, and the accuracy converges with sufficient
iterations.

Model Binarization: Since our model retraining algo-
rithm exploits the element-wise addition and subtraction in
the bundling and detaching operations, it consequently cre-
ates non-binary hypervectors as the model. Even though it
makes the model more accurate, the model size and computa-
tion costs of the inference also increase. Since many devices

Algorithm 1: Pseudo code of retraining precedure
1 t← 0
2 while t < # of Iterations do
3 t← t+ 1
4 for each sample hypervector, Hi do
5 ρ← associative search for Hi in the model
6 if ρ 6= ci then
7 Mci ←Mci +Hi

8 Mρ ←Mρ −Hi

9 end
10 end
11 end

in IoT environments which run the activity recognition is less-
powerful, we optimize the model by converting the model to
the binary hypervectors. We update the model depending on
the sign of each hypervector element, i.e., choosing 1 if the
element value is positive; 0 for the negative value.

Model-Based Inference
Once the model is trained, it is ready to process the inference
step for samples whose labels are unknown. We first encode
the values using the level and base hypervectors used in train-
ing step. Then, our design finds which model hypervectors
is the most similar to the given sample hypervector using the
associative search. Note that, in the associative search, we
use different distance metrics based on the data type of the
model. In general, the non-binarized model provides better
accuracy. In contrast, the binarized model processes the in-
ference in a more efficient way, since the Hamming distance
can be computed with bitwise XOR operations for the smaller
model, unlike the element-wise integer additions for the co-
sine distance computation.

EVALUATION
Experimental Setup
To evaluate how the proposed design works on the hetero-
geneous IoT environment, we utilize two different devices
running on 2.8 GHz Intel Core i7 (x86) and 1.4 GHz ARM
Cortex-A53 (ARM) processors. For both cases, we execute
the same code implemented with Python 2.7 and Numpy
which uses C++ backend. We compare our approach with
the state-of-the-art deep neural network models (DNN) im-
plemented using Google TensorFlow. Since our design can
create binarized hypervector models, for fair comparison, we
also evaluate the binarized neural network (BNN) models.
The neural network models have three hidden layers of 512
neurons, and DNN and BNN models are trained with ADAM
optimizer for 10 and 100 epochs, respectively, so that the ac-
curacy converges. For the efficiency comparison, we measure
the execution time of the training and testing procedures.

We evaluate our approach using three practical datasets as
follows.

UCIHAR: This dataset includes the sensor measurements
for accelerometers and gyroscopes of a smartphone, which
are measured on the waist of users. The goal is to classify
twelve activity classes, e.g., walking, walking up/downstairs,
sitting and standing.

Name Data Size F K Ntrain Ntest
UCIHAR [2] 10MB 561 12 6213 1554
PAMAP2 [16] 240MB 75 5 611142 101582
EXTRA [17] 140MB 225 4 146869 16343

Table 1. Evaluated Dataset (F : the number of features, K: the num-
ber of activity classes, Ntrain: the number of samples in the training
dataset, Ntest: the number of samples in the testing dataset)

Figure 3. Accuracy Comparison for Different Modeling Methods

PAMAP2: The dataset contains data measured from three
IMUs located at the wrist, chest, and ankle of users with a
heart rate monitor. The goal is to classify five basic activities,
e.g., walking and sitting. We exploit the feature extraction
method suggested by the author.

EXTRA: The dataset has measurements of heterogeneous
sensors from smartphones and smartwatches. We choose to
classify the activity labels for phone locations, e.g., whether it
is located on the table, in the pocket, bag, and hand. Note that
the activities are related to diverse device control problems,
e.g., thermal management of mobile devices [12].

Table 1 summarizes the dataset sizes. In our evaluation, we
set the quantization level to 8, the retraining iterations to 20,
and the dimension of hypervectors to 1000, since there is no
accuracy gain with larger values.

Classification Accuracy
Figure 3 shows the comparison results of the accuracy for dif-
ferent modeling methods. The results show that the proposed
retraining method improves the classification accuracy. For
example, when using the non-binary hypervector models, the
accuracy improvement is 3% on average. We observe higher
accuracy improvements for the binarized hypervector models
by 4% on average. Throughout the retraining procedure, we
train the HD model which have comparable accuracy to the
DNN and BNN models. For example, for UCIHAR dataset,
the accuracy difference between the non-binary model and
DNN is only 0.2%. The accuracy difference between binary
and non-binary models is 8% on average. In the next section,
we evaluate how much performance can be improved by the
model binarization.

Efficiency Comparison
Training Efficiency
We evaluate the efficiency of different modeling methods.
Figure 4(a) shows the efficiency comparison of our design
with the state-of-the-art DNN and BNN model. The results
are reported for the non-binarized models, since the overhead

of the model binarization is negligible.1 In this comparison,
the HD modeling and the neural network training were both
executed on x86 processor. The results show that the pro-
posed method presents higher performance efficiency as com-
pared to the neural network training. For example, for UCI-
HAR dataset, training the HD model with the retraining pro-
cedure is 4x and 56x faster than the DNN and BNN models,
respectively. Note that the accuracy difference between the
two model is only 0.2% as presented in the previous section.

In addition, when a small amount of accuracy loss is accept-
able, our design can also train the model without retraining.
In that case, we observe the speedup up to 486x compared to
the BNN approach.

Figure 4(b) compares the execution time of the training pro-
cedure on the two different processors. The results suggest
that the proposed design can efficiently train the hypervector
model even on the low-power processor. For example, for
PAMAP2 dataset, the training time including the retraining
only takes 26 seconds on the ARM processor. To train the
one-shot model, it only takes 4 seconds. Thus, we conclude
that the proposed design may efficiently process the activity
recognition tasks in the IoT systems, since many IoT devices
in the loop is expected to run on low-power processors with
resource budgets.

Inference Efficiency
With the trained model, our design performs the inference
tasks for each collected data. Figure 4(c) shows how much the
execution time takes to process the inference procedure for
each sample. In this evaluation, we compare the non-binary
model to the binary model. The result shows that the model
binarization significantly improves the inference procedure.
The speedup is 8.4x and 7.1x for the x86 and ARM case,
respectively.

For the ARM processor case, the inference based on the non-
binarized model takes 2 ms on average, while the binarized
model only takes 0.28 ms. In IoT systems, the sensors are
often equipped with the same device running on these low-
power processors. Thus, when a small amount of accuracy
loss is acceptable, the binarized model is more preferable,
e.g., serving real-time needs for the activity recognition.

CONCLUSION
In this paper, we present a new system design which per-
forms human activity recognition tasks based on emerging
HD tasks. We also show optimization techniques that im-
prove the accuracy of the HD-based classification and perfor-
mance efficiency in the inference procedure. In our evalua-
tion, the proposed design achieves the speedup of the model
training by up to 486x, compared to the neural network model
training. The proposed work can be extended to several direc-
tions. The HD method can be also applied for other classifi-
cation tasks existing in IoT systems. We plan to investigate
further optimization strategies to improve the HD classifica-
tion quality. In addition, we also work on hardware design
for the proposed method in order to more efficiently exploit
the HD computing in control systems of low-end devices.
1The model binarization requires to update the trained hypervectors
only once after all the retraining procedure.

Figure 4. Efficiency Comparison for Training and Inference

REFERENCES
1. Aksanli, B., Akyurek, A. S., and Rosing, T. S. User

behavior modeling for estimating residential energy
consumption. In Smart City 360. Springer, 2016,
348–361.

2. Anguita, D., Ghio, A., Oneto, L., Parra, X., and
Reyes-Ortiz, J. L. A public domain dataset for human
activity recognition using smartphones. In ESANN
(2013).

3. Cui, W., Kim, Y., and Rosing, T. S. Cross-platform
machine learning characterization for task allocation in
iot ecosystems. In Computing and Communication
Workshop and Conference (CCWC), 2017 IEEE 7th
Annual, IEEE (2017), 1–7.

4. Imani, M., Huang, C., Kong, D., and Rosing, T.
Hierarchical hyperdimensional computing for energy
efficient classification. In Proceedings of the 55th
Annual Design Automation Conference, ACM (2018),
108.

5. Imani, M., Kong, D., Rahimi, A., and Rosing, T.
Voicehd: Hyperdimensional computing for efficient
speech recognition. In International Conference on
Rebooting Computing (ICRC), IEEE (2017), 1–6.

6. Imani, M., Rahimi, A., Kong, D., Rosing, T., and
Rabaey, J. M. Exploring hyperdimensional associative
memory. In High Performance Computer Architecture
(HPCA), 2017 IEEE International Symposium on, IEEE
(2017), 445–456.

7. Joshi, A., Halseth, J., and Kanerva, P. Language
geometry using random indexing. Quantum Interaction
2016 Conference Proceedings (In press).

8. Kanerva, P. Hyperdimensional computing: An
introduction to computing in distributed representation
with high-dimensional random vectors. Cognitive
Computation 1, 2 (2009), 139–159.

9. Kim, Y., Parterna, F., Tilak, S., and Rosing, T. S.
Smartphone analysis and optimization based on user
activity recognition. In Computer-Aided Design
(ICCAD), 2015 IEEE/ACM International Conference
on, IEEE (2015), 605–612.

10. Li, H., Wu, T. F., Rahimi, A., Li, K.-S., Rusch, M., Lin,
C.-H., Hsu, J.-L., Sabry, M. M., Eryilmaz, S. B., Sohn,
J., et al. Hyperdimensional computing with 3d vrram

in-memory kernels: Device-architecture co-design for
energy-efficient, error-resilient language recognition. In
Electron Devices Meeting (IEDM), 2016 IEEE
International, IEEE (2016), 16–1.

11. Najafabadi, F. R., Rahimi, A., Kanerva, P., and Rabaey,
J. M. Hyperdimensional computing for text
classification. Design, Automation Test in Europe
Conference Exhibition (DATE), University Booth (2016).

12. Paterna, F., and Rosing, T. Š. Modeling and mitigation
of extra-soc thermal coupling effects and heat transfer
variations in mobile devices. In Proceedings of the
IEEE/ACM International Conference on
Computer-Aided Design, IEEE Press (2015), 831–838.

13. Rahimi, A., Benatti, S., Kanerva, P., Benini, L., and
Rabaey, J. M. Hyperdimensional biosignal processing:
A case study for emg-based hand gesture recognition. In
Rebooting Computing (ICRC), IEEE International
Conference on, IEEE (2016), 1–8.

14. Räsänen, O., and Kakouros, S. Modeling dependencies
in multiple parallel data streams with hyperdimensional
computing. IEEE Signal Processing Letters 21, 7
(2014), 899–903.

15. Rasanen, O., and Saarinen, J. Sequence prediction with
sparse distributed hyperdimensional coding applied to
the analysis of mobile phone use patterns. IEEE
Transactions on Neural Networks and Learning Systems
PP, 99 (2015), 1–12.

16. Reiss, A., and Stricker, D. Introducing a new
benchmarked dataset for activity monitoring. In
Wearable Computers (ISWC), 2012 16th International
Symposium on, IEEE (2012), 108–109.

17. Vaizman, Y., Ellis, K., and Lanckriet, G. Recognizing
detailed human context in the wild from smartphones
and smartwatches. IEEE Pervasive Computing 16, 4
(2017), 62–74.

18. Yan, T., Chu, D., Ganesan, D., Kansal, A., and Liu, J.
Fast app launching for mobile devices using predictive
user context. In Proceedings of the 10th international
conference on Mobile systems, applications, and
services, ACM (2012), 113–126.

19. Yi, S., Li, C., and Li, Q. A survey of fog computing:
concepts, applications and issues. In Proceedings of the
2015 workshop on mobile big data, ACM (2015), 37–42.

	Introduction
	Related Work
	Human Activity Recognition
	HD Computing

	Background: HD Computing
	HD-Based Human Activity Recognition
	Design Overview
	Sensor Data Encoding
	Model Training
	Model-Based Inference

	Evaluation
	Experimental Setup
	Classification Accuracy
	Efficiency Comparison
	Training Efficiency
	Inference Efficiency

	Conclusion
	REFERENCES

