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Abstract—The rising number of cores in manycore archi- not release power models for their chips. The lack of aceurat
tectures, along with technology scaling, results in high power power model is the main hindrance towards pursuing academic

densities and thermal issues on the die. To explore innovative research on innovative thermal management techniques of
thermal management techniques in such processors, we need .
manycore architecture.

an accurate online estimate of the power consumption. In this o )
paper, we present the first ever power model for Intel many ~ Sheaffer, et al. [3] extended existing well studied CPU

integrated core processors, which we use to show the benefitpower models and derived a GPU power model based upon
of a novel manycore specific thermal management technique hypothetical GPU architectural simulation. The work in [4]
called workload intermixing. Our proposed model leverages per- introduced an architectural power modeling framework for

formance monitoring events and accounts for operating voltage GPU hich i d of vtical irical and
and clock frequency. We validate our model for Intel Knights S which IS composed of analylical, empirical and area

Ferry (K NF) design and show that we have an average df73% based components. Even though it is an useful architectural
prediction error vs. measurements. We provide the breakdown of exploration tool, it requires circuit level knowledge abdle

total power into three main components: compute, memory, and chip and does not validate the power model at the chip level to
interconnect and use it as an input for thermal management. guarantee the accuracy of power estimation. Ma, et al. [&@ ha

Our simulation results show that our proposed intermixing of L
workloads in KNF architecture can reduce the total number Statistically analyzed and modeled the power consumptian o

of thermal emergency situations by58% with energy savings of Mainstream GPU (NVIDIAGe Force880GT). They exploited
14% on average. the relation among power consumption characteristicgimen

performance, and dynamic workloads to model GPU power
. INTRODUCTION consumption. Their model shows significant amount of error,
Manycore chips are becoming a baseline for future higis large as30%, in number of cases because their model
performance computing solutions. However, the additiongnores bus and memory activities. They also neglect tlexeff
performance gained from these high end computing resouroéstemperature on the static power consumption. Hong, et
comes with significant increase in power consumption. Higid. [6] presented a power model for recent GPGPUs from
power dissipation causes thermal hotspots that may hay®IDIA. As GPGPUs do not have speculative execution, they
a significant effect on reliability, performance, and legd&a used dynamic instruction rate as an activity factor in theqro
power. As the technology node scales down, it become®del. Such models are inaccurate for a manycore processor
more challenging to dissipate the heat using existing ngolilike Intel's Knights Ferry (KNF) [7], where the speculatit
mechanisms without sacrificing performance. Since thestargntroduced through branch predictions.
applications of these manycore chips exhibit a lot of paral- Thermal management for general purpose processors has
lelism, a highly compute intensive application occupyidly abecome an active research area in recent years. Core level
the cores can increase the temperature very quickly, cgqusthermal management techniques €PU s have two classes:
performance degradation due to the state of the art dynaméactive and proactive. Reactiviel' M techniques remove the
thermal management X" M) [14] techniques like throttling excess heat by slowing down the computation aggressively
or dynamic voltage frequency scalin@V F'S). In order to through pipeline throttling, power gating, DVFS, etc [14].
explore new thermal management techniques, we needAtctivity migration reschedules the computation across re-
understand and develop models of the power consumptiondaindant cores to manage excess temperature [16]. In or-
these manycore processors. der to address the performance overhead and non uniform
A number of power models for general purpose CPUkermal distribution of reactive techniques, several ptiva
have been proposed. At first, Tiwari, et al. [1] introducetechniques have been proposed that leverages temperature
a processor power model based on instruction level powmedictors [17]. Sheaffer et, al. [15] have explored vasiou
analysis. A survey on power model demonstrated that modél$?U specific thermal management techniques PU.
based upon OS utilization metrics and performance monioriHowever, all these techniques have performance overhead du
unit (PMU) counters are generally sufficiently accurate [2}o the underlying throttling. Despite all the work i@ PU
However, there are very few publications on power estimati@nd GPU areas, thermal management techniques for modern
of manycore or similar architectures. Vendors generally doanycore architectures have never been explored.



Our work has two key contributions. First, we propose VECTOR] VECTOR VECTOR] VECTOR
a new DTM technique called workload intermixing, which noo 'ACORE- iakadial ahacad
exploits the thermal heterogeneity in the manycore woddoa
Second, we develop an efficient and accurate power model for
a many integrated core architecture to evaluate the propose
DT M technique. In our power model, the total chip dynamic
power is expressed as a function of three main components: VEeR RVEGI VESTeR BESEE
(&) compute, (b) memory, and (c) interconnect, which is A CORE 'ACORE- A CORE IA CORE
necessary for accurate thermal simulation and management.
The dynamic power of each component is based on the event
counts from PMU. The contribution of each event to the™ Measurements

total power consumption is calibrated using a set of micro We collect hardware event traces using Intel's Sampling
benchmarks running on the instrumented KNF card. Our wolnabling Product (SEP) tool [8] at default sampling frecpyen
also studies two key components of power, one of which haé SEP (K Hz). We instrument the KNF card and use
not been addressed by previous work. First, we provideNational Instrument(NIS)'s Data Acquisition (DAQ) system
model for the temperature dependent part of the total stali power measurements [9]. The power consumptions of two
power. In addition, our model enables accurate estimatespsiwer supplies in the KNF card are added together to compute
how power consumption and performance change over varighe total power consumption. We found that' i = sampling
operating voltage and clock frequency settings that allows frequency is sufficient for all the benchmarks that we have
to accurately simulat®V F'S for our target architecture. Ourused (relates to Nyquist frequency). We use system utitity t
experiments show that the peak power consumption of a givgad the on die register which stores the current temperatur
benchmark can vary significantly (e.§.X) for a small change of the KNF chip. Temperature is measured every second since
in input data size. We verify our calibrated power model fok N F’s thermal constant is on this order.

KNF with a set of dynamic workloads for different input sizes

and different data mapping policies. No previous power rhods- Workloads

has addressed these dimensions before. The average error Bach of the benchmarks used in this study runs directly
our power model is withirt.73% of the measured power. Thison the KNF card using2 cores and4 threads per core. A
then enables us to develop a thermal simulator &6N /' summary is given in Table | wherEC' indicates the iteration
chip to assess the efficacy of workload intermixing as awunt, L is the execution time, and’ indicates whether the
innovative thermal management technique in manycore chipenchmark has a flat or variable behavior in terms of power
Our simulation results show that our proposed intermixihg eonsumption.Pr.,; is the peak total power consumed by
workloads in manycore architecture lik€ NF can reduce the KNF card. Pr.; includes the chip’s dynamic power
the total number of thermal emergency situations5B% on  (Ppynamic) and idle power of the KNF cardH;4.), which
average comparing to existing7 M technigues with energy is the total power consumption of the KNF card when no
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Fig. 1. KNF architecture

savings of14% on average. workload is running on the chip and when chip temperature
(Tcnip) is at the steady state temperatui®-{4.). Hence,
Il. MIC CHARACTERIZATION board power, leakage power, and other sources of idle power

are also included inPr,;. All the power numbers in this

This section provides a brief overview of the KNF arCh'baper are normalized with respecti . at Tejq.. We wait

tecture followed by the measurement methodologies and i€, tes hefore taking any new measurements to allow the
benchmarks that we have used in Section Il to develop??Stem to reach steady state temperature

Eovre(; model for(rjnall?ycorel artc hitecture. VZ;HI?V\[/etra%e 'the ca 1) Micro Benchmarks:We have created a set of micro
rated power model to evaluate our propo €ChNIQUE  henchmarks ybench) to study the power consumption of

in Section IV. different components of the KNF chip. All thebenchs are

compiled with Intel icc compileri¢c -O0 unless otherwise

specified. The power consumed Iypenchs has a dynamic
KNF is an X 86 based processor wits2 small cores, each range of28 watts. There are two classes pbench, those

capable of executing simultaneous threads. Each core habat focus on core and others which exercise memory and

a wide 612-bit) vector processor unit (VPUR2KB L1 data interconnectmemint

cache,32KB L1 instruction cache, and a priva@6KB L2 Core pbenchmarks exercise different parts of the core,

data cache. As shown in Figure 1, cores, L2 cache and memery., pipelines, register file, branch unit, integer unécter

components are connected through a ring interconnect piacessor unit, etc. There are eight core benchmarksiéa)y

enforce coherency. The KNF card hiaSsB GDDR5 memory (b) SleepC (c) Null, (d) Noop (e) Count (f) Veg (g) Vec-Int

running at3.6 GT/s. We fix the clock speed and operatingnd (h)V-I1-O3.

voltage of the chip ab00 MHz and1.15 volt respectively for Null is an empty while loop —while(1){}. It is created to

all our experiments. observe the minimum amount of power it takes to keep instruc-

A. Knights Ferry Architecture



tions runningNull has no data access from register or memorybenchmarks is given in Table |
On the other handsbenchCountis used to observe the change 2) Test BenchmarksTo test the accuracy of our power
in power consumption due to data access from regisaent model, we use ten benchmarks with a dynamic power con-
is an infinite while loop which has an increment statemestmption range of 100 watts. These benchmarks are selected
inside the loop body -€ount=0; while(1)count++;}. Sleep from the parallel benchmark suits for multicore CPUs and
and SleepChighlight the idle power of the system, which iSGPGPUs. Lack of efficient implementation for Knight Ferry
very much dependent on the chip’s temperat@kepgoes architecture has restricted us from expanding the testhsenc
through an infinite while loop with a sleep statement insidmark suit. We have selected Black-Scholdms) (to verify
the loop body -while(1){sleep(1)}. Sleepds a slightly modi- our model across different input size$6384, 16400, and
fied version ofSleep count=0; while(1)sleep(1); count++}. 16512. In order to test the robustness of our power model
Noopis an infinite while loop where the loop body has@p across different data placement policies, we have ussl
instruction—while(1) noop;}. We includedNoopto observe a different version obs with three different data mappings
the power consum tion while the pipeline is full. with adjustment sizes df6384, 16400, and16512 for the same

o

3 input size,16384. We use dense matrix matrix multiplication
(4] = . .
=3 U%) Name Prowat| TS —Torae | L | £ | 1C sgemm.fas a very important kernel for high performance
- (éftfi& (°c) o) computing. Benchmarkbodyis a simulation that predicts the
Sieep 111 T 50Ty T 1 motion of a group of celestial objects that interact withleac
SleepC 111 1 20 [ Y il other gravitationallyStreamis a simple synthetic benchmark
HU” igg g %8 $ i program that measures sustainable memory bandwidth. The
Cgﬂﬁt 119 5 0Ty I other selected benchmarks are: monte carlo simulation of
5 | § [vec 1.22 9 20 [ Y 1 option pricing (ng), discrete fourier transforn2(ifft), market
5 |© xelcc')'gt 1%5 12 gg $ i model monte carldlipor), image reconstruction processagk-
Q AR K . . .
S =T AR 115 5 0T Y T 1 projection), prefix sum §car) and tree based searckegrcl).
£ =
S o T : T D. Thermal Simulator
S [[2-Miss | 1.11 3 20 Y| 1 ‘
2 :]bcody e ! 152 MAMEELY We extend Hotspot [12] simulator with manycore thermal
£ [Tibor 154 7 6 1Y il simulation based on the estimated floor plan and package
°§ stream 1.22 1 7 | N ] 100 characteristics of Intelk N F'. The heatsink dimension and the
E Ezamh 12; g g $ i case to ambient thermal resistandé/{’) are approximated
5 [fi 1.20 1 13 [ N | 6000 as0.07m and0.25 respectively based on the data in [13]. We
< | scan 1.20 1 4 | N [ 100 leverage our derived power model in Section Ill to genertage t
- Egigggi igg ; 1‘51 N 4%)80 dynamic power traces for our benchmarks and to implement
< > N
S | 2 [bsl6400 | 1.43 5 7 | N | 4000 DV FS. We also account for thermally dependent leakage
& |~ ['bs16512 | 1.63 6 4 | N | 4000 power based on our model. We include a baseline power of
g EZZigigg 12; g ‘212 m 3888 the K NF chip in the simulator. Each simulation starts from
O bsale512 154 6 7 N | 4000 an initial temperature of5°C with a warm-up period 0200s.
TABLE | We keep thel' N F' fan running at a fixed speed throughout the
INFOS ONpBENCHS AND BENCHMARKS simulation to maintain a constant case temperature. Tisere i

In order to quantify the power contribution of VPUs, weone temperature sensor per core. The local ambient tempera-
developed three benchmarks, each with an infinite while.lodpire within the computer and the critical temperature thoés
In case ofVeg the loop body is a sequence of vector instruen chip are set at5°C and90°C' respectively. Since our goal
tions with no loop independent dependency among thén- is to design a newDT' M technique that intermixes thermally
Int's loop body contains a run of pairs containing one vectdreterogeneous workloads, we focus on cores only and do not
instruction and one integer instruction with similar degemcy do thermal management of memory or handle cooling.
requirement as mentioned fdec V-1-O3is a modified version
of Vec-Intand it is compiled withicc -O3 option.

Memint ubenchs exercise memory hierarchy and intercon- This section provides our a power model for a many
nect. Theseubenchs have an infinite while loop with streanintegrated core processor. To calibrate the model for KNF,
of load instructions inside the body of the loaghile(1{ we run ubenchs described in Section Il on the instrumented
for(i=0;ijblocksize;i+=offsetyload a vector register from lo- KNF, measure the real power consumption using DAQ, collect
cation A+i;}}. By changing the value dflocksizeandoffset events sample using SEP, and finally perform the fit of the
we get three different kinds of benchmark$:L1-Hit, (i) L2- power model.

Hit, and (i) L2-Miss.In L1-Hit, all except the first load of a

cache line are satisfied from L1 cache. B-Hit, all except A- Power Model Components

the first load of a cache line are satisfied from L2 cache. All Total power consumption has two components: static power
the loads inL2-Miss go to memory. A summary of all the and dynamic power. Static poweP4,.;;.) is a function of

Ill. POWERMODEL



chip layout, circuit technology, and operating tempemt@®@n significantly depending upon the source of data for each
the other hand, dynamic powélf,..m:c) iS dependent on instruction. Accessing data from different parts of thepdiis
runtime switching activity of the circuit. As transistoradome different power costs, e.g., register vs. L1 cache vs. oiff ch
smaller and faster, the relative portion of static powerhia t memory. It is important to study these factors while seterti
total power consumption grow$s..+;. is proportional to the PMU eventsM EScompute-
power supply voltagé(-c) and leakage current as follows:  From the analysis of:benchs running on KNF, we have
Pstatic = Voo N Kaesignlicakage (1) observed that the power consumed by a CPU bound applica-
Here, N is the number of transistorsi{u.sign represents tion varies significantly across instruction mixes. Forrapée,
the characteristics of the device, afd.yqgc iS per device an execution of a single unconditional jump statement in an
subthreshold leakag€gesign and Ilicarage have a strong infinite while loop by 128 threads causes an increase in total
dependency on the temperature of the cHigy,,. power consumption b2% of Prg.. If the instruction stream
Hotleakage [10] provides a quadratic model between leak-the application is accessing registers, the IPC may dsere
age power andcy,. Su, et al. [11] shows that this relationas seen incount In some cases, it may also increase the
can be modeled as linear in normal operating temperatyewer consumption if the computation and communication can
range. Thus we model static power at chip temperelurg, be overlapped to some extent. We have also noticed that the
as shown in Equation 2. HerAT is the difference between fraction of vector instructions in the total instructionseeuted
current temperatureZt;,) and the chip idle temperatureis a dominating factor in the total power consumption of KNF.
(Tcraie)- AP is the rise in power consumption fotr@ rise in - Due to the wide $12 bif) VPUs in KNF, vector instructions
Tehip- Psiatic = Prgie + ATAP ) consume more power than integer instr_uctions. The amount of
AT = Tensy — Tora (2)  branch mispredicted is also an influencing factor of the powe

The d : dissi db hi b q Icgnsumption in KNF as observed in general purpose cores.
© %/nam|c power dissipated by a chip can be modeledy, distinguish these different components of power con-
as aCV=f where « is the activity factor in the chipC

is th i bei itched lock cvéleis th sumption, we setM EScompute 10 four events in the core:
IS In€ capacitance being switched per clock Cywlels e yqainstructions executespu instructions executedranches
operating voltage of the chip, antlis the clock speed. It is

: S : - . mispredicted data read or write Here data read or writeis
a strong function of application’s runtime activity. We idie

. : the number of access to registers or caches or memory. In
the dynamic power of a manycore processor into three m F, a wide memory access is split into multiple accesses,
tcr:)mponents]; con;]pute, mterchnne% ‘?Qd mr(]emory. _thmo%ld each split access is counted separatelgata read or

€ power ot each componenias a;t; fW erea; 1S e\ rite. Moreover, since KNF does not have a counter for integer
activity factor of the component andC; is the capacitance

bei tched lock e i e touah instructions, we derive the number of integer instructifsom
€ing switched per clock cycle in componanteven tough g4 ctions executednd vpu instructions executed

a;C; is unknown for each component, it can be modeled S\ [ES nterconnect: The increased number of cores in many-

a weighted sum of a few meaningful performance unit eveni3re processors necessitates the need for a high perfoemanc

as shown in equation 3. interconnect. The more cores there are, the more traffic gmon
a;C; = Z Wie Tie 3) cores and various levels of memory hierarchy. We have to

for all event e explore these events while selectingE St,terconnect-
Here MES; is the meamngf’m event set for component Allthe cores, L2 caches and memory modules are connected

i, 1. is the frequency of event in event setMES;, through a ring network in KNF. Any load or store instruction
and Wi e is a We|ght for‘ evente. We use th|s framework that goeS beyond the L1 cache involves this I’ing network
because PMU based power models have been shown to@hé adds a power component to the total power consumption.
very accurate. As defined here, the power model is genefdfer experiments and analysis with thebenchs, we have
enough to be applied to any of the many core processor. gelected three events to compute the power consumption in
the following subsections, we define a small set of meaningfiiterconnect: (a).2 read miss mem fjl(b) data read miss or
events specifically for KNF design and the respective wsightVrite miss and (c)bus cycle durationHere, data read miss

w;.., used by Equation 3. or write missrepresents the total number of L1 misses, and
’ ] bus cycle durationis the number of cycles when the bus is
B. Selecting MES for KNF busy with traffic.L2 read miss mem filils the actual number

MES compute: Usually the dynamic power consumption ofof memory accesses that are satisfied by memory after a miss
CPU is highly correlated to instructions executed per ctidk from L2. The absences of uncore PMU events in SEP restricts
(IPC). The power is also influenced by the instruction mix anas from exploring different variations Q¥ ESypierconnect -
the presence of speculative execution (e.g. branch predjct MESyemory: The dynamic power consumption in mem-
Moreover, in the presence of VPUs, the power consumptiony can be computed as a function of memory activities.
in applications can be greatly influenced by the percentdgeTde events included i/ ESyemory depend on memory
vector instructions in the total number of instructions@ied technology. For example, counting the total number of opera
and the width of the VPU. Wider VPUs can lead towartions(read and write) is sufficient for dynamic random asces
larger power consumption. The power consumption also sarimemory (DRAM), but a complex memory hierarchy may



require including more events i ESysemory - D. Calibrating the Static Power Model

We model the dynamic power consumed in KNF main |y this section, we calibrate the static power model shown
memory using a single core PMU event counter; namély i equation 2 which has a temperature dependent leakage
read miss mem fillThere was nd.2 write miss mem filevent power component. For simplicity, we assume that the fan
in DO KNF card. Since SEP does not have access to unc@ffsed remains constant during the execution period of the
PMU events, we st/ ESycmory t0 ONe eventL2 read miss penchmarks. Figure 2 shows the total power consumption
mem fill while runningV-1-O3 for 20 seconds. It is observed that the
total power consumption increases ®4%0 of Py even for
startingV-1-O3. This 0.24P; ;. watt is a fixed cost fok-I-O3.

After selectingM ES; for each component of KNF, the As we keepv-1-O3 running, the temperature rises and the total
missing part of the power model in Equation 3 are the weight®wer consumption increases by 5 watts in 20 seconds. The
w; . for all the events inM ES;. The frequency of event e, rise in temperature is from 7& to 78C in 20 seconds. In
Ti.e, iN Equation 3 is computed by dividing the total numbesummary, there are 5 watts of power increment fof @ 8ise
of events inlms interval by the number of clock ticks in 1msin temperature. A quick estimate for leakage power incrémen
We computedipc (number of integer instructions executed petlue to temperature |§% This is the value used foAP
clock tick), vipc (number of vector instructions executed peih equation 2.
clock tick), data (number of data accesses per clock tidk)
(number of branch mispredicted per clock ticklys (number
of bus usage per clock tick)2 (number of 12 accesses per

C. Calibrating the Dynamic Power Model

1.30
1.25
clock tick), andmem(number of memory accesses per cloc 3 Efj
tick). The weight for each event is calibrated by correlgtin &%
the real power value andg . of ubenchs. We sort thebenchs
in terms of number of sub components (e.g. integer pipelir

Leakage Power

1.10
1.05

. L 00 i , £ : — :
registers, vector pipeline, L1 cache, L2 cache, memory ¢ » 10 Tine (6) 20 25 30
interconnect) it is using in ascending order. As shown in Fig. 2. Modeling Leakage Power.

Table 11, the sorted sequence is the same as found in Table | _—

for ubenchs. Benchmarkleepis in row 1 because it is not E. Model Validation

using any sub components. If a benchmark has no activityFigure 3 and 4 depicts the accuracy of our proposed many
in a particular sub component then that event counter is ribtegrated core power model, which is calibrated for KNFeTh
needed. The: sign in a particular cell in a row and column average error for theé2 pbenchs is3.2% (mbAvg.). V-I-O3

e means that there is no activity of eveatfor benchmark has maximumi2% error. For the test benchmark suite, the
b. Hence weights_. becomes meaningless for benchméark average error (bAvg.) i8.73%. From these results, it is clear
For example, we have in columnuvipc for benchmarkcount that our model provides high accuracy for predicting power
becausecount has no vector instructions. Heneipc is not consumption of10 different benchmarks, which are highly
necessary while fitting the model for rov We fit the model optimized for the KNF card. The data also shows that our
for row j by finding weights of all the meaningful events thamodel is capable of predicting power consumption of dynamic
minimize the squared error between measured and predictéerkloads for different input sizes. For three differentiop
power, and move to row + 1. The weights computed in row Sizes of bs, the average error i8.40%. We also illustrate

4 are unchanged while fitting the model for rgw-1. Finally, that our power model can estimate power consumption of a
we find the weight folm using a real benchmark that has &ingle application with diverse data mappings. In the cdse o
high branch misprediction rate. In Table H,indicates where Black-Scholes, we verify our model with three differentalat
certain weight was computed for the first time gnihdicates Mappings with an average error 4H4%.

the propagation of each weight to the final model. The model can also accurately predict power consumption
of workloads that go through different phases in a single

Bench | iipc | vipc | data| bm | bus | 12 | mem . . )
Sleep | x X X X x | % X execution. To illustrate this, we compare the measured and
Sleep-C| x X X X | x | x X predicted power obs16384in Figure 5. Our power model
l\'}‘“” * X X X X | X X closely follows the measured power consumption trend of
Cgm i i i i i i i bs16384 We have analyzed the activity factors of three
Vec T * * X * | x X major components while runnings16384 During the first 10
Vec-Int | | 4 4 X 4| x X seconds, activity in the cores is very low and in intercomnec
\Ifl'glf i i i X i XX are very high. Due to the very long request queue in the
AT |1 T T T x 1 [+ x memory module, memory requests are not serviced quickly, so
L2-Miss | | 1 1 X T 17 x as a result thépc is very low. After the10** second memory
Final Lol S I I I starts servicing requests quickly, interconnect actigtyws

TABLE || down, and cores become much more active leading to high
CALIBRATING WEIGHTS FOR DIFFERENT EVENTS IpC and hlgher pOWEf Consumption.



Figure 6 shows the normalized activity factors of differerppower heterogeneity. Compute intensive benchmarks such as
events for the test benchmark suite. The power consumptimg, libor, bp make the cores hotter since they consume
of bsis 1.35x, 1.43x, and1.63x of Py for three different large amounts of core power, while more memory bound
input size (6384, 16400, 16512) as shown in Table I. The benchmarks, e.g., stream, scan, etc., use less core power,
activity factor shows that the dominating event behind thind thus keep the core cooler. To further understand the
difference isvipc and mem Benchmarkbs16512has more magnitude of these differences and the performance cost of
memory activity tharbs16384 which also implies that mem- state of the art thermal management used AV FE, we
ory requests are served quicklylis16512 Vipcincreases as a compare two different benchmarkisp and 2dft We use the
result. In the next section, we use our power model to gemerétiermal simulator described in section 1I-D and run each
power traces for different components of the chip so that vilenchmark for800s. All the cores occasionally reach the
can perform thermal simulation. critical temperature when runningp and thus experience
23% performance overhead as a result of default throttling

&
N — Error(%)l mechanism. There is no throttling while executgft While
o B = — 0 = evenly distributing32 cores among these two benchmarks,

& & & \Q@Q'G « 4@@’“ & V&‘“ &:2'*‘“ &&% 5 there is only0.03% performance degradation while meeting
Fig. 3. Erro:’of the model for micro benchmarks Slﬁte_ thermal constraints. This observation has motivated us to

& intermix thermally heterogeneous workloads to reducentiaér

‘:‘ E Error(%) , | hotspots in manycore architecture.

° éb%”&@‘e“&@@ \/é,_,%b' &@ \@N‘»mb‘é & &,o‘ wQ &&5“@‘,&%@ & ‘;oéﬁv ¥
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Fig. 4. Error of the model for test benchmark suite.

1.40
1.35
g =21.25
&.51.20 \
AT
1'1'0 = predicted
1.05 measured Fig. 7. Power breakdown into components.
100 = r SV > L .
2000 0 sy 2000 20003000 The target applications of manycore architectures usually
Fig. 5. Power prediction fobs16384 have the sufficient parallelism to utilize all the compute

cores. However, assigning all the cores to a compute intensi
application is inefficient from performance point of viewedu

to the throttling that will result because of thermal hotspo

A8 Instead we split the available compute resources between a
compute intensive and a memory intensive workload. Since
each of the cores IlK NF has a privateL.1 cache and a
dedicated portion of.2 cache, intermixing workloads should
not introduce cache overhead. The available off chip memory

o ipc I iipc I vipc I data [ bus 3 bm —a 2 I mem

S o 0 S S © @ o O & & B P bandwidth can be efficiently shared between two workloads.
S » & 00 ° We call this technique workload intermixingi{/).
Fig. 6. Normalized activity factors of the events. Workioad i Workload N
IV. THERMAL MANAGEMENT VIA INTERMIXING wt; I_Epfzdétﬁ th’ ”bt‘)”:?geam
) . . ibor p+libor

In this section, we first show that workloads run AnV F’ WL3 bp+scan WL8 2dft+scan
have quite a bit of variability in power dissipation, whicanc wL4 libortscan| WL9 nbody+bp
be leveraged by our novel workload intermixing technique fo WLS | bp#stream| WL10 | nbody+Hibor
efficient thermal management in such manycore processors. W TAB%DE mn
We use the power model we developed for more detailed ORKLOAD DESCRIPTION

analysis of the core level power consumption of ti&VF"  |n order to evaluate the efficacy of our workload intermixing

applications. Figure 7 shows the breakdown of the total powgy 1) strategy, we creaté0 workloads using applications in

consumption into three main componeritdhe compute unit the test benchmark suite to have a representative mix of hot

is responsible for most of the chip’s dynamic power with and cold benchmarks as shown in Table Ill. Each benchmark

large range. in the workload runs400s. The state of the art default
There is quite a bit of thermal variability between variou$)7T A/ policy throttles the cores when the core temperature

KNF applications as summarized by Table | due to thejeaches the critical temperature threshold and clock gates
1The idle power consumption of the KNF memory controller is veighh the c_ores until the tempe_ratu_re fa.”S bel@&o.c' We have

due to a large analog component. For illustration, we havectsd the idle &ISO implemented)V /S with five different settings:1( 15V,

power for memory as 02; .. 0.90GHz), (1.12V, 0.85GH>z), (1.10V, 0.80GHz) , (1.07V,



0.75GHz), and (.04V, 0.70G H =) using scaling techniques To make such temperature aware intermixing possible in
in [14]. DV F'S technique goes to the next lower step whemnanycore architectures lik& N F, the parallelism (number
ever a thermal emergency occurs and tries to maintain tbethreads) of manycore applications should be parametrize
maximum possible speed while avoiding thermal emergenand included in the programming model of future manycore
In the absence of thermal emergenci$] 'S increments the designs. Even though applications running on future mamyco

frequency to the next higher whenever possible. chips may request a specific number of cores, the actual
level of parallelism and core allocation decisions will be

=
o

dynamically made by the OS scheduler based on workload
profiling and current thermal state of the system.

V. CONCLUSION

In this paper, we explore the prospect of workload in-

e e e e Pl e o e Pl R termixing as an efficient thermal management technique for

manycore architecture. In order to perform an accuratertaler

i , , simulation for this purpose, we developed the first ever powe
The default policy experiences computation slowdown ofiqe| for a many integrated core architecture. We calitvate

up to 22.4% with an average ofl1.46% for the work- mqqelon Intel's KNF with a set of benchmarks and real power

loads in Table Ill. As expected, the performance cost dygeasurement data. In contrast, when compared to measure-

to throttling is higher for workloads witthot benchmarks, 1 aont on Intel's KNF card, our model has undef3% average

e.g.,WL7. Meanwhile, workloads with onlgold benchmarks gror The inclusion of operating voltage and clock frequen

(e.g.,WL8) do not experience any thermal hotspots. Figure &,apies our model to be used as a part of the DVFS policy

shows the reduction of computation slowdown when usingsjgn. Our thermal simulation based on this power model
our strategy of workload intermixing¥(/) and DV IS OVer  eyeqled that intermixing thermally heterogeneous watto

the_ default policy. DV F'S performs better than the.defaultin manycore chips can reduce the thermal hotspot$d$y
policy by only 14% on average. Our proposed technidd® 4, average compared to state of the art thermal management

shares the cores among thermally heterogeneous Worklnadﬁebhniques with an energy savings 1af% on average.
interleaved fashion. It obtains on averdgs reduction in the

computation slowdown as compared to the default policy. We VI. ACKNOWLEDGE

also improve oveDV F'S by 51% on average. For a subset of This work has been funded by Intel Lab and DARPA.
workloads,W L1—-W L6, W I improves over the default policy
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Fig. 8. Improvements over default policy.

by 99%. W has identical improvement$9%) over DV F'S REFERENCES
for the target workloads. If there is no thermal heterogengi V. Tiwari et al. Power analysis of embedded software: At fitep towards
ity in the workload (e.g. WLT.WIL9 WLIO) our thermal software power minimizationIn IEEE Transactions on VLS| Systems,

. . . 1994.
management technique appliés/ 'S because: (a) there iS[o; s Rivoire et al. A comparison of high-level full-systerovger models.

no way to benefit from intermixing, (b) DVFS performs better In HotPower, 2008.

than the default policy. [3] fqrigiﬁﬁﬁmgl' Q)gi)(ible simulation framework for gragsharchitec-
[4] K. Ramani et al. Powerred: A flexible power modeling framekvéor

N
n

power efficiency exploration in gpusn GPGPU, 2007.

22 [5] X. Ma et al. Statistical power consumption analysis and efiod for
gnl gpu-based computingln SOSP Workshop on Power Aware Computing
z and Systems, HotPower, 2009.
al [6] S.Hong et al. An integrated gpu power and performance maadéSCA,
5 2010.
a [7] Many Integrated Core (MIC) Architecture www.intel.com.
[8] Intel Sampling Enabling Product (SEBpftware.intel.com/file/35252
Fig. 9. Eneray Savings over default policy. [9] National Instrument Data Acquisitiowww.ni.com/dataacquisition/
g gy d policy [10] Y. Zhang et al. Hotleakage: A temperature-aware modelbfrseshold
Figure 9 shows the percentage of energy saving$vdf and gate leakage for architecfechnical report, University of Virginia,
ndDV FS relativ he default thermal management policy, ._2003:
and DV F5 relative o the default thermal ma agement E)TO C¥11] H. Su et al. Full chip leakage estimation considering @osupply and
W1 saves on averagéd% of energy compared t@.8% temperature variationdn ISLPED, 2003.
with DV F'S. The savings of energy come from two differenfl2] K. Skadron et al. "Temperature-aware microarchitectiedeling and
sources. The reduction in computation throttling helpsjohs implementation. TACO 2004.

L. L. . [13] J. Wang et al. Vapor chamber in high-end vga cdMPACT, 2010.
finish faster. In additionl¥ I saves leakage power by reducingi4] p. Brooks et al. Dynamic thermal management for high-pentce

the average temperature of the cores. For the heterogeneousnicroprocessorsHPCA, 2001.

; [15] J. Sheaffer et al. Studying thermal management for graghiocessor
workloads representing our target casds/(1, W L2, W L3, arehitectUresISPASS, 2005,
W L4, WL5, ‘?md WL6), WI Save§21% and19% €nergy ON 116] J. Choi et al. Thermal-aware task scheduling at the systeftware
average relative to the default policy ahd/ F'S respectively. level. ISLPED, 2007. _
Energy savings are maximized when we mix the hottest WiH‘17] 2é(.)goskun et al. Proactive temperature management in mpkRIoSBED,

the coldest benchmarks.



