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Abstract—DNA pattern matching is widely applied in many
bioinformatics applications. The increasing volume of the DNA
data exacerbates the runtime and power consumption to discover
DNA patterns. In this paper, we propose a hardware-software co-
design, called GenieHD, which efficiently parallelizes the DNA
pattern matching task. We exploit brain-inspired hyperdimen-
sional (HD) computing which mimics pattern-based computations
in human memory. We transform inherent sequential processes of
the DNA pattern matching to highly-parallelizable computation
tasks using HD computing. The proposed technique first encodes
the whole genome sequence and target DNA pattern to high-
dimensional vectors. Once encoded, a light-weight operation on
the high-dimensional vectors can identify if the target pattern
exists in the whole sequence. We also design an accelerator archi-
tecture which effectively parallelizes the HD-based DNA pattern
matching while significantly reducing the number of memory
accesses. The architecture can be implemented on various parallel
computing platforms to meet target system requirements, e.g.,
FPGA for low-power devices and ASIC for high-performance
systems. We evaluate GenieHD on practical large-size DNA
datasets such as human and Escherichia Coli genomes. Our
evaluation shows that GenieHD significantly accelerates the DNA
matching procedure, e.g., 44.4× speedup and 54.1× higher energy
efficiency as compared to a state-of-the-art FPGA-based design.

Index Terms—DNA sequencing, Hyperdimensional computing,
Pattern matching

I. INTRODUCTION

DNA pattern matching is an essential technique in many appli-
cations of bioinformatics. In general, a DNA sequence is repre-
sented by a string consisting of four nucleotide characters, A, C, G,
and T. The pattern matching problem is to examine the occurrence
of a given query string in a reference string. For example, the
technique can discover possible diseases by identifying which
reads (short strings) match a reference human genome consisting
of 100 millions of DNA bases [1]. The pattern matching is also an
important ingredient of many DNA alignment techniques. BLAST,
one of the best DNA local alignment search tools [2], uses the
pattern matching as a key step of their processing pipeline to find
representative k-mers before running subsequent alignment steps.

Despite of the importance, the efficient acceleration of the
DNA pattern matching is still an open question. Although prior
researchers have developed acceleration systems on parallel com-
puting platforms, e.g., GPU [3] and FPGA [4], they offer only
limited improvements. The primary reason is that existing pattern
matching algorithms they relied on, e.g., Boyer-Moore (BM) and
Knuth-Morris-Pratt (KMP) algorithms [1], are at heart sequential
processes. Their acceleration strategies parallelize the workloads
by either scheduling multiple DNA searching tasks or stream-
ing long-length DNA sequences, consequently resulting in high
memory requirements and runtime. In this context, the pattern
matching problem should be revisited not only to accelerate the
existing algorithms on the parallel computing platforms, but also
to redesign a hardware-friendly algorithm itself.

In this paper, we propose a novel hardware-software codesign
of GenieHD (Genome identity extractor using hyperdimensional

computing), which includes a new pattern matching algorithm and
the accelerator design. The proposed design is based on brain-
inspired hyperdimensional (HD) computing [5]. HD computing
is a computing method which mimics the human memory effi-
cient in pattern-oriented computations. In HD computing, we first
encode raw data to patterns in a high-dimensional space, i.e.,
high-dimensional vectors, also called hypervectors. HD computing
can then imitate essential functionalities of the human memory
with hypervector operations. For example, with the hypervector
addition, a single hypervector can effectively combine multiple
patterns. We can also check the similarity of different patterns
efficiently by computing the vector distances. Since the HD opera-
tions are expressed with simple arithmetic computations which are
often dimension-independent, parallel computing platforms can
significantly accelerate HD-based algorithms in a scalable way.

Based on HD computing, GenieHD transforms the inherent
sequential processes of the pattern matching task to highly-
parallelizable computations. The followings summarize the con-
tributions shown in this paper:
1) We propose a novel hardware-friendly pattern matching
algorithm based on HD computing. GenieHD encodes DNA
sequences to hypervectors and discover multiple patterns with a
light-weight HD operation. Besides, we can reuse the encoded
hypervectors to query many DNA sequences newly sampled which
are common in practice.
2) We show an acceleration architecture to execute the pro-
posed algorithm efficiently on general parallel computing plat-
forms. The proposed design significantly reduces the number of
memory accesses to process the HD operations, while fully uti-
lizing the available parallel computing resources. We also present
how to implement the proposed acceleration architecture on the
three parallel computing platforms, GPGPU, FPGA, and ASIC.
3) We evaluate GenieHD with practical datasets, human and
Escherichia Coli (E. coli) genome sequences. The experimen-
tal results show that GenieHD significantly accelerates the DNA
matching algorithm, e.g., 44.4× speedup and 54.1× higher energy
efficiency when comparing our FPGA-based design to a state-of-
the-art FPGA-based design. As compared to an existing GPU-
based implementation, our ASIC design which has the similar die
size outperforms the performance and energy efficiency by 122×
and 707×. We also show that the power consumption can be further
saved by 50% by allowing minimal accuracy loss of 1%.

II. RELATED WORK

Hyperdimensional Computing HD computing is originated from
a human memory model, called sparse distributed memory devel-
oped in neuroscience [5]. Recently, computer scientists recapped
the memory model as a cognitive, pattern-oriented computing
method. For example, prior researchers showed that the HD
computing-based classifier is effective for diverse applications,
e.g., text classification, multimodal sensor fusion, speech recogni-
tion, and human activity classification [6]–[10]. The work in [11]
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recently uses HD computing for DNA sequence classification.
Prior work also show application-specific accelerators on different
platforms, e.g., FPGA [12]–[15] and ASIC [16]. Processing in-
memory chips were also fabricated based on 3D VRRAM tech-
nology [17]. The previous works mostly utilize HD computing
as a solution for classification problems. In this paper, we show
that HD computing is an effective method for other pattern-centric
problems, and propose a novel DNA pattern matching algorithm.
DNA Pattern Matching Acceleration The efficient pattern
matching is an important task in many bioinformatics applications,
e.g., single nucleotide polymorphism (SNP) identification, on-
site disease detection and precision medicine development [1].
Many acceleration systems have been proposed on diverse plat-
forms, e.g., multiprocessor [18] and FPGA [19]. For example,
the work in [4] proposes an FPGA accelerator that parallelizes
partial matches for a long DNA sequence based on KMP algorithm.
The work in [3] proposed a parallel pattern matching method that
streams the long-length reference into different CUDA cores. Our
work is different in that we accelerate a new HD computing-
based algorithm which is specialized for parallel systems and also
effectively scales for the number of queries to process.

III. GENIEHD OVERVIEW

Figure 1 illustrates the overview of the proposed GenieHD de-
sign. GenieHD exploits HD computing to design an efficient DNA
pattern matching solution (Section IV.) During the offline stage, we
convert the reference genome sequence into hypervectors and store
into the HV database. In the online stage, we also encode the query
sequence given as an input. GenieHD in turn identifies if the query
exists in the reference or not, using a light-weight HD operation
that computes hypervector similarities between the query and
reference hypervectors. All the three processing engines perform
the computations with highly-parallelizable HD operations. Thus,
many parallel computing platforms can accelerate the proposed
algorithm. We present the implementation on GPGPU, FPGA, and
ASIC based on a general acceleration architecture (Section V.)

Nowadays, raw DNA sequences are publicly downloadable in
standard formats, e.g., FASTA for references [20]. Likewise, the
HV databases can provide the reference hypervectors encoded in
advance, so that users can efficiently examine different queries
without performing the offline encoding procedure repeatedly. For
example, it is typical to perform the pattern matching for billions of
queries streamed by a DNA sequencing machine. In this context,
we also evaluate how GenieHD scales better than state-of-the-art
methods when handling multiple queries (Section VI.)

IV. DNA PATTERN MATCHING USING HD COMPUTING

The major difference between HD and conventional computing
is the computed data elements. Instead of booleans and numbers,
HD computing performs the computations on ultra-wide words,
i.e., hypervectors, where all words are responsible to represent

a datum in a distributed manner. HD computing mimics impor-
tant functionalities of the human memory [5]. For example, the
brain efficiently aggregates/associates different data and under-
stands similarity between data. The HD computing implements
the aggregation and association using the hypervector addition and
multiplication, while measuring the similarity based on a distance
metric between hypervectors. The HD operations can be effectively
parallelized in the granularity of the dimension level.

In this work, we represent DNA sequences with hypervectors,
and perform the pattern matching procedure using the similarity
computation. To encode a DNA sequence to hypervectors, Ge-
nieHD uses four hypervectors corresponding to each base alphabet
in Σ = {A,C,G, T}. We call the four hypervectors as base
hypervectors, and denote with ΣHV = {A,C,G,T}1. Each of
the hypervectors has D dimensions where a component is either -1
or +1 (biopolar), i.e., {−1,+1}D . The four hypervectors should
be uncorrelated to represent their differences in sequences. For
example, δ(A,C) should be nearly zero, where δ is the dot-product
similarity. The base hypervectors can be easily created, since any
two hypervectors whose components are randomly selected in
{−1, 1} have almost zero similarity, i.e., nearly orthogonal.

A. DNA Sequence Encoding
DNA pattern encoding: GenieHD maps a DNA pattern
by combining the base hypervectors. Let us consider a
short query string, ‘GTACG’. We represent the string with
G× ρ1(T)× ρ2(A)× ρ3(C)× ρ4(G), where ρn(H) is a permu-
tation function that shuffles components of H (∈ ΣHV ) with n-
bit(s) rotation. For the sake of simplicity, we denote ρn(H) as Hn.
Hn is nearly orthogonal to H = H0 if n 6= 0, since the components
of a base hypervector are randomly selected and independent of
each other. Hence, the hypervector representations for any two
different strings, Hα and Hβ , are also nearly orthogonal, i.e.,
δ(Hα,Hβ) ' 0. The hyperspace of D dimensions can represent
2D possibilities. The enormous representations are sufficient to
map different DNA patterns to near-orthogonal hypervectors.

Since the query sequence is typically short, e.g., 100 to 200
characters, the cost for the online query encoding step is negligible.
In the followings, we discuss how GenieHD can efficiently encode
the long-length reference sequence.
Reference encoding: The goal of the reference encoding is to cre-
ate hypervectors that include all combinations of patterns. In prac-
tice, the approximate lengths of the query sequences are known,
e.g., the DNA read length of the sequencing technology. Let us
defined that the lengths of the queries are in a range of [⊥,>]. The
length of the reference sequence, R, is denoted by N . We also use
following notations: (i) Bt denotes the base hypervector for the
t-th character in R (0-base indexing), and (ii) H(a,b) denotes the
hypervector for a subsequence, B0

a ×B1
a+1 × · · · ×Bb−1a+b−1.

1In this paper, we use bold Latin symbols to represent hypervectors.
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Fig. 2. Illustration of Encoding. For (a), (b), and (c), the window size is 6.
(d) illustrates the reference encoding steps described in Algorithm 1.

Algorithm 1: Reference Encoding Algorithm
1 S← H(0,⊥) + H(0,⊥+1) + · · ·+ H(0,>)

2 F← H(0,⊥); L← H(0,>)

3 R← S
4 for t← 0 to N −> do
5 L← B−1

t × L−1 ×B>t+>
6 S← B−1

t × (S− F)−1 + L; R← R + S
7 F← B−1

t × F−1 ×B⊥t+⊥
8 end

Let us first consider a special case that encodes every substring
of the size n from the reference sequence, i.e., n =⊥= >. The
substring can be extracted using a sliding window of the size n
to encode H(t,n). Figure 2(a) illustrates the encoding method for
the first substring, i.e., t = 0, when n = 6. A naive way to
encode the next substring, H(1,n), is to run the permutations and
multiplications again for each base, as shown in Figure 2(b). Fig-
ure 2(c) shows how GenieHD optimizes it based on HD computing
specialized to remove and insert new information. We first multiply
T0 with the previously encoded hypervector, T0C1T2A3G4A5.
The multiplication of two identical base hypervectors yields the
hypervector whose elements are all 1s. Thus, it removes the first
base from H0,n, producing C1T2A3G4A5. After performing the
rotational shift (ρ−1) and element-wise multiplication for the new
base of the sliding window (T5), we obtain the desired hypervec-
tor, C0T1A2G3A4T5. This scheme only needs two permutations
and multiplications regardless of the substring size n.

Algorithm 1 describes how GenieHD encode the reference
sequence in the optimized fashion; Figure 2(d) shows how the
algorithm runs for the first two iterations when ⊥= 3 and > = 6.
The outcome is R, i.e., the reference hypervector, which combines
all substrings whose sizes are in [⊥,>]. The algorithm starts with
creating three hypervectors, S, F, and L, (Line 1∼3). S includes
all patterns of [⊥,>] in each sliding window; F and L keep tracks
of the first and last hypervectors for the ⊥-length and >-length
patterns, respectively. Intuitively, this initialization needs O(>)
hypervector operations. The main loop implements the sliding
window scheme for multiple lengths in [⊥,>]. It computes the next
L using the optimized scheme (Line 5). In Line 6, it subtracts F,
i.e., the shortest pattern in the previous iteration, and multiply B−1t

to remove the first base from all patterns combined in S. Then,
S includes the patterns in the range of [⊥,> − 1] for the current
window. After adding L whose length is >, we accumulate S to
R. Lastly, we update the first pattern F in the same way to L
(Line 7). The entire iterations need O(N) operations regardless
of the pattern length range, thus the total complexity of this
algorithm2 is O(N + >). Finally, R includes all the hypervector
representations of the desired lengths existing in the reference.

B. Pattern Matching
GenieHD performs the pattern matching by computing the sim-

ilarity between R and Q. Let us assume that R is the addition of
P hypervectors (i.e., P distinct patterns), H1 + · · ·+ HP . The dot
product similarity is computed as follows:

δ(R,Q) = δ(Hλ,Q) +

P∑
i=1,i6=λ

δ(Hi,Q)

︸ ︷︷ ︸
Noise

.

If Hλ is equal to Q, since the similarity for the two identical biopo-
lar hypervectors areD, i.e., δ(Hλ,Q) = D. The similarity between
any two different patterns is nearly zero, i.e., δ(Hi,Q) ' 0 of the
noise term. Thus, the following criteria checks if Q exists in R:

δ(R,Q)

D
> T (1)

where T is a threshold. We call δ(R,Q)
D as the decision score.

The accuracy of this decision process depends on (i) the amount
of the noise and (ii) threshold value, T . To precisely identify
patterns in GenieHD, we develop a concrete statistical method that
estimates the worst-case accuracy. The similarity metric computes
how many components of Q are the same to the corresponding
components for each Hi in R. There are P · D component pairs
for Q and Hi (0 ≤ i < P ). The probability that each pair is the
same is 1

2 for all components if Q is a random hypervector. The
similarity, δ(R,Q), can be then viewed as a random variable, X,
which follows a binomial distribution,X ∼ B(P ·D, 12 ). SinceD is
large enough,X can be approximated with the normal distribution:

X ∼ N
(
P ·D

2
,
P ·D

4

)
.

When x component pairs of R and Q have the same value, (P ·D−
x) pairs have different values, thus δ(R,Q) = 2x− P ·D. Hence,
the probability that satisfies Equation 1 is Pr(X >

(T+P )·D
2 ). We

can convert X to the standard normal distribution, Z:

Pr

(
Z > T ·

√
D

P

)
=

1√
2π

∫ ∞
T ·

√
D
P

e−t
2/2 dt (2)

In other words, Equation 2 represents the probability that mistak-
enly determines that Q exists in R, i.e., false positive.

Figure 3(a) and (b) visualizes the probability of the error for
different D and P combinations. For example, when D = 100, 000
and T = 0.5, we can identify P = 10, 000 patterns with 5.7% error
using a single similarity computation operation. The results also
show that using larger D values can improve the accuracy. How-
ever, the larger dimensionality requires more hardware resources.
Another option to improve the accuracy is using a larger similarity

2Due to the limited space, we omit the finalization step which combines
the patterns for t > N −>; it can be implemented in a straight-forward way
by modifying the main loop so that it does not use L.
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threshold, T , however it may increase true negatives. GenieHD
uses the following two techniques to address this issue.
Hypervector refinement The first technique is to refine the refer-
ence hypervector. Let us recall Algorithm 1. In the refining step,
GenieHD reruns the algorithm to update R. Instead of accumulat-
ing S to R (Line 6), we add S× (1− δ(S,R)/D). The refinement
is performed for multiple epochs. Figure 3(c) and (d) show how
the distribution of the decision scores changes for the existing and
non-existing cases by the refinement. The results show that the
refinement makes the decision scores of the existing cases close to
1. Thus, we can use a larger T for higher accuracy. The successful
convergence depends on i) the number of patterns included in R
with D dimensions, i.e., D/P , and ii) the training epochs. In our
evaluation, we observe that, when R includes P = D/10 patterns
and use T = 0.9, we only need five epochs, and GenieHD can find
all patterns with the error of less than 0.003%.
Multivector generation To precisely discover patterns of the
reference sequence, we also use multiple hypervectors so that they
cover every pattern existing in the reference without loss. During
the initial encoding, whenever R reaches the maximum capacity,
i.e., accumulating P distinct patterns, we store the current R and
reset its components to 0s to start computing a new R. GenieHD
accordingly fetches the stored R during the refinement. Even
though it needs to compute the similarity values for the multiple R
hypervectors, GenieHD can still fully utilize the parallel computing
units by setting D to a sufficiently large number.

V. HARDWARE ACCELERATION DESIGN

A. Acceleration Architecture
Encoding Engine The encoding procedure runs i) the element-
wise addition/multiplication and ii) permutation. The parallelized
implementation of the element-wise operations is straight-forward,
i.e., computing each dimension on different computing units. For
example, if a computing platform can compute d dimensions
(out of D) independently in parallel, the single operation can be
calculated with dD/de stages. In contrast, the permutation is more
challenging due to memory accesses. For example, a naive imple-
mentation may access all hypervector components from memory,
but on-chip caches usually have no such capacity.

The proposed method significantly reduces the amount of mem-
ory accesses. Figure 4a illustrates our acceleration architecture for
the initial reference encoding procedure as an example. The accel-
eration architecture represents typical parallel computing platforms
which have many computing units and memory. As discussed in
Section IV-A, the encoding procedures uses the permuted bipolar
base hypervectors, B−1,B⊥ and B>, as the inputs. Since there are
four DNA alphabets, the inputs are 12 near-orthogonal hypervec-
tors. It calculates the three intermediate hypervectors, F,L and S
while accumulating S into the output reference hypervector, R.

Consider that the permuted base hypervectors and initial refer-
ence hypervector are pre-stored in the off-chip memory. To com-
pute all components of R, we run the main loop of the reference
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hypervector components required for the computation in the first stage of the
reference encoding. Recall that t is the index of the iteration.

encoding dD/de times by dividing the dimensions into multiple
groups, called chunks. In the first iteration, the base buffer stores
the first d components of the 12 input hypervectors (•1 ). The
same d dimensions of F,L and S for the first chunk are stored
in the local memory of each processing unit, e.g., registers of each
GPU core (•2 ). For each iteration, the processing units compute
the dimensions of the chunk in parallel, and accumulate to the
reference buffer that stores the d components of R (•3 ). Then, the
base buffer fetches the next elements for the 12 input hypervectors
from the off-chip memory. Similarly, the reference buffer flushes
its first element to the off-chip memory and reads the next element.
When it needs to reset R for the multivector generation, the
reference buffer is stored to the off-chip memory and filled with
zeros. The key advantage of this method is that we do not need
to know entire D components of F,L and S for the permutation.
Instead, we can regard that they are the d components starting
from the τ -th dimension where τ = t mod D, and accumulate
them in the reference buffer which already has the corresponding
dimensions. Every iteration only needs to read a single element
for each base and a single read/write for the reference, while
fully utilizing the computing units for the HD operations. Once
completingN iterations, we repeat the same procedure for the next
chunk until covering all dimensions.

The similar method is generally applicable for the other proce-
dures, the query encoding and refinement. For example, for the
query encoding, we compute each chunk of Q by reading an
element for each base hypervector and multiplying d components.
Similarity Computation The pattern discovery engine and refine-
ment procedures use the similarity computation. The dot product
is decomposed with the element-wise multiplication and the grand
sum of the multiplied components. The element-wise multiplica-
tion can be parallelized on the different computing units, and then
we can compute the grand sum by adding multiple pairs in parallel
with O(logD) steps. The implementation depends on the parallel
platforms. We explain the details in the following section.

B. Implementation on Parallel Computing Platforms
GenieHD-GPU We implement the encoding engine by utilizing
the parallel cores and different memory resources in CUDA sys-



tems (refer to Figure 4b.) The base buffer is stored in the constant
memory, which offers high bandwidth for read-only data. Each
streaming core stores the intermediate hypervector components
of the chunk in their registers; the reference buffer is located in
the global memory (DRAM on GPU card). The data reading and
writing to the constant and global memory are implemented with
CUDA streams which concurrently copy data during computations.
We implement the similarity computation using the parallel reduc-
tion technique [21]. Each stream core fetches and adds multiple
components into the shared memory which provide high perfor-
mance for inter-thread memory accesses. We then perform the tree-
based reduction in the shared memory.
GenieHD-FPGA We implement the FPGA encoding engine by
using Lookup Table (LUT) resources. We store the base hypervec-
tors into block RAMs (BRAM), the on-chip FPGA memory. The
base hypervectors are loaded to a distributed memory designed by
the LUT resources. Depending on the reading sequence, GenieHD
loads the corresponding base hypervector and combines them
using LUT resources. In the pattern discovery, we use the DSP
blocks of FPGA to perform the multiplications of the dot product
and a tree-based adder to accumulate the multiplication results
(refer to Figure 4c.) Since the query encoding and discovery use
different FPGA resources, we implement the whole procedure in
a pipeline structure to handle multiple queries. Depending on the
FPGA available resources, it can process a different number of
dimensions in parallel. For example, for Kintex-7 FPGA with 800
DSPs, we can parallelize the computation of 320 dimensions.
GenieHD-ASIC The ASIC design has three major subcompo-
nents: SRAM, interconnect, and computing block. We used the
SRAM-based memory to keep all base hypervectors. The memory
is connected to the computing block with the interconnect. To
reduce the memory writes to SRAM, the interconnect implements
n-bit shifts to fetch the hypervector components to the computing
block with a single cycle. The computing units parallelize the
element-wise operations. For the query discovery, it forwards the
execution results to the tree-based adder structure located in the
computing block in a similar way to the FPGA design. The effi-
ciency depends on the number of parallel computing units. We de-
sign GenieHD-ASIC with the same size of the experimented GPU
core, 471mm2. In this setting, our implementation parallelizes the
computations for 8000 components.

VI. EVALUATION

A. Experimental Setup
We evaluate GenieHD on parallel various computing platforms.

We implement GenieHD-GPU on NVIDIA GTX 1080 Ti (3584
CUDA cores) and Intel i7-8700K CPU (12 multithreads) and mea-
sure power consumption using Hioki 3334 power meter. GenieHD-
FPGA is synthesized on Kintex-7 FPGA KC705 using Xilinx
Vivado Design Suite. We used Vivado XPower tool to estimate
the device power. We design and simulate GenieHD-ASIC using
RTL System-Verilog. For the synthesis, we use Synopsys Design
Compiler with the TSMC 45 nm technology library and the general
purpose process with high VTH cells. We estimate the power con-
sumption using Synopsys PrimeTime at (1V, 25 ◦C, TT) corner. The
GenieHD family is evaluated using D = 100, 000 and P = 10, 000
with five refinement epochs.

Table I summarizes the evaluated DNA sequence datasets. We
use E.coli DNA data (MG1655) and the human reference genome,
chromosome 14 (CHR14) [20]. We also create a random synthetic
DNA sequence (RND70) having a length of 70 million characters.
The query sequence reads with the length in [⊥,>] are extracted
using SRA toolkit from the FASTQ format. The total size of the

TABLE I
EVALUATED DNA SEQUENCE DATASETS

Description Length ⊥,> HV size
E.Coli (MG1655) Escherichia coli 4.6M 199,201 53MB
Human (CHR14) Human chromosome 14 107M 99,101 1.2GB

Synthetic (RND70) Random sequence 70M 99,101 0.8GB
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Fig. 5. Performance and Energy Comparison of GenieHD for State-of-the-art
Methods. All results are compared and normalized to Bowtie2.

generated hypervectors for each sequence (HV size) is linearly pro-
portional to the length of the reference sequence. Note that state-
of-the-art bioinformatics tools also have the peak memory footprint
in up to two orders of gigabytes for the human genome [22].

B. Efficiency Comparison
We compare the efficiency of GenieHD with state-of-the-art

programs and accelerators, i) Bowtie2 [23] running on Intel i7-
8700K CPU and ii) minimap2 [22], which runs on the same CPU,
but tens of times faster than the previous mainstream such as
BLASR and GMAP, iii) GPU-based design (ADEY) [3], and iv)
FPGA-based design (SCADIS) [4] evaluated on the same chip
to GenieHD-FPGA. Figure 5 presents that GenieHD outperforms
the state-of-the-art methods. For example, even though including
the overhead of the offline reference encoding, GenieHD-ASIC
achieves up to 16× speedup and 40× higher energy efficiency as
compared to Bowtie2. GenieHD can offer higher improvements
if the references are encoded in advance. For example, when
the encoded hypervectors are available, by eliminating the offline
encoding costs, GenieHD-ASIC is 199.7× faster and 369.9×more
energy efficient than Bowtie2. When comparing the same plat-
forms, GenieHD-FPGA (GenieHD-GPU) achieves 11.1× (10.9×)
speedup and 13.5× (10.6×) higher energy efficiency as compared
to SCADIS running on FPGA (ADEY on the GPGPU).

C. Pattern Matching for Multiple Queries
Figure 6(a) shows the breakdown of the GenieHD procedures.

The results show that most execution costs come from the ref-
erence encoding procedure, e.g., more than 97.6% on average. It
is because i) the query sequence is relatively very short and ii)
the discovery procedure examines multiple patterns using a single
similarity computation in a highly parallel manner. As discussed in
Section III, GenieHD can reuse the same reference hypervectors
for different queries newly sampled. Figure 6(b)-(d) shows the
speedup of the accumulated execution time for multiple queries
over the state-of-the-art counterparts. For fair comparison, we
evaluate the performance of GenieHD based on the total execution
costs including the reference/query encoding and query discovery
engines. The results show that, by reusing the encoded reference
hypervector, GenieHD achieves higher speedup as the number
of queries increases. For example, when comparing the designs
running on the same platform, we observe 43.9× and 44.4×
speedup on average for 106 queries on (b) GPU and (c) FPGA,
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TABLE II
GENIEHD-ASIC DESIGNS UNDER LOSS

0% 1% 2%
Base Gating VoS Gating VoS

Po
w

er
(W

) SRAM 3.4 2.5 3.4 1.8 3.4
ITC 0.6 0.4 0.6 0.3 0.6
CB 21.5 13.7 8.8 10.9 6.0

Total 25.4 16.6 12.8 13.1 10.0
Throughput 640K / sec

respectively. The energy-efficiency improvement for each case is
42.5× and 54.1×. As compared to ADEY, GenieHD-ASIC offers
122× speedup and 707× energy-efficiency improvements with the
same area (d). It is because GenieHD consumes much less cost
from the second run. The speedup converges at around 103 queries
as the query discovery takes a more portion of the execution time
for a larger number of queries.

D. Dimensionality Exploitation

In practice, the higher efficiency would be more desired than the
perfect discovery, since DNA sequences are often error-prone [1].
The statistical nature of GenieHD facilitates such optimization.
Figure 7 shows how much the additional error occurs from the
baseline accuracy of 0.003% as decreasing the dimensionality.
As anticipated with the estimation model shown in Section IV-B,
the error increases with a less dimensionality. Note that it does
not need to encode the hypervectors again; instead, we can use
only a part of components in the similarity computation. The
results suggest that we can significantly improve the efficiency
with minimal accuracy loss. For example, we can achieve 2×
speedup for all the GenieHD family with 2% loss as it only needs
the computation for half dimensions. We can also exploit this
characteristic for power optimization. Table II shows the power
consumption for the hardware components of GenieHD-ASIC,
SRAM, interconnect (ITC), and computing block (CB) along with
the throughput. We evaluated two power optimization schemes, i)
Gating which does not use half of the resources, and ii) voltage
over scaling (VoS) which uses all resources at a lower frequency.
The frequency is set to obtain the same throughput of 640K/sec (the
number of similarity computations per second.) The results show
that VoS is the more effective method since the frequency non-
linearly influences the speed. GenieHD-ASIC with VoS saves 50%
and 61% power with accuracy loss of 1% and 2%, respectively.

VII. CONCLUSION

In this paper, we describe GenieHD which performs the DNA
pattern matching algorithm using HD computing. The proposed
technique maps DNA sequences to hypervectors, and accelerates
the pattern matching procedure in a highly-parallelized way. We
show an acceleration architecture to optimize the memory ac-
cess patterns and perform pattern matching tasks with dimension-
independent operations in parallel. The experimental results show
that GenieHD significantly accelerates the pattern matching proce-
dure, e.g., 44.4× speedup with 54.1× energy-efficiency improve-
ments when comparing to the existing design on the same FPGA.
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