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Abstract—RRAM based accelerators have been widely adopted in many neuromorphic designs. However, RRAM cells are 
sensitive to temperature, which changes RRAM’s conductance. Such heat-induced interference can significantly decrease the computational accuracy because values are functions of RRAM 
conductance. In this paper, we propose HR3 AM, a heat resilience design, which improves accuracy and optimizes the thermal dis
tribution of RRAM based neural network accelerators. HR3 AM consists of two key mechanisms: bitwidth downgrading and tile pairing. Bitwidth downgrading re-represents weights by shifting the conductance to improve the network inference accuracy. Tile pairing matches hot crossbar units with pre-defined idle units to 
mitigate high-temperature issues. We evaluated HR3 AM on four 
real world neural network models. Results show that HR3 AM improves classification accuracy by up to 41.8% compared with current state-of-the-art designs. For thermal optimization, 
HR3AM effectively decreases the maximum temperature by 6.2K  and average temperature by 6K.

I . I n t r o d u c t io n

Neuromorphic computing has attracted increasing attentions 
today because the applicable scenarios of the neural network 
continue to expand. Convolutional neural networks (CNNs) are 
widely adopted because of their high prediction accuracy. As 
network sizes grow, general-purpose hardware platforms, such 
as CPU and GPU, are insufficient for delivering decent per
formance and power-efficiency for neuromorphic computing 
applications. There have been a wide variety of neuromorphic 
computing accelerators, which utilize fast and power-efficient 
emerging technology to accelerate large-scale CNNs.

Resistive RAM (RRAM), or memristor, have been widely 
investigated to serve as a CNN accelerator [16]. RRAM 
can form a crossbar array to perform matrix multiplication 
by exploiting analog characteristics of RRAM cells. Matrix 
multiplications are the majority of operations in convolution. 
Optimizing matrix multiplications is essential to improving the 
performance of CNN. In a RRAM based CNN accelerator, 
weights of the matrix are programmed into the conductance 
of each RRAM cell in each crossbar. The input data is 
converted to analog signals and transferred to crossbar bit
lines. The output data is generated and converted to digital 
signals on wordlines. Matrix multiplication achieves higher 
speed and parallelism on RRAM crossbars than conventional 
hardware [8]. RRAM crossbars also have cost and energy 
efficiency advantages [16].

However, the thermal issue of RRAM crossbars potentially 
reduces the inference accuracy of neural networks. Prior 
work discovered RRAM conductance is sensitive to temper
ature [18]. RRAM ON state conductance (Gon) and OFF 
state conductance (Goff) varies as the temperature changes.
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The conductance range [Goff,Gon] sharply declines on the 
hot cells. This variation drastically decreases weight precision 
when it is represented in the form of conductance. When the 
chip continuously operates, the accumulated heat affects more 
RRAM cells. This causes many weights to be misrepresented 
during inference. Eventually, neural networks suffer from loss 
of accuracy. Our experiments show that the accuracy loss at 
high temperature can be as high as 90%.

A few research paid attention to the problem. Most existing 
works focus on handling device defects and variations in 
RRAM crossbars [5], [12], [13]. However, because these 
schemes are based on permanent errors from process vari
ation, they do not dynamically adjust to the defected cells. 
Temperature aware row adjustment (TARA) [4] proposed a 
heat resilient design but suffers from several major drawbacks. 
TARA still needs to be aware of the exact weights and 
adjusts row order based on each weight’s magnitude, which 
is not scalable with large scale networks. Besides, TARA 
provides no optimization over thermal issue. As network size 
expands, the thermal issue gets worse and row adjustment 
becomes less effective. In this paper, we introduce a novel 
heat resilient design HR3 AM for the RRAM crossbar. HR3 AM 
solves the issue from two aspects: adapting weights to the 
reduced conductance and optimizing chip thermal distribution. 
Therefore we correspondingly propose two mechanisms in 
HR3 AM from these two aspects. The first mechanism bitwidth 
downgrading aims to improve accuracy. It adapts weights to 
the decreased conductance range by reducing bitwidth per 
RRAM cell. The second mechanism tile pairing aims to tackle 
the thermal issue. It optimizes the chip thermal status by 
matching hot spot tiles with idle tiles. The contributions of 
this paper include:

.  We evaluate the impact of heat on the inference accuracy 
of several large scale neural networks. Our results show 
the inference accuracy of several distinguished CNNs 
drop to less than 10% of theoretical accuracy.

• We propose HR3AM, which contains two mechanisms: 
bitwidth downgrading and tile pairing to improve infer
ence accuracy and tackle the thermal issue, respectively. 
Bitwidth downgrading increases the accuracy of weights 
represented in conductance. Tile pairing releases the heat 
on hot spot tiles.

• We evaluated HR3 AM with four state-of-the-art CNN 
models. The results show our design guarantees 87.8% 
of the theoretical inference accuracy. Our design also 
shows a 6.2K decrease on maximum temperature and a 
6K decrease on average temperature for the entire chip.
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Fig. 1. The structure of HMC RRAM.
II. RRAM CNN A c c e l e r a t o r

A. Architectural Overview
This work explores the RRAM CNN accelerator based on 

Micro’s Hybrid Memory Cube (HMC) [10], [16]. As Figure 1 
shows, the RRAM HMC structure contains multiple layers 
of embedded DRAM (eDRAM) and a single logical layer 
at bottom. The logic layer contains multiple tiles which are 
basic computation units for handling CNN operations. Each 
tile consists of multiple multiply accumulators (MACs), each 
of which contains multiple RRAM crossbars for matrix multi
plications. Tiles also include memory for synaptic weights, 
caches and buffers for input and output data, a max pool 
unit and a sigmoid unit [16]. The logic layer accesses DRAM 
layers with Through-Silicon-Vias (TSVs). Each eDRAM layer 
is divided into multiple vaults; each vault can independently 
process memory accesses. Each vault has a router on the logic 
die for data transitions between eDRAM and tiles.

In each MAC, RRAMs form a crossbar structure. As 
Figure 5 shows, a memristor connects with a bitline and a 
wordline. Each memristor has a conductance g(J-, where i 
represents the bitline index and j  represents the wordline 
index. According to Kirchoff’s Law, the crossbar is able 
to perform Vo = V j  * G * R S, where G is the conductance 
matrix, Vo and V/ are output/input voltage respectively. To 
compute matrix multiplications in CNN, the weight matrix is 
programmed into memristors and represents G. Input data is 
converted by digital to an analog convertor (DAC) and feed 
into a crossbar as Vj. Lastly, the wordline currents are held 
by a sample-and-hold (S&H) circuit, they are fed to ADC and 
the output is in the form of Vo-
B. Neural Network Data Mapping on RRAM crossbar

The neural network consists of various types of layers. Most 
of layers in a deep neural networks are convolutional layers 
(e.g. 13 out of 16 in VGG16), which conduct a large number 
of matrix multiplications. Utilizing RRAM crossbar through 
matrix multiplications in the neural network can increase 
parallelism and decrease latency. Encoding a weight value into 
the RRAM crossbar requires conversion between the value and 
the cell conductance, which follows the formula [8], where 
a  = l maxZ lmin w d p  = Gmax- a * w max:

Wmax yymin

G = a * W  + J3 (1)
a  linearly scales weights to match range of conductance and 
J3 adds the offset to remove negative values in weights. The 
precision of weights is limited by the bitwidth of RRAM cells. 
Single cell only achieves at most seven bits accuracy [3]. To 
achieve higher precision, each weight can be programmed into 
multiple RRAM cells [16].

Each layer of the neural network is serialized. Therefore we 
can only perform parallel operations within the single neural 
network layer. Each layer of the neural network should be 
mapped to a group of RRAM tiles [16]. Because tiles belong
ing to the different layers are independent, layers can form 
a pipeline to achieve better throughput [16]. The pipelined 
RRAM crossbar chip processes multiple inputs concurrently 
with different layers.
C. Thermal Issues in RRAM Accelerator

RRAM cells originally obtain ON and OFF states. Each 
RRAM cell can represent multiple bits by setting an inter
mediate state that has the conductance between ON and OFF 
states [8]. Each status has its unique conductance range that 
does not overlap with others. However, temperature changes 
has a significant impact on the RRAM conductance between 
OFF and ON states [10]. Increased temperature leads to a 
narrower range of conductance.

Fig. 2. Temperature impact on (a) RRAM cell conductance and (b) CNN 
applications relative inference accuracy.

Figure 2(a) depicts this effect on OFF and ON conductance 
{Goff and Gon)- The ON state has a weak metallic-like 
characteristic [10] such that Gon significantly drops as the 
temperature rises. While Goff increases with temperature 
because of increased current [10]. The conductance range 
\Goff,Gon] drops by 50% when the temperature rises from 
300K to 400K. The conductance range starts to drop sharply 
after 330K, which is a common operational temperature for 
many chips. We observe the asymmetry of conductance vari
ation: Gon drops rapidly while the Goff increases slowly.

The shifting conductance leads to weight misrepresentation 
of the neural network. The weight conversion (Equation 1) 
between weights and RRAM conductance is based on ideal 
condition at room temperature. When the temperature changes, 
certain weight values fall into unavailable conductance range, 
the weight conversion maps these weight values to the nearest 
available conductance. These weight values are misrepresented 
and share conductance with others. We modeled the effect 
and tested on several large scale neural networks [7], [17]. 
Figure 2(b) shows the relative reference accuracy of four 
neural networks under 300K to 400K. To get relative accuracy, 
we normalize the ReRAM generated accuracy to the software 
generated accuracy. We assume entire chip is effected by 
the same temperature. The accuracy drops as the tempera
ture raises. Despite minor variance between different network 
models, the inference accuracy of all experiments eventually 
drop below 10% at 400K.

When pipelining multiple CNN applications, each applica
tion runs in different layers during runtime. Because different 
CNN layers have various sizes, the amount of data and 
matrix multiplication operations conducted by different neural
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Fig. 3. Temperature distribution of a single RRAM chip when running 
VGG16, InceptionV3 and ResNet50.
network layers varies. When each layer is bonded to certain 
groups of tiles on the chip, power consumption varies between 
tiles and dynamically change with time, which may cause a 
non-uniform thermal distribution on RRAM chip. We generate 
the steady state temperature distributions of entire RRAM chip 
with three CNN models (VGG16, InceptioriV3, ResNet50) 
conducting inference for 10000 ImageNet [15] figures. As 
Figure 3 shows, the temperature difference can be as high 
as 17.16K. The distribution also shows several distinctive hot 
spots. Design-time mechanisms are not sufficient to solve such 
dynamic issues. Furthermore, identifying hot spot tiles and 
mitigating heat on hot spot tiles could optimize the thermal 
status. In the next section, we propose two mechanisms, one 
can dynamically mitigate the negative impact of overheating, 
and the other can reduce hotspots on the RRAM chip.

III. HR3 A M  D e s ig n
A. HR3AM Overview

Fig. 4. Overview of HR3AM structure.
To handle thermal issue imposed inference accuracy loss, 

we propose HR3 AM, a heat resilient design for RRAM based 
CNN accelerators. Figure 4 shows an overview of HR3 AM. 
When running CNN applications, HR3 AM monitors the dy
namic thermal distribution of the RRAM chip. We adopt 
the temperature sensor design in commercial processors [14], 
which provides temperature detection of each crossbar unit. 
HR3AM provides two heat resilient methods, heat-resilient 
weight adjustment and dynamic thermal management, to op
timize inference accuracy and temperature distribution re
spectively. For heat-resilient weight adjustment, we introduce 
a mechanism, called bitwidth downgrading, to dynamically 
change the bitwidth of RRAM cells. Downgrading bitwidth 
of hot RRAM cells would trade the precision of influenced 
weights for mis-representation of weights caused by conduc
tance range reduction. For dynamic thermal management, we 
propose the tile pairing to move a portion of operations in hot 
tiles to pre-allocated idle tiles. Hence, the power consumption 
of hot tiles would be reduced to release heat. The following 
of this section discusses details of these two methods.
B. Heat-resilient Weight Adjustment
Bitwidth Downgrading. As we discussed in Section II-C, 
the major cause of accuracy decline is the conductance range 
drop when temperature rises. Our evaluation shows CNN

| Additional components Threshold temp

Fig. 5. Bitwidth downgrading hardware in the crossbar array.

applications have 0.9% inference accuracy loss on average 
for every IK increase on temperature. To accommodate the 
shifting conductance range, we modify ]3 and a  of Equation 1. 
Based on the observation that G o f f  changes much less than 
Gon, we can get Gq£f «  GqFF. When temperature rises, the 
new formula can be calculated with a new coefficient y:

Gnew = Y * (a * W  + P ) (2)
where y «  However, the RRAM conductance range,
which is divicfed into multiple levels to represent all the bits 
states, are non-adjustable. The conductance shrinkage causes 
the weight value mapped to a high conductance to be mis
represented as a lower conductance. Instead of directly using 
these misrepresented values, we propose to downgrade the 
bitwidth such that converted weight can be properly mapped 
into available conductance range. Bitwidth downgrading acts 
as yin Equation 2. When both weight W and parameter /3 shift 
right N  bits, the mechanism changes the conversion equation 
to: Gnew = 1 /2n * (a*W  +  /3), where N  represents the number 
of shifted bits.

Our design also accommodates the multiplication result 
produced by adjusting weights to ensure output correctness. 
We directly shift N  bits back on the result using existing 
shift-and-add units. The new formula for output voltage when 
the bitwidth downgrading effects is as follow: Vo = V j  * 
Gnew *Rs* 2N = (V f *Rs * G0id/2N) * 2n . The disadvantage 
of this mechanism is the loss of weight accuracy. However, 
bitwidth downgrading uniformly and linearly changes weights. 
Therefore the ratios between different synapses’ weights are 
unchanged such that calculations using bitwidth downgrading 
provide better accuracy than those using misrepresented val
ues. As we show in Section IV, bitwidth downgrading causes 
much less inference accuracy loss than that of temperature 
induced conductance changes.
Hardware Support. Figure 5 presents the hardware design 
for bitwidth downgrading. We add a temperature register, a 
comparator, a downgrade bit for each crossbar array and a 
control circuit. The temperature register stores the most recent 
sensed temperature of the crossbar array. The comparator 
checks if the current temperature of the crossbar array exceeds 
the threshold. The control signal from comparator updates the 
downgrade bit to notify the crossbar to conduct bitwdith down
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grading. The weight encoding hardware reprograms weights to 
the crossbar cells. We slightly modify weight encoding logic 
such that the weights shift N  bits left before encoding when 
the downgrade bit is set. Therefore the encoded conductance 
is ^7 of the original. The adjustment on the output only 
requires minor modification on the shift-and-add unit. The 
control signal from the downgrade bit forces the shift-and-add 
unit to shift N  bits right, such that the final result expands 2N 
times and matches with the output of no bitwidth downgrading. 
The implementation cost consists of a temperature register, 
a comparator, a downgrade bit and its control logic, and 
modification to the encoding logic to support bit shifting for 
each crossbar array. These are either small size storage or 
simple logic circuits.

Start matrix multiplication

n  i_____

Forward result to tile

Fig. 6. Bitwidth downgrading operation flowchart.

Bitwidth downgrading procedure. Figure 6 presents the 
flowchart of the bitwidth downgrading mechanism on a cross
bar array. At step 0 ,  the comparator updates the downgrade 
bit based on the current temperature. Step 0  checks if the 
status of the downgrade bit changes, if it is unchanged the 
crossbar array directly starts multiplication by going to step 
© , while a true state leads to step ^  (bitwidth down- 
grading/restoration). There are two cases in step When 
the downgrade bit makes 0 —> 1 change, the crossbar array 
recomputes conductance with N  bit shifted weights and encode 
them to RRAM cells. When the bit makes 1 —»0 change, the 
crossbar array conducts weight restoration: it loads original 
weights and encodes them to RRAM cells. Step ©  conducts 
matrix multiplication within the crossbar. Step 0  checks the 
downgrade bit. A true state leads to step 0, the crossbar array 
shifts N  bits back on the output using the shift-and-add unit. 
The final result is forwarded to tile buffer.

The bitwidth downgrading mechanism only effects inside 
the crossbar array. It requires neither the coordination between 
the crossbar array and the MAC, nor the coordination be
tween bitwidth downgraded crossbar arrays. The downgraded 
weights are generated temporarily and avoid overwriting the 
original copy. We only shift one bit to match the shifted 
conductance in the worst case (400K) as we observed in 
Section II-C. Therefore, we set N=1 across the entire design. 
We choose the temperature threshold of 330K because we 
observe a significantly increased accuracy decline rate after 
330K on Figure 2.

C. Dynamic Thermal Management
Tile Pairing. As we demonstrate in Section II-C, thermal 
distribution is not uniform on the RRAM chip. Temporally 
reducing power consumption on the hot spot tiles may im
prove the thermal status. However, conventional power saving 
techniques such as decreasing frequency requires complicated 
design and significantly decreases performance. Therefore, 
we propose a novel approach — tile pairing to match an 
overheated tile with an idle tile, while both paired tiles are 
working at low power mode. In the low power mode, every 
other row in one crossbar array is activated, such that only 
half of the cells on a crossbar array are functioning. Based 
on [16], a low power mode tile only consumes 61.8% of the 
power of a full power mode tile. We pair overheated units at 
the tile level. Because pairing at a finer granularity (MAC or 
crossbar array) leads to overhead for tracking paired units.

We identify an overheated tile and a cooled-down tile with 
collected temperature statistics. When 80% of the crossbar 
arrays within an unpaired tile reach the threshold, we identify 
the tile as overheated. When the percentage of the overheated 
crossbar arrays in a paired tile drops below 40%, we identify 
the tile as cooled-down. A cooled-down tile unpairs with its 
paired tile. The paired tile resumes as an idle tile.

V1 V2N V2N+f

V0
Fig. 7. Tile pairing (a) mechanism and (b) control logic.

Figure 7(a) demonstrates the paring mechanism. When an 
overheated tile pairs with an idle tile, the hot tile is the master 
tile and the idle tile is the slave tile. Every crossbar array in the 
master tile pairs with a crossbar array with same index in the 
slave tile. Both master and slave tiles use half of their cells to 
produce the result. Two crossbar arrays use the same weights 
G and same input Vj. The master tile array uses even-index 
columns and the master tile array uses odd-index columns. 
The master tile array produces output Vq = {vo,V2...V2w} and 
the slave tile array produces output Vq = {vi,V3...V2at+i }. The 
final result is the union of the two outputs:Vb =  Vq T\Vq, which 
is constant with result generated from an unpaired crossbar.

To scatter a matrix multiplication to two tiles, we rearrange 
the data placement between master and slave tiles. During 
pairing, the controller transfers the weight matrix from weight 
memory of the master tile to the slave tile’s. During multipli
cation, the master and the slave tile share the input data. The 
data stored in eDRAM vaults are transferred through routers. 
After calculation, master tile combines outputs of two tiles.
Hardware Support. As Figure 7(b) shows, we put additional 
control logic for each RRAM crossbar to support the low 
power mode. We add a paring bit and a master/salve bit to 
indicate the status of the tile. The crossbar array acts as normal 
when the pairing bit is disabled. When the pairing bit is set, 
the hot tile is set as master with master/slave bit. The idle
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Fig. 8. Inference accuracy of four neural network models.
unit is set as the slave with the same bit. On the master tile, 
the control logic only enables 2N index columns, S&Hs and 
ADCs are disabled accordingly as well. The slave tile only 
enables 2N+  1 index columns.

State-of-the-art RRAM architecture [16] does not support 
dynamic scheduling of tiles. When the pipeline design al
locates all the tiles to all the layers, certain tiles are idle 
during inference but are still bonded to a network layer. 
Therefore, we reserve several tiles as idle tiles and keep them 
from being assigned to any network layer. The reserved tiles 
potentially hurt chip performance due to loss of parallelism. 
Our performance overhead evaluation in Section IV-D shows 
throughput decreases only 2.1% on average.

IV. E v a l u a t io n
A. Methodology

Our RRAM chip setup is based on a state-of-the-art archi
tecture [16]. Our chip consists of four layers of eDRAM and 
an RRAM layer. The chip operates at 1.2GHz. We build our 
own RRAM based neural network accelerator simulator. Our 
simulator models the RRAM conductance variation between 
300K to 400K based on [18]. The simulator updates conduc
tance according to the temperature per 100ms at the crossbar 
array granularity. Our simulator obtains chip temperatures 
dynamically from HotSpot [9]. The thermal characteristics of 
the HMC architecture is obtained from previous work [2]. Our 
thermal simulation uses a single RRAM cycle (100ns) as the 
time step as described in Section III-A.

Our simulator coordinates with the Tensorflow frame
work [1] such that it evaluates any Tensorflow based model on 
RRAM crossbars. We evaluate our design with a small scale 
two-layer neural network for MNIST handwritten classifica
tion [11] and large scale neural networks (VGG16, ResNet50, 
and InceptionV3) for ImageNet [6] classification. We use a 
set of 60000 cases for training and 10000 cases for inference 
in MNIST. For ImageNet classification networks, we use pre
trained weights for convenience. We use 10000 pictures for 
inference from Large Scale Visual Recognition Challenge [15]. 
We evaluate the inference accuracy with top-five prediction 
results. We compare our design with two other baselines:

• No heat resilience (Base) implements a plain RRAM 
chip without any heat resilient design.• Temperature-Aware Row Adjustment (TARA) imple
ments prior work [4] proposed scheme.

• HR3AM implements the both proposed bitwidth down
grading and tile pairing mechanisms.

B. Inference accuracy
Figure 8 shows the inference accuracy of four neural net

work models under various ambient temperatures. We scale 
the ambient temperature from room temperature 300K to 
360K, where RRAM chip is significantly affected by the poor 
heat dissipation. We observe several findings from the results. 
First, our design is resistant to the heat-induced temperature 
increase. HR3AM-BP and HR3AM manage to respectively 
obtain at least 83.5% and 87.8% relative accuracy among 
all the cases. Second, HR3AM has relatively stable accuracy. 
TARA’s accuracy drops by 40.05% on average when the 
ambient temperature raises 60K. At the same time, the infer
ence accuracy of HR3AM-BP only drops 7.77%, and that of 
HR3AM only drops 4.82%. Third, networks with larger scale 
and more layers obtain more benefits from HR3 AM. VGG16, 
ResNet50, and InceptionV3 have a larger improvement from 
other baselines to our schemes than MNIST. The thermal issue 
is worse on these networks. These networks have complex 
structures and process large input images, which lead to 
intensive data movement between tiles and eDRAM and high 
power consumption. HR3 AM provides further accuracy and 
thermal optimization for these cases. Overall, we manage to 
improve inference accuracy by 4.8%-58% over the Base and 
4.3%—41.8% over TARA.
C. Thermal status

Fig. 9. Comparison of thermal distributions of a RRAM chip when running 
three networks.

Our schemes include:
• HR3 AM with Bitwidth Downgrading (HR3AM-BD) 

only implements proposed bitwidth downgrading.
We present the results of thermal status with three net

work models: VGG16, ResNet50, and InceptionV3. Because 
TARA [4] does not optimize thermal status, we only compare
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Fig. 10. Comparison of maximum and average temperatures of RRAM 
chip when running three networks. The x-axis represents the temperature 
measurement time in milliseconds.
our design with the Base which has no thermal optimization. 
We reserve 10% tiles as idle tiles for HR3AM.

Figure 9 presents the comparison between HR3 AM and 
the Base on steady-state thermal distribution. We have three 
observations. First, our design significantly reduces the hot 
spot region. This indicates that our design manages to identify 
overheated tiles and mitigate heat for these tiles. Second, idle 
tiles help mitigate heat and stay at a relatively low temperature. 
However, these idle tiles form a cold spot. We can further 
optimize our design by wisely distributing idle tiles across 
the chip. Lastly, the released heat on hot tiles also benefits 
the inference accuracy. HR3 AM has a smaller percentage of 
crossbar arrays that triggers bitwidth downgrading than that of 
the Base, such that it brings a 2% improvement in inference 
accuracy compared to HR3AM-BP.

To show the effectiveness of HR3 AM during chip operation, 
we measure the maximum and average temperature every 
10ms across all the crossbar arrays of the chip. We measure a 
total of 100ms time during steady operational state. Figure 10 
shows the maximum and average temperatures during this 
time. Our design limits the maximum temperature below 336K 
and average temperature below 327K. HR3 AM manages to 
contribute a 6.2K decrease on maximum temperature and a 
6K decrease on average temperature.
D. Performance and energy

Fig. 11. Normalized (a) throughput and (b) power consumption on HR3AM.
We adopt the performance and power model from [16] to 

estimate HR3 AM. We normalize the results of each network 
running on HR3 AM to the same network running on the Base. 
Figure 11(a) shows the 2.1% loss on normalized throughput. 
Both weight encoding in bitwidth downgrading and reserving 
idle tiles in tile pairing cause the performance downgrading. 
The weight encoding process typically delays the multipli
cation. However, it only happens when the downgrade bit 
changes. In tile pairing, HR3 AM reserves 10% of the tiles and

therefore loses computational parallelism. However, because 
these tiles work under the low power mode, Figure 11(b) 
shows a 7.7% average decrease on the normalized power.

V. C o n c l u s io n
In this work, we investigate how heat impacts inference 

accuracy of RRAM based accelerator. Our evaluation shows 
network inference accuracy drops significantly when the tem
perature increases. We propose HR3 AM, a heat resilient design 
for RRAM based neural network accelerators. HR3 AM con
sists two mechanisms: bitwidth downgrading and tile pairing. 
Bitwidth downgrading adjusts weights to the reduced RRAM 
conductance. Tile pairing matches hot spot RRAM tiles with 
idle tiles. Compared to state-of-the-art prior work, HR3AM 
achieves an accuracy improvement by up to 41.8% on four real 
world applications of CNN models. Our thermal evaluation 
shows a 6.2K decrease on the maximum temperature and a 
6K decrease on average temperature.
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