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1 Introduction

Energy consumption has become one of the most important design constraints for modern embedded systems,

especially for mobile embedded systems that operate with a limited energy source such as batteries. For

these systems, the design process is characterized by a tradeoff between a need for high performance and low

power consumption, emphasizing high performance to meeting the performance constraints while minimizing

the power consumption. Decreasing the power consumption not only helps with extending the battery

lifetime in portable devices, but is also a critical factor in lowering the packaging and the cooling costs

of embedded systems. While better low-power circuit design techniques have helped to lower the power

consumption [9, 41, 34], managing power dissipation at higher abstraction levels can considerably decrease

energy requirements [14, 3].

Since we will be focusing on dynamic power Pdynamic in this chapter, the total power dissipation PCMOS

can be approximated as PCMOS ≈ Pdynamic. The dynamic power of CMOS circuits is dissipated when the

output capacitance is charged or discharged, and is given by Pdynamic = α · CL · V 2
dd · fclk where α is the

switching activity (the average number of high-to-low transitions per cycle), CL is the load capacitance, Vdd

is the supply voltage, and fclk is the clock frequency. The energy consumption during the time interval [0, T ]

is given by E =
∫ T

0
P (t)dt ∝ V 2

dd · fclk · T = V 2
dd · Ncycle where P (t) is the power dissipation at t and Ncycle

is the number of clock cycles during the interval [0, T ]. These equations indicate that a significant energy

saving can be achieved by reducing the supply voltage Vdd; a decrease in the supply voltage by a factor of

two yields a decrease in the energy consumption by a factor of four.

In this chapter, we focus on the system-level power-aware resource management techniques. System-level

power management technqiues can be roughly classified into two categories, dynamic voltage scaling (DVS)

and dynamic power management (DPM). Dynamic voltage scaling (DVS) [7], which can be applied in both

hardware and software desgin abstractions, is one of most effective design techniques in minimizing the

energy consumption of VLSI systems. Since the energy consumption E of CMOS circuits has a quadratic

dependency on the supply voltage, lowering the supply voltage reduces the energy consumption significantly.

When a given application does not require the peak performance of a VLSI system, the clock speed (and

its corresponding supply voltage) can be dynamically adjusted to the lowest level that still satisfies the
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performance requirement, saving the energy consumed without perceivable performance degradations.

For example, consider a task with a deadline of 25 msec, running on a processor with the 50 MHz clock

speed and 5.0 V supply voltage. If the task requires 5 · 105 cycles for its execution, the processor executes

the task in 10 msec and becomes idle for the remaining 15 msec. (We call this type of an idle interval the

slack time.) However, if the clock speed and the supply voltage are lowered to 20 MHz and 2.0 V, it finishes

the task at its deadline (= 25 msec), resulting in 84% energy reduction.

Since lowering the supply voltage also decreases the maximum achievable clock speed [43], various DVS

algorithms for real-time systems have the goal of reducing supply voltage dynamically to the lowest possible

level while satisfying the tasks’ timing constraints. For real-time systems where timing constraints must be

strictly satisfied, a fundamental energy-delay tradeoff makes it more challenging to dynamically adjust the

supply voltage so that the energy consumption is minimized while not violating the timing requirements. In

this chapter, we focus on DVS algorithms for hard real-time systems.

On the other hand, dynamic power management decreases the energy consumption by selectively placing

idle components into lower power states. At the minimum, the device needs to stay in the low-power state

for long enough (defined as the break even time) to recuperate the cost of transitioning in and out of the

state. The break even time TBE , as defined in Equation 1.1, is a function of the power consumption in the

active state, Pon, the amount of power consumed in the low power state, Psleep, and the cost of transition in

terms of both time, Ttr, and power, Ppr . If it was possible to predict ahead of time the exact length of each

idle period, then the ideal power management policy would place a device in the sleep state only when idle

period will be longer than the break even time. Unfortunately, in most real systems such perfect prediction

of idle period is not possible. As a result, one of the primary tasks DPM algorithms have is to predict when

the idle period will be long enough to amortize the cost of transition to a low power state, and to select the

state to transition to. Three classes of policies can be defined - timeout based, predictive and stochastic.

The policies in each class differ in the way prediction of the length of the idle period is made, and the timing

of the actual transition into the low power state (e.g., transitioning immediately at the start of an idle period

vs. after some amount of idle time has passed).
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TBE = Ttr + Ttr

Ptr − Pon

Pon − Psleep

(1.1)

This chapter provides an overview of state-of-the-art dynamic power management and dynamic voltage

scaling algorithms. The remainder of the chapter is organized as follows. An overview of dynamic voltage

scaling techniques is presented in Section 2. Section 3 provides an overview of dynamic power management

algorithms and the models used in deriving the policies. We conclue with a summary in Section 4.

2 Dynamic Voltage Scaling

For hard real-time systems, there are two kinds of voltage scheduling approaches depending on the volt-

age scaling granularity: intra-task DVS (IntraDVS) and inter-task DVS (InterDVS). The intra-task DVS

algorithms adjust the voltage within an individual task boundary, while the inter-task DVS algorithms

determine the voltage on a task-by-task basis at each scheduling point. The main difference between them

is whether the slack times are used for the current task or for the tasks that follow. InterDVS algorithms

distribute the slack times from the current task for the following tasks, while IntraDVS algorithms use the

slack times from the current task for the current task itself.

2.1 Intra-Task Voltage Scaling

The main feature of IntraDVS algorithms is how to select the program locations where the voltage and

clock will be scaled. Depending on the selection mechanism, we can classify IntraDVS algorithms into five

categories: segment-based IntraDVS, path-based IntraDVS, memory-aware IntraDVS, stochastic IntraDVS,

and hybrid IntraDVS.

2.1.1 Segment-based IntraDVS

Segment-based IntraDVS techniques partition a task into several segments [29, 33]. After executing a seg-

ment, they adjust the clock speed and supply voltage exploiting the slack times from the executed segments

of a program. In determining the target clock frequency using the slack times available, different slack

distribution policies are often used. For example, all the identified slack may be given to the immediately
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following segment. Or, it is possible to distribute the slack time evenly to all remaining segments. For a

better result, the identified slack may be combined with the estimated future slacks (which may come from

the following segments’ early completions) for a slower execution.

A key problem of the segment-based IntraDVS is how to divide an application into segments. Automat-

ically partitioning an application code is not trivial. For example, consider the problem of determining the

granularity of speed changes. Ideally, the more frequently the voltage is changed, the more efficiently the

application can exploit dynamic slacks, saving more energy. However, there is energy and time overhead as-

sociated with each speed adjustment. Therefore, we should determine how far apart any two voltage scaling

points should be. Since the distance between two consecutive voltage scaling points varies depending on the

execution path taken at run time, it is difficult to determine the length of voltage scaling intervals statically.

One solution is to use both the compiler and the operating system to adapt performance and reduce

energy consumption of the processor. The collaborative IntraDVS [1] uses such an approach and provides a

systematic methodology to partition a program into segments considering branch, loop and procedure call.

The compiler does not insert voltage scaling codes between segments but annotates the application program

with so-called power management hints (PMH) based on program structure and estimated worst-case per-

formance. A PMH conveys path-specific run-time information about a program’s progress to the operating

system. It is very low cost instrumentation that collects path-specific information for the operating system

about how the program is behaving relative to the worst-case performance. The operating system periodi-

cally invokes a power management point (PMP) to change the processor’s performance based on the timing

information from the power management hints. This collaborative approach has the advantage that the

lightweight hints can collect accurate timing information for the operating system without actually changing

performance. Further, the periodicity of performance/energy adaptation can be controlled independently of

power management hints to better balance the high overhead of adaptation.

We can also partition a program based on the workload type. For example, the required decoding time

for each frame in an MPEG decoder can be separated into two parts [10]: a frame-dependent (FD) part and a

frame-independent (FI) part. The FD part varies greatly according to the type of the incoming frame whereas

the FI part remains constant regardless of the frame type. The computational workload for an incoming
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frame’s FD part (WP
FD) can be predicted by using a frame-based history, i.e., maintaining a moving-average

of the frame-dependent time for each frame type. The frame-independent time is not predicted since it is

constant for a given video sequence (WFI). Because the total predicted workload is (WP
FD + WFI), given a

deadline D, the program starts with the cock speed fFD as follows:

fFD =
WP

FD + WFI

D
(1.2)

For the MPEG decoder, since the FD part (such as the IDCT and motion compensation steps) is executed

before the FI part (such as the frame dithering and frame display steps), the FD time prediction error is

recovered inside that frame itself, i.e., during the FI part, so that the decoding time of each frame can be

maintained satisfying the given frame rate. This is possible because the workload of the FI part is constant

for a given video stream and easily obtained after decoding the first frame. When a misprediction occurs

(which can be detected by comparing the predicted FD time (WP
FD) with the actual FD time (WA

FD)), an

appropriate action must be taken during the FI part to compensate for the misprediction.

If the actual FD time was smaller than the predicted value, there will be an idle interval before the

deadline. Hence, we can scale down the voltage level during the FI part’s processing. On the other hand,

if the actual FD time was larger than the predicted value, a corrective action must be taken to meet the

deadline. This is accomplished by scaling up the voltage and frequency during the FI part so as to make

up for the lost time. Since the elapsed time consumed during the FD part is WA
FD/fFD, the FI part should

start with the following cock speed fFI :

fFI =
WFI

D −
W A

F D

fF D

(1.3)

2.1.2 Path-based IntraDVS

At a specific program point, two kinds of slack times can be identified: backward slack and forward slack.

While the backward slack is generated from the early completion of the executed program segments, the

forward slack is generated when the change of remaining workload is estimated. Though the segment-based

IntraDVS utilizes the backward slack times, the path-based IntraDVS exploits the forward slack times based

on the program’s control flow.
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main() {

  S1;

  
if
 (
cond1
) S2;

  
else

      
while 
(
cond2
) {

          S3;

          
if 
(
cond3
) S4;

          S5;

      }


  
if 
(
cond4
) S6;

  
else 
S7;

  S8;

}


Maximum

number of loop

iterations = 3


(a)
 (b)


b
1

10 M cycles


b
2

10 M cycles


b
wh

10 M cycles


b
3

10 M cycles


b
4

10 M cycles


b
5

10 M cycles


b
if

10 M cycles


b
6

40 M cycles


b
7

15 M cycles


b
8

10 M cycles


Figure 1.1: An example program P : (a) an example real-time program with the 2 seconds deadline and (b)

its CFG representation GP .

Consider a hard real-time program P with the deadline of 2 seconds shown in Figure 1.1(a). The control

flow graph (CFG) GP of the program P is shown in Figure 1.1(b). In GP , each node represents a basic block

of P and each edge indicates the control dependency between basic blocks. The number within each node

indicates the number of execution cycles of the corresponding basic block. The back edge from b5 to bwh

models the while loop of the program P . The worst-case execution cycles of this program is 2× 108 cycles.

Path-based IntraDVS [45] adjusts the clock speed within the task depending on the control flow. For

example, when the program control flow follows the execution path π1 = (b1, b2, bif , b6, b8) of Figure 1.1(b),

the clock speed is initially determined to complete the worst-case execution path (WCEP) before the deadline,

i.e., 100 MHz. However, we can reduce the clock speed at the edge (b1, b2) because we know this control

flow does not follow the WCEP. In the path-based IntraDVS algorithm, we identify appropriate program

locations where the clock speed should be adjusted, and inserts clock and voltage scaling codes to the selected

program locations at compile time. The branching edges of the CFG, i.e., branch or loop statements, are the

candidate locations for inserting voltage scaling codes because the remaining execution cycles are changed

at those locations.

The path-based IntraDVS consists of two key steps: (1) one to predict the execution path of application

program at compile time and (2) the other to adjust the clock speed depending on the real execution path
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taken at run time. In the first step, using the predicted execution path, we calculate the remaining predicted

execution cycles (RPEC) δ(bi) at a basic block bi which is a branching node in GP as follows:

δ(bi) = c(bi) + P(δ(bj), δ(bk)) (1.4)

where c(bi) is the execution cycles for the basic block bi and P is the prediction function. The basic blocks

bj and bk are the immediate successor nodes of bi in the control flow graph. Depending on the prediction

method for execution path, the function P is determined. For example, if we take the WCEP as an execution

path to be taken at run time, P(α, β) will be equal to max(α, β). With the predicted value of δ(bi), we set

the initial clock frequency and its corresponding voltage assuming that the task execution will follow the

predicted execution path. We call the predicted execution path as the reference path because the clock speed

is determined based on the execution path.

For a loop, we use the following equation to predict the remaining execution cycles for the loop L:

δ(L) = c(HL) + (c(HL) + c(BL)) · Npred(L) + δ(postL) (1.5)

where c(HL) and c(BL) mean the execution cycles of the header and the body of the loop L, respectively.

Npred(L) is the predicted number of loop iterations and postL denotes the successor node of the loop, which

is executed just after the loop termination.

At run time, if the actual execution deviates from the (predicted) reference path (say, by a branch

instruction), the clock speed can be adjusted depending on the difference between the remaining execution

cycles of the reference path and that of the newly deviated execution path. If the new execution path takes

significantly longer to complete its execution than the reference execution path, the clock speed should be

raised to meet the deadline constraint. On the other hand, if the new execution path can finish its execution

earlier than the reference execution path, the clock speed can be lowered to save energy.

For run-time clock speed adjustment, voltage scaling codes are inserted into the selected program locations

at compile time. The branching edges of the CFG, i.e., branch or loop statements, are the candidate locations

for inserting voltage scaling codes. They are called Voltage Scaling Points (VSPs) because the clock speed

and voltage are adjusted at these points. There are two types of VSPs, the B-type VSP and L-type VSP. The

B-type VSP corresponds to a branch statement while the L-type VSP maps into a loop statement. VSPs can
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be also categorized into Up-VSPs or Down-VSPs, where the clock speed is raised or lowered, respectively.

At each VSP (bi, bj), the clock speed is determined using δ(bi) and δ(bj) as follows:

f(bj) =
δ(bj)

Tj

= f(bi) ·
δ(bj)

δ(bi) − c(bi)
= f(bi) · r(bi, bj) (1.6)

where f(bi) and f(bj) are the clock speeds at the basic blocks bi and bj, respectively. Tj is the remaining

time until the deadline from the basic block bj . r(bi, bj) is the speed update ratio of the edge (bi, bj).

For a loop, if the actual number of loop iterations is Nactual, the clock speed is changed after the loop as

follows:

f(postL) = f(preL) ·
max((c(HL) + c(BL)) · (Nactual(L) − Npred(L)), 0) + δ(postL)

max((c(HL) + c(BL)) · (Npred(L) − Nactual(L)), 0) + δ(postL)
(1.7)

where f(preL) is the clock speed before executing the loop L. If Nactual is larger (smaller) than Npred, the

clock speed is increased (decreased).

Although the WCEP-based IntraDVS reduces the energy consumption significantly while guaranteeing

the deadline, this is a pessimistic approach because it always predicts that the longest path will be executed.

If we use the average-case execution path (ACEP) as a reference path, a more efficient voltage schedule

can be generated. (The ACEP is an execution path that will be most likely to be executed.) To find the

average-case execution path, we should utilize the profile information on the program execution.

2.1.3 Other IntraDVS Techniques

Memory-aware IntraDVS utilizes the CPU idle times due to external memory stalls. While the compiler-

driven IntraDVS [19] identifies the program regions where the CPU is mostly idle due to memory stalls at

compile time, the event-driven IntraDVS [51, 11] uses several performance monitoring events to capture the

CPU idle time at run time. The memory-aware IntraDVS differs from the path-based IntraDVS in the type

of CPU slacks being exploited. While the path-based IntraDVS takes advantage of the difference between the

predicted execution path and the real execution path of applications, the memory-aware IntraDVS exploits

slacks from the memory stalls. The idea is to identify the program regions in which the CPU is mostly idle

due to memory stalls, and slow them down for energy reduction. If the system architecture supports the

overlapped execution of the CPU and memory operations, such a CPU slow-down will not result in a serious
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system performance degradation, hiding the slow CPU speed behind the memory hierarchy accesses which

are on the critical path. There are two kinds of approaches to identify the memory-bound regions: analyzing

a program at compile time and monitoring run-time hardware events.

The compiler-directed IntraDVS [19] partitions a program into multiple program regions. It assigns

different slow-down factors to different selected regions so as to maximize the overall energy savings without

violating the global performance penalty constraint. The application program is partitioned not to introduce

too much overhead due to switches between different voltages/frequencies. That is, the granularity of the

region needs to be large enough to compensate for the overhead of voltage and frequency adjustments.

Event-driven IntraDVS [51, 11] makes use of run-time information about the external memory access

statistics in order to perform CPU voltage and frequency scaling with the goal of minimizing the energy

consumption while controlling the performance penalty. The technique relies on dynamically-constructed

regression models that allow the CPU to calculate the expected workload and slack time for the next time

slot. This is achieved by estimating and exploiting the ratio of the total off-chip access time to the total

on-chip computation time. To capture the CPU idle time, several performance monitoring events (such as

ones collected by the performance monitoring unit (PMU) of the XScale processor) can be used. Using the

performance monitoring events, we can count the number of instructions being executed and the number of

external memory accesses at run time.

Stochastic IntraDVS uses the stochastic information on the program’s execution time [17, 31]. This

technique is motivated by the idea that, from the energy consumption perspective, it is usually better to

“start at low speed and accelerate execution later when needed” than to “start at high speed and reduce the

speed later when the slack time is found” in the program execution. It finds a speed schedule that minimizes

the expected energy consumption while still meeting the deadline. A task starts executing at a low speed

and then gradually accelerates its speed to meet the deadline. Since an execution of a task might not follow

the WCEP, it can happen that high speed regions are avoided.

Hybrid IntraDVS overcomes the main limitation of IntraDVS techniques described before, which is that

they have no global view of the task set in multi-task environments. Based on an observation that a coop-

eration between IntraDVS and InterDVS could result in more energy efficient systems, the hybrid IntraDVS
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technique selects either the intra mode or the inter mode when slack times are available during the execution

of a task [44]. At the inter mode, the slack time identified during the execution of a task is transferred to the

following other tasks. Therefore, the speed of the current task is not changed by the slack time produced by

itself. At the intra mode, the slack time is used for the current task, reducing its own execution speed.

2.2 Inter-Task Voltage Scaling

InterDVS algorithms exploit the “run-calculate-assignrun” strategy to determine the supply voltage, which

can be summarized as follows: (1) run a current task, (2) when the task is completed, calculate the maximum

allowable execution time for the next task, (3) assign the supply voltage for the next task, and (4) run the

next task. Most InterDVS algorithms differ during step (2) in computing the maximum allowed time for the

next task τ which is the sum of the worst-case execution time (WCET) of τ and the slack time available for

τ .

A generic InterDVS algorithm consists of two parts: slack estimation and slack distribution. The goal of

the slack estimation part is to identify as much slack times as possible while the goal of the slack distribution

part is to distribute the resulting slack times so that the resulting speed schedule is as uniform as possible.

Slack times generally come from two sources; static slack times are the extra times available for the next

task that can be identified statically, while dynamic slack times are caused from run-time variations of the

task executions.

2.2.1 Slack Estimation and Distribution Methods

One of the most commonly used static slack estimation methods is to compute the maximum constant speed,

which is defined as the lowest possible clock speed that guarantees the feasible schedule of a task set [46].

For example, in EDF scheduling, if the worst case processor utilization (WCPU) U of a given task set is

lower than 1.0 under the maximum speed fmax, the task set can be scheduled with a new maximum speed

f
′

max = U · fmax. Although more complicated, the maximum constant speed can be statically calculated as

well for RM scheduling [46, 17].

Three widely-used techniques of estimating dynamic slack times are briefly described below. Stretching-
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to-NTA is based on a slack between the deadline of the current task and the arrival time of the next task.

Even though a given task set is scheduled with the maximum constant speed, since the actual execution

times of tasks are usually much less than their WCETs, the tasks usually have dynamic slack times. One

simple method to estimate the dynamic slack time is to use the arrival time of the next task [46]. (The

arrival time of the next task is denoted by NTA.) Assume that the current task τ is scheduled at time t.

If NTA of τ is later than (t + WCET (τ)), task τ can be executed at a lower speed so that its execution

completes exactly at the NTA. When a single task τ is activated, the execution of τ can be stretched to NTA.

When multiple tasks are activated, there can be several alternatives in stretching options. For example, the

dynamic slack time may be given to a single task or distributed equally to all activated tasks.

Priority-based slack stealing exploits the basic properties of priority-driven scheduling such as RM and

EDF. The basic idea is that when a higher-priority task completes its execution earlier than its WCET,

the following lower-priority tasks can use the slack time from the completed higher-priority task. It is also

possible for a higher-priority task to utilize the slack times from completed lower-priority tasks. However,

the latter type of slack stealing is computationally expensive to implement precisely. Therefore, the existing

algorithms are based on heuristics [2, 27].

Utilization updating is based on a observation that the actual processor utilization during run time is

usually lower than the worst case processor utilization. The utilization updating technique estimates the

required processor performance at the current scheduling point by recalculating the expected worst case

processor utilization using the actual execution times of completed task instances [38]. When the processor

utilization is updated, the clock speed can be adjusted accordingly. The main merit of this method is its

simple implementation, since only the processor utilization of completed task instances have to be updated

at each scheduling point.

In distributing slack times, most InterDVS algorithms have adopted a greedy approach, where all the

slack times are given to the next activated task. This approach is not an optimal solution, but the greedy

approach is widely used because of its simplicity.
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2.2.2 Example InterDVS Algorithms

In this section, we briefly summarize some of the representative DVS algorithms proposed for hard real-time

systems. Here, eight InterDVS algorithms are chosen, two [38, 46] of which are based on the RM scheduling

policy, while the other six algorithms [38, 46, 2, 27] are based on the EDF scheduling policy.

In these selected DVS algorithms, one or sometimes more than one slack estimation methods explained

in the previous section were used. In lppsEDF and lppsRM which were proposed by Shin et al. in [46], slack

time of a task is estimated using the maximum constant speed and Stretching-to-NTA methods.

The ccRM algorithm proposed by Pillai et al. [38] is similar to lppsRM in the sense that it uses both

the maximum constant speed and the Stretching-to-NTA methods. However, while lppsRM can adjust the

voltage and clock speed only when a single task is active, ccRM extends the stretching to NTA method to

the case where multiple tasks are active.

Pillai et al. also proposed two other DVS algorithms [38], ccEDF and laEDF, for EDF scheduling policy.

These algorithms estimate slack time of a task using the utilization updating method. While ccEDF adjusts

the voltage and clock speed based on run-time variation in processor utilization alone, laEDF takes a more

aggressive approach by estimating the amount of work required to be completed before NTA.

DRA and AGR, which were proposed by Aydin et al. in [2], are two representative DVS algorithms

that are based on the priority-based slack stealing method. The DRA algorithm estimates the slack time

of a task using the prioritybased slack stealing method along with the maximum constant speed and the

Stretching-to-NTA methods. Aydin et al. also extended the DRA algorithm and proposed another DVS

algorithm called AGR for more aggressive slack estimation and voltage/clock scaling. In AGR, in addition to

the priority-based slack stealing, more slack times are identified by computing the amount of work required

to be completed before NTA.

lpSHE is another DVS algorithm which is based on the priority-based slack stealing method [27]. Unlike

DRA and AGR, lpSHE extends the priority-based slack stealing method by adding a procedure that estimates

the slack time from lower-priority tasks that were completed earlier than expected. DRA, AGR, and lpSHE

algorithms are somewhat similar to one another in the sense that all of them use the maximum constant speed

in the off-line phase and the Stretching-to-NTA method in the on-line phase in addition to the priority-based
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slack stealing method.

3 Dynamic Power Management

Dynamic power management (DPM) techniques selectively place system components into low-power states

when they are idle. A power managed system can be modeled as a power state machine, where each state is

characterized by the power consumption and the performance. In addition, state transitions have power and

delay cost. Usually, lower power consumption also implies lower performance and longer transition delay.

When a component is placed into a low-power state, such as a sleep state, it is unavailable for the time

period spent there, in addition to the transition time between the states. The transitions between states

are controlled by commands issued by a power manager (PM) that observes the workload of the system

and decides when and how to force power state transitions. The power manager makes state transition

decisions according to the power management policy. The choice of the policy that minimizes power under

performance constraints (or maximizes performance under power constraint) is a constrained optimization

problem.

The system model for power management therefore consists of three components: the user, the device

and the queue as shown in Figure 3. The user, or the application that accesses each device by sending

requests, can be modeled with a request interarrival time distribution. When one or more requests arrive,

the user is said to be in the active state, otherwise it is in the idle state. Figure 3 shows three different

power states for the device: active, idle and sleep. Often the device will have multiple active states, which

can be differentiated by the frequency and voltage of operation. Similarly, there can be multiple inactive

states - both idle, each potentially corresponding to a specific frequency of operation in the active state (e.g.,

XScale processor [23]) , and sleep states. Service time distribution describes the behavior of the device in

the active state. When the device is in either the idle or the sleep state, it does not service any requests.

Typically, the transition to the active state is shorter from the idle state, but the sleep state has lower power

consumption. The transition distribution models the time taken by the device to transition between its

power states. The queue models a buffer associated with each device. The combination of interarrival time

distribution (incoming requests to the buffer) and service time distribution (requests leaving the buffer) can
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Figure 1.2: System model.

be used to fully characterize the behavior of the queue.

Power manager’s job can consist of a number of tasks: (1) tracking and modeling of incoming service

requests with a goal of predicting when longer idle periods occur; (2) traffic shaping - buffering the traffic

so larger idle periods are created that enable the device to stay asleep for a longer time period; (3) deciding

when and to what sleep state a device should transition to; (4) making a decision as to when a device should

wake up to process requests. In this section we provide an overview of DPM policies that address various

combinations of these tasks.

3.1 Heuristic policies

Most commercial power management implementations focus only on deciding when a device should go to

sleep. The cost of transition between the active and the sleep state typically determines how aggressive a

policy can be. When the cost is reasonably low, or is at least not perceivable by the users, then policies

transition device to sleep as soon as it becomes idle. For example, µSleep has been introduced in [6] as a

way of reducing the idle power consumption of HP’s IPAQ platform. IBM’s wristwatch enters standby state

as soon as idle [25]. Intel’s QuickStart technology [22] puts a processor to sleep between the keystrokes. In
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all three cases the cost of waking up is not perceivable by the user. When the cost of transition to a low

power state is significant, then commercial implementations typically implement policies based on timeout.

For example, HP’s IPAQ uses a timeout value to decide when display should be dimmed. The timeout value

is usually either fixed at design time, or can be set by a user.

Timeout policies assume that if the incoming workload has an idle period that is longer than some timeout

value Tto, then there is a very high likelihood that the idle period will be long enough to justify going to

a sleep state. Therefore, the total length of the idle time needs to be longer than Tto + Tbe. The timeout

policies waste energy during the timeout period, as they keep a device in the active state until the timeout

expires. Therefore, shorter timeout values are better for saving energy while waiting to transition to sleep.

On the other hand, if the timeout value is too long, then there is a good chance that the rest of the idle

period is not long enough to amortize the cost of transition to sleep, so the overall cost is actually then

higher than it would have been if the device had not gone to sleep at all. A good example of this situation

is setting too short of a timeout on a hard drive. Typical hard drive can take up to a few seconds to spin up

from sleep. The spinning up process can cost more than twice the power consumption of the active state.

Thus, if the timeout value is only a few hundred milliseconds, chances are that a number of times just as the

hard drive spins down, it’ll have to immediately spin back up, thus causing large performance and energy

overhead. Therefore, the selection of the timeout value has to be done with a good understanding of both

device characteristics and the typical workloads. A study of hard drive traces is presented in [30]. One of

the major conclusions is that timeout values on the order of multiple seconds are appropriate for many hard

drives. This timeout value for hard disks can be shown to be within a factor of two of the optimal policy

using competitive ratio analysis [26].

Although most commercial implementations have a single fixed timeout value, a number of studies have

designed methods for adapting the timeout value to changes in the workloads (e.g., [13, 18, 28, 24]). Machine

learning techniques [18], along with models based on economic analysis [28, 24] have been employed as ways

to adapt the timeout value. In [42] adaptive policy learns the distribution of idle periods and based on that

it selects which sleep state is most appropriate. Competitive analysis is then used to show how close the

adaptive policy is to optimum. Adaptive timeout policies also suffer from wasting energy while waiting for
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the timeout to expire, but hopefully the amount of energy wasted is lower as the timeout value is more

closely fine tuned to the changes in the workload.

Predictive policies attempt to not only predict the length of the next idle period by studying the dis-

tribution of request arrivals , but also try to do so with enough accuracy to be able to transition a device

into a sleep state with no idleness. In addition, some predictive policies also wake up a device from the

sleep state in anticipation of service request arrival. When prediction of timing and the length of the idle

period is correct, then predictive policies provide a solution with no overhead. On the other hand, if the

prediction is wrong, then potential cost can be quite large. If a power manager transitions a device to sleep

expecting a long idle period, but the idle period is actually short, the overall cost in terms of both energy

and performance can be quite large. On the other hand, if the manager predicts an idle period that is

short, then it’ll wake up a device before it is needed and thus waste energy the same way standard timeout

policies do. The quality of idle period prediction is the keystone of these policies. A study on prediction of

idleness in hard drives is presented in [16]. Policies based on study of idle period prediction are presented in

both [16] and [50]. Two policies are introduced in [50]: the first one is based on a regression model of idle

periods, while the second one is based on the analysis of a length of a previous busy period. Exponential

averaging is used to predict the idle period length in [20]. Analysis of user interface interactions is used

to guide a decision on when to wake up a given component [54]. In multi core designs a signal has been

proposed that can be used to notify the system components of impeding request arrival and of instances

when no more requests are expected [49]. These signals enable both predictive wakeup and predictive sleep.

Both timeout and predictive policies have one thing in common - they are heuristic. None of these policies

can guarantee optimality. In contrast, policies that use stochastic models to formulate and solve the power

management problem can provide optimal solutions within restrictive assumption made when developing the

system model.

3.2 Stochastic Policies

Stochastic policies can loosely be categorized into time and event-driven, and based on assumption that all

distributions modeling the system are memoryless (e.g., geometric and exponential distribution) or that some
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Figure 1.3: WLAN idle state arrival tail distribution.

distributions are history dependent. Power management policies can be classified into two categories by the

manner in which decisions are made: discrete time (or clock based) and event driven. In addition, policies

can be stationary (the same policy applies at any point in time) or non-stationary (the policy changes over

time). In both discrete and event-driven approaches optimality of the algorithm can be guaranteed since the

underlying theoretical model is based on Markov chains. An overview of stochastic DPM policies follows.

Benini et al. [4] formulated a probabilistic system model using stationary discrete-time Markov decision

processes (DTMDP). They rigorously formulate the policy optimization problem and showed that it can be

solved exactly and in polynomial time in the size of the system model. The DTMDP approach requires

that all state transitions follow stationary geometric distributions, which is not true in many practical cases.

Non-stationary user request rates can be treated using an adaptive policy interpolation procedure presented

in [12]. A limitation of both stationary and adaptive DTMDP policies is that decision evaluation is repeated

periodically, even when the system is idle, thus wasting power. For example, for a 10 W processor, the

DTMDP policy with evaluation period of 1s would waste as much as 1800 J of energy from the battery during

a 30min break. The advantage of the discrete time approach is that decisions are re-evaluated periodically so

the decision can be reconsidered thus adapting better to arrivals that are not truly geometrically distributed.

An alternative to the DTMDP model is a continuous-time Markov decision process (CTMDP) model

[40]. In a CTMDP, the power manager (PM) issues commands upon event occurrences instead of at discrete

time settings. As a result, more energy can be saved since there is no need to continually re-evaluate the

policy in the low power state. Results are guaranteed optimal assuming that the exponential distribution

describes well the system behavior. Unfortunately, in many practical cases the transition times may be
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distributed according to a more general distribution. Figure 1.3 shows a tail distribution of wireless LAN

(WLAN) service request interarrival times. The plot highlights that for longer idle times of interest to power

management, the exponential distribution shows a very poor fit, while a heavy tailed distribution, such as

Pareto, is a much better fit to the data. As a result, in real implementation the results can be far from

optimal [48]. Work presented in [39] uses series and parallel combinations of exponential distributions to

approximate general distribution of transition times. Unfortunately, this approach is very complex and does

not give a good approximation for the bursty behavior observed in real systems [48, 37].

Time-Indexed Semi-Markov Decision Process (TISMDP) model has been introduced to solve the DPM

optimization problem without the restrictive assumption of memoryless distribution for system transitions

[48]. The power management policy optimization is solved exactly and in polynomial time with guaranteed

optimal results. Large savings are measured with TISMDP model as it handles general user request interar-

rival distributions and make decisions in the event-driven manner. The resulting DPM policy is event driven

and can be implemented as a randomized timeout. The value of randomization depends on the parameters of

the policy derived from TISMDP optimization. The policy itself is in to form of a distribution that provides

the probability of transitioning into a sleep state for every timeout value. Renewal theory has been used

in [49] for joint optimization of both DPM and DVS on multi core systems-on-a-chip. As in TISMDP, the

renewal model allows for modeling a general transition distribution. Probabilistic model checking has been

employed to verify the correctness of stochastic policies [47]. Although both TISMDP and renewal models

limit the restriction of only memoryless distributions, they do require that all transitions be statistically

independent and stationary. An approach presented in [24] removes the stationary assumption by learning

the interarrival distribution online. Although this approach does not guarantee optimality, the quality of

estimation has been evaluated using competitive analysis.

3.3 OS and cross-layer DPM

Most power management policies are implemented as a part of an operating system. Intel, Microsoft and

Toshiba created an Advanced Configuration and Power Interface specification (ACPI) that can be used to

implement power management policies in Windows OS [21]. ACPI gives only a structure for implementing



4 CONCLUSIONS 20

DPM, but does not actually provide any policies beyond simple timeouts for specific devices. In contrast,

NemesisOS and ECOSystem both use pricing mechanisms to efficiently allocate system’s hardware resources

based on energy consumption. Both of these approaches use high level approximations for energy cost of

access to any given hardware resource, thus incurring significant inaccuracies. Their implementation for

a different system requires that both kernel and the hardware specific functions be changed. Another OS

level approach is to compute an equivalent utilization for each hardware component and then to transition

a device to sleep when its utilization falls below a predefined threshold [32]. A few energy-aware software

implementations integrate information available at multiple system layers to be able to manage energy more

efficiently [15, 52].

All DPM policies discussed thus far do no perform any traffic reshaping of the incoming workload. Thus

their primary goal is to evaluate for a given idle period if a device should transition to sleep. Various

buffering mechanisms have been suggested by a number of researchers as a way to enhance the availability of

longer idle periods suitable for power management. Buffering for streaming multimedia applications has be

proposed as a methodology to lower the energy consumption in wireless network interface cards [5]. Similar

techniques have been used to help increase the idle times available for spinning down the hard disk power

[36]. A general buffer management methodology based on the idea of inventory control has been proposed

in [8]. An advantage of this approach is that it can be applied to multiple devices in a single system. When

combined with OS level scheduling, the adaptive workload buffering can be used for both power management

and voltage scaling. Shorter idle times created by adaptive buffering can be used to slow down a device,

while the longer ones are more appropriate for transitions to sleep.

4 Conclusions

We have described two representative system-level power-aware resource management approaches for low-

power embedded systems. DVS techniques take advantage of workload variations within a single task execu-

tion as well as workload fluctuations from running multiple tasks, and adjust the supply voltage, reducing the

energy consumption of embedded systems. DPM techniques identify idle system components using various

heuristics and place the identified components into low-power states. We reviewed the key steps of these
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techniques.

In this chapter, we reviewed DVS and DPM as an independent approach. Since both approaches are

based on the system idleness, DVS and DPM can be combined into a single power management framework.

For example, shorter idle periods are more amiable to DVS, while longer ones are more appropriate for DPM.

Thus, a combination of the two approaches is necessary for more power-efficient embedded systems.
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