
Image Recognition
Accelerator Design Using
In-Memory Processing

Yeseong Kim, Mohsen Imani, and

Tajana Simunic Rosing
University of California San Diego

Abstract—This paper proposes a hardware accelerator design, called object recognition

and classification hardware accelerator on resistive devices, which processes object

recognition tasks inside emerging nonvolatile memory. The in-memory processing

dramatically lowers the overhead of data movement, improving overall system efficiency.

The proposed design accelerates key subtasks of image recognition, including text, face,

pedestrian, and vehicle recognition. The evaluation shows significant improvements on

performance and energy efficiency as compared to state-of-the-art processors and

accelerators.

& VISUAL OBJECT RECOGNITION techniques are

widely used to analyze images and videos.

For example, autonomous vehicles need to rec-

ognize various objects such as cars, pedestrian,

and traffic signals. Since most object recognition

procedures are both data and compute inten-

sive, general-purpose processors often do not

offer enough power efficiency and performance

to meet requirements of real-time responses.

In this paper, we present a novel accelerator

design, called object recognition and classifica-

tion hardware accelerator on resistive devices

(ORCHARD), which performs the object recog-

nition computation inside memory. Our design

utilizes zero leakage power and fast read oper-

ations of memristor technology while reducing

the significant data movement costs between

processors and memory. The proposed accelera-

tor consists of computation-enabled memory

blocks that store the image data and perform

machine learning tasks for image recognition.

The in-memory processing design performs both

the feature extraction procedure and image clas-

sification tasks, which are key components of the

object recognition. It supports two popular fea-

ture extraction algorithms, histogram of oriented

gradient (HOG) and Haar-like feature extraction.1

It then performs the image classification tasks of

the decision tree (DT) based ensemble algorithm

which is one of the best image recognition meth-

ods.2 In our evaluation, we show that the pro-

posed ORCHARD design successfully performs

Digital Object Identifier 10.1109/MM.2018.2889402

Date of publication 3 January 2019; date of current version

21 February 2019.

January/February 2019 0272-1732 � 2019 IEEE 17

four practical image recognition tasks: text, face,

pedestrian, and vehicle recognition. Our design

is 500� faster, and has 2100� higher energy effi-

ciency with only 0.3% error as compared to the

general-purpose processor-based computation.

ORCHARD DESIGN
Figure 1 shows an architectural overview of

the proposed ORCHARD design. The object rec-

ognition models are developed offline, and writ-

ten into the ORCHARD memory blocks. It then

processes in-memory image recognition proce-

dure at runtime. Our design supports modern

feature extraction procedures using two mem-

ory-based modules, approximate HOG feature

extractor and Haar-like feature extractor module.

The extracted features are written into the fea-

ture buffer of the boost learner. The boost

learner performs image classification tasks by

running modern ensemble algorithms, e.g., cas-

cade classifier, adaptive boosting and random

forest, which use multiple DTs. We model the

functionality of a DT and map that into a memory

block, called DT-MEM. This memory block per-

forms the decision steps based on in-memory

search operations, while handling multiple

images in a pipeline stage. Each DT-MEM produ-

ces a list of probability values for the recognized

objects as the outputs. They are accumulated

using a tree-based adder to create the final

ensemble recogni-

tion result. Then,

the image class

with the highest

probability sum is

determined as the

final recognition

result. Since the

major computation

steps of the recog-

nition procedure are implemented with in-mem-

ory computing operations, the ORCHARD design

significantly reduces power and performance

overhead due to data movement costs.

Memory-Based Feature Extraction
APPROXIMATE HOG FEATURE EXTRACTION. Figure 2

illustrates the HOG feature extraction procedure

with an example. The procedure first divides

the original 32 � 32 image into four regions.

For each region, it computes the gradient values

of all pixels by considering its adjacent pixels

(cell). The gradient can be represented by a vec-

tor which has an orientation (direction) and ma-

gnitude. The magnitude values of all cells are

then accumulated into evenly-spread histogram

bins. In this example, if a vector has a magnitude

of m with an orientation of 230�, considering 8

bins from 0� to 315�, say vi (0 � i < 8), m is accu-

mulated to v5. This procedure computes the his-

togram bins for other regions as well, producing

R � B features where R is the number of regions

and B is the number of bins. If the image includes

multiple color channels, applications may ext-

ract features from each color channel separately

and combine all to a single feature vector. The

main bottleneck of this procedure is the vector

computation, as it typically involves many arith-

metic operations, e.g., gradient calculation and

trigonometrical

functions.

We optimize the

vector computation

by modeling and

approximating it as

a single memory

access. For exam-

ple, if the goal is

to detect a hand-

written alphabet,

Figure 1. Overview of ORCHARD design.

Figure 2. In-memory HOG feature extraction.

Emerging Memory Technologies

18 IEEE MicroPublished by the IEEE Computer Society

we would approxi-

mate the input pixels

using two levels, e.g.,

black and white,

respectively. In that

case, a cell includes

9 pixels, and thus the

possible number of

gradient values are

only 29 (¼512). Thus,

we can precompute

all gradient values

and store into the

cost-effective non-

volatile memory

(NVM) blocks, so that it is directly fetched

in the future computation. In this example, the

256 possible values are quantized to four levels,

00, 01, 10, and 11. The quantized values are

concatenated to form a memory address that

indicates a row of the crossbar memory block,

called recipe memory. Each row of the recipe

memory includes two pieces of information, one

for the bin index of the vector direction di and the

other for the magnitudemi. The ORCHARD reads

the gradient value from the memory row and

accumulates it with small CMOS-based logic to

compute the histogram of the region.

HAAR-LIKE FEATURE EXTRACTION. ORCHARD also

supports Haar-like feature extraction procedure.

Figure 3(a) describes the original procedure.

This figure shows two types of Haar-like features

denoted by the red boxes which are divided by

black and white stripes. For example, the feature

consists of two black stripes and one white

stripe can capture the property that the color of

eyes is different from the facial color. Since com-

puting a sum of pixels in a stripe directly from

the original pixels is cost ineffective, the state-of-

art algorithm utilizes the concept of the integral

image.3 The integral image has the same size to

the original images. Let us assume that each

pixel of the original image is p(x,y). A value of

an integral image is s(x,y) ¼ p(x,y) þ s(x�1,y) þ
s(x,y�1) þ s(x�1,y�1), where s(0,0) is zero. The

element of the integral image s(x,y) represents

the sum of all pixels of a rectangle whose top-left

coordinate is (1,1) and bottom-left coordinate is

(x,y). Based on the integral image, the pixel sum

of a stripe can be calculated as (s(A) þ s(D))�
(s(B) þ s(C)), where A, B, C, and D are the top-

left, top-right, bottom-left, and bottom-right

coordinates, respectively.

We parallelize the integral image computation

based on an in-memory addition operation used

in our previous work.4 This operation adds all val-

ues of different columns utilizing in-memory NOR

operations. This operation can be implemented

on any resistive devices without using any CMOS

gates. We compute the integral image by calculat-

ing the prefix sum3 for image rows and columns.

Let us assume that the pixels in a row are

p0; p1; . . . ; p1024 and dba ¼
Pb

i¼a pi. The prefix sum of

the row is defined as 0; d00; d
1
0; . . . ; d

1023
0 . Once com-

puting the prefix sum of all rows, we take the

transpose of the image, and run the same algo-

rithm to obtain the integral image.

Figure 3(b) depicts an example of how

ORCHARD computes the prefix sum of eight val-

ues in parallel, where the first memory row

includes the pixel values of an image row. This

procedure consists of two phases: 1) building a

binary tree structure that has partial sums for

each tree node; and 2) sweeping the partial sums

to get the prefix sum. In the first phase, we copy

the first memory row into two next rows, so that

values at even columns and odd columns are

split. Then, we perform the column-parallel in-

memory addition, and the partial sum results

are written into the fourth row. We repeat this

split-and-add procedure until getting just one

value. Before starting the second phase, the last

value is replaced with a zero. The second phase is

performed in the backward direction. We first

Figure 3. In-memory Haar-like feature extraction. (a) Flow of Haar-like Feature Extraction.

(b) Integral Image Computation.

January/February 2019 19

add the two rows at the end, and the last row and

added row aremerged into the forth row from the

end. We repeat this add-and-merge procedure to

accumulate the partial sums, and as the result,

the prefix sums are stored at the first memory

row. It can compute the prefix sum in Oðlog ðNÞÞ
time for any N pixels on the row or column, while

utilizing the memory space in the order of

OðN log ðNÞÞ. After computing the integral image,

we can compute a Haar-like feature with two in-

memory additions, i.e., (s(A)þ s(D)) and (s(B)þ s

(C)), while the addresses are decoded from the

pixel coordinates. Since the pixel sizes masked

by the black and white stripes may vary, each

feature is usually weighted to compensate the

difference. The subsequent subtraction and

weighting are processed by a small CMOS-based

weighted subtractor block which implements

the subtraction and weighting logic using shift

operations.

In-Memory Image Classification

The ensemble algorithm examines a classifica-

tion rule by combining many relatively simple

learners, called weak or base learners. The suffi-

cient number of base learners depends on appli-

cations. For example, for the face recognition,

more than 2000 base learners are used.2 The

most popular choice for the weak learner is a DT.

Figure 4(a) illustrates an example of a DT. This

DT has multilevel decisions using three decision

stumps, i.e., the three decision nodes of the tree.

For each decision stump, different features of an

F-dimension data point are considered, e.g., va,

vb, and vc, where 0 � a, b, c < F. The leaf node

includes the probabilities of each class, p. In this

example, the number of classes K is 2.

ORCHARD design accelerates a generic DT

structure used in various ensemble modeling

methods, e.g., boosting, random forest, and cas-

cade models. In the proposed design, a DT-MEM

in a form of associative memory implements a DT

by utilizing in-memory similarity search function-

ality. Figure 4(b) illustrates the DT-MEM that cor-

responds to the example DT. The DT-MEM has

two main memory components: content address-

able memory (CAM) and crossbar memory. The

CAM component stores decision rule values

and supports an in-memory similarity search

operation1 that finds the rows whose values are

the most similar with the value of the CAM buffer.

This operation is implemented by adding a col-

umn driver that activates bit lines of the memory

block. The crossbar memory has the K probabil-

ity values of the leaf nodes in each memory row.

A column of the CAM component corresponds to

decision stumps at one level of the DT. For exam-

ple, the rows in the zeroth column represent the

decision stump of the root node, i.e., va > a. The

first four rows are set by a, while the other four

rows have aþ " which is a value whose all ele-

ments are 0’s except the last bit of 1. The next col-

umn represents decision stumps at the second

level of the DT using the half rows compared to

the first column; the last-level decision stumps

are stored in the last column. Each row of the

crossbar memory stores the probability values

corresponding to each decision rule.

DT-MEM runs by first activating all rows of the

first column, while the extracted feature value

of an image is fetched in the zeroth column in

the CAM buffer. In the next cycle, it performs the

similarity search of all the activated rows in the

CAM. For example, for the root decision rule that

Figure 4. Example of a DT and the equivalent DT-MEM structure. (a) Decision Tree. (b) DT-MEM.

Emerging Memory Technologies

20 IEEE MicroPublished by the IEEE Computer Society

compares with a, rows whose value is smaller or

equal to a are selected. Otherwise, the other rows

of aþ " are selected. The selected rows activate

the lines connected to the next column (often

referred to match lines,), i.e., the comparison

results are sent forwards the next column for the

next level decision. Next the 1th column of CAM

buffer is fetched with the feature value of the

image which was processed at the 0th column.

The 0th column of the buffer is replaced with the

feature value of a next image to process. This pro-

cedure is iteratively repeated in a pipeline—that

is, the ith column processes the image which was

processed at the ði� 1Þth column. This pipeline

design enables a DT-MEM to handle multiple

images that the practical image recognition tasks

often need to process, e.g., subsampled images of

different regions of interest. Once each DT-MEM

identifies the decision probabilities, we add the

probabilities of all DT trees to identify the class

with the maximum cumulated probability. We

employ multiple adders in a tree structure to par-

allelize the addition. In our implementation, the

tree-based adder can add 128 floating points num-

bers. When the number of DT-MEMs is larger than

128, it serially computes the sum of probabilities

for each class by grouping DT-MEMs. For cascade

models which have multiple groups of DTs, we

execute the tree-based adder for each group and

check the accumulated probabilities to decide if it

needs to proceed to the next stage decision.

The decision rule comparisons happen inside the

memory in parallel without external accesses to

the stored data for the DT model. This signifi-

cantly reduces the data movement overhead,

thus improving performance of the whole predic-

tion procedure.

EXPERIMENTAL RESULTS

Experimental Setup

We evaluate the proposed ORCHARD design

by using circuit- and device-level simulations. For

the circuit-level pre-RTL simulation, we use

HSPICE simulator in 45-nm technology. Our

design works with any bipolar resistive technol-

ogy, which is the most commonly used in existing

NVMs. We use VTEAM5 for the memristor device

model that has a large OFF/ON resistance ratio to

provide stable and large sense margin for the

in-memory operations. We perform the prelayout

simulation using system verilog and synopsys

design compiler in 45-nm TSMC technology. We

have also cross-validated the power and perfor-

mance of the crossbar memory blocks using

NVSIM6 that models fabricated NVM devices. To

compare the energy and performance efficiency

to existing processor-based implementations, we

measured the power consumption of Intel Xeon

E5440 processor and ARM Cortex A53 processor

using HIOKI 3334 power meter. We exploit

four image recognition datasets: text (MNIST),7

face (Caltech 10 000 webfaces8 and Cifar-100),9

Table 1. Recognition models for four benchmarks.

Name
Feature

Extraction

of

Features
Classifier # of DTs

MNIST HOG 392 AdaBoost

/Random

Forest

1024

Face HOG 608 2048

Pedes-

trian
Haar-like 1461

Cascade

(30

Stages)

1464

Vehicle Haar-like 250

Cascade

(13

Stages)

250

Figure 5. Image recognition quality of ORCHARD. (a) Practical Image Recognition. (b) Accuracy for different

Q and L. (c) Window probability vs. approximation: See the Face image in (a).

January/February 2019 21

pedestrian (INRIA),10 and vehicle (UIUC car

detection).11 For each benchmark, we trained the

model shown in Table 1 with scikit-learn and

OpenCL library offline and wrote the ORCHARD

memory blocks of our simulation environment.

Note that the proposed design can support vari-

ous DT-based ensemble models including Ada-

Boost, random forest, and cascade algorithms.

Image Recognition Accuracy

Figure 5(a) shows the object recognition

results for four images. For the MNIST and face

models, the quantization level of the HOG approxi-

mation is set to 6. As shown in the results,

ORCHARD successfully recognizes the target

objects. Figure 5(b) shows the prediction accu-

racy changes of MNIST and face when different

numbers of base learners (L) and quantization lev-

els (Q) are used. The results show that by select-

ing the sufficient number of base learners and

quantization levels, we can achieve the same level

of recognition quality as compared to the precise

feature computation (denoted by Exact in the

figure). For example, using AdaBoost for MNIST,

there is only 0.4% error with Q ¼ 2 and L ¼ 1024,

resulting in 97.5% accuracy. For the Face model, it

can recognize images with 96.7% accuracy which

incurs only 0.4% error, when Q ¼ 8 and L ¼ 2048.

The models of the random forest (RF) are also

approximated with minimal error of 1% when Q ¼
8. For the pedestrian and vehicle models, it pre-

cisely performs the recognition procedure with-

out any approximation. For these two models, the

recognition precision is 91.0% and 93.8%, respec-

tively. To better understand the impact of the

quantization levels, we computewindowprobabil-

ity for each pixel, which is the normalized sum of

the predicted probabilities for all sliding window

regions. Figure 5(c) illustrates four images of the

window probability for different Q values. The

results show that the recognition quality inc-

reases with higher quantization level. For exam-

ple, for both the Q ¼ 6 and Q ¼ 8 cases, we can

accurately recognize faces, whereas the Q ¼ 2

case is likely to createmore false positives.

Energy and Performance Improvement

We evaluate energy and performance efficiency

of the proposed accelerator by comparing with the

existing processor-based procedure and earlier

memory-based accelerator (ICCAD’17)1 which

sequentially processes each image and relies on

integral images computed by the CPU. Figure 6

shows that the ORCHARD design significantly

improves the efficiency of the image processing

tasks. For example, when using the AdaBoost

model for MNIST with Q ¼ 8, it shows energy effi-

ciency improvements of 2100� relative to the �86

processor-based computation with 500� speedup,

and 610� as compared to ARM Cortex A53 with

3500� speedup. Even for the most complex model

(FacewithQ¼ 8,) the proposeddesign canprocess

an image within 1 microsecond. As compared

to the earlier memory-based accelerator, the pro-

posed design achieves 3� and 2.4� improvements

for the energy and performance, respectively. The

improvement for the cascademodels is also signifi-

cant, e.g., 750� energy improvement and 3000�
speedup for the Vehicle workload, as compared to

the ARM-based execution.

The ORCHARD accelerator can be designed

with minimal area overhead to the existing NVM

technology. In our evaluation, only 4% of the

total area corresponds to CMOS circuitry includ-

ing the microcontroller and adder/subtractors.

The required memory resource is usually depen-

dent on the size of the HOG feature extractor,

which stores the precomputed data, and the

Figure 6. Energy and performance improvement.

Emerging Memory Technologies

22 IEEE MicroPublished by the IEEE Computer Society

number of DT-MEMs. In our evaluation, the Face

model with Q ¼ 8 requires the largest memory

size, however this model can be also imple-

mented only 600 MB for the extractor and 67 MB

for the DT-MEMs.

CONCLUSION
We propose ORCHARD, which accelerates the

object recognition task by using in-memory proc-

essing. Since all main computation of the feature

extraction and classification are done inside

memristor blocks that consume less energy and

run faster, ORCHARD can improve the efficiency

significantly by energy efficiency improvement of

up to 2100� and 500� speedup as compared to

the CPU implementation. As compared to the pre-

vious memory-based accelerator, the proposed

design presents 3� and 2.4� improvements for

the energy and performance, respectively.

ACKNOWLEDGEMENT
Thisworkwas supported in part by the Center

for Research in Intelligent Storage and Processing

inMemory (CRISP), one of six centers in the Semi-

conductor Research Corporation’s Joint Univer-

sity Microelectronics Program (JUMP), in part

by an SRC program sponsored by the Defense

Advanced Research Projects Agency (DARPA),

and in part by the National Science Foundation

(NSF) under Grant 1730158 and Grant 1527034.

& REFERENCES

1. Y. Kim, M. Imani, and T. Rsing, “Orchard: Visual object

recognition accelerator based on approximate in-

memory processing,” in IEEE Comput.-Aided Design,

2017, pp. 25–32.

2. M. Mathias, R. Benenson, M. Pedersoli, and L. V. Gool,

“Face detection without bells and whistles,” in Proc.

Eur. Conf. Comput. Vis., 2014, pp. 720–735.

3. B. Bilgic, B. K. P. Horn, and I. Masaki, “Efficient

integral image computation on the GPU,” in Proc. IEEE

Intell. Veh. Symp. IV, 2010, pp. 528–533.

4. M. Imani, S. Gupta, and T. Rsing, “Ultra-efficient

processing in-memory for data intensive

applications,” in Proc. ACM Design Automat. Conf.,

2017, Paper 6.

5. S. Kvatinsky, M. Ramadan, E. G. Friedman, and

A. Kolodny, “Vteam: A general model for voltage-

controlled memristors,” IEEE Trans. Circuits Syst. II,

Express Briefs, vol. 39, no. 10, pp. 786–790, Aug. 2015

6. X. Dong, C. Xu, N. Jouppi, and Y. Xie, “NVSim: A

circuit-level performance, energy, and area model for

emerging non-volatile memory,” in Emerging Memory

Technologies. New York, NY, USA: Springer, 2014.

7. Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner,

“Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2324,

Nov. 1998.

8. A. Angelova, Y. Abu-Mostafam, and P. Perona, “Pruning

training sets for learning of object categories,” inProc.

IEEEComput. Soc. Conf. Comput. Vis. Pattern

Recognit., 2005, pp. 494–501.

9. A. Krizhevsky, “Learning multiple layers of features

from tiny images,” Univ. Toronto, Toronto, ON,

Canada, Tech. Rep. TR-2009, 2009.

10. N. Dalal and B. Triggs, “Histograms of oriented

gradients for human detection,” in Proc. IEEE Comput.

Soc. Conf. Comput. Vis. Pattern Recognit., 2005,

pp. 886–893.

11. S. Agarwal, A. Awan, and D. Roth, “Learning to detect

objects in images via a sparse, part-based

representation,” IEEE Trans. Pattern Anal. Mach.

Intell., vol. 26, no. 11, pp. 1475–1490, Nov. 2004.

Yeseong Kim is currently working toward the

Ph.D. degree in computer science and engineering

at University of California San Diego, La Jolla, CA,

USA. His research interests include alternative com-

puting, computer architecture, and embedded sys-

tems. He received the B.S. degree in computer

science and engineering from Seoul National

University, Seoul, South Korea, in 2011. Contact him

at yek048@ucsd.edu.

Mohsen Imani is currently working toward the

Ph.D. degree in computer science and engineering

at University of California San Diego, La Jolla, CA,

USA. His current research interests include approxi-

mate computing, computer architecture and embed-

ded systems. He received the M.S. degree in

electrical and computer engineering from the Univer-

sity of Tehran, Tehran, Iran, in 2014. Contact him at

moimani@ucsd.edu.

TajanaSimunicRosing is currently a Full Professor,

a holder of the Fratamico Endowed Chair, and an IEEE

Fellow. Her current research interests include energy

efficient computing and embedded and wireless

systems. She received the Ph.D. degree from Stanford

University, Stanford, CA, USA, in 2001, concurrently

with completing theM.S. degree from engineeringman-

agement in 2000. Contact her at tajana@ucsd.edu

January/February 2019 23

mailto:
mailto:
mailto:

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

