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Abstract—Recent years have witnessed a significant increase
in deploying lightweight machine learning (ML) on embedded
systems. The list of applications range from self-driving vehicles
to smart environmental monitoring. However, the performance of
ML models after the deployment degrades because of potential
drifting of the device or the environment. In this paper, we
propose Self-Train, a self-supervised on-device training method
for ML models to adapt to post-deployment drifting without
labels. Self-Train employs offline contrastive feature learning and
online drift detection with self-supervised adaptation. Experi-
ments on images and real-world sensor datasets demonstrate
consistent accuracy improvements over state-of-the-art online
unsupervised methods with 2.45x at maximum, while maintaining
lower execution time with a maximum of 32.7x speedup.

Index Terms—Self-Supervised Learning, On-Device Adapta-
tion, Lightweight Training

I. INTRODUCTION

In recent years, the number of Internet-of-Things deploy-
ments has been increasing exponentially with an expectation
of 26.4 billion connections by 2026 [1]. The latest advances
of lightweight Machine Learning (ML) algorithms and more
powerful embedded hardware have enabled on-device intelli-
gence, including a variety of applications ranging from self-
driving vehicles [2] to smart environmental monitoring [3].
A typical deployment starts with offline training on a pre-
collected dataset and performs online inference with streaming
sensor input. While superb performances are observed in
multiple scenarios [4], [5], only a few works have identi-
fied the potential drifting issue when migrating from offline
(prior to deployment) to online (post deployment). Specifically,
drifting could result from sensor aging [6] or non-stationary
environment with dynamically changing data distribution that
is different from the pre-collected dataset [7]. Drifting occurs
frequently in practice and degrades the performance of ML
models dramatically, leading to accuracy as low as 22.64%
without adaptation [8].

The aforementioned drifting problem is best character-
ized by concept drift [9]–[11] which is a well-known issue
in machine learning. Concept drift describes unpredictable
changes in the probability distribution of streaming data over
time (more details in Section III-A). Previous works have
attacked concept drift with transfer learning, which considers
the training set and the test set as two stationary distributions,

named the source and target respectively, and builds a mapping
between the source and target such that a model trained
on the source can be adapted to give accurate predictions
on target samples [12]. Nevertheless, the edge computing
scenario brings forth a unique set of challenges that past
adaptive methods fail to fully address. First, edge systems
place significant constraint on computational power that limits
the feasibility of complex models like deep neural networks.
In addition, the following two aspects are often overlooked.

• Label Acquisition Cost. In the post-deployment sce-
narios of embedded systems, it is often hard and time-
consuming to acquire true labels of drifted samples.
However, supervision is crucial to produce category-level
alignment for accurate drift adaptation for concept drift
[13]. Waiting for true labels to adapt the model accurately
can lead to significant delay in prediction or cost expen-
sive human efforts. Existing methods often employ semi-
supervised approaches using a few ground truth labels
as anchors to map other unlabeled samples [7], which
alleviate but fail to address the essential problem.

• Online Adaptability. Most existing transfer learning
methods use offline adaptation, which expects all target
data to be available before the model can be trained, then
generate predictions [14]. In our scenario data arrives
in streams and the model is expected to make accurate
prediction for each sample in real time. Offline adaptation
would significantly delay the prediction and perform
poorly in real-time adaptation upon the possible non-
stationary shift and class imbalance.

To address these issues, we propose Self-Train, a self-
supervised online model adaptation method for on-device real-
time adaptation. We assume a small labeled class-balanced
dataset is given before the deployment, and unlabeled stream-
ing data with non-stationary distribution comes in a sample-
by-sample manner after the deployment. Self-Train employs
contrastive learning to extract features that best maintain inter-
class separation, then performs online drift detection based
on the feature-space distances and triggers re-training appro-
priately. Contrastive learning is a self-supervised approach
to learn representation that minimizes the distance between
similar samples (positive pairs) and maximizes the distance



between dissimilar ones (negative pairs), achieving state-of-
the-art performances in both offline and online training [15]–
[17]. Recent works have reported that contrastive learning is
able to learn more robust representations as compared to end-
to-end cross-entropy loss [18].

Specifically, Self-Train consists of a lightweight neural net-
work with a contrastive feature extraction layer and a softmax
classifier layer; and a small training memory. The proposed
algorithm works in the following manner: first, a labeled
source dataset is used to train the model offline and initialize
the memory. Once deployed, the model is exposed to the
unlabeled streaming data with potential drift. An online drift
detection module is designed by comparing the feature-space
distances between the new sample and the memory samples,
after which memory update is performed to replace the oldest
sample according to pseudo-labels. Finally, Self-Train triggers
re-training once we accumulate a substantial amount of new
drifted samples.

To summarize, the contributions of the paper are as follows:
(1) Originating from the concept drift problem, we spot and

formally define the prior- vs. post-deployment drifting
problem that is common for pervasive ML deployment
on small embedded systems.

(2) We propose Self-Train to perform post-deployment
on-device adaptation for non-stationary and unlabeled
streaming samples. Self-Train employs a contrastive
learning-based feature extractor, an online drift detector
using feature-space distances and memory-based retrain-
ing. In contrast to existing works [7], [19], [20], Self-Train
excels at real-time online adaptability without the help of
external labels, which suits the practical deployment in
the wild.

(3) We conduct experiments on real-world sensor and arti-
ficial image datasets. Our experiments on the real-world
sensor dataset shows a maximum accuracy improvement
of 2.45x over the second-best baseline method. We also
evaluate the execution time and energy consumption of
Self-Train and baseline methods on Raspberry Pi 4, the
latest edge computing platform. Our method decreases
execution time by at most 32.7x, while saving 93% of
energy.

The rest of the paper is organized as follows. Section II
reviews related literature in concept drift. Section III defines
the target problem and introduces the proposed design of Self-
Train. Section IV reports the experimental results on real-
world sensor and artificial image datasets. The whole paper
concludes in Section V.

II. RELATED WORKS

We review existing literature addressing concept drift from
the following angles.

A. Semi-Supervised vs. Unsupervised Learning

Most previous works for online adaptation employed semi-
supervised learning where a small set of labeled samples is
provided. [7] reduces the number of required labeled samples

by adapting only on drifted samples. To adapt to drifting gas
sensors, [21], [22] use transfer samples (i.e., measurements
taken with several hand-crafted reference gas mixtures) as
anchors to infer the overall direction and extent of the drift.

Compared to semi-supervised methods, unsupervised meth-
ods assume a tighter constraint with no labeled samples avail-
able after deployment. Statistical mapping [23] and subspace
projection [24] have been adopted for sample-wise mapping,
which however are not suitable for adapting distribution drift-
ing. Alternatively, [25] optimizes subspace projection to pre-
serve both intra-class affinity and inter-class separation in the
learned projection. Deep learning models such as deep belief
networks (DBN) [26] and stacked denoising autoencoders [27]
can learn domain-invariant features that are robust to drift, thus
have been applied to adapting gas sensor drift [21], [26]. [20]
utilizes optimal transportation to build a mapping between the
probability distribution of the source and target samples. [13],
[28] rely on high-confidence pseudo-labels to supervise the
adaptation process.

In contrary to previous works, our design assumes no label
in adaptation and uses self-supervised contrastive learning,
which learns more robust representations against drifting com-
pared to using cross-entropy loss [18]. Moreover, our design
conserves computational power by extracting the features
directly without reconstruction.

B. Offline vs. Online Adaptation

Traditional transfer learning focuses on the offline scenario
where all samples are assumed to be available during adapta-
tion [25]. Offline methods typically are built around complex
models thus are too computationally-intensive to run on edge
devices. In practice, the online adaptive learning methods are
required to generate prediction immediately after a sample
arrives, and updates the model incrementally whenever drift
is detected [14]. [7] used covariance matrix to detect drift and
perform incremental light-weight update to the model with the
drifted samples. [19] utilized a least-square support vector ma-
chine and updated the model by replacing the nearest support
vector with each drifted sample. Nevertheless, the above online
methods are optimized for computational cost while sacrificing
performances. Our design aims at accurate adaptation subject
to limited on-device computational resources.

C. Contrastive Learning

Several recent works applied contrastive learning to domain
adaptation. Shen et al. utilized contrastive pre-training similar
to SimCLR on both the unlabeled source and target dataset to
learn transferable features, and fine-tune the model on labeled
source data [29]. Qian et al. investigated the feasibility of
4 state-of-the-art contrastive learning models in small-scale
Human Activity Recognition (HAR) tasks and designed aug-
mentation techniques specific to the time-series sensor data.
Wang et al. presented an augmentation-free contrastive method
for unsupervised domain adaptation (UDA) by forming pos-
itive pairs between the target and source samples belonging
to the same class [30]. Compared to previous contrastive



TABLE I
LIST OF IMPORTANT NOTATIONS IN PROBLEM FORMULATION.

Symbol Meaning
D0 Labeled offline dataset
Ds Unlabeled streaming Dataset
M Training memory
Ck Representation of samples in class k

C̄k The centroid of class k’s representation
Rk Average distance to class center in source samples
di distance to class center for the ith sample
θd Threshold for drift detection
θc Threshold for pseudo-label confidence check
p Probablity distribution of input samples and output

labels

UDA methods, Self-Train adapts to the target incrementally,
therefore does not depend on availability of target data for
meaningful adaptation. In addition, Self-Train does not rely
on augmentation, thus reduce the computational time which is
critical for edge systems.

III. METHOD

In this section, we first introduce the background of our
post-deployment drifting problem in Section III-A, then we
provide thorough details of Self-Train in Section III-B.

A. Background

Offline and online datasets. In our drifting problem, we
assume two datasets are available. The offline dataset D0 =
(X0, Y0) is a small labeled dataset which is collected prior to
deployment and used to perform initial training on the model.
After deployment, the edge device gathers a continuous stream
of drifting data samples in a time sequence. These samples can
be sensor measurements, images, or any information collected
from the environment. Note that our model does not require
the timestamp or delay between each sample to be present in
the collected data. We define this data stream as the unlabeled
dataset Ds = Xs.

Drifting Distribution. Data drift can be defined as a
change in the joint probability distribution p(x, y) between
two datasets, namely source and target: psource(x, y) ̸=
ptarget(x, y), where x is the input sample and y is the
output label. If we apply the conditional probability equation,
p(x, y) = p(x)p(y|x), we then have two separate factors that
contribute to data drift:

psource(x) ̸= ptarget(x) (1a)
psource(y|x) ̸= ptarget(y|x) (1b)

The former is defined as covariate shift, which considers
the change between two sample distributions. Covariate drift
is a well-studied problem in traditional unsupervised transfer
learning [23], [31], [32] to build a robust model on unseen
test data. However, it ignores the latter factor of the change
in conditional probability, which has a direct influence on a
model’s predicting accuracy.

Fig. 1. Visualization of Self-Train.

Concept drift considers both of these conditions to be an
indicator of drift, emphasizing on changes in p(y|x). Here
p(y|x) is defined as the concept [14]. For example, a sample
x that belongs to class A before the shift happens, may shift to
class B. This will not cause a change in the sample distribution
p(x), but leads to a change in p(y|x). While concept drift
provides a more comprehensive definition of the drift, it is
hard to detect unsupervisedly without the ground truth label
y, as the formula suggests. We offer an alternative method
to detect drift via weak supervision provided by comparing
the distance between the contrastive representation of drifted
samples to source samples.

B. Design of Self-Train

The complete model of Self-Train is visualized in Figure 1,
which works in the following manner:
(1) Self-Train trains a neural network consisting of a con-

trastive feature extraction layer g and a softmax predictive
layer f trained on an initial pre-drift dataset D0 with
labels Y0.

(2) We calculate pseudo-label confidence threshold by taking
the average distance between each source sample and the
sample mean of the same class.

(3) We apply the model to an unlabeled streaming dataset Ds

to generate contrastive representation and prediction for
each sample as soon as they arrive. Samples within the
confidence threshold are pushed into the training memory.

(4) We update the model once a significant number of drifting
samples have been accumulated in the memory.

To ensure responsive adaptation in class-imbalanced stream-
ing data, we propose a training memory with a same-class
replacement strategy so that the model can utilize historical
data, when a substantial drift is detected but samples from
some classes are not available. The training memory M is
setup as a dictionary with class label yi ∈ Y0 as the key. M [yi]



is a fixed size queue that holds training samples which have
label yi. During the initial training, M is initialized with the
offline data D0 = (X0, Y0). To insert a new selected drifted
sample x and its predicted pseudo-label ŷ, the front of the
queue M [ŷ], which is the oldest sample, is popped, and the
new sample x is inserted at the end of the queue, keeping
the size of each queue constant. In this way, we maintain the
class-wise balance in M among all seen classes.

The three major components of Self-Train (i.e., contrastive
representation learning, drift detection and self-supervised
retraining) are introduced in more details in the following
lines.

Contrastive Representation Learning. The first layer of
our network is trained on D0 to generate low-dimensional rep-
resentations that best discriminate data from different classes
by training on the contrastive loss (Equation 2). Contrastive
loss maximizes the distance between samples of different
classes while minimizing the distance between samples of
the same class [33]. Such scheme effectively pulls samples
from the same class into tight clusters, making it easier
to detect drifted samples. Figure 2 visualizes the effect of
contrastive learning on the gas sensor array dataset with
each color represents one class. It can be observed that the
feature extractor trained on pre-drift data successfully extracts
inter-class separability and intra-class affinity, which can be
maintained post-drift.

Lcon =

∑
xi,xj∈D,i̸=j Y · d2i,j + (1− Y ) ·max(m− di,j , 0)

2

|D|(|D| − 1)
(2)

where:
• (xi, yi), (xj , yj) ∈ D
• Y = 1 when yi = yj , Y = 0 when yi ̸= yj
• di,j = ||xi − xj ||
• m: defines a radius around xi such that only dissimilar

samples within are included in the loss

The loss is normalized by the divisor |D|(|D| − 1) so that
its value is not effected by batch size. The normalization step is
important because we prefer large batch size during the initial
training phase so that the contrastive feauture is representative
of the entire source distribution; whereas during adaptation,
we prefer smaller batch size so that we can make responsive
model update with a smaller number of drifted samples.

In the context of drift-correction, this approach has two
advantages: first, it helps prevent drifted samples from being
classified to another class by increasing the representation’s
discriminitive power between classes; second, grouping sam-
ples from the same class into a tight cluster makes it easier to
detect new samples that drifted from the original distribution.

After we finish training the representation, we freeze the
parameters of the representation layer and attach a softmax
layer with cross-entropy loss to handle classification. The
model is trained again on the labeled D0 until convergence.

From Classification Confidence to Drift Detection. Pre-
vious works in supervised adaptation have shown that an

Fig. 2. t-SNE plots of learned features after the contrastive learning-based
feature extractor on the gas sensor array dataset [8], [34]. Each color represents
one gas type.

effective strategy to update the model is selecting the samples
most distinct from the source distribution [7]. This strategy
presents a pitfall in unsupervised learning where we need to
rely on pseudo-labels instead of ground truth labels, because
the hardest samples often decrease the credibility of pseudo-
labels, which plays a critical role in online adaptation [19].

To solve this dilemma, we propose a semi-hard sample
selection strategy which selects out-of-distribution samples
that generate high-confidence pseudo labels by exploiting the
inter-class separability of our contrastive representations.

To derive the threshold for classification confidence and drift
detection, we develop an effective metric that allows us to
compare streaming samples against the source distribution by
exploiting the intra-class affinity and inter-class separability
of contrastive representations. We first define a baseline of
comparison as the mean point in contrastive representation
of source samples for each class k. Let Ck = g({xi|yi =
k, (xi, yi) ∈ D0}) be the contrastive representation of source
samples in class k, then the mean point can be given by C̄k =
ΣCk

|Ck| . Then, we build a unit sphere around each C̄k with radius

Rk = Σ||C̄k−Ck||
|Ck| . If an incoming sample is sufficiently close

to the unit sphere, we can conclude that it is in-distribution
and have high classification confidence.

When the initial model is applied to the unlabeled streaming
dataset Ds, for each incoming sample xi ∈ Ds, we generate
its contrastive representation ci = g(xi) and predicted label
ŷi = f(ci). We define di = ||C̄ŷi

− ci|| as the distance from
the current sample to the pre-drift class center. To allow more
fine-grained tuning of the model, we define two thresholds, θd
and θc to be applied as percentage of the threshold C̄k:

• When di > θd·Rk, we conjecture that the di is sufficiently
distant from the pre-drift samples for xi to be considered
out-of-distribution.

• When di < θc · Rk, we conjecture that di is small
enough for xi to be considered to have high classification
confidence.

We define semi-hard samples as ones that satisfy both con-
straints. θd, θc allow us to control the uncertainty of the
pseudo-labels used for adaptation. With a large θc, we intro-



Fig. 3. Distribution of distance to the class center di in training and perturbed
testing samples with respect to classification correctness.

duce harder samples that allows our model to adapt to the drift
faster but may also introduce errors; while θd acts as a lower
bound that prevents the model from meaningless adaptation
on in-distribution samples thus saving computation cost.

To show the effectiveness of the proposed semi-hard sam-
ples selection, Figure 3 demonstrates the relationship between
classification accuracy and distance to ci using perturbed
CIFAR10-C dataset [35]. It can be observed that the correctly
predicted samples have similar di (distance to class center)
as training samples with a long tail to the right, while most
incorrectly predicted samples have a greater di than training
samples.

An efficient online adaptive model should be reactive, mean-
ing that it is only updated when drift is detected. Compared
with a blind adaptation strategy [14], which updates the model
on fixed intervals, our design self-corrects sooner and saves
computation time by updating the model only when needed.

Self-supervised Model Re-Training. In this section, we
will introduce our sample replacement strategy to compose
training sets for model updates. The training set can be
composed in two ways, either with a mix of old and new
samples, or entirely with newly selected ones. While in an
offline scenario, one can hand-pick equal number of latest
samples from each class to form a balanced training set. Such
a strategy is unrealistic for handling streaming data, where
the arriving samples can be highly imbalanced. For example,
we can have a long series of drifted samples from class A
without seeing any from class B. Failure to adapt to drifted
class A’s samples while waiting for class B’s samples can be
detrimental to maintaining high accuracy.

To make the model adaptation more reactive to drift in
unbalanced streaming data, we propose a replacement strategy
where the number of samples in each class remains constant,
and each selected new sample with pseudo-label ŷi replaces
the oldest sample in the class corresponding to ŷi in a First-
in-First-out fashion. We initiate the model update when the
number of newly arrived samples reach a preset proportion p
of the size of the original training set such that we can make
meaningful update to the model. Intuitively, the smaller we set
p, the more reactive our model can deal with drift, but more
computationally inefficient as we need to run more re-training
steps. Hence it is important to tune the value of p to balance
sensitivity and computation efficiency.

IV. RESULTS

A. Experiment Setup

We implement Self-Train with Python 3.7 and tensorflow
v2.1.0 [36]. Important parameters settings are reported in
Table II. We also experiment Self-Train on a Raspberry Pi
(RPi) 4B platform with 4GB RAM [37] and measure the
execution time and energy consumption using the Hioki 3334
powermeter [38]. Our implementation is available on GitHub.1

TABLE II
LIST OF IMPORTANT PARAMETER SETTINGS

Datasets

Parameters Gas MNIST CIFAR10-C

ηacontrastive .0003 .0005 .001

ηbclassifier .001 .001 .001

batch size 80 32 64

θd 0.1 0.6 0.2

θc 5.5 5 4
aLearning rate of contrastive layer.
bLearning rate of classifier layer.

Datasets. We evaluate on three datasets including Internet-
of-Things sensing and image classification tasks under pertur-
bances.
(1) Gas Sensor Array Drift Dataset exhibits class-

imbalanced distribution as well as continuous, non-linear
and random drift through time [8], [34]. It features a
series of 128-dimensional numerical sensor measurement
samples, each belonging to one of the six types of gas.
The dataset is divided into 10 batches in temporal order
spanning a period of 36 months; In our setup, we use
batch 1 as the labeled offline training data, and treat the
following batches as an unlabeled online data stream for
adaptation.

(2) MNIST digit dataset [39] is used to test the performance
on small-scale image classification task. A small subset
of the original training data is used as the offline dataset
to reduce training time both during the initial training
and model updates. A drifted dataset is artificially created
by applying gaussian noise to the streaming images in
MNIST. We generate gaussian noise with a mean of 1
and a standard deviation of 0.3.

(3) CIFAR10-C [35] is a state-of-the-art robustness bench-
mark with 19 types of common corruptions and pertuba-
tions. We use this dataset to test the model’s performance
on a relatively harder image classification task and the
model’s ability to adapt to different types of drift.

Machine Learning Models. As outlined in the Section III,
our model has two components. Contrastive Representation
Layer: For the gas sensor dataset, we use two fully connected

1https://github.com/jinbest17/self-supervised-online-adaptation

https://github.com/jinbest17/self-supervised-online-adaptation


layers with 100 and 80 neurons respectively. For image clas-
sification tasks, a simple CNN with two convolution layers
and 32 and 64 filters respectively. The model is trained with
a the ReLU activation function, the Adam optimizer, and the
contrastive loss metric. Classification Layer: We use a dense
softmax layer with the number of neurons equal to the number
of classes to handle classification.

Baselines. For the gas sensor dataset, we compare our
results with state-of-the-art online unsupervised adaptation
methods, unsupervised particle adaptive classifier (uPAC)
based on least square support vector machine [19] and Optimal
Transport Adaptation (OT) [20]. We acknowledge there are
promising offline methods available, but they are not designed
for streaming data and real-time adaptation, therefore can uti-
lize a deeper network structure to retrieve more comprehensive
information about the drift. For the image classification task,
we only employ OT as our baseline because they share a
similar neural network-based structure.

B. Results

Gas Sensor Array Dataset. Figure 4 shows the online
prediction accuracy achieved by our proposed method and the
baselines on the chemical sensor drift dataset. Results for Self-
Train are averaged for six runs to control outliers. We run each
baseline once since their results are deterministic with opti-
mized parameters. Our model shows consistent improvements
over the baselines in all batches. Compared with the second-
best accuracy for each batch, Self-Train provides a maximum
improvement of 2.45x (batch 4). Compared with OT, uPAC
sees slower accuracy degradation at first. This could be due to
uPAC using a more fine-grained and informed model update
strategy in which a new sample will always update the closest
and oldest sample. Whereas OT’s adaptation accuracy depends
on the assumption that the Wasserstein-Distance between the
target distribution and the source distribution is small, this
is often not the case in a real world dynamic environment.
Therefore, the performance of OT degrades drastically when
applied to complex drifting behaviors such as the chemical gas
sensor dataset.

MNIST Dataset. Figure 5 compares our model with the
OT baseline and a non-adapting classifier with the same
network architecture as our Self-Train model. Comparing the
average accuracy across the 3200 noised test samples, our
method improves the baseline OT by 1.07x, and the non-
adapting classifier by 1.3x. To observe the performance of
online adaptation, accuracy is also calculated after each 100-
sample interval in the streaming data. While OT is able to
take advantage of the domain adaptation power provided by
optimal transportation initially, its model update method uses
all pseudo-labels from the drifted data without estimating its
correctness, thus the predictive power decreases overtime due
to training with wrong pseudo-labels. Whereas our method
selectively updates on high-confidence pseudo-labels and is
therefore able to maintain high prediction accuracy.

CIFAR10-C Dataset. Figure 6 compares our model with
the OT baseline and a non-adapting classifier for 18 image

Fig. 4. Prediction accuracy on each online batch of the gas sensor array drift
dataset.

Fig. 5. Accuracy on the noised MNIST dataset as more samples come in.

corruption tasks. Because CIFAR10-C is harder to classify
using the same network architecture than MNIST, we show
adaptation results on 8000 test samples to ensure the models
have sufficient samples to compensate for the lower initial
accuracy. Our model demonstrates consistent improvements
over the baselines, improving OT by at most 3.20x and at
least 2.60x for each task, and the non-adapting classifier by
at most 1.42x and at least 1.19x. OT’s disadvantage of not
selecting accurate pseudo-labels becomes more apparent in
the CIFAR10-C tasks due to a lower classification accuracy
around 0.4 to 0.6 of the non-adapting classifier. As a result,
OT descends to a trivial model as adaptation continues.

Execution Time and Energy Consumption. Figure 7
demonstrates the measured execution time and energy con-
sumption on the RPi 4B platform. Compared with the base-
lines, Self-Train consumes the least time to execute and
energy. On the gas sensor dataset, Self-Train runs 9.75x and
32.7x faster than OT and uPAC respectively, while saving
90% and 97% of energy compared to OT and uPAC. On
the MNIST data, Self-Train runs 11.9x faster than OT and
consequently saves 92% energy. On the CIFAR-10-C data,
Self-Train runs 9.01x faster than OT and consequently saves
89% energy. The increase in efficiency can be attributed
to two factors. First, our model perform drift detection on
contrastive representation, and its dimensionality reduction
property decreases the computation cost for distance-based
metrics. Second, our drift detection strategy focus on drifted
samples that are significantly different from the pre-drift
distribution, thus reducing the number of samples needed to
perform meaningful adaptation. We opt not to test uPAC on the



Fig. 6. Accuracy results on CIFAR10-C as more samples come in.

Fig. 7. Execution time and energy consumption of Self-Train and baselines

image classification tasks because it is not designed for high-
dimensional data, and cannot finish running within reasonable
amount of time.

V. CONCLUSION

In this paper, we propose an online method for concept
drift adaptation with minimum prediction delay in dynamically
changing environments while eliminating label acquisition cost
by utilizing the supervisory power of the high-confidence
pseudo-labels generated by the model itself. As an on-device
system, our Self-Train model also places focus on computation
cost by selectively updating to drifted samples and opting
for minimal network complexity. We test our method on
both real world drifting and images with artificial corruptions

and perturbations. Our model shows consistent accuracy im-
provements with 2.45x at maximum, while maintaining lower
execution time with a maximum of 32.7x speedup.
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