
HyDREA: Towards More Robust and Efficient
Machine Learning Systems with Hyperdimensional

Computing
Justin Morris, Kazim Ergun, Behnam Khaleghi, Mohsen Imani, Baris Aksanli, Tajana Rosing

Abstract—Today’s systems, especially in the age of federated
learning, rely on sending all the data to the cloud, and then
use complex algorithms, such as Deep Neural Networks, which
require billions of parameters and many hours to train a model.
In contrast, the human brain can do much of this learning
effortlessly. Hyperdimensional (HD) Computing aims to mimic
the behavior of the human brain by utilizing high dimensional
representations. This leads to various desirable properties that
other Machine Learning (ML) algorithms lack such as: ro-
bustness to noise in the system and simple, highly parallel
operations. In this paper, we propose HyDREA, a HD computing
system that is Robust, Efficient, and Accurate. To evaluate
the feasibility of HyDREA in a federated learning environment
with wireless communication noise, we utilize NS-3, a popular
network simulator that models a real world environment with
wireless communication noise. We found that HyDREA is 48×
more robust to noise than other comparable ML algorithms. We
additionally propose a Processing-in-Memory (PIM) architecture
that adaptively changes the bitwidth of the model based on the
signal to noise ratio (SNR) of the incoming sample to maintain the
robustness of the HD model while achieving high accuracy and
energy efficiency. Our results indicate that our proposed system
loses less than 1% classification accuracy, even in scenarios with
an SNR of 6.64. Our PIM architecture is also able to achieve
255× better energy efficiency and speed up execution time by
28× compared to the baseline PIM architecture.

I. INTRODUCTION

“Federated learning” [1] is a popular model for distributed
model training in which a centralized model stored on a server
is “cloned” to some set of devices which all collect the same
features. Each device then updates its local copy of the model
and periodically transmits weights to the server, which are
used to update the global model via an averaging operation.
Intuitively, federated learning reduces communication costs by
transmitting only model weights instead of raw training data.

In “Federated learning”, HD computing offers three benefits.
First, an HD “model” is simply a collection of bitvectors which
may be less burdensome for communication than other state-
of-the-art methods (especially deep neural networks) where
the weights are typically floating point values and are non-
negligible in size. Second, local training of the HD model is
extremely simple and more energy efficient than many existing
ML techniques [2]. Third, transmitting faulty model weights
in classical ML algorithms may lead to slower training or
convergence to a worse local optimum compared to HD.

The third point is particularly helpful for “Federated learn-
ing”. Transmitting model parameters to the central learning
system is done mostly through wireless communication. The

noise in a wireless channel can incur bit-level errors in the
transmitted signal and without error correction, could lead to
faulty models due to the noisy data. This is especially true in
urban areas where distance is not the only factor adding noise
to the wireless channel, but also large buildings and multiple
obstacles in the way that degrade the wireless signal.

We additionally take advantage of the simple and highly
parallelizable operations in HD to create an analog PIM
accelerator with adaptable model bitwidths to achieve the best
energy and execution time, while maintaining high accuracy
based on the SNR of the wireless channel. This characteristic
has made HD the target of various hardware acceleration
frameworks, particularly GPUs [2], FPGAs [3], and PIM ar-
chitectures [4]. Although GPUs and FPGAs provide a suitable
degree of parallelism, the complexity of their resources, e.g.,
floating point units or DSP blocks, is by far beyond the
HD requirements, making such devices inefficient for HD.
Analog PIM architectures tackle this problem as they comprise
memresistive arrays with intrinsically non-complex computa-
tional capability, which is sufficient for HD operations. Besides
block-level parallelism, another remarkable feature of PIM is
eliminating the high cost data movement in the traditional
von Neumann architectures as, in PIM, data resides where
computation is performed. Adding a PIM accelerator for HD
computing to perform cognitive tasks provides significant
speed up over utilizing the on-board CPU and saves energy
with analog computations and less data movement.

In this paper, we propose HyDREA, a HD computing system
that is Robust, Efficient, and Accurate. We evaluate the feasi-
bility of HyDREA in a “Federated learning” environment, by
utilizing a popular network simulator – NS-3 [5] – to model the
communication between devices and simulate wireless noise.
We compared HyDREA with other light-weight ML algorithms
in the same noisy environment. Our results demonstrate that
HyDREA is 48× more robust to noise than other comparable
ML algorithms. We additionally propose a PIM architecture
that adaptively changes the bitwidth of the model based on
the SNR of the incoming sample to maintain the robustness
of the HD model while achieving high accuracy and energy
efficiency. Our results indicate that our proposed system loses
less than 1% classification accuracy, even in scenarios with
an SNR under 7. Our PIM architecture is also able to achieve
255× better energy efficiency and speed up execution time by
28× compared to the baseline PIM architecture.

II. PRELIMINARY

In this section, we first explain the procedures involved
in HD algorithm and then review the related work on HD
acceleration and HD robustness to noise.

A. Hyperdimensional Computing

Without loss of generality, we explain the steps of HD
computing for classification tasks, though other algorithms,
e.g., clustering, follow the same procedure, as well.

(1) Encoding: Let us assume a feature vector F =
{f1, f2, . . . , fn}, with n features (fi ∈ N) in original
domain. The goal of encoding is to map this feature vector to
a D dimensional space vector: H = {h1, h2, . . . , hD}. The
encoding first generates D dense bipolar vectors with the same
dimensionality as original domain, P = {p1,p2, . . . ,pD},
where pi ∈ {−1, 1}n. The inner product of a feature vector
with each randomly generated vector gives us a single dimen-
sion of a hypervector in high-dimensional space. For example,
we can compute the i− th dimension of the encoded data as:

hi = sign(pi · F)

where sign is a sign function which maps the result of the
dot product to +1 or -1. Thus, to encode a feature vector
into a hypervector, we perform a matrix vector multiplication
between the projection matrix and the feature vector using:

H = sign(PF)

(2) Training: The simplicity of HD training makes it
distinguished from conventional learning algorithms. Consider
hypervector Hi as the encoded hypervector of input i with the
procedure explained above, which required the inner-product
of D bit hypervectors followed by dimension-wise addition
of n 1 bit values, where n is the number of features. Each
input i belongs to a class j, so we further annotate Hj

i to
show the class j of input i, as well. HD training simply
adds all hypervectors of the same class to generate the final
model hypervector. Therefore, the class hypervector of label
j, denoted by Cj , is:

Cj = Hj
0 +H

j
1 + · · · =

∑
k

Hj (1)

Meaning that we simply accumulate the encoded hypervectors
for which their original input belongs to class j.

Another advantage of HD over DNNs is HD supports
efficient one-pass training, i.e., visiting each input just once
and adding the His to create the model yields acceptable
accuracy, while DNN training requires hundreds of iterations
over the whole data set to converge to the final accuracy.
HD accuracy can also be improved by retraining the model.
During retraining, the encoded hypervector of each input
is created again, and its similarity with the existing class
(model) hypervectors is checked (see step 3). If a misprediction
is observed, say that encoded Hj belonging to class Cj is
predicted as class Ck, the model is updated as follows, which

means the information of Hj causing (mis)-similarity to Ck is
discarded.

Cj = Cj +Hj

Ck = Ck −Hj
(2)

(3) Similarity checking: The inference step as well as the
retraining step need to find out the most similar class hypervec-
tor to the encoded one. Most commonly, this is performed by
cosine similarity while other metrics (e.g. Hamming distance)
could be appropriate depending on the problem.

cos(~H, ~Cj) = ~H·~Cj
‖ ~H‖·‖~Cj‖

(3)

Equation (3) shows the similarity checking of encoded hyper-
vector H with class hypervector Cj . Since classes are constant,
‖~Cj‖ can be pre-calculated. ‖ ~H‖ can be factored out as it
is common for all candidate classes to be compared with
H. Hence, cosine similarity reduces to a simple dot-product
between H and Cjs. These vectors are not in binary, they are
the results of accumulating several other binary vectors.

B. Related Work

HD computing is light-weight enough to run with acceptable
performance on CPUs [6]. However, utilizing a parallel archi-
tecture can significantly speed up HD execution time. Imani
et al. showed two orders of magnitude speed up when HD
runs on GPU [2]. Salamat et al. proposed a framework that
facilitates fast implementation of HD algorithms on FPGA [3].
Due to the bit-level operations in HD, which is more suitable
for FPGAs than GPUs, they claimed up to 12× energy and
1.7× speed up over GPUs. HD requires much less memory
than DNNs, but the required memory capacity is still beyond
the local cache of many devices. Thus, an excessive amount of
energy and time is spent moving data between these devices
and their main memory (off-chip memory in the case of
FPGAs).

To resolve this, prior work used PIM architectures, where
processing occurs in memory, eliminating the time and energy
of data movement. In FELIX [4], a digital PIM architecture
was proposed. However, digital PIM operations are signifi-
cantly slower than equivalent analog PIM operations. Prior
work accelerated the inference phase of HD computing in
analog PIM with an associative memory [2]. However, the
associative memory only stored the trained class hypervectors,
so the input data needed to be encoded elsewhere and then
moved into the associative memory, negating the benefit of less
data movement. Also, the associative memory only supports
inference in HD.

Several works claimed that HD signal representations are
inherently robust to various forms of noise [7], [8], [9], [10].
Work in [8] investigated the robustness of HD to RTL level
errors (e.g. bit-flips) during computation and found an HD-
based approach tolerating an 8.8× higher probability of bit-
level errors. Similar results are reported in [11].

Work in [8] presented preliminary evidence showing that
HD delivered superior performance to conventional data repre-
sentations in the presence of bit-level errors during processing.

Similarly, bit-level errors occur during data transmission as a
result of channel noise and interference from multiple users.
To the best of our knowledge, there has been no systematic
empirical (or theoretical) evaluation of HD as an avenue for
achieving robust learning when data must be communicated
over noisy channels. This paper compares HD computing with
a “Federated learning” approach for training other ML models
and proposes a new analog PIM architecture to accelerate the
whole HD computing algorithm from training to inference.

III. HyDREA ANALOG PIM ARCHITECTURE

Combining the energy savings by eliminating data move-
ment and a parallel architecture suitable for dimension-wise
parallelism of HD algorithms, analog PIM, with its simple
arithmetic support, appears as a promising solution for HD
computing. A PIM architecture needs to support three classes
of in-memory operations; (1) dot-product for the matrix mul-
tiplication in encoding and the similarity metric in inference,
i.e., the ~H · ~Cj part in Equation 3 in which each dimension of
H and Cj is fixed-point (results of binary vector additions),
(2) addition and subtraction for training and retraining where,
as explained by Equation 1, we add Hj

i s to produce Cj which
denotes the final class hypervector of inputs with label j, and
(3) search operation to find the best matched class in inference,
by finding the maximum of cosine similarity scores between
the encoded query H and all class hypervectors.

A. Architecture

Fig. 1(a) shows the architecture HyDREA constituting of
multiple In-Situ Multiply Accumulate (IMA) blocks. In our
implementation, HyDREA comprises of 24 IMA blocks so
it can fit the largest benchmark. IMA blocks are memory
crossbars with the capability of performing analog addition
and dot-product operations. Each IMA block consists of 8
crossbar arrays, each of which contains 128 rows and 128
columns of memory cells. There are 8×128 Digital-to-Analog
(DAC) blocks per IMA, i.e., 128 per each crossbar arrays,
allocated to the rows to convert the incoming digital signal
(voltage) to analog (current) in order to perform computation.
There is also a shared Sample and Hold (S+H) block, and
shared Analog-to-Digital (ADC) blocks in each IMA. Fig.
1(b) shows an example of a crossbar memory array. Each
bitline is connected to all the wordlines through memresistive
cells, which have stored the information (e.g., values of class
dimensions) by changing the resistance level of each cell. Each
memresistive cell in our configuration is a 2 bit MLC, i.e., it
has four resistance states to be able to represent 2 bits. Storing
the HD model, i.e., the values of classes dimensions, needs to
program the NVMs, which is a slow write operation. However,
it is only done one time before beginning the inference step,
so the overhead is amortized in the entire course of inference.

B. Challenges

To perform the computation in analog, PIM needs to con-
vert the signals into analog domain. For this, it requires to
employ DAC and ADC converters at the inputs and outputs,

Output Register

Shift & Add

IMA IMA IMA

IMA IMA IMA

eDRAM

(a) PIM Accelerator

Sample & Hold (S+H)
ADC

D
ig

it
al

 In
p

u
t

D
A

C

Digital Output

(b) In-Situ Multiply Accumulate

Multi-bit

g11

g21

DAC Vdd/2V1

V2

g11

g21

DAC
1

1

A
d

d
ti

o
n

D
o

t
P

ro
d

u
ct

(c) Operations

Fig. 1. Overview of the PIM architecture used by HyDREA

respectively. These signal domain converters contribute to a
significant overhead in the residing architecture [12], [13],
which reaches up to 89% of the system power consumption.
However, the overhead of these converters can be significantly
alleviated as it is exponentially tied in the precision of convert-
ers. This, obviously, increases the error as the signal levels are
quantized. Fortunately, it is less problematic in the context of
HD computing thanks to its remarkable tolerance to error, as
information is spread over all the independent and identically
distributed dimensions of vectors, so failing the computation
on a certain portion of dimensions (bits) should not affect the
overall result noticeably.

C. HyDREA: Analog PIM Architecture Optimiztions

ADC Reduction: As in Section III-B, the energy overhead
of conversion from the digital domain to the analog domain
and back dominates the energy usage of analog PIM, and this
is handled by the ADC blocks. Thus, our task to improve
the energy efficiency of analog PIM focuses on improving
the energy efficiency of the ADC blocks. We achieve this
by reducing the precision of the ADC blocks. For each
reduction in the ADC bitwidth, we expect the area and energy
consumption to halve. This is because in order to add support
for each additional bit, the amount of circuit area doubles and
therefore, the energy usage approximately doubles. Instead of
using 8 bit ADC blocks in analog PIM (i.e. full precision), if
we reduce the ADC bitwidth, we can reduce the energy usage
by half for every bit of the ADC we drop. This will save
a significant amount of energy during the analog to digital
conversion step in analog PIM. However, our computations
will lose accuracy, and as we drop more bits, our computations
will become more inaccurate as we sacrifice precision for
energy efficiency.

We can reduce our ADC blocks from 8 bits to n bits.
By doing this, we will convert the first n most significant
bits and omit the 8 − n least significant bits. For example
if we use a 6 bit ADC block to convert 167 we would lose
the last two bits and output 164 instead. This leads to good
approximate conversions with large numbers, but very poor
approximation with smaller numbers. If we use a 6 bit ADC
block to convert 7 we would get 4 which is almost 50% off.
Furthermore, we do not produce inaccurate conversions every
time. If we convert 172 with a 6 bit ADC block, we wold get
172 because the last two bits of 172 are both 0. Therefore, we
produce exact computations when the bits we would drop are

0 2 4 6 8 10 12 14

Training Iterations

50

60

70

80

90
A

c
c

u
ra

c
y

 (
%

)

8 Bit Naive HyDREA

Fig. 2. Impact of HyDREA using a 4 bit model on training compared to
training a naive bitwidth reduction 4 bit model and training a 8 bit model.

TABLE I
DATASET INFORMATION

Application Dataset # Classes # Train Data # Test Data # Features
Speech Recognition [14] ISOLET 26 6,238 1,559 617

Activity Recognition [15] UCIHAR 6 6,213 1,554 561

Medical Diagnosis [16] CARDIO 2 1,913 213 21

Face Detection [17] FACE 2 22,441 2,494 608

all zero. Our ADC block conversions fall into three categories:
exact conversions, slightly inaccurate conversions, and highly
inaccurate conversions. Since HD computing utilizes dot prod-
uct as the similarity check, the larger computations dominate
the dot product operation and therefore, the highly inaccurate
conversions of smaller operations do not effect the accuracy
of the HD model. Therefore, we are able to take advantage
of reducing the bitwidth of ADCs to create an analog PIM
architecture for accelerating HD computing that does not incur
a significant loss in accuracy.

DAC Reduction: We additionally reduce the energy and
execution time overhead of analog PIM by reducing the
number of DACs and IMA blocks needed. We achieve this
by reducing the precision of the HD model bitwidth.

Due to HD computing’s robustness to noise, we could
simply reduce the bitwidth of the HD model and achieve
efficiency gains without a significant drop in accuracy. When
reducing the bitwidth further, training the HD model becomes
unstable and the accuracy does not converge. Figure 2 com-
pares training an HD model with 4 bits of precision and
training the same model with a full 8 bits of precision. The
top line shows that training an 8 bit model is much smoother
and clearly improves in each iteration compared to training
with reduced bitwidth. This is because, as HVs are added up
and adjusted with retraining, some dimensions may saturate
the available bitwidth. Any additional change to dimensions
with saturated bitwidths that attempt to change the dimension
in the direction of the bitwidth saturation does not improve
the model further. For instance, when using a bitwidth of 4,
the maximum positive value a dimension can represent is 7. If
during retraining, the dimension would be increased further,
it would instead stay at 7. In contrast, if the dimension is
adjusted with subtraction, it would decrease normally despite
any previous attempts to increase the dimension further. This
causes over-adjustments in the HD model during retraining
when an abnormal change is applied. This is why the accuracy

Fig. 3. SNR/BER vs distance for BPSK modulation with Friis prop. loss.

does not converge during retraining with greatly reduced
bitwidths. HyDREA is able to improve upon the naive design
of simply reducing the bitwidths by additionally modifying
the HD algorithm to complement the bitwidth reduction.

As explained in Section II, the HD model is initially trained
by adding up all of encoded data points into one class HV
for each class. When reducing the bitwidth of the HD model
from 8 bits to 4 bits, 4 bits may not provide enough precision
for model convergence during retraining, preventing the HD
model from performing effectively at lower bitwidths. To
subvert this problem, we propose to analyze the initial HD
model to identify key dimensions that need to utilize the full
bitwidth available. HyDREA then locks these dimensions to
either the maximum or minimum value to ensure the the HD
model does not drastically change during retraining.

We propose that the largest dimensions in both the positive
and negative directions that saturate the desired bitwidth are
key dimensions, as dot product is used as the similarity metric.
Hence, the largest dimensions in both positive or negative
direction contribute the most to the resulting dot product.
Dimensions with the largest values in either direction show
that most data points from that class agree in that dimension,
i.e. a class HV that represents the class well should ensure
these dimensions are not over-adjusted.

To support bitwidth reduction, we propose to modify the
initial training algorithm of HD. To identify key dimensions
in the HD model to lock, our design first performs the initial
training with a full 8 bit representation. HyDREA copies the
initial class HV and takes the absolute value of all the dimen-
sions in the class HV and finds the indices of the largest α
dimensions that would saturate the desired bitwidth. They are
set to the maximum (minimum) value if they saturated in the
positive (negative) direction. The other dimensions are scaled
down to the desired bitwidth. This is done for all k class HVs.
The initial model is then loaded into our PIM architecture.
The dimensions that were previously set to the maximum or
minimum value are locked from changes during retraining to
prevent the HD model from over adjustments. HyDREA only
locks dimensions that would saturate the desired bitwidth.
If the dimensions do not saturate the desired bitwidth, the
bitwidth is sufficient and no change is needed. This lock is
achieved by not enabling the write bits at locked dimensions.

Figure 2 compares training an HD model with the naive
approach of simply reducing the bitwidth to 4 and training

02468

ADC Bitwidth

90

91

92

93

A
c

c
u

ra
c

y
 (

%
)

(a) ISOLET

02468

ADC Bitwidth

94.5

95

95.5

96

96.5

A
c
c
u

ra
c
y
 (

%
)

(b) UCIHAR

02468

ADC Bitwidth

92

93

94

95

96

A
c
c
u

ra
c
y
 (

%
)

(c) FACE

02468

ADC Bitwidth

99.4

99.6

99.8

100

A
c
c
u

ra
c
y
 (

%
)

(d) CARDIO

Fig. 4. Impact of bitwidth reduction on accuracy of HyDREA.

the same model with HyDREA using the same bitwidth. The
graph shows how HyDREA improves upon the naive design, as
during retraining the model is clearly improving and increasing
in accuracy like the full 8 bit model. Meanwhile, the naive
design’s accuracy fluctuates greatly and does not converge.

IV. EVALUATION

A. Experimental Setup

We verified the functionality of HyDREA using both soft-
ware and hardware implementations. In software, we im-
plemented HD training and inference on an Intel Core i7
7600 CPU using an optimized C++ implementation. For the
hardware implementation, we used an analog-based PIM ar-
chitecture proposed in [12]. Our PIM design works at 1.2GHz
and uses n bit ADCs, 1 bit DACs, and 128×128 arrays, where
each memresistor cell stores 2 bits. We tested the efficiency of
our approach on four practical applications, shown in Table I.

We additionally study how HD performance changes with
varying transmission power levels, distance, different prop-
agation loss scenarios, and under a different number of in-
terfering devices. To do this, we utilize the widely known
network simulator, NS-3 [5]. The error rate depends on the
modulation, coding, and error correction mechanism adopted
by the wireless technology. NS-3 allows us to study the error
rates for modulation schemes such as BPSK, QPSK, 16-1024
QAM, under binary convolutional coding for rates ½, , ¾, .
We test both with or without forward error correction (FEC).

These experiments use the WiFi standard (802.11n). The
modes (High Throughput Modulation and Coding Schemes -
HTMCSs) of 802.11n have different SNR vs BER (Bit error
rates) curves. We vary the distance between the transmitter
and the receiver to collect data at various SNRs. We evaluate
with the Friis propagation loss model. Figure 3 shows the BER
versus distance curve between transmitter and receiver.

B. HyDREA and Dimensionality

To test the impact of dimensionality on HD robustness, we
utilized the 6.64 SNR test with all datasets. Table II summa-
rizes the results. There is a clear relationship between HD
robustness to errors and dimensionality. One may think that
we can achieve faster execution and lower energy consumption
with lower dimensionality; but due to our PIM’s highly parallel
nature, as long as the HD model fits into the PIM arrays,
execution time and energy does not change. Since our design
requires a highly robust HD model, the rest of our tests utilize
a dimensionality of D = 10, 000.

Fig. 5. Accuracy of Design as the SNR varies with an ADC bitwidth of 2
and varying model bitwidth.

(a) Retraining (b) Inference

Fig. 6. Energy consumption and execution time of HyDREA using different
model bitwidths during training and inference with an ADC bitwidth of 2.

C. HyDREA and the Impact of our Analog PIM Architecture

Figure 4 shows the impact of ADC bitwidth reduction
on HD model accuracy for four practical applications. The
accuracy of each model reduces as the bitwidth drops, but
not significantly. When the ADC bitwidth is 4, the average
accuracy drop across all applications is 1.5%. This is because
our ADC blocks provide highly accurate approximations for
high value conversions, and the high value numbers dominate

TABLE II
IMPACT OF DIMENSIONALITY ON THE ROBUSTNESS OF HD COMPUTING

Dimensionality 10,000 8,000 6,000 4,000 2,000

Accuracy Loss 0.58% 0.82% 1.44% 1.89% 2.39%

the dot product output. Thus, the resulting dot product closely
approximates the exact version. Also, the resulting dot product
does not need to be exact, owing to HD’s robustness to
hardware inaccuracies. Despite inaccurate results, the classes
are separated enough that slight variations still result in the
HD model selecting the same output class. Overall, HyDREA
reduces bitwidth to 2 while only losing 1.8% in accuracy.

Figure 6 shows the impact of our analog PIM architecture
with 2 bit ADCs and varying model bitwidths on energy
consumption and execution time. Our proposed architectural
changes drastically improve the energy efficiency and execu-
tion time of HD. Our proposed architecture uses 2 bit ADCs
and 1 bit models, and achieves 32× (29×) speed up and 232×
(267×) higher energy efficiency than the baseline architecture
during inference (retraining). Also, in high SNR cases, these
models achieve comparable accuracy to full precision models.

D. HyDREA and the Impact of SNR

Figure 5 shows the impact of SNR on model accuracy in
our analog PIM architecture. We can load in low bitwidth
models when the channel has a high SNR to achieve the
best energy consumption and execution time. However, during
high network traffic, longer communication distance, or other
factors that incur a high amount of noise on the wireless
channel, we need to load in the higher bitwidth models
to maintain accuracy. This is because our highly quantized
models are taking advantage of HD’s robustness to noise by
effectively adding more noise to the computation. Therefore,
if the environment, in this case wireless communication, is
also adding noise, the robust property of HD does not hold
up. However, if we adaptively switch which model is loaded
based on the SNR, we can maintain high accuracy and achieve
significant energy and execution time savings when possible.

E. HD vs. Other Classifiers

We also compared HD to state-of-the-art classifiers (Linear
Regression (LR), MultiLayer Perceptron (MLP), Perceptron,
Support Vector Classification (SVC)) and evaluated its robust-
ness to noise on our 4 datasets. Figure 7 shows the results
for 1) data with no noise, and 2) data corrupted with SNR of
2.21. All classifiers have comparable accuracy with no noise.
While HD stays robust with a significant amount of noise, the
other classifiers become very inaccurate. The high-dimensional
nature of the hypervectors used in HD leads to significant
redundancy in representation which improves its robustness
to noise by 48× compared to other classifiers at 2.21 SNR.
Where noise robustness is defined by how well the model
maintains accuracy with the added wireless noise.

V. CONCLUSION

In this paper, we proposed HyDREA, an HD computing sys-
tem that is Robust, Efficient, and Accurate. We evaluated the
feasibility of HyDREA in a “Federated learning” environment,
by utilizing a popular network simulator, NS-3, to model the
communication between devices and simulate wireless noise.
We compared HyDREA with other light-weight ML algorithms

Fig. 7. Comparison of the Robustness of HD to other Classifiers

in the same noisy environment. Our results demonstrated that
HyDREA is 48× more robust to noise than other comparable
ML algorithms. We additionally proposed a PIM architecture
that adaptively changes the bitwidth of the model based on
the SNR of the incoming sample to maintain the robustness
of the HD model while achieving high accuracy and energy
efficiency. Our results indicate that our proposed system loses
less than 1% classification accuracy even in scenarios with an
SNR under 7. Our PIM architecture is also able to achieve
255× better energy efficiency and speed up execution time by
28× compared to the baseline PIM architecture.

REFERENCES

[1] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon,
“Federated learning: Strategies for improving communication efficiency,” arXiv
preprint arXiv:1610.05492, 2016.

[2] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring hyperdimen-
sional associative memory,” in High Performance Computer Architecture (HPCA),
2017 IEEE International Symposium on, pp. 445–456, IEEE, 2017.

[3] S. Salamat et al., “F5-hd: Fast flexible fpga-based framework for refreshing hyperdi-
mensional computing,” in FPGA, pp. 53–62, ACM, 2019.

[4] S. Gupta et al., “Felix: fast and energy-efficient logic in memory,” in ICCAD, p. 55,
ACM, 2018.

[5] T. R. Henderson, M. Lacage, G. F. Riley, C. Dowell, and J. Kopena, “Network
simulations with the ns-3 simulator,” SIGCOMM demonstration, vol. 14, no. 14,
p. 527, 2008.

[6] M. Imani et al., “A binary learning framework for hyperdimensional computing,” in
DATE, IEEE/ACM, 2019.

[7] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal processing
using hyperdimensional computing: Network templates for combined learning and
classification of exg signals,” Proceedings of the IEEE, vol. 107, no. 1, pp. 123–143,
2018.

[8] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-efficient classifier us-
ing brain-inspired hyperdimensional computing,” in Proceedings of the International
Symposium on Low Power Electronics and Design, pp. 64–69, ACM, 2016.

[9] M. Imani, D. Kong, A. Rahimi, and T. Rosing, “Voicehd: Hyperdimensional com-
puting for efficient speech recognition,” in 2017 IEEE International Conference on
Rebooting Computing (ICRC), pp. 1–8, IEEE, 2017.

[10] D. Kleyko, A. Rahimi, D. A. Rachkovskij, E. Osipov, and J. M. Rabaey, “Classifi-
cation and recall with binary hyperdimensional computing: Tradeoffs in choice of
density and mapping characteristics,” IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 12, pp. 5880–5898, 2018.

[11] H. Li, T. F. Wu, A. Rahimi, K.-S. Li, M. Rusch, C.-H. Lin, J.-L. Hsu, M. M.
Sabry, S. B. Eryilmaz, J. Sohn, et al., “Hyperdimensional computing with 3d
vrram in-memory kernels: Device-architecture co-design for energy-efficient, error-
resilient language recognition,” in Electron Devices Meeting (IEDM), 2016 IEEE
International, pp. 16–1, IEEE, 2016.

[12] A. Shafiee, A. Nag, N. Muralimanohar, R. Balasubramonian, J. P. Strachan, M. Hu,
R. S. Williams, and V. Srikumar, “Isaac: A convolutional neural network accelerator
with in-situ analog arithmetic in crossbars,” in Proceedings of the 43rd International
Symposium on Computer Architecture, pp. 14–26, IEEE Press, 2016.

[13] D. Fujiki, S. Mahlke, and R. Das, “In-memory data parallel processor,” in ACM
SIGPLAN Notices, vol. 53, pp. 1–14, ACM, 2018.

[14] “Uci machine learning repository.” http://archive.ics.uci.edu/ml/datasets/ISOLET.
[15] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/Daily+

and+Sports+Activities.
[16] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/datasets/

cardiotocography.
[17] G. Griffin, A. Holub, and P. Perona, “Caltech-256 object category dataset,” 2007.

