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Abstract—The rising number of cores in manycore archi-
tectures, along with technology scaling, results in high power
densities and thermal issues on the die. To explore innovative
thermal management techniques in such processors, we need
an accurate online estimate of the power consumption. In this
paper, we present the first ever power model for Intel many
integrated core processors, which we use to show the benefit
of a novel manycore specific thermal management technique
called workload intermixing. Our proposed model leverages per-
formance monitoring events and accounts for operating voltage
and clock frequency. We validate our model for Intel Knights
Ferry (KNF ) design and show that we have an average of4.73%
prediction error vs. measurements. We provide the breakdown of
total power into three main components: compute, memory, and
interconnect and use it as an input for thermal management.
Our simulation results show that our proposed intermixing of
workloads in KNF architecture can reduce the total number
of thermal emergency situations by58% with energy savings of
14% on average.

I. I NTRODUCTION

Manycore chips are becoming a baseline for future high
performance computing solutions. However, the additional
performance gained from these high end computing resources
comes with significant increase in power consumption. High
power dissipation causes thermal hotspots that may have
a significant effect on reliability, performance, and leakage
power. As the technology node scales down, it becomes
more challenging to dissipate the heat using existing cooling
mechanisms without sacrificing performance. Since the target
applications of these manycore chips exhibit a lot of paral-
lelism, a highly compute intensive application occupying all
the cores can increase the temperature very quickly, causing
performance degradation due to the state of the art dynamic
thermal management (DTM ) [14] techniques like throttling
or dynamic voltage frequency scaling (DV FS). In order to
explore new thermal management techniques, we need to
understand and develop models of the power consumption of
these manycore processors.

A number of power models for general purpose CPUs
have been proposed. At first, Tiwari, et al. [1] introduced
a processor power model based on instruction level power
analysis. A survey on power model demonstrated that models
based upon OS utilization metrics and performance monitoring
unit (PMU) counters are generally sufficiently accurate [2].
However, there are very few publications on power estimation
of manycore or similar architectures. Vendors generally do

not release power models for their chips. The lack of accurate
power model is the main hindrance towards pursuing academic
research on innovative thermal management techniques of
manycore architecture.

Sheaffer, et al. [3] extended existing well studied CPU
power models and derived a GPU power model based upon
hypothetical GPU architectural simulation. The work in [4]
introduced an architectural power modeling framework for
GPUs which is composed of analytical, empirical and area
based components. Even though it is an useful architectural
exploration tool, it requires circuit level knowledge about the
chip and does not validate the power model at the chip level to
guarantee the accuracy of power estimation. Ma, et al. [5] have
statistically analyzed and modeled the power consumption of a
mainstream GPU (NVIDIAGeForce880GT ). They exploited
the relation among power consumption characteristics, runtime
performance, and dynamic workloads to model GPU power
consumption. Their model shows significant amount of error,
as large as30%, in number of cases because their model
ignores bus and memory activities. They also neglect the effect
of temperature on the static power consumption. Hong, et
al. [6] presented a power model for recent GPGPUs from
NVIDIA. As GPGPUs do not have speculative execution, they
used dynamic instruction rate as an activity factor in the power
model. Such models are inaccurate for a manycore processor
like Intel’s Knights Ferry (KNF) [7], where the speculationis
introduced through branch predictions.

Thermal management for general purpose processors has
become an active research area in recent years. Core level
thermal management techniques forCPUs have two classes:
reactive and proactive. ReactiveDTM techniques remove the
excess heat by slowing down the computation aggressively
through pipeline throttling, power gating, DVFS, etc [14].
Activity migration reschedules the computation across re-
dundant cores to manage excess temperature [16]. In or-
der to address the performance overhead and non uniform
thermal distribution of reactive techniques, several proactive
techniques have been proposed that leverages temperature
predictors [17]. Sheaffer et, al. [15] have explored various
CPU specific thermal management techniques forGPU .
However, all these techniques have performance overhead due
to the underlying throttling. Despite all the work inCPU
andGPU areas, thermal management techniques for modern
manycore architectures have never been explored.



Our work has two key contributions. First, we propose
a newDTM technique called workload intermixing, which
exploits the thermal heterogeneity in the manycore workloads.
Second, we develop an efficient and accurate power model for
a many integrated core architecture to evaluate the proposed
DTM technique. In our power model, the total chip dynamic
power is expressed as a function of three main components:
(a) compute, (b) memory, and (c) interconnect, which is
necessary for accurate thermal simulation and management.
The dynamic power of each component is based on the event
counts fromPMU . The contribution of each event to the
total power consumption is calibrated using a set of micro
benchmarks running on the instrumented KNF card. Our work
also studies two key components of power, one of which has
not been addressed by previous work. First, we provide a
model for the temperature dependent part of the total static
power. In addition, our model enables accurate estimates of
how power consumption and performance change over various
operating voltage and clock frequency settings that allowsus
to accurately simulateDV FS for our target architecture. Our
experiments show that the peak power consumption of a given
benchmark can vary significantly (e.g.,2X) for a small change
in input data size. We verify our calibrated power model for
KNF with a set of dynamic workloads for different input sizes
and different data mapping policies. No previous power model
has addressed these dimensions before. The average error of
our power model is within4.73% of the measured power. This
then enables us to develop a thermal simulator forKNF
chip to assess the efficacy of workload intermixing as an
innovative thermal management technique in manycore chips.
Our simulation results show that our proposed intermixing of
workloads in manycore architecture likeKNF can reduce
the total number of thermal emergency situations by58% on
average comparing to existingDTM techniques with energy
savings of14% on average.

II. MIC C HARACTERIZATION

This section provides a brief overview of the KNF archi-
tecture followed by the measurement methodologies and the
benchmarks that we have used in Section III to develop a
power model for manycore architecture. We leverage the cali-
brated power model to evaluate our proposedDTM technique
in Section IV.

A. Knights Ferry Architecture

KNF is anX86 based processor with32 small cores, each
capable of executing4 simultaneous threads. Each core has
a wide (512-bit) vector processor unit (VPU),32KB L1 data
cache,32KB L1 instruction cache, and a private256KB L2
data cache. As shown in Figure 1, cores, L2 cache and memory
components are connected through a ring interconnect to
enforce coherency. The KNF card has2GB GDDR5 memory
running at3.6 GT/s. We fix the clock speed and operating
voltage of the chip at900 MHz and1.15 volt respectively for
all our experiments.
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Fig. 1. KNF architecture

B. Measurements

We collect hardware event traces using Intel’s Sampling
Enabling Product (SEP) tool [8] at default sampling frequency
of SEP (1KHz). We instrument the KNF card and use
National Instrument(NIS)’s Data Acquisition (DAQ) system
for power measurements [9]. The power consumptions of two
power supplies in the KNF card are added together to compute
the total power consumption. We found that1KHz sampling
frequency is sufficient for all the benchmarks that we have
used (relates to Nyquist frequency). We use system utility to
read the on die register which stores the current temperature
of the KNF chip. Temperature is measured every second since
KNF ′s thermal constant is on this order.

C. Workloads

Each of the benchmarks used in this study runs directly
on the KNF card using32 cores and4 threads per core. A
summary is given in Table I whereIC indicates the iteration
count,L is the execution time, andF indicates whether the
benchmark has a flat or variable behavior in terms of power
consumption.PTotal is the peak total power consumed by
the KNF card.PTotal includes the chip’s dynamic power
(PDynamic) and idle power of the KNF card (PIdle), which
is the total power consumption of the KNF card when no
workload is running on the chip and when chip temperature
(TChip) is at the steady state temperature (TCIdle). Hence,
board power, leakage power, and other sources of idle power
are also included inPTotal. All the power numbers in this
paper are normalized with respect toPIdle at TCIdle. We wait
9 minutes before taking any new measurements to allow the
system to reach steady state temperature.

1) Micro Benchmarks:We have created a set of micro
benchmarks (µbench) to study the power consumption of
different components of the KNF chip. All theµbenchs are
compiled with Intel icc compiler (icc -O0) unless otherwise
specified. The power consumed byµbenchs has a dynamic
range of28 watts. There are two classes ofµbench, those
that focus on core and others which exercise memory and
interconnect,memint.

Core µbenchmarks exercise different parts of the core,
e.g., pipelines, register file, branch unit, integer unit, vector
processor unit, etc. There are eight core benchmarks: (a)Sleep,
(b) SleepC, (c) Null, (d) Noop, (e) Count, (f) Vec, (g) Vec-Int,
and (h)V-I-O3.

Null is an empty while loop –while(1){}. It is created to
observe the minimum amount of power it takes to keep instruc-



tions running.Null has no data access from register or memory.
On the other hand,µbenchCountis used to observe the change
in power consumption due to data access from registers.Count
is an infinite while loop which has an increment statement
inside the loop body –count=0; while(1){count++;}. Sleep
and SleepChighlight the idle power of the system, which is
very much dependent on the chip’s temperature.Sleepgoes
through an infinite while loop with a sleep statement inside
the loop body –while(1){sleep(1);}. SleepCis a slightly modi-
fied version ofSleep: count=0; while(1){sleep(1); count++;}.
Noopis an infinite while loop where the loop body has anoop
instruction–while(1){ noop;}. We includedNoop to observe
the power consumption while the pipeline is full.
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Null 1.22 9 20 Y 1
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Noop 1.20 8 20 Y 1
Count 1.19 8 20 Y 1
Vec 1.22 9 20 Y 1
Vec-Int 1.22 10 20 Y 1
V-I-O3 1.27 13 20 Y 1
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mc 1.46 7 12 Y 100
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nbody 1.41 4 5 N 1
libor 1.54 7 6 Y 1
stream 1.22 1 7 N 100
search 1.37 3 3 Y 1
bp 1.53 5 3 Y 1
fft 1.20 1 13 N 6000
scan 1.20 1 4 N 100
sgemm.f 1.54 7 14 N 10

In
pu

t bs16384 1.35 5 15 N 4000
bs16400 1.43 5 7 N 4000
bs16512 1.63 6 4 N 4000

D
at

a bsa16384 1.31 6 40 N 4000
bsa16400 1.32 5 26 N 4000
bsa16512 1.54 6 7 N 4000

TABLE I
INFOS ONµBENCHS AND BENCHMARKS

In order to quantify the power contribution of VPUs, we
developed three benchmarks, each with an infinite while loop.
In case ofVec, the loop body is a sequence of vector instruc-
tions with no loop independent dependency among them.Vec-
Int’s loop body contains a run of pairs containing one vector
instruction and one integer instruction with similar dependency
requirement as mentioned forVec. V-I-O3 is a modified version
of Vec-Intand it is compiled withicc -O3 option.

Memintµbenchs exercise memory hierarchy and intercon-
nect. Theseµbenchs have an infinite while loop with stream
of load instructions inside the body of the loop–while(1){
for(i=0;i¡blocksize;i+=offset){load a vector register from lo-
cation A+i;}}. By changing the value ofblocksizeandoffset,
we get three different kinds of benchmarks:(i) L1-Hit, (ii) L2-
Hit, and (iii) L2-Miss. In L1-Hit, all except the first load of a
cache line are satisfied from L1 cache. InL2-Hit, all except
the first load of a cache line are satisfied from L2 cache. All
the loads inL2-Miss go to memory. A summary of all the

µbenchmarks is given in Table I
2) Test Benchmarks:To test the accuracy of our power

model, we use ten benchmarks with a dynamic power con-
sumption range of 100 watts. These benchmarks are selected
from the parallel benchmark suits for multicore CPUs and
GPGPUs. Lack of efficient implementation for Knight Ferry
architecture has restricted us from expanding the test bench-
mark suit. We have selected Black-Scholes (bs) to verify
our model across different input sizes:16384, 16400, and
16512. In order to test the robustness of our power model
across different data placement policies, we have usedbsa,
a different version ofbs, with three different data mappings
with adjustment sizes of16384, 16400, and16512 for the same
input size,16384. We use dense matrix matrix multiplication
sgemm.fas a very important kernel for high performance
computing. Benchmarknbodyis a simulation that predicts the
motion of a group of celestial objects that interact with each
other gravitationally.Streamis a simple synthetic benchmark
program that measures sustainable memory bandwidth. The
other selected benchmarks are: monte carlo simulation of
option pricing (mc), discrete fourier transform (2dfft), market
model monte carlo (libor), image reconstruction process (back-
projection), prefix sum (scan) and tree based search (search).

D. Thermal Simulator

We extend Hotspot [12] simulator with manycore thermal
simulation based on the estimated floor plan and package
characteristics of IntelKNF . The heatsink dimension and the
case to ambient thermal resistance (K/W ) are approximated
as0.07m and0.25 respectively based on the data in [13]. We
leverage our derived power model in Section III to generate the
dynamic power traces for our benchmarks and to implement
DV FS. We also account for thermally dependent leakage
power based on our model. We include a baseline power of
the KNF chip in the simulator. Each simulation starts from
an initial temperature of45◦C with a warm-up period of200s.
We keep theKNF fan running at a fixed speed throughout the
simulation to maintain a constant case temperature. There is
one temperature sensor per core. The local ambient tempera-
ture within the computer and the critical temperature threshold
on chip are set at45◦C and90◦C respectively. Since our goal
is to design a newDTM technique that intermixes thermally
heterogeneous workloads, we focus on cores only and do not
do thermal management of memory or handle cooling.

III. POWER MODEL

This section provides our a power model for a many
integrated core processor. To calibrate the model for KNF,
we runµbenchs described in Section II on the instrumented
KNF, measure the real power consumption using DAQ, collect
events sample using SEP, and finally perform the fit of the
power model.

A. Power Model Components

Total power consumption has two components: static power
and dynamic power. Static power (PStatic) is a function of



chip layout, circuit technology, and operating temperature. On
the other hand, dynamic power(PDynamic) is dependent on
runtime switching activity of the circuit. As transistors become
smaller and faster, the relative portion of static power in the
total power consumption grows.PStatic is proportional to the
power supply voltage(VCC) and leakage current as follows:

PStatic = VCCNKdesignÎleakage (1)
Here, N is the number of transistors,Kdesign represents
the characteristics of the device, and̂Ileakage is per device
subthreshold leakage.Kdesign and Îleakage have a strong
dependency on the temperature of the chip,TChip.

Hotleakage [10] provides a quadratic model between leak-
age power andTChip. Su, et al. [11] shows that this relation
can be modeled as linear in normal operating temperature
range. Thus we model static power at chip temperatureTChip

as shown in Equation 2. Here∆T is the difference between
current temperature (TChip) and the chip idle temperature
(TCIdle). ∆P is the rise in power consumption for 1◦C rise in
TChip. PStatic = PIdle +∆T∆P

∆T = TChip − TCIdle

(2)

The dynamic power dissipated by a chip can be modeled
as αCV 2f where α is the activity factor in the chip,C
is the capacitance being switched per clock cycle,V is the
operating voltage of the chip, andf is the clock speed. It is
a strong function of application’s runtime activity. We divide
the dynamic power of a manycore processor into three main
components: compute, interconnect, and memory. We model
the power of each componenti asαiCiV

2f whereαi is the
activity factor of the componenti, andCi is the capacitance
being switched per clock cycle in componenti. Even tough
αiCi is unknown for each component, it can be modeled as
a weighted sum of a few meaningful performance unit events
as shown in equation 3.

αiCi =
∑

for all event e
∈ MESi

wi,e ri,e
(3)

Here MESi is the meaningful event set for component
i, ri,e is the frequency of evente in event setMESi,
and wi,e is a weight for evente. We use this framework
because PMU based power models have been shown to be
very accurate. As defined here, the power model is general
enough to be applied to any of the many core processor. In
the following subsections, we define a small set of meaningful
events specifically for KNF design and the respective weights,
wi,e, used by Equation 3.

B. Selecting MES for KNF

MESCompute: Usually the dynamic power consumption of
CPU is highly correlated to instructions executed per clocktick
(IPC). The power is also influenced by the instruction mix and
the presence of speculative execution (e.g. branch prediction).
Moreover, in the presence of VPUs, the power consumption
in applications can be greatly influenced by the percentage of
vector instructions in the total number of instructions executed
and the width of the VPU. Wider VPUs can lead toward
larger power consumption. The power consumption also varies

significantly depending upon the source of data for each
instruction. Accessing data from different parts of the chip has
different power costs, e.g., register vs. L1 cache vs. off chip
memory. It is important to study these factors while selecting
PMU eventsMESCompute.

From the analysis ofµbenchs running on KNF, we have
observed that the power consumed by a CPU bound applica-
tion varies significantly across instruction mixes. For example,
an execution of a single unconditional jump statement in an
infinite while loop by 128 threads causes an increase in total
power consumption by22% of PIdle. If the instruction stream
in the application is accessing registers, the IPC may decrease,
as seen incount. In some cases, it may also increase the
power consumption if the computation and communication can
be overlapped to some extent. We have also noticed that the
fraction of vector instructions in the total instructions executed
is a dominating factor in the total power consumption of KNF.
Due to the wide (512 bit) VPUs in KNF, vector instructions
consume more power than integer instructions. The amount of
branch mispredicted is also an influencing factor of the power
consumption in KNF as observed in general purpose cores.

To distinguish these different components of power con-
sumption, we setMEScompute to four events in the core:
total instructions executed, vpu instructions executed, branches
mispredicted, data read or write. Here data read or writeis
the number of access to registers or caches or memory. In
KNF, a wide memory access is split into multiple accesses,
and each split access is counted separately indata read or
write. Moreover, since KNF does not have a counter for integer
instructions, we derive the number of integer instructionsfrom
instructions executedandvpu instructions executed.

MESInterconnect: The increased number of cores in many-
core processors necessitates the need for a high performance
interconnect. The more cores there are, the more traffic among
cores and various levels of memory hierarchy. We have to
explore these events while selectingMESInterconnect.

All the cores, L2 caches and memory modules are connected
through a ring network in KNF. Any load or store instruction
that goes beyond the L1 cache involves this ring network
and adds a power component to the total power consumption.
After experiments and analysis with theµbenchs, we have
selected three events to compute the power consumption in
interconnect: (a)L2 read miss mem fill, (b) data read miss or
write miss, and (c)bus cycle duration. Here,data read miss
or write missrepresents the total number of L1 misses, and
bus cycle durationis the number of cycles when the bus is
busy with traffic.L2 read miss mem fillis the actual number
of memory accesses that are satisfied by memory after a miss
from L2. The absences of uncore PMU events in SEP restricts
us from exploring different variations ofMESInterconnect.
MESMemory: The dynamic power consumption in mem-

ory can be computed as a function of memory activities.
The events included inMESMemory depend on memory
technology. For example, counting the total number of opera-
tions(read and write) is sufficient for dynamic random access
memory (DRAM), but a complex memory hierarchy may



require including more events inMESMemory.
We model the dynamic power consumed in KNF main

memory using a single core PMU event counter; namelyL2
read miss mem fill. There was noL2 write miss mem fillevent
in D0 KNF card. Since SEP does not have access to uncore
PMU events, we setMESmemory to one event:L2 read miss
mem fill.

C. Calibrating the Dynamic Power Model

After selectingMESi for each componenti of KNF, the
missing part of the power model in Equation 3 are the weights
wi,e for all the events inMESi. The frequency of event e,
ri,e, in Equation 3 is computed by dividing the total number
of events in1ms interval by the number of clock ticks in 1ms.
We computediipc (number of integer instructions executed per
clock tick), vipc (number of vector instructions executed per
clock tick), data (number of data accesses per clock tick),bm
(number of branch mispredicted per clock tick),bus (number
of bus usage per clock tick),l2 (number of l2 accesses per
clock tick), andmem(number of memory accesses per clock
tick). The weight for each event is calibrated by correlating
the real power value andri,e of µbenchs. We sort theµbenchs
in terms of number of sub components (e.g. integer pipeline,
registers, vector pipeline, L1 cache, L2 cache, memory ,
interconnect) it is using in ascending order. As shown in
Table II, the sorted sequence is the same as found in Table I
for µbenchs. Benchmarksleep is in row 1 because it is not
using any sub components. If a benchmark has no activity
in a particular sub component then that event counter is not
needed. Thex sign in a particular cell in a rowb and column
e means that there is no activity of evente for benchmark
b. Hence weightw ,e becomes meaningless for benchmarkb.
For example, we havex in columnvipc for benchmarkcount
becausecount has no vector instructions. Hencevipc is not
necessary while fitting the model for row5. We fit the model
for row j by finding weights of all the meaningful events that
minimize the squared error between measured and predicted
power, and move to rowj +1. The weights computed in row
j are unchanged while fitting the model for rowj+1. Finally,
we find the weight forbm using a real benchmark that has a
high branch misprediction rate. In Table II,∗ indicates where
certain weight was computed for the first time and↓ indicates
the propagation of each weight to the final model.

Bench iipc vipc data bm bus l2 mem
Sleep x x x x x x x

Sleep-C x x x x x x x
Null ⋆ x x x x x x
Noop ↓ x x x x x x
Count ↓ x x x x x x
Vec ↓ ⋆ ⋆ x ⋆ x x

Vec-Int ↓ ↓ ↓ x ↓ x x
V-I-O3 ↓ ↓ ↓ x ↓ x x
L1-Hit ↓ ↓ ↓ x ↓ x x
L2-Hit ↓ ↓ ↓ x ↓ ⋆ x

L2-Miss ↓ ↓ ↓ x ↓ ↓ ⋆

Final ↓ ↓ ↓ ⋆ ↓ ↓ ↓

TABLE II
CALIBRATING WEIGHTS FOR DIFFERENT EVENTS.

D. Calibrating the Static Power Model

In this section, we calibrate the static power model shown
in equation 2 which has a temperature dependent leakage
power component. For simplicity, we assume that the fan
speed remains constant during the execution period of the
benchmarks. Figure 2 shows the total power consumption
while runningV-I-O3 for 20 seconds. It is observed that the
total power consumption increases by24% of PIdle even for
startingV-I-O3. This 0.24PIdle watt is a fixed cost forV-I-O3.
As we keepV-I-O3 running, the temperature rises and the total
power consumption increases by 5 watts in 20 seconds. The
rise in temperature is from 75◦C to 78◦C in 20 seconds. In
summary, there are 5 watts of power increment for a 3◦C rise
in temperature. A quick estimate for leakage power increment
due to temperature is5

3

watts
◦C

. This is the value used for∆P
in equation 2.

Fig. 2. Modeling Leakage Power.

E. Model Validation

Figure 3 and 4 depicts the accuracy of our proposed many
integrated core power model, which is calibrated for KNF. The
average error for the12 µbenchs is3.2% (mbAvg.). V-I-O3
has maximum12% error. For the test benchmark suite, the
average error (bAvg.) is4.73%. From these results, it is clear
that our model provides high accuracy for predicting power
consumption of10 different benchmarks, which are highly
optimized for the KNF card. The data also shows that our
model is capable of predicting power consumption of dynamic
workloads for different input sizes. For three different option
sizes of bs, the average error is3.40%. We also illustrate
that our power model can estimate power consumption of a
single application with diverse data mappings. In the case of
Black-Scholes, we verify our model with three different data
mappings with an average error of4.54%.

The model can also accurately predict power consumption
of workloads that go through different phases in a single
execution. To illustrate this, we compare the measured and
predicted power ofbs16384in Figure 5. Our power model
closely follows the measured power consumption trend of
bs16384. We have analyzed the activity factors of three
major components while runningbs16384. During the first 10
seconds, activity in the cores is very low and in interconnect
are very high. Due to the very long request queue in the
memory module, memory requests are not serviced quickly, so
as a result theipc is very low. After the10th second memory
starts servicing requests quickly, interconnect activityslows
down, and cores become much more active leading to high
ipc and higher power consumption.



Figure 6 shows the normalized activity factors of different
events for the test benchmark suite. The power consumption
of bs is 1.35×, 1.43×, and1.63× of PIdle for three different
input size (16384, 16400, 16512) as shown in Table I. The
activity factor shows that the dominating event behind this
difference isvipc and mem. Benchmarkbs16512has more
memory activity thanbs16384, which also implies that mem-
ory requests are served quickly inbs16512. Vipc increases as a
result. In the next section, we use our power model to generate
power traces for different components of the chip so that we
can perform thermal simulation.

Fig. 3. Error of the model for micro benchmarks suite.

Fig. 4. Error of the model for test benchmark suite.

Fig. 5. Power prediction forbs16384.

Fig. 6. Normalized activity factors of the events.

IV. T HERMAL MANAGEMENT VIA INTERMIXING

In this section, we first show that workloads run onKNF
have quite a bit of variability in power dissipation, which can
be leveraged by our novel workload intermixing technique for
efficient thermal management in such manycore processors.
We use the power model we developed for more detailed
analysis of the core level power consumption of theKNF
applications. Figure 7 shows the breakdown of the total power
consumption into three main components.1 The compute unit
is responsible for most of the chip’s dynamic power with a
large range.

There is quite a bit of thermal variability between various
KNF applications as summarized by Table I due to their

1The idle power consumption of the KNF memory controller is very high
due to a large analog component. For illustration, we have selected the idle
power for memory as 0.2PIdle.

power heterogeneity. Compute intensive benchmarks such as
mc, libor, bp make the cores hotter since they consume
large amounts of core power, while more memory bound
benchmarks, e.g., stream, scan, etc., use less core power,
and thus keep the core cooler. To further understand the
magnitude of these differences and the performance cost of
state of the art thermal management used inKNF , we
compare two different benchmarks:bp and 2dft. We use the
thermal simulator described in section II-D and run each
benchmark for800s. All the cores occasionally reach the
critical temperature when runningbp and thus experience
23% performance overhead as a result of default throttling
mechanism. There is no throttling while executing2dft. While
evenly distributing32 cores among these two benchmarks,
there is only0.03% performance degradation while meeting
thermal constraints. This observation has motivated us to
intermix thermally heterogeneous workloads to reduce thermal
hotspots in manycore architecture.
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Fig. 7. Power breakdown into components.

The target applications of manycore architectures usually
have the sufficient parallelism to utilize all the compute
cores. However, assigning all the cores to a compute intensive
application is inefficient from performance point of view due
to the throttling that will result because of thermal hotspots.
Instead we split the available compute resources between a
compute intensive and a memory intensive workload. Since
each of the cores inKNF has a privateL1 cache and a
dedicated portion ofL2 cache, intermixing workloads should
not introduce cache overhead. The available off chip memory
bandwidth can be efficiently shared between two workloads.
We call this technique workload intermixing (WI).

Workload Mix Workload Mix
WL1 bp+2dft WL6 libor+stream
WL2 libor+2dft WL7 bp+libor
WL3 bp+scan WL8 2dft+scan
WL4 libor+scan WL9 nbody+bp
WL5 bp+stream WL10 nbody+libor

TABLE III
WORKLOAD DESCRIPTION

In order to evaluate the efficacy of our workload intermixing
(WI) strategy, we create10 workloads using applications in
the test benchmark suite to have a representative mix of hot
and cold benchmarks as shown in Table III. Each benchmark
in the workload runs400s. The state of the art default
DTM policy throttles the cores when the core temperature
reaches the critical temperature threshold and clock gates
the cores until the temperature falls below85◦C. We have
also implementedDV FS with five different settings: (1.15V ,
0.90GHz), (1.12V , 0.85GHz), (1.10V , 0.80GHz) , (1.07V ,



0.75GHz), and (1.04V , 0.70GHz) using scaling techniques
in [14]. DV FS technique goes to the next lower step when-
ever a thermal emergency occurs and tries to maintain the
maximum possible speed while avoiding thermal emergency.
In the absence of thermal emergencies,DV FS increments the
frequency to the next higher whenever possible.
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Fig. 8. Improvements over default policy.

The default policy experiences computation slowdown of
up to 22.4% with an average of11.46% for the work-
loads in Table III. As expected, the performance cost due
to throttling is higher for workloads withhot benchmarks,
e.g.,WL7. Meanwhile, workloads with onlycold benchmarks
(e.g.,WL8) do not experience any thermal hotspots. Figure 8
shows the reduction of computation slowdown when using
our strategy of workload intermixing (WI) andDV FS over
the default policy.DV FS performs better than the default
policy by only 14% on average. Our proposed techniqueWI
shares the cores among thermally heterogeneous workloads in
interleaved fashion. It obtains on average58% reduction in the
computation slowdown as compared to the default policy. We
also improve overDV FS by 51% on average. For a subset of
workloads,WL1−WL6, WI improves over the default policy
by 99%. WI has identical improvements(99%) overDV FS
for the target workloads. If there is no thermal heterogene-
ity in the workload (e.g.,WL7,WL9,WL10), our thermal
management technique appliesDV FS because: (a) there is
no way to benefit from intermixing, (b) DVFS performs better
than the default policy.

WL1 WL2 WL3 WL4 WL5 WL6 WL7 WL8 WL9 WL10 AVG0

5

10

15

20

25

E
n
er
g
y
  S

av
in
g
s (

%
)

DVFS WI

Fig. 9. Energy Savings over default policy.

Figure 9 shows the percentage of energy savings ofWI
andDV FS relative to the default thermal management policy.
WI saves on average14% of energy compared to2.8%
with DV FS. The savings of energy come from two different
sources. The reduction in computation throttling helps thejobs
finish faster. In addition,WI saves leakage power by reducing
the average temperature of the cores. For the heterogeneous
workloads representing our target cases (WL1, WL2, WL3,
WL4, WL5, andWL6), WI saves21% and19% energy on
average relative to the default policy andDV FS respectively.
Energy savings are maximized when we mix the hottest with
the coldest benchmarks.

To make such temperature aware intermixing possible in
manycore architectures likeKNF , the parallelism (number
of threads) of manycore applications should be parametrized
and included in the programming model of future manycore
designs. Even though applications running on future manycore
chips may request a specific number of cores, the actual
level of parallelism and core allocation decisions will be
dynamically made by the OS scheduler based on workload
profiling and current thermal state of the system.

V. CONCLUSION

In this paper, we explore the prospect of workload in-
termixing as an efficient thermal management technique for
manycore architecture. In order to perform an accurate thermal
simulation for this purpose, we developed the first ever power
model for a many integrated core architecture. We calibrateour
model on Intel’s KNF with a set of benchmarks and real power
measurement data. In contrast, when compared to measure-
ment on Intel’s KNF card, our model has under4.73% average
error. The inclusion of operating voltage and clock frequency
enables our model to be used as a part of the DVFS policy
design. Our thermal simulation based on this power model
revealed that intermixing thermally heterogeneous workloads
in manycore chips can reduce the thermal hotspots by58%
on average compared to state of the art thermal management
techniques with an energy savings of14% on average.
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